1
|
Lee AR, Tangiyan A, Singh I, Choi PS. Incomplete paralog compensation generates selective dependency on TRA2A in cancer. PLoS Genet 2025; 21:e1011685. [PMID: 40367120 PMCID: PMC12077678 DOI: 10.1371/journal.pgen.1011685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Paralogs often exhibit functional redundancy, allowing them to effectively compensate for each other's loss. However, this buffering mechanism is frequently disrupted in cancer, exposing unique paralog-specific vulnerabilities. Here, we identify a selective dependency on the splicing factor TRA2A. We find that TRA2A and its paralog TRA2B are synthetic lethal partners that function as widespread and largely redundant activators of both alternative and constitutive splicing. While loss of TRA2A alone is typically neutral due to compensation by TRA2B, we discover that a subset of cancer cell lines are highly TRA2A-dependent. Upon TRA2A depletion, these cell lines exhibit a lack of paralog buffering specifically on shared splicing targets, leading to defects in mitosis and cell death. Notably, TRA2B overexpression rescues both the aberrant splicing and lethality associated with TRA2A loss, indicating that paralog compensation is dosage-sensitive. Together, these findings reveal a complex dosage-dependent relationship between paralogous splicing factors, and highlight how dysfunctional paralog buffering can create a selective dependency in cancer.
Collapse
Affiliation(s)
- Amanda R. Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Anna Tangiyan
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Isha Singh
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Peter S. Choi
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Leclair NK, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola BL, Yurieva M, Anczuków O. Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects. Nat Commun 2025; 16:1670. [PMID: 39955311 PMCID: PMC11829967 DOI: 10.1038/s41467-025-56913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Upregulated expression of the oncogenic splicing factor TRA2β occurs in human tumors partly through decreased inclusion of its autoregulatory non-coding poison exon (PE). Here, we reveal that low TRA2β-PE inclusion negatively impacts patient survival across several tumor types. We demonstrate the ability of splice-switching antisense oligonucleotides (ASOs) to promote TRA2β-PE inclusion and lower TRA2β protein levels in pre-clinical cancer models. TRA2β-PE-targeting ASOs induce anti-cancer phenotypes and widespread transcriptomic alterations with functional impact on RNA processing, mTOR, and p53 signaling pathways. Surprisingly, the effect of TRA2β-PE-targeting ASOs on cell viability are not phenocopied by TRA2β knockdown. Mechanistically, we find that the ASO functions by both decreasing TRA2β protein and inducing the expression of TRA2β-PE-containing transcripts that act as long non-coding RNAs to sequester nuclear proteins. Finally, TRA2β-PE-targeting ASOs are toxic to preclinical 3D organoid and in vivo patient-derived xenograft models. Together, we demonstrate that TRA2β-PE acts both as a regulator of protein expression and a long-noncoding RNA to control cancer cell growth. Drugging oncogenic splicing factors using PE-targeting ASOs is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Maeva Devoucoux
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Dalgliesh C, Aldalaqan S, Atallah C, Best A, Scott E, Ehrmann I, Merces G, Mannion J, Badurova B, Sandher R, Illing Y, Wirth B, Wells S, Codner G, Teboul L, Smith GR, Hedley A, Herbert M, de Rooij DG, Miles C, Reynard LN, Elliott DJ. An ultra-conserved poison exon in the Tra2b gene encoding a splicing activator is essential for male fertility and meiotic cell division. EMBO J 2025; 44:877-902. [PMID: 39748121 PMCID: PMC11791180 DOI: 10.1038/s44318-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes. To address this, we used mouse genetics to disrupt an ultra-conserved PE in the Tra2b gene encoding the SR protein Tra2β. Focussing on germ cell development, we found that Tra2b PE deletion causes azoospermia due to catastrophic cell death during meiotic prophase. Failure to proceed through meiosis was associated with increased Tra2b expression sufficient to drive aberrant Tra2β protein hyper-responsive splice patterns. Although critical for meiotic prophase, Tra2b PE deletion spared earlier mitotically active germ cells, even though these still required Tra2b gene function. Our data indicate that PE splicing control prevents the accumulation of toxic levels of Tra2β protein that are incompatible with meiotic prophase. This unexpected connection with male fertility helps explain Tra2b PE ultra-conservation and indicates the importance of evaluating PE function in animal models.
Collapse
Affiliation(s)
- Caroline Dalgliesh
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Saad Aldalaqan
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Christian Atallah
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Best
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Emma Scott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ingrid Ehrmann
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - George Merces
- Newcastle University Biosciences Institute (NUBI), Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK
- Image Analysis Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joel Mannion
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Barbora Badurova
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Raveen Sandher
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Ylva Illing
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
| | - Brunhilde Wirth
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Genetics, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Gemma Codner
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ann Hedley
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mary Herbert
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin Miles
- Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Louise N Reynard
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - David J Elliott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK.
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
4
|
Ciccolella S, Cozzi D, Della Vedova G, Kuria SN, Bonizzoni P, Denti L. Differential quantification of alternative splicing events on spliced pangenome graphs. PLoS Comput Biol 2024; 20:e1012665. [PMID: 39652592 DOI: 10.1371/journal.pcbi.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Pangenomes are becoming a powerful framework to perform many bioinformatics analyses taking into account the genetic variability of a population, thus reducing the bias introduced by a single reference genome. With the wider diffusion of pangenomes, integrating genetic variability with transcriptome diversity is becoming a natural extension that demands specific methods for its exploration. In this work, we extend the notion of spliced pangenomes to that of annotated spliced pangenomes; this allows us to introduce a formal definition of Alternative Splicing (AS) events on a graph structure. To investigate the usage of graph pangenomes for the quantification of AS events across conditions, we developed pantas, the first pangenomic method for the detection and differential analysis of AS events from short RNA-Seq reads. A comparison with state-of-the-art linear reference-based approaches proves that pantas achieves competitive accuracy, making spliced pangenomes effective for conducting AS events quantification and opening future directions for the analysis of population-based transcriptomes.
