1
|
Wang B, Ying G, Guo L, Lin Z, Liu H, Zeng C. Effectively tuning the quantum Griffiths phase by controllable quantum fluctuations. SCIENCE ADVANCES 2024; 10:eadp1402. [PMID: 39602548 PMCID: PMC11601250 DOI: 10.1126/sciadv.adp1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Quantum Griffiths phase (QGP), marked by a quantum Griffiths singularity with a divergent effective critical exponent, has garnered considerable attention in the realm of superconductivity. However, the ability to control QGP remains elusive. Here, we demonstrate that QGP at the LaAlO3/KTaO3(110) interface can be efficiently modulated by the orientation of applied magnetic field: With a perpendicular field, an anomalous QGP emerges in the low-temperature regime, characterized by a decreasing critical field as temperature lowers; conversely, with a parallel field, a normal QGP arises, where the critical field increases with decreasing temperature. Such opposite characteristics stem from the controllable quantum fluctuations and conductivity corrections under distinct magnetic field orientations. Furthermore, we show the effective tuning of the phase boundary by electrostatic gating, attributed to the gate-controlled quantum fluctuations. These findings not only demonstrate how to experimentally manipulate QGP but also provide a comprehensive understanding of how quantum fluctuations can effectively modulate QGP.
Collapse
Affiliation(s)
- Beilin Wang
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guopei Ying
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Linhai Guo
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhiyong Lin
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China
| | - Changgan Zeng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
2
|
Liu Y, Meng Q, Mahmoudi P, Wang Z, Zhang J, Yang J, Li W, Wang D, Li Z, Sorrell CC, Li S. Advancing Superconductivity with Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405009. [PMID: 39104281 DOI: 10.1002/adma.202405009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Indexed: 08/07/2024]
Abstract
The development of superconducting materials has attracted significant attention not only for their improved performance, such as high transition temperature (TC), but also for the exploration of their underlying physical mechanisms. Recently, considerable efforts have been focused on interfaces of materials, a distinct category capable of inducing superconductivity at non-superconducting material interfaces or augmenting the TC at the interface between a superconducting material and a non-superconducting material. Here, two distinct types of interfaces along with their unique characteristics are reviewed: interfacial superconductivity and interface-enhanced superconductivity, with a focus on the crucial factors and potential mechanisms responsible for enhancing superconducting performance. A series of materials systems is discussed, encompassing both historical developments and recent progress from the perspectives of technical innovations and the exploration of new material classes. The overarching goal is to illuminate pathways toward achieving high TC, expanding the potential of superconducting parameters across interfaces, and propelling superconductivity research toward practical, high-temperature applications.
Collapse
Affiliation(s)
- Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qingxiao Meng
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pezhman Mahmoudi
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ziyi Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ji Zhang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Zhi Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Charles C Sorrell
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
3
|
Ding C, Dong W, Jiao X, Zhang Z, Gong G, Wei Z, Wang L, Jia JF, Xue QK. Unidirectional Charge Orders Induced by Oxygen Vacancies on SrTiO 3(001). ACS NANO 2024; 18:17786-17793. [PMID: 38935417 DOI: 10.1021/acsnano.4c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × √13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.
Collapse
Affiliation(s)
- Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Wenfeng Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaotong Jiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiyu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guanming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhongxu Wei
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Jin-Feng Jia
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
4
|
Xu H, Li H, Gauquelin N, Chen X, Wu WF, Zhao Y, Si L, Tian D, Li L, Gan Y, Qi S, Li M, Hu F, Sun J, Jannis D, Yu P, Chen G, Zhong Z, Radovic M, Verbeeck J, Chen Y, Shen B. Giant Tunability of Rashba Splitting at Cation-Exchanged Polar Oxide Interfaces by Selective Orbital Hybridization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313297. [PMID: 38475975 DOI: 10.1002/adma.202313297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces.
