1
|
Zhou X, Lv Z, Chen Z, Xu Y, Lin C, Liu L, Chen H, Niu B, Cui W, Zhang Y. Manipulation of Oxygen Tension in Damaged Regions via Hypoxia-Induced IPN Hydrogel Microspheres for Intervertebral Disc Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417570. [PMID: 40231808 PMCID: PMC12165120 DOI: 10.1002/advs.202417570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Disruption of low oxygen tension homeostasis during intervertebral disc degeneration inhibits endogenous stem cell viability and function, posing a challenge for endogenous regeneration. Here, to achieve sustained hypoxia manipulation, constructed hypoxia-inducible interpenetrating polymer network (IPN) hydrogel microspheres (HIMS) are constructed by microfluidics to integrate the hypoxic system with a stabilizing network. The IPN is synthesized through a two-step polymerization process, consisting of rapid photo-crosslinked gelatin methacrylate anhydride (GM) polymer I and slow enzyme-crosslinked vanillin-grafted gelatin (GV) polymer II. The enzymatic reaction between GV and laccase is able to create a hypoxic microenvironment to modulate oxygen tension in situ within the injured region. HIMS can reduce microenvironmental oxygen tension by 1/3 and maintain a hypoxic microenvironment for up to 5 days, thereby activating the PI3K/AKT/HIF-1α signaling pathway in endogenous stem cells to promote differentiation into nucleus pulposus-like cells. Additionally, NSC-Exos are loaded onto HIMS to trigger endogenous progenitor/stem cell recruitment and migration. Both in vitro and in vivo assays demonstrate that NSC-Exos@HIMS facilitates stem cell recruitment, targets differentiation, and stimulates extracellular matrix synthesis. Overall, the microspheres established herein provide a novel strategy for manipulating oxygen tension and enhancing endogenous tissue regeneration in injured regions during intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xingdie Zhou
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- School of Materials Science and EngineeringShanghai UniversityNanchen Road 333Shanghai200444P. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Zehao Chen
- Department of OrthopaedicsLaboratory of Key Technology and Materials in Minimally Invasive Spine SurgeryCenter for Spinal Minimally Invasive ResearchHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Yiming Xu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chao Lin
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of OrthopaedicsLaboratory of Key Technology and Materials in Minimally Invasive Spine SurgeryCenter for Spinal Minimally Invasive ResearchHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Li Liu
- School of Materials Science and EngineeringShanghai UniversityNanchen Road 333Shanghai200444P. R. China
| | - Hao Chen
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Bing Niu
- School of Life SciencesShanghai UniversityNanchen Road 333Shanghai200444P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yuhui Zhang
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| |
Collapse
|
2
|
Xiao L, Ding Z, Wang L, Yang H, Lu Q. Silk Hydrogel Platform Enable the Design of Aligned and Gradient Cues for Regenerative Medicine. Adv Healthc Mater 2025; 14:e2500080. [PMID: 40211606 DOI: 10.1002/adhm.202500080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Indexed: 06/11/2025]
Abstract
Tissue regeneration in vivo happens in complex physiological microenvironments that usually involve versatile physical and biological gradients. Introducing controllable gradients to anisotropic biomaterials is critical for the next generation of bioactive biomaterials. Current strategies for introducing gradients to anisotropic biomaterials are highly limited to special cues with inferior controllability. Here, beta-sheet rich silk nanofibers (B-SNFs) are exploited to build aligned hydrogels with controllable gradients, providing a universal approach to fabricating different gradients in anisotropic hydrogels. B-SNFs as carriers are loaded with gradient cues in aqueous solutions, and then the gradients on the aligned hydrogels under the electrical field are stabilized due to their stagnant behaviors in aqueous solutions and directional movement under the electrical field. The anisotropy, gradient strength/type, and gradient interval of the hydrogels are regulated through tuning the B-SNF concentration, the gradients of cues in solution, and the intervals of the compartments, suggesting good controllability. Both biological and physical gradient cues are effectively introduced to the aligned hydrogels and exhibit efficient gradient control of cell behavior. The versatility, controllability, and designability of the hydrogel platform suggest an opportunity to design versatile bioactive gradient materials needed in regenerative medicine.
Collapse
Affiliation(s)
- Liying Xiao
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Lili Wang
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Huaxiang Yang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Kim Y, Kim SE, Park KD, Park KM. Bioadhesives and bioactive hydrogels for wound management. J Control Release 2025; 379:285-302. [PMID: 39788376 DOI: 10.1016/j.jconrel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Delayed wound healing remains a major challenge in biomedical research, often leading to complications such as scarring, acute trauma, and chronic diseases. Effective wound management is crucial for enhancing treatment outcomes, preventing complications, and promoting tissue regeneration. In response to this need, a variety of polymeric biomaterials have been developed. A growing focus in the field involves the design of bioadhesives and bioactive materials, which offer promising solutions for wound management. Recent advances in materials engineering have led to the development of polymer biomaterials with excellent biocompatibility, strong adhesion to biological surfaces, and bioactive properties that support rapid wound closure and tissue repair. This review discusses the latest progress in the development and application of bioadhesives and bioactive hydrogels for wound management and tissue regeneration, highlighting potential directions for future biomaterial research.
Collapse
Affiliation(s)
- Yeonjeong Kim
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sung Eun Kim
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
4
|
Ntekoumes D, Song J, Liu H, Amelung C, Guan Y, Gerecht S. Acute Three-Dimensional Hypoxia Regulates Angiogenesis. Adv Healthc Mater 2025; 14:e2403860. [PMID: 39623803 PMCID: PMC11729260 DOI: 10.1002/adhm.202403860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/15/2025]
Abstract
Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.