Collapse
Affiliation(s)
- Simone Ciccolella
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Davide Cozzi
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | | | | | - Paola Bonizzoni
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
| | - Luca Denti
- Department of Computer Science, University of Milano-Bicocca, Milan, Italy
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Karginov TA, Ménoret A, Leclair NK, Harrison AG, Chandiran K, Suarez-Ramirez JE, Yurieva M, Karlinsey K, Wang P, O’Neill RJ, Murphy PA, Adler AJ, Cauley LS, Anczuków O, Zhou B, Vella AT. Autoregulated splicing of TRA2β programs T cell fate in response to antigen-receptor stimulation. Science 2024; 385:eadj1979. [PMID: 39265028 PMCID: PMC11697694 DOI: 10.1126/science.adj1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024]
Abstract
T cell receptor (TCR) sensitivity to peptide-major histocompatibility complex (MHC) dictates T cell fate. Canonical models of TCR sensitivity cannot be fully explained by transcriptional regulation. In this work, we identify a posttranscriptional regulatory mechanism of TCR sensitivity that guides alternative splicing of TCR signaling transcripts through an evolutionarily ultraconserved poison exon (PE) in the RNA-binding protein (RBP) TRA2β in mouse and human. TRA2β-PE splicing, seen during cancer and infection, was required for TCR-induced effector T cell expansion and function. Tra2β-PE skipping enhanced T cell response to antigen by increasing TCR sensitivity. As antigen levels decreased, Tra2β-PE reinclusion allowed T cell survival. Finally, we found that TRA2β-PE was first included in the genome of jawed vertebrates that were capable of TCR gene rearrangements. We propose that TRA2β-PE splicing acts as a gatekeeper of TCR sensitivity to shape T cell fate.
Collapse
Affiliation(s)
- Timofey A. Karginov
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Nathan K. Leclair
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew G. Harrison
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Karthik Chandiran
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenny E. Suarez-Ramirez
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Marina Yurieva
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Rachel J. O’Neill
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Patrick A. Murphy
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Adam J. Adler
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Linda S. Cauley
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Olga Anczuków
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
6
|
Wong ACH, Wong JJL, Rasko JEJ, Schmitz U. SpliceWiz: interactive analysis and visualization of alternative splicing in R. Brief Bioinform 2023; 25:bbad468. [PMID: 38152981 PMCID: PMC10753292 DOI: 10.1093/bib/bbad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Alternative splicing (AS) is a crucial mechanism for regulating gene expression and isoform diversity in eukaryotes. However, the analysis and visualization of AS events from RNA sequencing data remains challenging. Most tools require a certain level of computer literacy and the available means of visualizing AS events, such as coverage and sashimi plots, have limitations and can be misleading. To address these issues, we present SpliceWiz, an R package with an interactive Shiny interface that allows easy and efficient AS analysis and visualization at scale. A novel normalization algorithm is implemented to aggregate splicing levels within sample groups, thereby allowing group differences in splicing levels to be accurately visualized. The tool also offers downstream gene ontology enrichment analysis, highlighting ASEs belonging to functional pathways of interest. SpliceWiz is optimized for speed and efficiency and introduces a new file format for coverage data storage that is more efficient than BigWig. Alignment files are processed orders of magnitude faster than other R-based AS analysis tools and on par with command-line tools. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization. SpliceWiz is a Bioconductor package and is also available on GitHub (https://github.com/alexchwong/SpliceWiz).
Collapse
Affiliation(s)
- Alex C H Wong
- Gene and Stem Cell Therapy Program, Centenary Institute, the University of Sydney, Camperdown, NSW 2050, Australia
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, the University of Sydney, Camperdown, NSW 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, the University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, the University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, the University of Sydney, Camperdown, NSW 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Biomedical Sciences and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| |
Collapse
|
7
|
Cao M, Ren Y, Li Y, Deng J, Su X, Tang Y, Yuan F, Deng H, Yang G, He Z, Liu B, Yao Z, Deng M. Lnc-ZEB2-19 Inhibits the Progression and Lenvatinib Resistance of Hepatocellular Carcinoma by Attenuating the NF-κB Signaling Pathway through the TRA2A/RSPH14 Axis. Int J Biol Sci 2023; 19:3678-3693. [PMID: 37564197 PMCID: PMC10411463 DOI: 10.7150/ijbs.85270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Long non-coding RNAs have been reported to play a crucial role in tumor progression in hepatocellular carcinoma (HCC). Lnc-ZEB2-19 has been validated to be deficiently expressed in HCC. However, the capabilities and underlying mechanisms of lnc-ZEB2-19 remain uncertain. In this study, we verified that the downregulation of lnc-ZEB2-19 was prevalent in HCC and significantly correlated with the unfavorable prognosis. Further in vitro and in vivo verified that lnc-ZEB2-19 notably inhibited the proliferation, metastasis, stemness, and lenvatinib resistance (LR) of HCC cells. Mechanistically, lnc-ZEB2-19 inhibited HCC progression and LR by specifically binding to transformer 2α (TRA2A) and promoting its degradation, which resulted in the instability of RSPH14 mRNA, leading to the downregulation of Rela(p65) and p-Rela(p-p65). Furthermore, rescue assays showed that silencing RSPH14 partially restrained the effect of knockdown expression of lnc-ZEB2-19 on HCC cell metastatic ability and stemness. The findings describe a novel regulatory axis, lnc-ZEB2-19/TRA2A/RSPH14, downregulating the nuclear factor kappa B to inhibit HCC progression and LR.