Collapse
Affiliation(s)
- Hao Xu
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Li
- Photon Science Division, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Nicolas Gauquelin
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 4Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Xuejiao Chen
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wen-Feng Wu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuchen Zhao
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Si
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Di Tian
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yulin Gan
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojin Qi
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghang Li
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxia Hu
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Sun
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daen Jannis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 4Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Gang Chen
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, 999077, China
| | - Zhicheng Zhong
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Milan Radovic
- Photon Science Division, Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Johan Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 4Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Yunzhong Chen
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baogen Shen
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
5
|
Han X, Zhan J, Zhang FC, Hu J, Wu X. Robust topological superconductivity in spin-orbit coupled systems at higher-order van Hove filling. Sci Bull (Beijing) 2024; 69:319-324. [PMID: 38105164 DOI: 10.1016/j.scib.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities. It is also known that a nontrivial Berry phase derived from spin-orbit coupling can introduce an intriguing decoration into the interactions and thus alter correlated phenomena. However, it is unclear how and what type of new physics can emerge in a system featured by the interplay between van Hove singularities (VHSs) and the Berry phase. Here, based on a general Rashba model on the square lattice, we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis. Despite the existence of a variety of comparable fluctuations in the particle-particle and particle-hole channels associated with higher-order VHSs, we find that the chiral p±ip pairings emerge as two stable fixed trajectories within the generic interaction parameter space, namely the system becomes a robust topological superconductor. The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase. The possible experimental realization and implications are discussed. Our work sheds new light on the correlated states in quantum materials with strong spin-orbit coupling (SOC) and offers fresh insights into the exploration of topological superconductivity.
Collapse
Affiliation(s)
- Xinloong Han
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun Zhan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Fu-Chun Zhang
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Liu W, Liu L, Cui B, Cheng S, Wu X, Cheng B, Miao T, Ren X, Chu R, Liu M, Zhao X, Wu S, Qin H, Hu J. Manipulation of Spin-Orbit Torque in Tungsten Oxide/Manganite Heterostructure by Ionic Liquid Gating and Orbit Engineering. ACS NANO 2023. [PMID: 37988035 DOI: 10.1021/acsnano.3c06686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Spin-orbit coupling (SOC) is the interaction between electron's spin and orbital motion, which could realize a charge-to-spin current conversion and enable an innovative method to switch the magnetization by spin-orbit torque (SOT). Varied techniques have been developed to manipulate and improve the SOT, but the role of the orbit degree of freedom, which should have a crucial bearing on the SOC and SOT, is still confusing. Here, we find that the charge-to-spin current conversion and SOT in W3O8-δ/(La, Sr)MnO3 could be produced or eliminated by ionic liquid gating. Through tuning the preferential occupancy of Mn/W-d electrons from the in-plane (dx2-y2) to out-of-plane (d3z2-r2) orbit, the SOT damping-like field efficiency is nearly doubled due to the enhanced spin Hall effect and interfacial Rashba-Edelstein effect. These findings not only offer intriguing opportunities to control the SOT for high-efficient spintronic devices but also could be a fundamental step toward spin-orbitronics in the future.
Collapse
Affiliation(s)
- Weikang Liu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Liang Liu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Bin Cui
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Shaobo Cheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450000, China
| | - Xinyi Wu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Bin Cheng
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Tingting Miao
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Xue Ren
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Ruiyue Chu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Min Liu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiangxiang Zhao
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Shuyun Wu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Hongwei Qin
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| | - Jifan Hu
- School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Yin H, Wang S, Jin K. Enhanced Rashba Spin Orbit Coupling and Magnetic Behavior at Oxide Heterointerfaces by Optical Gating. J Phys Chem Lett 2023; 14:8684-8690. [PMID: 37733252 DOI: 10.1021/acs.jpclett.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Complex oxide heterointerfaces have been a hot research spot due to their rich physical phenomena and broad quantum coherence that respond to multiple external stimuli. Among these external stimuli, light is a very powerful one to manipulate properties such as carrier density and spin characteristics. However, achieving a light-magnetic correlation is in high demand for multifield responding devices, and its intrinsic mechanism remains unclear. Here, by illuminating Nd0.86Sr0.14Al0.86Ni0.14O3-SrTiO3 heterointerfaces using 360 nm light, we observe a series of interesting physical phenomena, like enhanced magnetoresistance (MR). More interestingly, a band splitting and strong Rashba spin-orbit coupling (SOC) effect occur after illumination, accompanied by a magnetic feature and thus leading to an anomalous Hall effect (AHE). Upon optical gating, the magnetism can be caused by Rashba SOC induced spin-orbit torque (SOT). The work will be sure to have great importance in both theoretical studies and all-oxide devices.