Collapse
Affiliation(s)
- Dimitris Ntekoumes
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Haohao Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Connor Amelung
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
5
|
Zhu K, Wang L, Xiao Y, Zhang X, You G, Chen Y, Wang Q, Zhao L, Zhou H, Chen G. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. J Nanobiotechnology 2024; 22:336. [PMID: 38880905 PMCID: PMC11180412 DOI: 10.1186/s12951-024-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guoxing You
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuzhi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Quan Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
6
|
Katopodi T, Petanidis S, Floros G, Porpodis K, Kosmidis C. Hybrid Nanogel Drug Delivery Systems: Transforming the Tumor Microenvironment through Tumor Tissue Editing. Cells 2024; 13:908. [PMID: 38891040 PMCID: PMC11171955 DOI: 10.3390/cells13110908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The future of drug delivery offers immense potential for the creation of nanoplatforms based on nanogels. Nanogels present a significant possibility for pharmaceutical advancements because of their excellent stability and effective drug-loading capability for both hydrophobic and hydrophilic agents. As multifunctional systems, composite nanogels demonstrate the capacity to carry genes, drugs, and diagnostic agents while offering a perfect platform for theranostic multimodal applications. Nanogels can achieve diverse responsiveness and enable the stimuli-responsive release of chemo-/immunotherapy drugs and thus reprogramming cells within the TME in order to inhibit tumor proliferation, progression, and metastasis. In order to achieve active targeting and boost drug accumulation at target sites, particular ligands can be added to nanogels to improve the therapeutic outcomes and enhance the precision of cancer therapy. Modern "immune-specific" nanogels also have extra sophisticated tumor tissue-editing properties. Consequently, the introduction of a multifunctional nanogel-based drug delivery system improves the targeted distribution of immunotherapy drugs and combinational therapeutic treatments, thereby increasing the effectiveness of tumor therapy.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, G. Papanikolaou General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece;
| |
Collapse
|
7
|
Soliman BG, Longoni A, Major GS, Lindberg GCJ, Choi YS, Zhang YS, Woodfield TBF, Lim KS. Harnessing Macromolecular Chemistry to Design Hydrogel Micro- and Macro-Environments. Macromol Biosci 2024; 24:e2300457. [PMID: 38035637 DOI: 10.1002/mabi.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Gretel S Major
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gabriella C J Lindberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02115, USA
| | - Tim B F Woodfield
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Department of Orthopedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
8
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Williams TJ, Daboin C, Kim P, Guo F, de Figueiredo P, Alge DL. Enzyme-functionalized alginate microparticles enable anaerobic culture under ambient oxygen. Biotechnol Bioeng 2024; 121:219-227. [PMID: 37807712 DOI: 10.1002/bit.28566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Methods for culturing oxygen-sensitive cells and organisms under anaerobic conditions are vital to biotechnology research. Here, we report a biomaterial-based platform for anaerobic culture that consists of glucose oxidase (GOX) functionalized alginate microparticles (ALG-GOX), which are designed to deplete dissolved [O2 ] through enzymatic activity. ALG-GOX microparticles were synthesized via a water-in-oil emulsion and had a size of 132.0 ± 51.4 µm. Despite having a low storage modulus, the microparticles remained stable under aqueous conditions due to covalent crosslinking through amide bonds. Enzyme activity was tunable based on the loaded GOX concentration, with a maximum activity of 3.6 ± 0.3 units/mg of microparticles being achieved at an initial loading concentration of 5 mg/mL of GOX in alginate precursor solution. High enzyme activity in ALG-GOX microparticles resulted in rapid oxygen depletion, producing a suitable environment for anaerobic culture. Microparticles loaded with both GOX and catalase (ALG-GOX-CAT) to reduce H2 O2 buildup exhibited sustained activity for potential long-term anaerobic culture. ALG-GOX-CAT microparticles were highly effective for the anaerobic culture of Bacteroides thetaiotaomicron, with 10 mg/mL of ALG-GOX-CAT microparticles supporting the same level of growth in an aerobic environment compared to an anaerobic chamber after 16 h (8.70 ± 0.96 and 10.03 ± 1.03 million CFU, respectively; N.S. p = 0.07). These microparticles could be a valuable tool for research and development in biotechnology.
Collapse
Affiliation(s)
- Tyrell J Williams
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Claudia Daboin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Wei Z, Lei M, Wang Y, Xie Y, Xie X, Lan D, Jia Y, Liu J, Ma Y, Cheng B, Gerecht S, Xu F. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis. Nat Commun 2023; 14:8307. [PMID: 38097553 PMCID: PMC10721650 DOI: 10.1038/s41467-023-43768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.
Collapse
Affiliation(s)
- Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
11
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioact Mater 2023; 29:279-295. [PMID: 37600932 PMCID: PMC10432785 DOI: 10.1016/j.bioactmat.2023.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | | | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
12
|
Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol 2023; 43:e291-e302. [PMID: 37317849 DOI: 10.1161/atvbaha.122.318235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
The ECM (extracellular matrix) is a 3-dimensional network that supports cellular responses and maintains structural tissue integrity in healthy and pathological conditions. The interactions between ECM and cells trigger signaling cascades that lead to phenotypic changes and structural and compositional turnover of the ECM, which in turn regulates vascular cell behavior. Hydrogel biomaterials are a powerful platform for basic and translational studies and clinical applications due to their high swelling capacity and exceptional versatility in compositions and properties. This review highlights recent developments and uses of engineered natural hydrogel platforms that mimic the ECM and present defined biochemical and mechanical cues for vascularization. Specifically, we focus on modulating vascular cell stimulation and cell-ECM/cell-cell interactions in the microvasculature that are the established biomimetic microenvironment.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
13
|
Molley TG, Jiang S, Ong L, Kopecky C, Ranaweera CD, Jalandhra GK, Milton L, Kardia E, Zhou Z, Rnjak-Kovacina J, Waters SA, Toh YC, Kilian KA. Gas-modulating microcapsules for spatiotemporal control of hypoxia. Proc Natl Acad Sci U S A 2023; 120:e2217557120. [PMID: 37040415 PMCID: PMC10120079 DOI: 10.1073/pnas.2217557120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
Collapse
Affiliation(s)
- Thomas G. Molley
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | - Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Louis Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Chantal Kopecky
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
| | | | - Gagan K. Jalandhra
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Laura Milton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
| | - Egi Kardia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| | - Zeheng Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW2052, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Max-Planck Queensland Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Centre for Microbiome Research, Queensland University of Technology, Woolloongabba, QLD4102, Australia
| | - Kristopher A. Kilian
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW2052, Australia
- Molecular and Integrative Cystic Fibrosis Research Center, University of New South Wales, Sydney, NSW2052, Australia
| |
Collapse
|
14
|
Xing C, Zhu H, Dou X, Gao L, Baddi S, Zou Y, Zhao C, Peng Y, Fang Y, Feng CL. Infected Diabetic Wound Regeneration Using Peptide-Modified Chiral Dressing to Target Revascularization. ACS NANO 2023; 17:6275-6291. [PMID: 36946387 DOI: 10.1021/acsnano.2c10039] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Revascularization plays a critical role in the healing of diabetic wounds. Accumulation of advanced glycation end products (AGEs) and refractory multidrug resistant bacterial infection are the two major barriers to revascularization, directly leading to impaired healing of diabetic wounds. Here, an artfully designed chiral gel dressing is fabricated (named as HA-LM2-RMR), which consists of l-phenylalanine and cationic hexapeptide coassembled helical nanofibers cross-linked with hyaluronic acid via hydrogen bonding. This chiral gel possesses abundant chiral and cationic sites, not only effectively reducing AGEs via stereoselective interaction but also specifically killing multidrug resistant bacteria rather than host cells since cationic hexapeptides selectively interact with negatively charged microbial membrane. Surprisingly, the HA-LM2-RMR fibers present an attractive ability to activate sprouted angiogenesis of Human Umbilical Vein Endothelial Cells by upregulating VEGF and OPA1 expression. In comparison with clinical Prontosan Wound Gel, the HA-LM2-RMR gel presents superior healing efficiency in the infected diabetic wound with respect to angiogenesis and re-epithelialization, shortening the healing period from 21 days to 14 days. These findings for chiral wound dressing provide insights for the design and construction of diabetic wound dressings that target revascularization, which holds great potential to be utilized in tissue regenerative medicine.