Collapse
Affiliation(s)
- Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Junfeng Deng
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaorui Su
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Haixia Deng
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Bo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary & Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
8
|
Xue J, Ma T, Zhang X. TRA2: The dominant power of alternative splicing in tumors. Heliyon 2023; 9:e15516. [PMID: 37151663 PMCID: PMC10161706 DOI: 10.1016/j.heliyon.2023.e15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The dysregulation of alternative splicing (AS) is frequently found in cancer and considered as key markers for cancer progression and therapy. Transformer 2 (TRA2), a nuclear RNA binding protein, consists of transformer 2 alpha homolog (TRA2A) and transformer 2 beta homolog (TRA2B), and plays a role in the regulation of pre-mRNA splicing. Growing evidence has been provided that TRA2A and TRA2B are dysregulated in several types of tumors, and participate in the regulation of proliferation, migration, invasion, and chemotherapy resistance in cancer cells through alteration of AS of cancer-related genes. In this review, we highlight the role of TRA2 in tumorigenesis and metastasis, and discuss potential molecular mechanisms how TRA2 influences tumorigenesis and metastasis via controlling AS of pre-mRNA. We propose that TRA2Ais a novel biomarker and therapeutic target for cancer progression and therapy.
Collapse
Affiliation(s)
- Jiancheng Xue
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- Corresponding author.
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
- Corresponding author. Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
9
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
10
|
Ramond F, Dalgliesh C, Grimmel M, Wechsberg O, Vetro A, Guerrini R, FitzPatrick D, Poole RL, Lebrun M, Bayat A, Grasshoff U, Bertrand M, Witt D, Turnpenny PD, Faundes V, Santa María L, Mendoza Fuentes C, Mabe P, Hussain SA, Mullegama SV, Torti E, Oehl-Jaschkowitz B, Salmon LB, Orenstein N, Shahar NR, Hagari O, Bazak L, Hoffjan S, Prada CE, Haack T, Elliott DJ. Clustered variants in the 5' coding region of TRA2B cause a distinctive neurodevelopmental syndrome. Genet Med 2022; 25:100003. [PMID: 36549593 DOI: 10.1016/j.gim.2022.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Transformer2 proteins (Tra2α and Tra2β) control splicing patterns in human cells, and no human phenotypes have been associated with germline variants in these genes. The aim of this work was to associate germline variants in the TRA2B gene to a novel neurodevelopmental disorder. METHODS A total of 12 individuals from 11 unrelated families who harbored predicted loss-of-function monoallelic variants, mostly de novo, were recruited. RNA sequencing and western blot analyses of Tra2β-1 and Tra2β-3 isoforms from patient-derived cells were performed. Tra2β1-GFP, Tra2β3-GFP and CHEK1 exon 3 plasmids were transfected into HEK-293 cells. RESULTS All variants clustered in the 5' part of TRA2B, upstream of an alternative translation start site responsible for the expression of the noncanonical Tra2β-3 isoform. All affected individuals presented intellectual disability and/or developmental delay, frequently associated with infantile spasms, microcephaly, brain anomalies, autism spectrum disorder, feeding difficulties, and short stature. Experimental studies showed that these variants decreased the expression of the canonical Tra2β-1 isoform, whereas they increased the expression of the Tra2β-3 isoform, which is shorter and lacks the N-terminal RS1 domain. Increased expression of Tra2β-3-GFP were shown to interfere with the incorporation of CHEK1 exon 3 into its mature transcript, normally incorporated by Tra2β-1. CONCLUSION Predicted loss-of-function variants clustered in the 5' portion of TRA2B cause a new neurodevelopmental syndrome through an apparently dominant negative disease mechanism involving the use of an alternative translation start site and the overexpression of a shorter, repressive Tra2β protein.
Collapse
Affiliation(s)
- Francis Ramond
- Service de Génétique, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France.
| | - Caroline Dalgliesh
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Oded Wechsberg
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Maccabi Healthcare Services, Tel Aviv, Israel
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - David FitzPatrick
- MRC Human Genetics Unit, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rebecca L Poole
- NHS Education for Scotland South East Region, South East of Scotland Clinical Genetics Service, Edinburgh, United Kingdom
| | - Marine Lebrun
- Service de Génétique, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Víctor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Lorena Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carolina Mendoza Fuentes
- Unidad de Endocrinología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Mabe
- Unidad de Neurología, Hospital de Niños Dr. Exequiel González Cortés, Santiago, Chile
| | - Shaun A Hussain
- Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA
| | | | | | | | - Lina Basel Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel; Pediatric Immunogenetics, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Ruhrman Shahar
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Ofir Hagari
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Lily Bazak
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Sabine Hoffjan
- Abteilung für Humangenetik, Ruhr-Universitat Bochum, Bochum, Germany
| | - Carlos E Prada
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - David J Elliott
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
11
|
Lu Y, Jiang B, Peng K, Li S, Liu X, Wang B, Chen Y, Wang T, Zhao B. Differential Degradation of TRA2A and PYCR2 Mediated by Ubiquitin E3 Ligase E4B. Front Cell Dev Biol 2022; 10:833396. [PMID: 35669517 PMCID: PMC9163560 DOI: 10.3389/fcell.2022.833396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
E4B belongs to the U-box E3 ligase family and functions as either an E3 or an E4 enzyme in protein ubiquitination. Transformer2A (TRA2A) and Pyrroline-5-carboxylate reductase 2 (PYCR2) are related to cancer development and are overexpressed in many cancer cells. The degradation of TRA2A and PYCR2 mediated by the ubiquitin-proteasome system (UPS) has not been reported. This study validated that E4B could ubiquitinate TRA2A and PYCR2 as an E3 ligase both in vitro and in the HEK293 cells. E4B mediated the degradation by forming K11- and K48- linked polyubiquitin chains on TRA2A and PYCR2, respectively. E4B regulated the alternative splicing function of TRA2A and affected RSRC2 transcription in the HEK293 cells. Although E4B is highly expressed, it hardly degrades TRA2A and PYCR2 in hepatocellular carcinoma (HCC) cells, suggesting other mechanisms exist for degradation of TRA2A and PYCR2 in the HCC cells. We finally reported that E4B interacted with substrates via its variable region.