Collapse
Affiliation(s)
- Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Ao L, Huang J, Qin F, Li Z, Ideue T, Akhtari K, Chen P, Bi X, Qiu C, Huang D, Chen L, Belosludov RV, Gou H, Ren W, Nojima T, Iwasa Y, Bahramy MS, Yuan H. Valley-dimensionality locking of superconductivity in cubic phosphides. SCIENCE ADVANCES 2023; 9:eadf6758. [PMID: 37683003 PMCID: PMC10491139 DOI: 10.1126/sciadv.adf6758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsxP1-x under hydrostatic pressure. We demonstrate how this turns these compounds into tunable two-dimensional superconductors with a dome-shaped phase diagram even in the bulk limit. This peculiar behavior is shown to result from an unconventional valley-dimensionality locking mechanism, driven by a delicate competition between three-dimensional hole-type and two-dimensional electron-type energy pockets spatially separated in momentum space. The resulting dimensionality crossover is further discussed to be systematically controllable by pressure and stoichiometry tuning. Our findings pave a unique way to realize and control superconducting phases with special pairing and dimensional orders.
Collapse
Affiliation(s)
- Lingyi Ao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Junwei Huang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Feng Qin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Zeya Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Toshiya Ideue
- Quantum-Phase Electronic Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581, Japan
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj 416, Iran
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Xiangyu Bi
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Caiyu Qiu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| | - Dajian Huang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Long Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tsutomu Nojima
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yoshihiro Iwasa
- Quantum-Phase Electronic Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Mohammad Saeed Bahramy
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Hongtao Yuan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
| |
Collapse
|
9
|
D'Antuono M, Chen Y, Caruso R, Jouault B, Salluzzo M, Stornaiuolo D. Tuning of the magnetotransport properties of a spin-polarized 2D electron system using visible light. Sci Rep 2023; 13:10050. [PMID: 37344495 DOI: 10.1038/s41598-023-36957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
We report on the effects of visible light on the low temperature electronic properties of the spin-polarized two dimensional electron system (2DES) formed at the interfaces between LaAlO[Formula: see text], EuTiO[Formula: see text] and (001) SrTiO[Formula: see text]. A strong, persistent modulation of both longitudinal and transverse conductivity was obtained using light emitting diodes (LEDs) with emissions at different wavelengths in the visible spectrum range. In particular, Hall effect data show that visible light induces a non-volatile electron filling of bands with mainly 3d[Formula: see text] character, and at the same time an enhancement of the anomalous Hall effect associated to the magnetic properties of the system. Accordingly, a suppression of the weak-anti localization corrections to the magneto-conductance is found, which correlates with an enhancement of the spin-polarization and of the ferromagnetic character of 2DES. The results establish the LED-induced photo-doping as a viable route for the control of the ground state properties of artificial spin-polarized oxide 2DES.
Collapse
Affiliation(s)
- Maria D'Antuono
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
| | - Yu Chen
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
| | - Roberta Caruso
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
- CNR-SPIN, via Cinthia, 80126, Naples, Italy
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Bldg. 480, P.O. Box 5000, Upton, NY, 11973-5000, USA
| | - Benoit Jouault
- Laboratoire Charles Coulomb, UMR 5221, CNRS, Université de Montpellier, 34095, Montpellier, France
| | | | - Daniela Stornaiuolo
- Department of Physics, University of Naples Federico II, via Cinthia, 80126, Naples, Italy.