Collapse
Affiliation(s)
- Chao Xing
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanting Zhu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Chuan-Liang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Wang S, Huang W, Feng Z, Tian X, Wang D, Rao L, Tan M, Roongsawang N, Song H, Jiang W, Bai W. Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight. Int J Biol Macromol 2023; 231:123239. [PMID: 36641025 DOI: 10.1016/j.ijbiomac.2023.123239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
As artificial extracellular matrix-like materials, silk-elastin-like protein (SELP) hydrogels, with excellent mechanical properties, high tunability, favorable biocompatibility, and controlled degradability, have become an important candidate in biomedical materials. In this study, SELP is composed of silk-like (GAGAGS) and elastin-like (GXGVP) tandem repeats, in which X residues are set as tyrosine and lysine. Furthermore, SELP polymers are prepared via SpyTag/SpyCatcher. To explore a gentler and more efficient enzymatic crosslinking method, an innovative method was invented to apply laccase to catalyze the formation of SELP hydrogels. Gelation could be successfully achieved in 2-5 min . SELP hydrogels mediated by laccase had the characteristic of low swelling rate, which could maintain a relatively stable shape even when immersed in water, and hence had the potential to be further developed into injectable biomaterials. Additionally, SELP hydrogels cross-linked by laccase showed excellent biocompatibility verified by L929 and HEK 293 T cells with cell viability >93.8 %. SELP hydrogels also exhibit good properties in sustained drug release and cell encapsulation in vitro. This study demonstrates a novel method to construct SELP hydrogels with excellent biocompatibility and expands the possibility of SELP-based material applications in biomedical fields.
Collapse
Affiliation(s)
- Sijia Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, 1038 Dagu Nanlu, Hexi District, Tianjin, China
| | - Zhaoxuan Feng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xiaoli Tian
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dexin Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Lang Rao
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Ming Tan
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Hui Song
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| | - Wenxia Jiang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| | - Wenqin Bai
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
16
|
Chen SX, Zhang J, Xue F, Liu W, Kuang Y, Gu B, Song S, Chen H. In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact Mater 2023; 21:86-96. [PMID: 36093330 PMCID: PMC9417960 DOI: 10.1016/j.bioactmat.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Though the development of the diverse hypoxia-activated prodrugs (HAPs) has made great progresses in the last several decades, current cancer therapy based on HAPs still suffers many obstacles, e.g., poor therapeutic outcome owing to hard deep reaching to hypoxic region, and the occurrence of metastasis due to hypoxia. Inspired by engineered niches, a novel functional chitosan polymer (CS-FTP) is synthesized for construction of a hydrogel-based bio-niche (CS-FTP-gel) in aiming at remodeling tumor hypoxic microenvironment. The CS-FTP polymers are crosslinked to form a niche-like hydrogel via enzyme-mediated oxygen-consumable dimerization after injected into tumor, in which a HAP (i.e., AQ4N) could be physically encapsulated, resulting in enhanced tumor hypoxia to facilitate AQ4N-AQ4 toxic transformation for maximizing efficacy of chemotherapy. Furthermore, Pazopanib (PAZ) conjugated onto the CS backbone via ROS-sensitive linker undergoes a stimuli-responsive release behavior to promote antiangiogenesis for tumor starvation, eventually contributing to the inhibition of lung metastasis and synergistic action with AQ4N-based chemotherapy for an orthotopic 4T1 breast tumor model. This study provides a promising strategy for hypoxia-based chemotherapy and demonstrates an encouraging clinical potential for multifunctional hydrogel applicable for antitumor treatment. CS-FTP shows enzyme-mediated hypoxia-inducible gelation and reactive oxygen species (ROS)-responsive drug release. CS-FTP gel formed intratumorally can be used as a bio-niche to enhance tumor hypoxic microenvironment. In vivo PET/CT directly monitors the tumor hypoxia changes and confirm the ability of CS-FTP to enhance tumor hypoxia. Oxygen-consumable gelation of ROS-responsive CS-FTP triggers chemotherapy and starvation therapy for antimetastasis.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Wei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Sub-lane Xiangshan Road 1, Hangzhou, 310024, PR China
| |
Collapse
|
17
|
Reflections on the Biology of Cell Culture Models: Living on the Edge of Oxidative Metabolism in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032717. [PMID: 36769044 PMCID: PMC9916950 DOI: 10.3390/ijms24032717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of cell metabolism is a hot topic in cancer research. Many studies have used 2D conventional cell cultures for their simplicity and the facility to infer mechanisms. However, the limitations of bidimensional cell cultures to recreate architecture, mechanics, and cell communication between tumor cells and their environment, have forced the development of other more realistic in vitro methodologies. Therefore, the explosion of 3D culture techniques and the necessity to reduce animal experimentation to a minimum has attracted the attention of researchers in the field of cancer metabolism. Here, we revise the limitations of actual culture models and discuss the utility of several 3D culture techniques to resolve those limitations.
Collapse
|
18
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Wang J, Zhao B, Sun L, Jiang L, Li Q, Jin P. Smart thermosensitive poloxamer hydrogels loaded with Nr-CWs for the treatment of diabetic wounds. PLoS One 2022; 17:e0279727. [PMID: 36584197 PMCID: PMC9803202 DOI: 10.1371/journal.pone.0279727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
The treatment of diabetic wound is a focus issue. At present, the Nocardia rubra cell wall skeleton (Nr-CWS) has been proved proven to promote angiogenesis and wound repair. Unfortunately, the high-glucose diabetic wound environment makes many drugs unable to be released effectively, and soon be removed. Smart thermosensitive poloxamer hydrogel (TH) is an ideal and adjustable drug delivery platform compatible with most living tissues. Here, a multifunctional composite thermosensitive hydrogel was developed. A mixture of poloxamers 407 and 188 as the gel matrix, and then it was physically mixed with Nr-CWS. The delivery vehicle not only controlled its release stably, preventing degradation in vitro, but also showed good affinity in vitro. In vivo, compared with thermosensitive poloxamer hydrogel alone or the direct use of Nr-CWS, the thermosensitive poloxamer hydrogel loaded with Nr-CWS promoted the proliferation of vascular endothelial cells effectively, resulting in increased expression of derma-related structural proteins and enhanced angiogenesis and wound healing. This study indicated that the angiogenesis and skin regeneration brought by Nr-CWS hydrogel are related to the activation of phosphatidylinositol 3 kinase and protein kinase B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways.