Collapse
Affiliation(s)
- Yao Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Kangli Peng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangnan Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuntian Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiepeng Wang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2022; 11:799024. [PMID: 35127560 PMCID: PMC8807687 DOI: 10.3389/fcimb.2021.799024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is negatively impacted by the actions of RIOK3, a protein involved in the cellular immune response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to produce an isoform that correlates with the inhibition of interferon β signaling. Here, we identify splicing factor TRA2-β (also known as TRA2beta and hTRA2-β) as a key regulator governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and minigenes, we determined that TRA2-β interaction with RIOK3 pre-mRNA was necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-β engagement led to increased alternative splicing. Expression of TRA2-β was found to be necessary for RIOK3's antiviral effect against RVFV. Intriguingly, TRA2-β mRNA is also alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-β protein levels. These results suggest that splicing modulation serves as an immune evasion strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response. Furthermore, the results suggest that TRA2-β can act as a key regulator of additional steps of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Hunter L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| |
Collapse
|
13
|
Denti L, Pirola Y, Previtali M, Ceccato T, Della Vedova G, Rizzi R, Bonizzoni P. Shark: fishing relevant reads in an RNA-Seq sample. Bioinformatics 2021; 37:464-472. [PMID: 32926128 PMCID: PMC8088329 DOI: 10.1093/bioinformatics/btaa779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022] Open
Abstract
Motivation Recent advances in high-throughput RNA-Seq technologies allow to produce massive datasets. When a study focuses only on a handful of genes, most reads are not relevant and degrade the performance of the tools used to analyze the data. Removing irrelevant reads from the input dataset leads to improved efficiency without compromising the results of the study. Results We introduce a novel computational problem, called gene assignment and we propose an efficient alignment-free approach to solve it. Given an RNA-Seq sample and a panel of genes, a gene assignment consists in extracting from the sample, the reads that most probably were sequenced from those genes. The problem becomes more complicated when the sample exhibits evidence of novel alternative splicing events. We implemented our approach in a tool called Shark and assessed its effectiveness in speeding up differential splicing analysis pipelines. This evaluation shows that Shark is able to significantly improve the performance of RNA-Seq analysis tools without having any impact on the final results. Availability and implementation The tool is distributed as a stand-alone module and the software is freely available at https://github.com/AlgoLab/shark. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luca Denti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Yuri Pirola
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Marco Previtali
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Tamara Ceccato
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Gianluca Della Vedova
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Raffaella Rizzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
14
|
Leclair NK, Brugiolo M, Urbanski L, Lawson SC, Thakar K, Yurieva M, George J, Hinson JT, Cheng A, Graveley BR, Anczuków O. Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis. Mol Cell 2020; 80:648-665.e9. [PMID: 33176162 PMCID: PMC7680420 DOI: 10.1016/j.molcel.2020.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
The RNA isoform repertoire is regulated by splicing factor (SF) expression, and alterations in SF levels are associated with disease. SFs contain ultraconserved poison exon (PE) sequences that exhibit greater identity across species than nearby coding exons, but their physiological role and molecular regulation is incompletely understood. We show that PEs in serine-arginine-rich (SR) proteins, a family of 14 essential SFs, are differentially spliced during induced pluripotent stem cell (iPSC) differentiation and in tumors versus normal tissues. We uncover an extensive cross-regulatory network of SR proteins controlling their expression via alternative splicing coupled to nonsense-mediated decay. We define sequences that regulate PE inclusion and protein expression of the oncogenic SF TRA2β using an RNA-targeting CRISPR screen. We demonstrate location dependency of RS domain activity on regulation of TRA2β-PE using CRISPR artificial SFs. Finally, we develop splice-switching antisense oligonucleotides to reverse the increased skipping of TRA2β-PE detected in breast tumors, altering breast cancer cell viability, proliferation, and migration.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Shane C Lawson
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - John Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Albert Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
15
|
Yao J, Wu DC, Nottingham RM, Lambowitz AM. Identification of protein-protected mRNA fragments and structured excised intron RNAs in human plasma by TGIRT-seq peak calling. eLife 2020; 9:e60743. [PMID: 32876046 PMCID: PMC7518892 DOI: 10.7554/elife.60743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Human plasma contains > 40,000 different coding and non-coding RNAs that are potential biomarkers for human diseases. Here, we used thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) combined with peak calling to simultaneously profile all RNA biotypes in apheresis-prepared human plasma pooled from healthy individuals. Extending previous TGIRT-seq analysis, we found that human plasma contains largely fragmented mRNAs from > 19,000 protein-coding genes, abundant full-length, mature tRNAs and other structured small non-coding RNAs, and less abundant tRNA fragments and mature and pre-miRNAs. Many of the mRNA fragments identified by peak calling correspond to annotated protein-binding sites and/or have stable predicted secondary structures that could afford protection from plasma nucleases. Peak calling also identified novel repeat RNAs, miRNA-sized RNAs, and putatively structured intron RNAs of potential biological, evolutionary, and biomarker significance, including a family of full-length excised intron RNAs, subsets of which correspond to mirtron pre-miRNAs or agotrons.