- CNR-SPIN, via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
10
|
Huang J, Dai S, Xu C, Du Y, Xu Z, Han K, Xu L, Wu W, Chen P, Huang Z. Capping-layer-mediated lattice mismatch and redox reaction in SrTiO 3-based bilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35. [PMID: 37059113 DOI: 10.1088/1361-648x/accd37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
It is well known that the traditional two-dimensional electron system (2DES) hosted by the SrTiO3substrate can exhibit diverse electronic states by modifying the capping layer in heterostructures. However, such capping layer engineering is less studied in the SrTiO3-layer-carried 2DES (or bilayer 2DES), which is different from the traditional one on transport properties but more applicable to the thin-film devices. Here, several SrTiO3bilayers are fabricated by growing various crystalline and amorphous oxide capping layers on the epitaxial SrTiO3layers. For the crystalline bilayer 2DES, the monotonical reduction on the interfacial conductance, as well as carrier mobility, is recorded on increasing the lattice mismatch between the capping layers and epitaxial SrTiO3layer. The mobility edge raised by the interfacial disorders is highlighted in the crystalline bilayer 2DES. On the other hand, when increasing the concentration of Al with high oxygen affinity in the capping layer, the amorphous bilayer 2DES becomes more conductive accompanied by the enhanced carrier mobility but almost constant carrier density. This observation cannot be explained by the simple redox-reaction model, and the interfacial charge screening and band bending need to be considered. Moreover, when the capping oxide layers have the same chemical composition but with different forms, the crystalline 2DES with a large lattice mismatch is more insulating than its amorphous counterpart, and vice versa. Our results shed some light on understanding the different dominant role in forming the bilayer 2DES using crystalline and amorphous oxide capping layer, which may be applicable in designing other functional oxide interfaces.
Collapse
Affiliation(s)
- Jingwen Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Song Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Chengcheng Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Yongyi Du
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, People's Republic of China
| | - Zhipeng Xu
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, People's Republic of China
| | - Kun Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Liqiang Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Wenbin Wu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Pingfan Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
| | - Zhen Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, People's Republic of China
| |
Collapse
|
11
|
Gan Y, Yang F, Kong L, Chen X, Xu H, Zhao J, Li G, Zhao Y, Yan L, Zhong Z, Chen Y, Ding H. Light-Induced Giant Rashba Spin-Orbit Coupling at Superconducting KTaO 3 (110) Heterointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300582. [PMID: 36972144 DOI: 10.1002/adma.202300582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Indexed: 05/16/2023]
Abstract
The 2D electron system (2DES) at the KTaO3 surface or heterointerface with 5d orbitals hosts extraordinary physical properties, including a stronger Rashba spin-orbit coupling (RSOC), higher superconducting transition temperature, and potential of topological superconductivity. Herein, a huge enhancement of RSOC under light illumination achieved at a superconducting amorphous-Hf0.5 Zr0.5 O2 /KTaO3 (110) heterointerfaces is reported. The superconducting transition is observed with Tc = 0.62 K and the temperature-dependent upper critical field reveals the interaction between spin-orbit scattering and superconductivity. A strong RSOC with Bso = 1.9 T is revealed by weak antilocalization in the normal state, which undergoes sevenfold enhancement under light illumination. Furthermore, RSOC strength develops a dome-shaped dependence of carrier density with the maximum of Bso = 12.6 T achieved near the Lifshitz transition point nc ≈ 4.1 × 1013 cm-2 . The highly tunable giant RSOC at KTaO3 (110)-based superconducting interfaces show great potential for spintronics.
Collapse
Affiliation(s)
- Yulin Gan
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fazhi Yang
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingyuan Kong
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuejiao Chen
- Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hao Xu
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Zhao
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Li
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Zhao
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Yan
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yunzhong Chen
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Ding
- Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Yang R, Gao Y, Wang S, Jin K. High-Mobility Magnetic Two-Dimensional Electron Gas in Engineered Oxide Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2376-2383. [PMID: 36577504 DOI: 10.1021/acsami.2c17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The engineered interfaces of complex oxides have abundant physical properties and provide a powerful platform for the exploration of fundamental physics and emergent phenomena. In particular, research on the two-dimensional magnetic systems with high mobility remains a long-standing challenge for the discovery of quantum phase and spintronic applications. Here, we introduce a few atomic layers of the delta doping layer at LaAlO3/SrTiO3 interfaces through elaborately controllable epitaxial growth of SrRuO3. After inserting a SrRuO3 buffer layer, the interfaces exhibit a well-defined anomalous Hall effect up to 100 K and their mobility is enhanced by 3 orders of magnitude at low temperatures. More intriguingly, a large unsaturated positive magnetoresistance is created at interfaces. Combining with the density functional theory calculation, we attribute our findings to the electron transfer at interfaces and the magnetic moment of Ru4+ 4d bands. The results pave a way for further research of two-dimensional ferromagnetism and quantum transport in all-oxide systems.