Collapse
Affiliation(s)
- Jian Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lili Sun
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liqun Jiang
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- * E-mail: (QL); (PJ)
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- * E-mail: (QL); (PJ)
| |
Collapse
|
20
|
Wang C, Deng Z, Zang L, Shu Y, He S, Wu X. Immune cells regulate matrix metalloproteinases to reshape the tumor microenvironment to affect the invasion, migration, and metastasis of pancreatic cancer. Am J Transl Res 2022; 14:8437-8456. [PMID: 36628243 PMCID: PMC9827340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 01/12/2023]
Abstract
This study aimed to identify author, country, institutional, and journal collaborations and assess their impact, along with knowledge base, as well as identify existing trends, and uncover emerging topics related to matrix metalloproteinase and pancreatic-cancer research. A total of 1474 Articles and reviews were obtained from the Web of Science Core Collection and analyzed by Citespace and Vosviewer. CANCER RESEARCH, CLINICAL CANCER RESEARCH, and FRONTIERS IN IMMUNOLOGY are the most influential journals. The three main aspects of research in matrix metalloproteinases-pancreatic cancer-related fields included the pathogenesis mechanism of pancreatic cancer, how matrix metalloproteinases affect the metastasis of pancreatic cancer, and what role matrix metalloproteinases play in pancreatic cancer treatment. Tumor microenvironment, pancreatic stellate cells, drug resistance, and immune cells have recently emerged as research hot spots. In the future, exploring how immune cells affect matrix metalloproteinases and reshape the tumor microenvironment may be the key to curing pancreatic cancer. This study thus offers a comprehensive overview of the matrix metalloproteinases-pancreatic cancer-related field using bibliometrics and visual methods, providing a valuable reference for researchers interested in matrix metalloproteinases-pancreatic cancer.
Collapse
Affiliation(s)
- Chunqiu Wang
- Department of Gastroenterology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - Zhen Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Longjun Zang
- Department of General Surgery, Taiyuan Central HospitalTaiyuan 030000, Shanxi, China
| | - Yufeng Shu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Suifang He
- Department of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
21
|
Wang Q, Wang Z, Zhang D, Gu J, Ma Y, Zhang Y, Chen J. Circular Patterns of Dynamic Covalent Hydrogels with Gradient Stiffness for Screening of the Stem Cell Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47461-47471. [PMID: 36240467 DOI: 10.1021/acsami.2c14924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As extracellular matrix (ECM) mimetic materials, hydrogels have been widely used for broad biomedical applications. However, with so many physical or chemical cues in the matrix that regulate cell behaviors or functions, it remains challenging to design a customizable hydrogel with the desired properties on demand. In the current study, we aim to establish a circular-patterned hydrogel model with gradient stiffness for screening the most favorable ECM environment for specific cells or certain application purposes. First, six types of hydrogels with a wide stiffness range of 1.2-28.9 kPa were prepared by dynamic covalent cross-linking between gelatin derivatives and oxidized hyaluronic acid. Taking advantage of their instantaneous self-healing property from dynamic chemistry, the hydrogels were further spliced into one whole piece of circular-patterned hydrogel. When rabbit bone marrow mesenchymal stem cells were seeded in the center, the influences of matrix stiffness on the regulation of stem cell adhesion, migration, and differentiation were directly observed and compared under one visual field. In addition, these hydrogels all possessed good biocompatibility, degradability, and injectability, showing great potential for tissue-engineering-related applications.
Collapse
Affiliation(s)
- Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
22
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
23
|
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci 2022; 23:ijms231911201. [PMID: 36232501 PMCID: PMC9569554 DOI: 10.3390/ijms231911201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient oxygen is required to maintain normal cellular and physiological function, such as a creature’s development, breeding, and homeostasis. Lately, some researchers have reported that both pathological hypoxia and environmental hypoxia might affect bone health. Adaptation to hypoxia is a pivotal cellular event in normal cell development and differentiation and in pathological settings such as ischemia. As central mediators of homeostasis, hypoxia-inducible transcription factors (HIFs) can allow cells to survive in a low-oxygen environment and are essential for the regulation of osteogenesis and skeletal repair. From this perspective, we summarized the role of HIF-1 and HIF-2 in signaling pathways implicated in bone development and skeletal repair and outlined the molecular mechanism of regulation of downstream growth factors and protein molecules such as VEGF, EPO, and so on. All of these present an opportunity for developing therapies for bone regeneration.
Collapse
|
24
|
Bruschi M, Vanzolini T, Sahu N, Balduini A, Magnani M, Fraternale A. Functionalized 3D scaffolds for engineering the hematopoietic niche. Front Bioeng Biotechnol 2022; 10:968086. [PMID: 36061428 PMCID: PMC9428512 DOI: 10.3389/fbioe.2022.968086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a subzone of the bone marrow (BM) defined as the hematopoietic niche where, via the interplay of differentiation and self-renewal, they can give rise to immune and blood cells. Artificial hematopoietic niches were firstly developed in 2D in vitro cultures but the limited expansion potential and stemness maintenance induced the optimization of these systems to avoid the total loss of the natural tissue complexity. The next steps were adopted by engineering different materials such as hydrogels, fibrous structures with natural or synthetic polymers, ceramics, etc. to produce a 3D substrate better resembling that of BM. Cytokines, soluble factors, adhesion molecules, extracellular matrix (ECM) components, and the secretome of other niche-resident cells play a fundamental role in controlling and regulating HSC commitment. To provide biochemical cues, co-cultures, and feeder-layers, as well as natural or synthetic molecules were utilized. This review gathers key elements employed for the functionalization of a 3D scaffold that demonstrated to promote HSC growth and differentiation ranging from 1) biophysical cues, i.e., material, topography, stiffness, oxygen tension, and fluid shear stress to 2) biochemical hints favored by the presence of ECM elements, feeder cell layers, and redox scavengers. Particular focus is given to the 3D systems to recreate megakaryocyte products, to be applied for blood cell production, whereas HSC clinical application in such 3D constructs was limited so far to BM diseases testing.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- *Correspondence: Michela Bruschi,