Collapse
Affiliation(s)
- Jun Yao
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Departments of Molecular Biosciences and Oncology, University of TexasAustinUnited States
| |
Collapse
|
16
|
Banerjee M, Ferragut Cardoso AP, Lykoudi A, Wilkey DW, Pan J, Watson WH, Garbett NC, Rai SN, Merchant ML, States JC. Arsenite Exposure Displaces Zinc from ZRANB2 Leading to Altered Splicing. Chem Res Toxicol 2020; 33:1403-1417. [PMID: 32274925 DOI: 10.1021/acs.chemrestox.9b00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 μM, 0-72 h; or 0-5 μM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| | - Daniel W Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Nichola C Garbett
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States.,Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky 40202, United States
| | - Michael L Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States.,Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
17
|
Hu G, Wang S, Wang Y, Gao Y, Zhu H, Liu M, Xu N, Wang L. Clinical and functional significance of CHK1-S, an alternatively spliced isoform of the CHK1 gene, in hepatocellular carcinoma. J Cancer 2020; 11:1792-1799. [PMID: 32194790 PMCID: PMC7052871 DOI: 10.7150/jca.39443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing plays critical roles in many disease processes and splicing dysregulation is a hallmark of cancer. The different splicing isoforms may have significantly different effects on the malignant progression of cancer. Checkpoint kinase 1 (CHK1) is a serine/threonine kinase and regulates DNA damage response. In this study, we measured the expression of an alternative CHK1 transcript (CHK1-S, excluded exon 3) in hepatocellular carcinoma (HCC) tissues. Our results showed that CHK1-S was significantly upregulated in HCC tissues compared with paired adjacent noncancerous hepatic tissues. The levels of full-length CHK1(CHK1-L), CHK1-S and the ratio of CHK1-S/L in tumor tissue were associated with relapse free survival (RFS) of postoperative HCC patients, respectively, but not the levels of CHK1-L, CHK1-S and the ratio of CHK1-S/L in adjacent normal tissue. To further demonstrate the role of CHK1-S in HCC, CCK-8 assays, EdU incorporation assays and colony formation assays were used. The results showed that overexpression of CHK1-S significantly accelerated HCC cell proliferation, compared with CHK1-L. In addition, we found that serine-arginine protein kinase 1 (SRPK1), as an upstream regulator kinase of splicing factor, could upregulate the expression of CHK1-S and its expression level was significantly higher in HCC tumors than the paired normal tissues and was associated with the levels of CHK1-S (P=0.016). In conclusion, our study demonstrated that CHK1-S, acts as an oncogene, which was upregulated and associated with RFS in HCC patients. SRPK1 may mediate its mRNA splicing in HCC. All these data indicated that the expression of CHK1-S would have potential prognostic values and splicing kinase SRPK1 might be developed as therapeutic target in HCC.
Collapse
Affiliation(s)
- Guanghui Hu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
18
|
Tiberi S, Robinson MD. BANDITS: Bayesian differential splicing accounting for sample-to-sample variability and mapping uncertainty. Genome Biol 2020; 21:69. [PMID: 32178699 PMCID: PMC7075019 DOI: 10.1186/s13059-020-01967-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/20/2020] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing is a biological process during gene expression that allows a single gene to code for multiple proteins. However, splicing patterns can be altered in some conditions or diseases. Here, we present BANDITS, a R/Bioconductor package to perform differential splicing, at both gene and transcript level, based on RNA-seq data. BANDITS uses a Bayesian hierarchical structure to explicitly model the variability between samples and treats the transcript allocation of reads as latent variables. We perform an extensive benchmark across both simulated and experimental RNA-seq datasets, where BANDITS has extremely favourable performance with respect to the competitors considered.
Collapse
Affiliation(s)
- Simone Tiberi
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 Switzerland
| | - Mark D. Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 Switzerland
| |
Collapse
|
19
|
Lemaire S, Fontrodona N, Aubé F, Claude JB, Polvèche H, Modolo L, Bourgeois CF, Mortreux F, Auboeuf D. Characterizing the interplay between gene nucleotide composition bias and splicing. Genome Biol 2019; 20:259. [PMID: 31783898 PMCID: PMC6883713 DOI: 10.1186/s13059-019-1869-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing. RESULTS By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains. CONCLUSIONS We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.