Collapse
Affiliation(s)
- Ruishu Yang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710072, China
| | - Yuqiang Gao
- Department of Physics, School of Physics and Electronic Information, Anhui Normal University, Wuhu241000, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an710072, China
| |
Collapse
|
13
|
Omar GJ, Kong WL, Jani H, Li MS, Zhou J, Lim ZS, Prakash S, Zeng SW, Hooda S, Venkatesan T, Feng YP, Pennycook SJ, Shen L, Ariando A. Experimental Evidence of t_{2g} Electron-Gas Rashba Interaction Induced by Asymmetric Orbital Hybridization. PHYSICAL REVIEW LETTERS 2022; 129:187203. [PMID: 36374676 DOI: 10.1103/physrevlett.129.187203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We report the control of Rashba spin-orbit interaction by tuning asymmetric hybridization between Ti orbitals at the LaAlO_{3}/SrTiO_{3} interface. This asymmetric orbital hybridization is modulated by introducing a LaFeO_{3} layer between LaAlO_{3} and SrTiO_{3}, which alters the Ti-O lattice polarization and traps interfacial charge carriers, resulting in a large Rashba spin-orbit effect at the interface in the absence of an external bias. This observation is verified through high-resolution electron microscopy, magnetotransport and first-principles calculations. Our results open hitherto unexplored avenues of controlling Rashba interaction to design next-generation spin orbitronics.
Collapse
Affiliation(s)
- G J Omar
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - W L Kong
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - H Jani
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - M S Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - J Zhou
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Z S Lim
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S Prakash
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S W Zeng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S Hooda
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - T Venkatesan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Y P Feng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - L Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - A Ariando
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
14
|
Yin H, Yang R, Wang S, Jin K. Manipulation of 2DEG at double-doped high-entropy heterointerfaces. NANOSCALE 2022; 14:9771-9780. [PMID: 35766803 DOI: 10.1039/d2nr01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical doping is a dominating method for manipulating oxide two-dimensional electron gas (2DEG). However, enhancing the doping level while maintaining the metallic conduction remains a challenge, which limits detailed knowledge of 2DEG manipulation. Herein, we propose a concept of high-entropy heterointerface, which consists of a complex oxide (containing at least 5 elements) at either or both sides of the interface. By doubly doping Sr and Mn elements in the Nd and Al sites of NdAlO3, we grow Nd1-xSrxAl1-xMnxO3 (NSAMO) films onto SrTiO3 (STO) substrates to fabricate NSAMO/STO high-entropy heterointerfaces with different thicknesses (2-30 nm) and a wide range of doping ratios x (0.14-0.56). The 2DEG conducting behavior is maintained until x = 0.42, which is higher compared with similar studies. The varying x results in the coexistence of rich properties like a weak anti-localization (0.14-0.42), abnormal Hall effect (0.28 & 0.42), Lifshitz transition (0.42) and stable structure. These results confirm the potential of this strategy to tailor 2DEG in all-oxide interfaces.
Collapse
Affiliation(s)
- Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ruishu Yang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
15
|
Li H, Gan Y, Husanu MA, Dahm RT, Christensen DV, Radovic M, Sun J, Shi M, Shen B, Pryds N, Chen Y. Robust Electronic Structure of Manganite-Buffered Oxide Interfaces with Extreme Mobility Enhancement. ACS NANO 2022; 16:6437-6443. [PMID: 35312282 DOI: 10.1021/acsnano.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electronic structure as well as the mechanism underlying the high-mobility two-dimensional electron gases (2DEGs) at complex oxide interfaces remain elusive. Herein, using soft X-ray angle-resolved photoemission spectroscopy (ARPES), we present the band dispersion of metallic states at buffered LaAlO3/SrTiO3 (LAO/STO) heterointerfaces where a single-unit-cell LaMnO3 (LMO) spacer not only enhances the electron mobility but also renders the electronic structure robust toward X-ray radiation. By tracing the evolution of band dispersion, orbital occupation, and electron-phonon interaction of the interfacial 2DEG, we find unambiguous evidence that the insertion of the LMO buffer strongly suppresses both the formation of oxygen vacancies as well as the electron-phonon interaction on the STO side. The latter effect makes the buffered sample different from any other STO-based interfaces and may explain the maximum mobility enhancement achieved at buffered oxide interfaces.