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | |
Collapse
|
25
|
Kang MS, Kwon M, Lee SH, Kim WH, Lee GW, Jo HJ, Kim B, Yang SY, Kim KS, Han DW. 3D printing of skin equivalents with hair follicle structures and epidermal-papillary-dermal layers using gelatin/hyaluronic acid hydrogels. Chem Asian J 2022; 17:e202200620. [PMID: 35866189 DOI: 10.1002/asia.202200620] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Recent advances in three-dimensional (3D) bioprinting technologies enabled the fabrication of sophisticated live 3D tissue analogs. Although various hydrogel-based bioink has been reported, the development of advanced bioink materials that can reproduce the composition of native extracellular matrix (ECM) accurately and mimic the intrinsic property of laden cells is still challenging. In this work, 3D printed skin equivalents incorporating hair follicle structures and epidermal-papillary-dermal layers are fabricated with gelatin methacryloyl (GelMA)/hyaluronic acid (HA) MA (HAMA) hydrogel (GelMA/HAMA) bioink. The composition of collagen and glycosaminoglycan (GAG) of native skin was recapitulated by adjusting the combination of GelMA and HAMA. The GelMA/HAMA bioink was proven to have excellent viscoelastic and physicochemical properties, 3D printability, cytocompatibility, and functionality to maintain the hair inductive potency and facilitated spontaneous hair pore development. Overall, we suggest that the GelMA/HAMA hydrogels can be promising candidates as bioinks for the 3D printing of skin equivalents with epidermal-papillary-dermal multi-layers and hair follicle structures, and they might serve as a useful model in skin tissue engineering and regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Mina Kwon
- Pusan National University, School of Chemical Engineering, KOREA, REPUBLIC OF
| | - Seok Hyun Lee
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Won-Hyeon Kim
- Seoul National University Dental Hospital, Dental Life Science Research Institute, KOREA, REPUBLIC OF
| | - Gyeong Won Lee
- Pusan National University - Milyang Campus, Biomaterials Science, KOREA, REPUBLIC OF
| | - Hyo Jung Jo
- Pusan National University, Cogno-Mechatronics Engineering, KOREA, REPUBLIC OF
| | - Bongju Kim
- Seoul National University Dental Hospital, Dental Life Science Research Institute, KOREA, REPUBLIC OF
| | - Seung Yun Yang
- Pusan National University - Milyang Campus, Biomaterials Science, KOREA, REPUBLIC OF
| | - Ki Su Kim
- Pusan National University, School of Chemical Engineering, KOREA, REPUBLIC OF
| | - Dong-Wook Han
- Pusan National University, Cogno-Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea, 46241, Busan, KOREA, REPUBLIC OF
| |
Collapse
|
26
|
Tissue Engineering Approaches to Uncover Therapeutic Targets for Endothelial Dysfunction in Pathological Microenvironments. Int J Mol Sci 2022; 23:ijms23137416. [PMID: 35806421 PMCID: PMC9266895 DOI: 10.3390/ijms23137416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial cell dysfunction plays a central role in many pathologies, rendering it crucial to understand the underlying mechanism for potential therapeutics. Tissue engineering offers opportunities for in vitro studies of endothelial dysfunction in pathological mimicry environments. Here, we begin by analyzing hydrogel biomaterials as a platform for understanding the roles of the extracellular matrix and hypoxia in vascular formation. We next examine how three-dimensional bioprinting has been applied to recapitulate healthy and diseased tissue constructs in a highly controllable and patient-specific manner. Similarly, studies have utilized organs-on-a-chip technology to understand endothelial dysfunction's contribution to pathologies in tissue-specific cellular components under well-controlled physicochemical cues. Finally, we consider studies using the in vitro construction of multicellular blood vessels, termed tissue-engineered blood vessels, and the spontaneous assembly of microvascular networks in organoids to delineate pathological endothelial dysfunction.
Collapse
|
27
|
Anjali S, Resmi R, Saravana RP, Joseph R, Saraswathy M. Ferulic acid incorporated anti-microbial self cross-linking hydrogel: A promising system for moderately exudating wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Magana A, Giovanni R, Essien E, Epel B, Kotecha M, Liu S, Mathew MT, Hagarty SE, Bijukumar D. Amniotic growth factors enhanced human pre-adipocyte cell viability and differentiation under hypoxia. J Biomed Mater Res B Appl Biomater 2022; 110:2146-2156. [PMID: 35384274 PMCID: PMC9283253 DOI: 10.1002/jbm.b.35068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
One of the major drawbacks associated with autologous fat grafting is unpredictable graft retention. Various efforts to improve the survivability of these cells have been explored, but these methods are time‐consuming, complex, and demand significant technical skill. In our study, we examine the use of cryopreserved amniotic membrane as a source of exogenous growth factors to improve adipocyte survivability under normal and hypoxic conditions. Human primary preadipocytes were cultured in a gelatin‐ferulic acid (Gtn‐FA) hydrogel with variable oxygen concentration and treated with amniotic membrane‐derived condition medium (CM) for 7 days. This hydrogel provides a hypoxic environment and also creates a 3D cell culture to better mimic recipient site conditions. The O2 concentration in the hydrogel was measured by electron paramagnetic resonance oxygen imaging (EPROI). The conjugation of FA was confirmed by FTIR and NMR spectroscopy. The cell viability and adipocyte differentiation were analyzed by alamarBlue™ assay, Oil Red O staining, and RT‐qPCR. The expression of genes: Pref‐1, C/EBP β, C/EBP α, PPAR‐ƴ, SLC2A4, and VEGF‐A were quantified. The cell viability results show that the 50% CM showed significantly higher cell pre‐adipocyte cell viability. In addition, compared to normal conditions, hypoxia/CM provided higher PPAR‐ƴ (p < .05), SLC2A4, and VEGF‐A (p < .05) (early and terminal differentiating markers) mRNA expression. This finding demonstrates the efficacy of amniotic CM supplementation as a novel way to promote adipocyte survival and retention via the expression of key gene markers for differentiation and angiogenesis.