Collapse
Affiliation(s)
- Sébastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Fabien Aubé
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | | | - Laurent Modolo
- LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
20
|
Zhu Y, Deng H, Chen X, Li H, Yang C, Li S, Pan X, Tian S, Feng S, Tan X, Matsuo M, Zhang Z. Skipping of an exon with a nonsense mutation in the DMD gene is induced by the conversion of a splicing enhancer to a splicing silencer. Hum Genet 2019; 138:771-785. [DOI: 10.1007/s00439-019-02036-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023]
|
21
|
Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ. Alternative splicing in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194388. [PMID: 31152916 DOI: 10.1016/j.bbagrm.2019.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Lung cancer is a very heterogeneous disease that is often diagnosed at later stages which have a poor prognosis. Aberrant alternative splicing patterns found in lung cancer contribute to important cell functions. These include changes in splicing for the BCL2L1, MDM2, MDM4, NUMB and MET genes during lung tumourigenesis, to affect pathways involved in apoptosis, cell proliferation and cellular cohesion. Global analyses of RNASeq datasets suggest there may be many more potentially influential aberrant splicing events that need to be investigated in lung cancer. Changes in expression of the splicing factors that regulate alternative splicing events have also been identified in lung cancer. Of these, changes in expression of QKI, RBM4, RBM5, RBM6, RBM10 and SRSF1 proteins regulate many of the most frequently referenced aberrant splicing events in lung cancer. The expanding list of genes known to be aberrantly spliced in lung cancer along with the altered expression of splicing factors that regulate them are providing new clues as to how lung cancer develops, and how these events can be exploited for better treatment. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Alice O Coomer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| | - Fiona Black
- Cellular Pathology Department, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom of Great Britain and Northern Ireland
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom of Great Britain and Northern Ireland
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
22
|
Elliott DJ, Dalgliesh C, Hysenaj G, Ehrmann I. RBMX family proteins connect the fields of nuclear RNA processing, disease and sex chromosome biology. Int J Biochem Cell Biol 2018; 108:1-6. [PMID: 30593955 DOI: 10.1016/j.biocel.2018.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
RBMX is a ubiquitously expressed nuclear RNA binding protein that is encoded by a gene on the X chromosome. RBMX belongs to a small protein family with additional members encoded by paralogs on the mammalian Y chromosome and other chromosomes. These RNA binding proteins are important for normal development, and also implicated in cancer and viral infection. At the molecular level RBMX family proteins contribute to splicing control, transcription and genome integrity. Establishing what endogenous genes and pathways are controlled by RBMX and its paralogs will have important implications for understanding chromosome biology, DNA repair and mammalian development. Here we review what is known about this family of RNA binding proteins, and identify important current questions about their functions.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK.
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Gerald Hysenaj
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
23
|
Denti L, Rizzi R, Beretta S, Vedova GD, Previtali M, Bonizzoni P. ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events. BMC Bioinformatics 2018; 19:444. [PMID: 30458725 PMCID: PMC6247705 DOI: 10.1186/s12859-018-2436-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/15/2018] [Indexed: 11/14/2022] Open
Abstract
Background While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph. Results We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced alignments of each read in input, and (2) a list of novel events with respect to the gene annotation. Conclusions An experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative splicing events even when genes in an experiment express at most one isoform. Compared with other tools which use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph. Availability Source code, documentation, and data are available for download at http://asgal.algolab.eu.
Collapse
Affiliation(s)
- Luca Denti
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Raffaella Rizzi
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Stefano Beretta
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy.,Institute for Biomedical Technologies, National Council of Research, Segrate, Italy
| | - Gianluca Della Vedova
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Marco Previtali
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy.
| |
Collapse
|
24
|
TRA2A promotes proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells. Brain Res Bull 2018; 143:138-144. [PMID: 30367895 DOI: 10.1016/j.brainresbull.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 11/23/2022]
Abstract
TRA2A, Transformer2A proteins, plays important roles in paclitaxel resistance and progression of breast cancer. However, whether TRA2A was involved in the progression of glioma remains to be elucidated. In this study, our results demonstrated that the expression of TRA2A was higher in the glioma tissue than that of normal tissue. Overexpression of TRA2A in glioma SHG44 cell lines promoted the tumor cells proliferation, migration, invasion and epithelial mesenchymal transition (EMT), while, knockdown of TRA2A showed the opposite effect. Thus, our findings provide new insights into the role of TRA2A in the progression of glioma, and implicate the potential application of TRA2A in glioma therapy.
Collapse
|
25
|
Singh B, Trincado JL, Tatlow PJ, Piccolo SR, Eyras E. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors. Mol Cancer Res 2018; 16:1112-1124. [DOI: 10.1158/1541-7786.mcr-17-0601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
|
26
|
Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol 2018; 19:40. [PMID: 29571299 PMCID: PMC5866513 DOI: 10.1186/s13059-018-1417-1] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 02/08/2023] Open
Abstract
Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods, especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.
Collapse
Affiliation(s)
| | | | - Gerald Hysenaj
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Babita Singh
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Miha Skalic
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Eduardo Eyras
- Pompeu Fabra University, E08003, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
27
|
Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors. Cell Rep 2017; 17:1990-2003. [PMID: 27851963 PMCID: PMC5483951 DOI: 10.1016/j.celrep.2016.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5′ splice site of Bcl-xS is largely repressed, SRSF10 partially relieves repression and interacts with repressor hnRNP K and stimulatory hnRNP F/H proteins. Oxaliplatin abrogates the interaction of SRSF10 with hnRNP F/H and decreases the association of SRSF10 and hnRNP K with the Bcl-x pre-mRNA. Dephosphorylation of SRSF10 is linked with these changes. A broader analysis reveals that DNA damage co-opts SRSF10 to control splicing decisions in transcripts encoding components involved in DNA repair, cell-cycle control, and apoptosis. DNA damage therefore alters the interactions between splicing regulators to elicit a splicing response that determines cell fate.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Johanne Toutant
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
28
|
Aviner R, Hofmann S, Elman T, Shenoy A, Geiger T, Elkon R, Ehrlich M, Elroy-Stein O. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis. Nucleic Acids Res 2017; 45:5945-5957. [PMID: 28460002 PMCID: PMC5449605 DOI: 10.1093/nar/gkx326] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022] Open
Abstract
Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC–MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah Hofmann
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Elman
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orna Elroy-Stein
- Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Munkley J, Livermore K, Rajan P, Elliott DJ. RNA splicing and splicing regulator changes in prostate cancer pathology. Hum Genet 2017; 136:1143-1154. [PMID: 28382513 PMCID: PMC5602090 DOI: 10.1007/s00439-017-1792-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/26/2022]
Abstract
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK
| | - Karen Livermore
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK.