Collapse
Affiliation(s)
- Hang Li
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
| | - Yulin Gan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Marius-Adrian Husanu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Rasmus Tindal Dahm
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Milan Radovic
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Ming Shi
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
16
|
Niu W, Fang YW, Liu R, Wu Z, Chen Y, Gan Y, Zhang X, Zhu C, Wang L, Xu Y, Pu Y, Chen Y, Wang X. Fully Optical Modulation of the Two-Dimensional Electron Gas at the γ-Al 2O 3/SrTiO 3 Interface. J Phys Chem Lett 2022; 13:2976-2985. [PMID: 35343699 DOI: 10.1021/acs.jpclett.2c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional electron gas (2DEG) formed at the heterointerface between two oxide insulators hosts plenty of emergent phenomena and provides new opportunities for electronics and photoelectronics. However, despite being long sought after, on-demand properties controlled through a fully optical illumination remain far from being explored. Herein, a giant tunability of the 2DEG at the interface of γ-Al2O3/SrTiO3 through a fully optical gating is discovered. Specifically, photon-generated carriers lead to a delicate tunability of the carrier density and the underlying electronic structure, which is accompanied by the remarkable Lifshitz transition. Moreover, the 2DEG can be optically tuned to possess a maximum Rashba spin-orbit coupling, particularly at the crossing region of the sub-bands with different symmetries. First-principles calculations essentially well explain the optical modulation of γ-Al2O3/SrTiO3. Our fully optical gating opens a new pathway for manipulating emergent properties of the 2DEGs and is promising for on-demand photoelectric devices.
Collapse
Affiliation(s)
- Wei Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yue-Wen Fang
- Laboratory for Materials and Structures and Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- NYU-ECNU Institute of Physics, New York University Shanghai, Shanghai 200122, China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenqi Wu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongda Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yulin Gan
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China
| | - Lixia Wang
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongbing Xu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yong Pu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
17
|
Zheng JD, Zhao YF, Hu H, Shen YH, Tan YF, Tong WY, Xiang PH, Zhong N, Yue FY, Duan CG. Ferroelectric control of pseudospin texture in CuInP 2S 6monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:204001. [PMID: 35193130 DOI: 10.1088/1361-648x/ac577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Spin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInP2S6(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively. The chirality of helical pseudospin texture is coupled to the out-of-plane ferroelectric polarization. Furthermore, a large spin splitting due to the SOC effect can be found atKvalley, which can be regarded as the Zeeman effect under a valley-dependent pseudomagnetic field. The CIPS monolayer with Rashbaet aleffects provides a good platform for electrically controlled spin polarization physics.
Collapse
Affiliation(s)
- Jun-Ding Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yi-Feng Zhao
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - He Hu
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yu-Hao Shen
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Yi-Fan Tan
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wen-Yi Tong
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Fang-Yu Yue
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
18
|
Liang X, Qin C, Gao Y, Han S, Zhang G, Chen R, Hu J, Xiao L, Jia S. Reversible engineering of spin-orbit splitting in monolayer MoS 2via laser irradiation under controlled gas atmospheres. NANOSCALE 2021; 13:8966-8975. [PMID: 33970179 DOI: 10.1039/d1nr00019e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition metal dichalcogenides, manifesting strong spin-orbit coupling combined with broken inversion symmetry, lead to coupling of spin and valley degrees of freedom. These unique features make them highly interesting for potential spintronic and valleytronic applications. However, engineering spin-orbit coupling at room temperature as demanded after device fabrication is still a great challenge for their practical applications. Here we reversibly engineer the spin-orbit coupling of monolayer MoS2 by laser irradiation under controlled gas environments, where the spin-orbit splitting has been effectively regulated within 140 meV to 200 meV. Furthermore, the photoluminescence intensity of the B exciton can be reversibly manipulated over 2 orders of magnitude. We attribute the engineering of spin-orbit splitting to the reduction of binding energy combined with band renormalization, originating from the enhanced absorption coefficient of monolayer MoS2 under inert gases and subsequently the significantly boosted carrier concentrations. Reflectance contrast spectra during the engineering stages provide unambiguous proof to support our interpretation. Our approach offers a new avenue to actively control the spin-orbit splitting in transition metal dichalcogenide materials at room temperature and paves the way for designing innovative spintronic devices.