Collapse
Affiliation(s)
- Alejandro Magana
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Regina Giovanni
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Edidiong Essien
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | | | - Songyun Liu
- Department of Orthopedics, Rush University of Medical Center, Chicago, Illinois, USA
| | - Mathew T Mathew
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| | - Sarah E Hagarty
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA.,Departments of Surgery and Biomedical Science, University of Illinois College of Medicine at Rockford, Illinois, USA
| | - Divya Bijukumar
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, Rockford, Illinois, USA
| |
Collapse
|
29
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
30
|
Fan X, Zhou J, Xia J, Yan X. Genome-Scale Metabolic Model's multi-objective solving algorithm based on the inflexion point of Pareto front including maximum energy utilization and its application in A.niger DS03043. Biotechnol Bioeng 2022; 119:1539-1555. [PMID: 35274299 DOI: 10.1002/bit.28078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
The solution of genome-scale metabolic model (GSMM) directly affects the simulation accuracy of the metabolic process in digital cells. Single-objective optimization methods, such as Flux Balance Analysis (FBA) which is widely used in solving GSMM, have limitations when simulating actual biological processes, which leads to unrealistic results due to other biological constraints being ignored. A novel multi-objective Differential Evolution algorithm based on general FBA (i.e., DEFBA) is hence proposed to solve GSMM. First, in accordance with to the assumption that cells minimize resource consumption and maximize resource utilization, the maximum specific growth rate and the minimum cellular production rate of ATP, NADPH, and NADH are defined as the multi-objective functions of DEFBA. Second, FBA is used to produce the initial individuals of DEFBA by changing the upper bound of biomass reaction in GSMM. Third, mutation and selection operations help in generating new individuals in the solution space to search the Pareto front. Finally, the optimal solution is selected by analyzing the inflexion point of the Pareto front. In DEFBA, multi-objective technology and optimal solution judging technology can introduce the biological constraints into the GSMM solving method, such that the solution can be more consistent with the essential biological mechanism. DEFBA is applied to solve Aspergillus niger's GSMM. The improved results show that DEFBA can be an effective general solving algorithm for GSMM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xingcun Fan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingru Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
31
|
Seymour AJ, Westerfield AD, Cornelius VC, Skylar-Scott MA, Heilshorn SC. Bioprinted microvasculature: progressing from structure to function. Biofabrication 2022; 14:10.1088/1758-5090/ac4fb5. [PMID: 35086069 PMCID: PMC8988885 DOI: 10.1088/1758-5090/ac4fb5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficientin vitromicrovascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular-and, thus, tissue-function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine andex vivohuman tissue modeling.
Collapse
Affiliation(s)
- Alexis J. Seymour
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Ashley D. Westerfield
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Vincent C. Cornelius
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Mark A. Skylar-Scott
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, 476 Lomita Mall, McCullough Room 246, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Duan K, Dash BC, Sasson DC, Islam S, Parker J, Hsia HC. Human iPSC-Derived Vascular Smooth Muscle Cells in a Fibronectin Functionalized Collagen Hydrogel Augment Endothelial Cell Morphogenesis. Bioengineering (Basel) 2021; 8:223. [PMID: 34940376 PMCID: PMC8698933 DOI: 10.3390/bioengineering8120223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Tissue-engineered constructs have immense potential as autologous grafts for wound healing. Despite the rapid advancement in fabrication technology, the major limitation is controlling angiogenesis within these constructs to form a vascular network. Here, we aimed to develop a 3D hydrogel that can regulate angiogenesis. We tested the effect of fibronectin and vascular smooth muscle cells derived from human induced pluripotent stem cells (hiPSC-VSMC) on the morphogenesis of endothelial cells. The results demonstrate that fibronectin increases the number of EC networks. However, hiPSC-VSMC in the hydrogel further substantiated the number and size of EC networks by vascular endothelial growth factor and basic fibroblast growth factor secretion. A mechanistic study shows that blocking αvβ3 integrin signaling between hiPSC-VSMC and fibronectin impacts the EC network formation via reduced cell viability and proangiogenic growth factor secretion. Collectively, this study set forth initial design criteria in developing an improved pre-vascularized construct.
Collapse
Affiliation(s)
- Kaiti Duan
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
| | - Biraja C. Dash
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
| | - Daniel C. Sasson
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
| | - Sara Islam
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
| | - Jackson Parker
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
| | - Henry C. Hsia
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (K.D.); (D.C.S.); (S.I.); (J.P.)
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 448] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Elham Badali, Hosseini M, Mohajer M, Hassanzadeh S, Saghati S, Hilborn J, Khanmohammadi M. Enzymatic Crosslinked Hydrogels for Biomedical Application. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x22030026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A 2021; 110:708-724. [PMID: 34558808 DOI: 10.1002/jbm.a.37310] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.
Collapse
Affiliation(s)
- Mahmoud A Sakr
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Kabilan Sakthivel
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Towsif Hossain
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, Massachusetts, USA
| | - Sumi Siddiqua
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geosciece and Mineral Resources, Pohang-si, South Korea
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Kim MH, Green SD, Lin C, Konig H. Engineering Tools for Regulating Hypoxia in Tumour Models. J Cell Mol Med 2021; 25:7581-7592. [PMID: 34213838 PMCID: PMC8358887 DOI: 10.1111/jcmm.16759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Major advances in the field of genomic technologies have led to an improvement in cancer diagnosis, classification and prognostication. However, many cancers remain incurable due to the development of drug resistance, minimal residual disease (MRD) and disease relapse, highlighting an incomplete understanding of the mechanisms underlying these processes. In recent years, the impact of non-genetic factors on neoplastic transformations has increasingly been acknowledged, and growing evidence suggests that low oxygen (O2 ) levels (ie hypoxia) in the tumour microenvironment play a critical role in the development and treatment of cancer. As a result, there is a growing need to develop research tools capable of reproducing physiologically relevant O2 conditions encountered by cancer cells in their natural environments in order to gain in-depth insight into tumour cell metabolism and function. In this review, the authors highlight the importance of hypoxia in the pathogenesis of malignant diseases and provide an overview of novel engineering tools that have the potential to further drive this evolving, yet technically challenging, field of cancer research.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical EngineeringIndiana University‐Purdue University IndianapolisIndianapolisINUS
| | - Steven D. Green
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUS
| | - Chien‐Chi Lin
- Department of Biomedical EngineeringIndiana University‐Purdue University IndianapolisIndianapolisINUS
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUS
| | - Heiko Konig
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUS
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUS
| |
Collapse
|
37
|
Khalil NN, McCain ML. Engineering the Cellular Microenvironment of Post-infarct Myocardium on a Chip. Front Cardiovasc Med 2021; 8:709871. [PMID: 34336962 PMCID: PMC8316619 DOI: 10.3389/fcvm.2021.709871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.
Collapse
Affiliation(s)
- Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
38
|
Whelan IT, Moeendarbary E, Hoey DA, Kelly DJ. Biofabrication of vasculature in microphysiological models of bone. Biofabrication 2021; 13. [PMID: 34034238 DOI: 10.1088/1758-5090/ac04f7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/25/2021] [Indexed: 11/12/2022]
Abstract
Bone contains a dense network of blood vessels that are essential to its homoeostasis, endocrine function, mineral metabolism and regenerative functions. In addition, bone vasculature is implicated in a number of prominent skeletal diseases, and bone has high affinity for metastatic cancers. Despite vasculature being an integral part of bone physiology and pathophysiology, it is often ignored or oversimplified inin vitrobone models. However, 3D physiologically relevant vasculature can now be engineeredin vitro, with microphysiological systems (MPS) increasingly being used as platforms for engineering this physiologically relevant vasculature. In recent years, vascularised models of bone in MPSs systems have been reported in the literature, representing the beginning of a possible technological step change in how bone is modelledin vitro. Vascularised bone MPSs is a subfield of bone research in its nascency, however given the impact of MPSs has had inin vitroorgan modelling, and the crucial role of vasculature to bone physiology, these systems stand to have a substantial impact on bone research. However, engineering vasculature within the specific design restraints of the bone niche is significantly challenging given the different requirements for engineering bone and vasculature. With this in mind, this paper aims to serve as technical guidance for the biofabrication of vascularised bone tissue within MPS devices. We first discuss the key engineering and biological considerations for engineering more physiologically relevant vasculaturein vitrowithin the specific design constraints of the bone niche. We next explore emerging applications of vascularised bone MPSs, and conclude with a discussion on the current status of vascularised bone MPS biofabrication and suggest directions for development of next generation vascularised bone MPSs.