| |
Collapse
|
30
|
Shkreta L, Blanchette M, Toutant J, Wilhelm E, Bell B, Story BA, Balachandran A, Cochrane A, Cheung PK, Harrigan PR, Grierson DS, Chabot B. Modulation of the splicing regulatory function of SRSF10 by a novel compound that impairs HIV-1 replication. Nucleic Acids Res 2017; 45:4051-4067. [PMID: 27928057 PMCID: PMC5397194 DOI: 10.1093/nar/gkw1223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
We recently identified the 4-pyridinone-benzisothiazole carboxamide compound 1C8 as displaying strong anti-HIV-1 potency against a variety of clinical strains in vitro. Here we show that 1C8 decreases the expression of HIV-1 and alters splicing events involved in the production of HIV-1 mRNAs. Although 1C8 was designed to be a structural mimic of the fused tetracyclic indole compound IDC16 that targets SRSF1, it did not affect the splice site shifting activity of SRSF1. Instead, 1C8 altered splicing regulation mediated by SRSF10. Depleting SRSF10 by RNA interference affected viral splicing and, like 1C8, decreased expression of Tat, Gag and Env. Incubating cells with 1C8 promoted the dephosphorylation of SRSF10 and increased its interaction with hTra2β, a protein previously implicated in the control of HIV-1 RNA splicing. While 1C8 affects the alternative splicing of cellular transcripts controlled by SRSF10 and hTra2β, concentrations greater than those needed to inhibit HIV-1 replication were required to elicit significant alterations. Thus, the ability of 1C8 to alter the SRSF10-dependent splicing of HIV-1 transcripts, with minor effects on cellular splicing, supports the view that SRSF10 may be used as a target for the development of new anti-viral agents.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Benjamin A Story
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter K Cheung
- BC Centre for Excellence in HIV/AIDS, 608-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, 608-1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| |
Collapse
|
31
|
Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med Genomics 2017; 10:28. [PMID: 28589855 PMCID: PMC5461552 DOI: 10.1186/s12920-017-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable. METHODS Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates. Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype. RESULTS It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method. Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation. CONCLUSIONS In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies.
Collapse
Affiliation(s)
- Garam Lee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - So Yeon Kim
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
32
|
Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun 2017; 8:15134. [PMID: 28480880 PMCID: PMC5424149 DOI: 10.1038/ncomms15134] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression. Intron retention is a conserved mechanism that controls gene expression but its regulation is poorly understood. Here, the authors provide evidence that DNA methylation regulates intron retention and find reduced MeCP2 occupancy and splicing factor recruitment near affected splice junctions.
Collapse
|
33
|
Liu T, Sun H, Zhu D, Dong X, Liu F, Liang X, Chen C, Shao B, Wang M, Wang Y, Sun B. TRA2A Promoted Paclitaxel Resistance and Tumor Progression in Triple-Negative Breast Cancers via Regulating Alternative Splicing. Mol Cancer Ther 2017; 16:1377-1388. [PMID: 28416606 DOI: 10.1158/1535-7163.mct-17-0026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
Abstract
Treatment of triple-negative breast cancer (TNBC) has been challenging, and paclitaxel resistance is one of the major obstacles to the better prognosis. Deregulation of alternative splicing (AS) may contribute to tumor progression and chemotherapy resistance. Human AS factor TRA2 has two separate gene paralogs encoding TRA2A and TRA2B proteins. TRA2B is associated with cancer cell survival and therapeutic sensitivity. However, the individual role of TRA2A in cancer progression has not been reported. Here we report that TRA2A facilitates proliferation and survival and migration and invasion of TNBC cells. In addition, TRA2A promotes paclitaxel resistance of TNBC by specifically controlling cancer-related splicing, which is independent of other splicing factors. TRA2A overexpression could promote AS of CALU, RSRC2, and PALM during paclitaxel treatment of TNBC cells. The isoform shift of RSRC2 from RSRC2s to RSRC2l leads to a decreased RSRC2 protein expression, which could contribute to TNBC paclitaxel resistance. TRA2A can regulate RSRC2 AS by specifically binding upstream intronic sequence of exon4. Strikingly, TRA2A expression is increased dramatically in patients with TNBC, and has a close relationship with decreased RSRC2 expression; both are associated with poor survival of TNBC. Collectively, our findings suggest that paclitaxel targets the TRA2A-RSRC2 splicing pathway, and deregulated TRA2A and RSRC2 expression may confer paclitaxel resistance. In addition to providing a novel molecular mechanism of cancer-related splicing dysregulation, our study demonstrates that expression of TRA2A in conjunction with RSRC2 may provide valuable molecular biomarker evidence for TNBC clinical treatment decisions and patient outcome. Mol Cancer Ther; 16(7); 1377-88. ©2017 AACR.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Chen
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Bing Shao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Skrdlant L, Stark JM, Lin RJ. Myelodysplasia-associated mutations in serine/arginine-rich splicing factor SRSF2 lead to alternative splicing of CDC25C. BMC Mol Biol 2016; 17:18. [PMID: 27552991 PMCID: PMC4994158 DOI: 10.1186/s12867-016-0071-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Serine-arginine rich splicing factor 2 (SRSF2) is a protein known for its role in RNA splicing and genome stability. It has been recently discovered that SRSF2, along with other splicing regulators, is frequently mutated in patients with myelodysplastic syndrome (MDS). The most common MDS mutations in SRSF2 occur at proline 95; the mutant proteins are shown to have different RNA binding preferences, which may contribute to splicing changes detected in mutant cells. However, the influence of these SRSF2 MDS-associated mutations on specific splicing events remains poorly understood. RESULTS A tetracycline-inducible TF-1 erythroleukemia cell line was transduced with retroviruses to create cell lines expressing HA-tagged wildtype SRSF2, SRSF2 with proline 95 point mutations found in MDS, or SRSF2 with a deletion of one of the four major domains of the protein. Effects of these mutants on apoptosis and specific alternative splicing events were evaluated. Cells were also treated with DNA damaging drugs for comparison. MDS-related P95 point mutants of SRSF2 were expressed and phosphorylated at similar levels as wildtype SRSF2. However, cells expressing mutant SRSF2 exhibited higher levels of apoptosis than cells expressing wildtype SRSF2. Regarding alternative splicing events, in nearly all examined cases, SRSF2 P95 mutants acted in a similar fashion as the wildtype SRSF2. However, cells expressing SRSF2 P95 mutants had a percent increase in the C5 spliced isoform of cell division cycle 25C (CDC25C). The same alternative splicing of CDC25C was detected by treating cells with DNA damaging drugs, such as cisplatin, camptothecin, and trichostatin A at appropriate dosage. However, unlike DNA damaging drugs, SRSF2 P95 mutants did not activate the Ataxia telangiectasia mutated (ATM) pathway. CONCLUSION SRSF2 P95 mutants lead to alternative splicing of CDC25C in a manner that is not dependent on the DNA damage response.