Collapse
Affiliation(s)
- Xilong Liang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and Department of Physics, Shanxi Datong University, Datong, 037009, China
| | - Shuangping Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
19
|
Li M, Yang R, Wei X, Yin H, Wang S, Jin K. Display of Spin-Orbit Coupling at ReAlO 3/SrTiO 3 (Re = La, Pr, Nd, Sm, and Gd) Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21964-21970. [PMID: 33913680 DOI: 10.1021/acsami.1c02295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Complex oxide heterointerfaces provide a platform to manipulate spin-orbit coupling under the broken inversion symmetry. Moreover, their weak antilocalization (WAL) effect displays quantum coherent behavior due to the strong spin-orbit coupling. Herein, we break through the limitation of lattice mismatch at ReAlO3/STO (Re = La, Pr, Nd, Sm, and Gd) heterointerfaces and obtain their two-dimensional electric gas (2DEG) by spin coating. The effect of different Re elements in the resulting quantum corrections on the conductivity is investigated. It is observed that the conductivity of heterointerfaces is reduced with larger atomic numbers due to the ionization potential of Re elements. Moreover, magnetoresistance (MR) measurements in a perpendicular or a parallel field distinctly uncover strong Rashba spin-orbit coupling (SOC) in ReAO/STO samples besides SAO/STO (Re = Sm) and GAO/STO (Re = Gd), and the effective fields of the SOC (Hso) gradually increase from LAO/STO (Re = La, Hso = 0.82 T) to NAO/STO (Re = Nd, Hso = 1.37 T) at 2 K. The competition between SOC scattering and inelastic scattering is revealed through a temperature-dependence study of MR, and the WAL-weak localization transition is at about 6 K. Furthermore, unambiguous results of the Kondo effect, nonlinear Hall, hysteresis loop, and Rashba SOC suggest the coexistence of WAL at the PAO/STO (Re = Pr) heterointerface with exchange coupling between the localized magnetic moment and the itinerant electron. These results pave a unique route for the exploration of spin-polarized 2DEGs at oxide heterointerfaces.
Collapse
Affiliation(s)
- Ming Li
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruishu Yang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiangyang Wei
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Chikina A, Christensen DV, Borisov V, Husanu MA, Chen Y, Wang X, Schmitt T, Radovic M, Nagaosa N, Mishchenko AS, Valentí R, Pryds N, Strocov VN. Band-Order Anomaly at the γ-Al 2O 3/SrTiO 3 Interface Drives the Electron-Mobility Boost. ACS NANO 2021; 15:4347-4356. [PMID: 33661601 DOI: 10.1021/acsnano.0c07609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rich functionalities of transition-metal oxides and their interfaces bear an enormous technological potential. Its realization in practical devices requires, however, a significant improvement of yet relatively low electron mobility in oxide materials. Recently, a mobility boost of about 2 orders of magnitude has been demonstrated at the spinel-perovskite γ-Al2O3/SrTiO3 interface compared to the paradigm perovskite-perovskite LaAlO3/SrTiO3 interface. We explore the fundamental physics behind this phenomenon from direct measurements of the momentum-resolved electronic structure of this interface using resonant soft-X-ray angle-resolved photoemission. We find an anomaly in orbital ordering of the mobile electrons in γ-Al2O3/SrTiO3 which depopulates electron states in the top SrTiO3 layer. This rearrangement of the mobile electron system pushes the electron density away from the interface, which reduces its overlap with the interfacial defects and weakens the electron-phonon interaction, both effects contributing to the mobility boost. A crystal-field analysis shows that the band order alters owing to the symmetry breaking between the spinel γ-Al2O3 and perovskite SrTiO3. Band-order engineering, exploiting the fundamental symmetry properties, emerges as another route to boost the performance of oxide devices.