Collapse
|
39
|
Zhou TJ, Xu Y, Xing L, Wang Y, Jiang HL. A Harmless-Harmful Switchable and Uninterrupted Laccase-Instructed Killer for Activatable Chemodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100114. [PMID: 34062021 DOI: 10.1002/adma.202100114] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Chemodynamic therapy (CDT) employs Fenton catalysts to kill cancer cells by converting intracellular hydrogen peroxide (H2 O2 ) into hydroxyl radicals (OH•). Although many studies on H2 O2 supplementation have been conducted to improve the therapeutic effect of CDT, few studies have focused on the application of superoxide radical (O2 -• ) in CDT, which may result in better efficacy. A major concern about O2 -• -mediated CDT is its tendency to induce serious oxidative damage to normal tissues, which may be addressed by using a degradable O2 -• scavenger. Here, a harmless-harmful switchable and uninterrupted laccase (LAC)-instructed killer (HULK) is constructed, which is the first CDT agent accelerated by LAC-instructed O2 -• generation and possesses a harmless-harmful switchable effect because of the photodegradation of the O2 -• scavenger iron-chlorin e6 (FeCe6). LAC-instructed substrate oxidation effectively catalyzes O2 -• production with the help of intracellular reduction, thereby promoting the conversion of Fe3+ to Fe2+ , accelerating the generation of OH•, and inducing tumor cell apoptosis and necrosis. The introduced O2 -• scavenger FeCe6 is quickly photodegraded during irradiation, while LAC-instructed O2 -• generation proceeds as before, resulting in activatable CDT. This work not only provides the first strategy for LAC-instructed O2 -• generation but also presents new insight into activatable CDT.
Collapse
Affiliation(s)
- Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
40
|
Zhu J, Wang Y, Zhong L, Pan F, Wang J. Advances in tissue engineering of vasculature through three-dimensional bioprinting. Dev Dyn 2021; 250:1717-1738. [PMID: 34115420 DOI: 10.1002/dvdy.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A significant challenge facing tissue engineering is the fabrication of vasculature constructs which contains vascularized tissue constructs to recapitulate viable, complex and functional organs or tissues, and free-standing vascular structures potentially providing clinical applications in the future. Three-dimensional (3D) bioprinting has emerged as a promising technology, possessing a number of merits that other conventional biofabrication methods do not have. Over the last decade, 3D bioprinting has contributed a variety of techniques and strategies to generate both vascularized tissue constructs and free-standing vascular structures. RESULTS This review focuses on different strategies to print two kinds of vasculature constructs, namely vascularized tissue constructs and vessel-like tubular structures, highlighting the feasibility and shortcoming of the current methods for vasculature constructs fabrication. Generally, both direct printing and indirect printing can be employed in vascularized tissue engineering. Direct printing allows for structural fabrication with synchronous cell seeding, while indirect printing is more effective in generating complex architecture. During the fabrication process, 3D bioprinting techniques including extrusion bioprinting, inkjet bioprinting and light-assisted bioprinting should be selectively implemented to exert advantages and obtain the desirable tissue structure. Also, appropriate cells and biomaterials matter a lot to match various bioprinting techniques and thus achieve successful fabrication of specific vasculature constructs. CONCLUSION The 3D bioprinting has been developed to help provide various fabrication techniques, devoting to producing structurally stable, physiologically relevant, and biologically appealing constructs. However, although the optimization of biomaterials and innovation of printing strategies may improve the fabricated vessel-like structures, 3D bioprinting is still in the infant period and has a great gap between in vitro trials and in vivo applications. The article reviews the present achievement of 3D bioprinting in generating vasculature constructs and also provides perspectives on future directions of advanced vasculature constructs fabrication.
Collapse
Affiliation(s)
- Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linna Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangwei Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
42
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
43
|
Lan B, Zhang L, Yang L, Wu J, Li N, Pan C, Wang X, Zeng L, Yan L, Yang C, Ren M. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 2021; 19:130. [PMID: 33952251 PMCID: PMC8097905 DOI: 10.1186/s12951-021-00869-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Excessive expression of matrix metalloproteinase 9 (MMP-9) impedes healing of diabetic chronic wounds, thus wound dressing that could effectively inhibit the expression of MMP-9 offers significant clinical translation for diabetic wound healing. Herein, a hybrid hydrogel dressing was developed for localized and sustained delivery of MMP-9 siRNA (siMMP-9). siMMP-9 was complexed with Gly-TETA (GT), the GT/siMMP9 complex was then loaded into a thermosensitive hydrogel based on Pluronic F-127 (PF) and methylcellulose (MC). In vitro, this hybrid hydrogel dressing exhibited negligible cytotoxicity, prolonged the release of GT/siMMP-9 for up to 7 days, and significantly reduced MMP-9 expression. In vivo assessment in diabetic rats demonstrated that hydrogel provided localized and sustained delivery via the thermosensitive controlled release of entrapped GT/siMMP-9 into wound tissues for 7 days, resulting in dramatic MMP-9 silencing which significantly improved diabetic wound closure. This hybrid hydrogel dressing exhibited excellent biocompatibility, with no observed systemic toxicity in rats. Taken together, the hybrid hydrogel dressing may constitute an effective and biocompatible means of enhancing diabetic wound healing through effective silencing of the MMP-9 gene, and this hydrogel delivery system also offers a platform for in vivo delivery of siRNA for the treatment of other diseases.