Collapse
Affiliation(s)
- Lindsey Skrdlant
- Department of Molecular and Cellular Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| | - Ren-Jang Lin
- Department of Molecular and Cellular Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
35
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
36
|
Shen S, Wang Y, Wang C, Wu YN, Xing Y. SURVIV for survival analysis of mRNA isoform variation. Nat Commun 2016; 7:11548. [PMID: 27279334 PMCID: PMC4906168 DOI: 10.1038/ncomms11548] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/07/2016] [Indexed: 01/07/2023] Open
Abstract
The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects.
Collapse
Affiliation(s)
- Shihao Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yuanyuan Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chengyang Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ying Nian Wu
- Department of Statistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
37
|
Sebestyén E, Singh B, Miñana B, Pagès A, Mateo F, Pujana MA, Valcárcel J, Eyras E. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res 2016; 26:732-44. [PMID: 27197215 PMCID: PMC4889968 DOI: 10.1101/gr.199935.115] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/11/2016] [Indexed: 01/18/2023]
Abstract
Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.
Collapse
Affiliation(s)
| | - Babita Singh
- Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Belén Miñana
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Centre for Genomic Regulation, E08003 Barcelona, Spain
| | - Amadís Pagès
- Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L'Hospitalet del Llobregat, Spain
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L'Hospitalet del Llobregat, Spain
| | - Juan Valcárcel
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Centre for Genomic Regulation, E08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain
| |
Collapse
|
38
|
Ghosh P, Grellscheid SN, Sowdhamini R. A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities. J Biomol Struct Dyn 2015; 34:1979-86. [PMID: 26414300 DOI: 10.1080/07391102.2015.1100551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2β, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins.
Collapse
Affiliation(s)
- Pritha Ghosh
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| | | | - R Sowdhamini
- a National Centre for Biological Sciences , Tata Institute of Fundamental Research , GKVK Campus, Bellary Road, Bangalore 560065 , Karnataka , India
| |
Collapse
|
39
|
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Shkreta L, Chabot B. The RNA Splicing Response to DNA Damage. Biomolecules 2015; 5:2935-77. [PMID: 26529031 PMCID: PMC4693264 DOI: 10.3390/biom5042935] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | - Benoit Chabot
- Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
41
|
Chitikova Z, Pusztaszeri M, Makhlouf AM, Berczy M, Delucinge-Vivier C, Triponez F, Meyer P, Philippe J, Dibner C. Identification of new biomarkers for human papillary thyroid carcinoma employing NanoString analysis. Oncotarget 2015; 6:10978-93. [PMID: 25868389 PMCID: PMC4484433 DOI: 10.18632/oncotarget.3452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/25/2015] [Indexed: 01/08/2023] Open
Abstract
We previously reported an upregulation of the clock transcript BMAL1, correlating with TIMP1 expression in fresh-frozen samples from papillary thyroid carcinoma (PTC). Since frozen postoperative biopsy samples are difficult to obtain, we aimed to validate the application of high-precision NanoString analysis for formalin-fixed paraffin-embedded (FFPE) thyroid nodule samples and to screen for potential biomarkers associated with PTC. No significant differences were detected between fresh-frozen and FFPE samples. NanoString analysis of 51 transcripts in 17 PTC and 17 benign nodule samples obtained from different donors and in 24 pairs of benign and PTC nodules, obtained from the same donor (multinodular goiters), confirmed significant alterations in the levels of BMAL1, c-MET, c-KIT, TIMP1, and other transcripts. Moreover, we identified for the first time alterations in CHEK1 and BCL2 levels in PTC. A predictive score was established for each sample, based on the combined expression levels of BMAL1, CHEK1, c-MET, c-KIT and TIMP1. In combination with BRAF mutation analysis, this predictive score closely correlated with the clinicopathological characteristics of the analyzed thyroid nodules. Our study identified new thyroid transcripts with altered levels in PTC using the NanoString approach. A predictive score correlation coefficient might contribute to improve the preoperative diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Zhanna Chitikova
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Pusztaszeri
- Division of Clinical Pathology, University Hospital of Geneva, Switzerland
| | - Anne-Marie Makhlouf
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margaret Berczy
- Division of Clinical Pathology, University Hospital of Geneva, Switzerland
| | | | - Frederic Triponez
- Department of Thoracic and Endocrine Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Patrick Meyer
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|