Collapse
Affiliation(s)
- Biyun Lan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.,Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Liming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Junfeng Wu
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Na Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chenglin Pan
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Lexiang Zeng
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
44
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
45
|
Liu R, Wang Y, Yan Q. CO
2
‐Strengthened Double‐Cross‐Linked Polymer Gels from Frustrated Lewis Pair Networks. Macromol Rapid Commun 2021; 42:e2000699. [DOI: 10.1002/marc.202000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Yixin Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
46
|
Kaplan AR, Glazer PM. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 2021; 35:61-68. [PMID: 31282537 DOI: 10.1093/mutage/gez019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of the tumour microenvironment with profound effects on tumour biology, influencing cancer progression, the development of metastasis and patient outcome. Hypoxia also contributes to genomic instability and mutation frequency by inhibiting DNA repair pathways. This review summarises the diverse mechanisms by which hypoxia affects DNA repair, including suppression of homology-directed repair, mismatch repair and base excision repair. We also discuss the effects of hypoxia mimetics and agents that induce hypoxia on DNA repair, and we highlight areas of potential clinical relevance as well as future directions.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Experimental Pathology, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Genetics, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Manufacturing macroscale cell-laden architectures is one of the biggest challenges faced nowadays in the domain of tissue engineering. Such living constructs, in fact, pose strict requirements for nutrients and oxygen supply that can hardly be addressed through simple diffusion in vitro or without a functional vasculature in vivo. In this context, in the last two decades, a substantial amount of work has been carried out to develop smart materials that could actively provide oxygen-release to contrast local hypoxia in large-size constructs. This review provides an overview of the currently available oxygen-releasing materials and their synthesis and mechanism of action, highlighting their capacities under in vitro tissue cultures and in vivo contexts. Additionally, we also showcase an emerging concept, herein termed as "living materials as releasing systems", which relies on the combination of biomaterials with photosynthetic microorganisms, namely algae, in an "unconventional" attempt to supply the damaged or re-growing tissue with the necessary supply of oxygen. We envision that future advances focusing on tissue microenvironment regulated oxygen-supplying materials would unlock an untapped potential for generating a repertoire of anatomic scale, living constructs with improved cell survival, guided differentiation, and tissue-specific biofunctionality.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sara Kazemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Francisca Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Vítor Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Pooyan Makvandi
- Center for MicroBioRobotics (CMBR), Istituto Italiano di Tecnologia, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
48
|
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B 2021; 9:1521-1535. [PMID: 33474559 DOI: 10.1039/d0tb02737e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The locoregional recurrence of breast cancer after tumor resection represents several clinical challenges, and conventional post-surgical adjuvant therapeutics always bring about significant systemic side effects. Thus, the local therapy strategy has received considerable interest in breast cancer treatment, and hydrogels can function as ideal platforms due to their remarkable properties such as good biocompatibility, biodegradability, flexibility, and multifunctionality. The nano-hydrogel composites can further incorporate the advantages of nanomaterials into the hydrogel system, to fabricate hierarchical structures for stimulating controlled multi-stage release of different therapeutic agents and improving the synergistic effects of combination therapy. In this review, the problems of clinical treatments of breast cancer and properties of hydrogels in current biomedical applications are briefly overviewed. The focus is on recent advances in local therapy based on nano-hydrogel composites for both monotherapy (chemotherapy, photothermal and photodynamic therapy) and combination therapy (dual chemotherapy, photothermal chemotherapy, photothermal immunotherapy, radio-chemotherapy). Moreover, the challenges and perspectives in the development of advanced nano-hydrogel systems are also discussed.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.
| |
Collapse
|
49
|
Jeevarathinam A, Guo F, Williams T, Smolen J, Hyde J, McShane M, de Figueiredo P, Alge D. Enzyme functionalized microgels enable precise regulation of dissolved oxygen and anaerobe culture. Mater Today Bio 2021; 9:100092. [PMID: 33554105 PMCID: PMC7856461 DOI: 10.1016/j.mtbio.2020.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Anaerobes are a major constituent of the gut microbiome and profoundly influence the overall health of humans. However, the lack of a simple, cost-effective, and scalable system that mimics the anaerobic conditions of the human gut is hindering research on the gut microbiome and the development of therapeutics. Here, we address this gap by using glucose oxidase and catalase containing gelatin microparticles (GOx-CAT-GMPs) to precisely regulate dissolved oxygen concentration [O2] via GOx-mediated consumption of oxygen. Fluorescence images generated using conjugated polymer afterglow nanoparticles showed that [O2] can be tuned from 257.9 ± 6.2 to 0.0 ± 4.0 μM using GOx-CAT-GMPs. Moreover, when the obligate anaerobe Bacteroides thetaiotaomicron was inoculated in media containing GOx-CAT-GMPs, bacterial growth under ambient oxygen was comparable to control conditions in an anaerobic chamber (5.4 × 105 and 8.8 × 105 colony forming units mL-1, respectively). Finally, incorporating GOx-CAT-GMPs into a bioreactor that permitted continuous radial diffusion of oxygen and glucose generated a gut-mimetic [O2] gradient of 132.4 ± 2.6 μM in the outer ring of the reactor to 7.9 ± 1.7 μM at the core. Collectively, these results indicate that GOx-CAT-GMPs are highly effective oxygen-regulating materials. These materials can potentially be leveraged to advance gut microbiome research and fecal microbiota transplantation, particularly in low-resource settings.
Collapse
Affiliation(s)
- A.S. Jeevarathinam
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - F. Guo
- Department of Microbial Pathogenesis & Immunology, Texas A&M Health Science Center, Riverside Parkway, Bryan, TX 77807, USA
| | - T. Williams
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - J.A. Smolen
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - J.A. Hyde
- Department of Microbial Pathogenesis & Immunology, Texas A&M Health Science Center, Riverside Parkway, Bryan, TX 77807, USA
| | - M.J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - P. de Figueiredo
- Department of Microbial Pathogenesis & Immunology, Texas A&M Health Science Center, Riverside Parkway, Bryan, TX 77807, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
| | - D.L. Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
50
|
Sun L, Ma Y, Niu H, Liu Y, Yuan Y, Liu C. Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia‐Mimetic Hydrogel. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202008515] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 01/06/2025]
Abstract
AbstractDue to the limited ability for perfusion, traditional intramembranous ossification (IMO) often fails to recapitulate the natural regeneration process of most long bones and craniofacial bones. Alternatively, endochondral ossification (ECO) strategy has emerged and has been evidenced to circumvent the drawbacks in the routine application of IMO. Here, an injectable, poly(glycerol sebacate)‐co‐poly (ethylene glycol)/polyacrylic acid (PEGS/PAA) hydrogels are successfully developed to induce a hypoxia‐mimicking environment and subsequently recapitulate ECO via in situ iron chelation. With the incorporation of PAA, these hydrogels present remarkable viscoelasticity and high efficacy of iron ion‐chelating after injection, giving rise to the activation of HIF‐1α signaling pathway and suppression of inflammatory responses, and thereby improving chondrogenic differentiation in the early stage and facilitating vascularization in the later stage, which consequently trigger typical ECO. More importantly, through sustained and stable expression of HIF‐1α regulated by PEGS/PAA hydrogels throughout the regeneration, a harmonious chondrogenic/osteogenic balance can be struck and thereby accelerating the progress of ECO compared to the PEGS. The findings provide an efficient strategy to achieve in situ ECO via biomaterial‐based iron ion‐chelating and ensuing hypoxia‐mimicking, representing a novel and promising concept for future application in bone regeneration.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|