Collapse
Affiliation(s)
- Alla Chikina
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Institute of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Dennis V Christensen
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vladislav Borisov
- Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- Department of Physics and Astronomy, Uppsala University, Box 516, 5120 Uppsala, Sweden
| | - Marius-Adrian Husanu
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Yunzhong Chen
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqiang Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Milan Radovic
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Andrey S Mishchenko
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Roser Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| |
Collapse
|
21
|
Li M, Zhou Y, Chen Y, Yang R, Wei X, Wang S, Jin K. Effect of Rare Earth Elements at Amorphous ReAlO 3/SrTiO 3 (Re = La, Pr, Nd, Sm, Gd, and Tm) Heterointerfaces. J Phys Chem Lett 2021; 12:1657-1663. [PMID: 33555878 DOI: 10.1021/acs.jpclett.0c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the amorphous two-dimensional electron gas (a-2DEG) of oxides provides new opportunities to explore nanoelectronic as well as quantum devices, the intrinsic effect of rare earth (Re = La, Pr, Nd, Sm, Gd, and Tm) elements at ReAlO3/SrTiO3 heterointerfaces is still largely unknown and needs to be addressed systematically. Herein, we first propose that the ionization potential of Re elements is a critical factor for the 2DEG fabricated by chemical spin coating. Furthermore, the photoresponsive properties of heterointerfaces are investigated comprehensively with the ionization potential ranging from 35.79 to 41.69 eV. The results show that the sheet resistances significantly increase with increasing the ionization potential, and a resistance upturn phenomenon is observed at TmAlO3/SrTiO3 heterointerfaces, which can be attributed to the weak localization effect theoretically. The most important observation is the dramatic transition from negative (-178.3%, Re = La) to positive (+89.9%, Re = Gd) photoresponse at ReAlO3/SrTiO3 heterointerfaces under the irradiation of 405 nm light at 50 K. More remarkably, a unique recovery behavior of transient-persistent photoconductivity coexistence at low temperatures is discovered at the TmAlO3/SrTiO3 heterointerface. This work reveals an effective approach to tune the transport and photoresponsive properties by changing Re elements and paves the way for the application of all-oxide devices.
Collapse
Affiliation(s)
- Ming Li
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - You Zhou
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunhai Chen
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruishu Yang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiangyang Wei
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
22
|
Chen X, Zhang T, Yu Y, Cai X, Gao T, Zhang T, Sun H, Gu C, Gu Z, Zhu Y, Zhou J, Nie Y, Pan X. Rewritable High-Mobility Electrons in Oxide Heterostructure of Layered Perovskite/Perovskite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7812-7821. [PMID: 33529011 DOI: 10.1021/acsami.1c00481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskite oxide SrTiO3 can be electron-doped and exhibits high mobility by introducing oxygen vacancies or dopants such as Nb or La. A reversible after-growth tuning of high mobility carriers in SrTiO3 is highly desired for the applications in high-speed electronic devices. Here, we report the observation of tunable high-mobility electrons in layered perovskite/perovskite (Srn+1TinO3n+1/SrTiO3) heterostructure. By use of Srn+1TinO3n+1 as the oxygen diffusion barrier, the oxygen vacancy concentration near the interface can be reversibly engineered by high-temperature annealing or infrared laser heating. Because of the identical elemental compositions (Sr, Ti, and O) throughout the whole heterostructure, interfacial ionic intermixing is absent, giving rise to an extremely high mobility (exceeding 55000 cm2 V-1 s-1 at 2 K) in this type of oxide heterostructure. This layered perovskite/perovskite heterostructure provides a promising platform for reconfigurable high-speed electronic devices.
Collapse
Affiliation(s)
- Xiaofeng Chen
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tingting Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yang Yu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangbin Cai
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tianyi Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tianwei Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Haoying Sun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chenyi Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhengbin Gu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jian Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuefeng Nie
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
23
|
Affiliation(s)
- Dongdong Xiao
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- School of physical sciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
24
|
Zhang J, Zhang H, Zhang H, Ma Y, Chen X, Meng F, Qi S, Chen Y, Hu F, Zhang Q, Liu B, Shen B, Zhao W, Han W, Sun J. Long-Range Magnetic Order in Oxide Quantum Wells Hosting Two-Dimensional Electron Gases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28775-28782. [PMID: 32459951 DOI: 10.1021/acsami.0c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To incorporate spintronics functionalities into two-dimensional devices, it is strongly desired to get two-dimensional electron gases (2DEGs) with high spin polarization. Unfortunately, the magnetic characteristics of the typical 2DEG at the LaAlO3/SrTiO3 interface are very weak due to the nonmagnetic character of SrTiO3 and LaAlO3. While most of the previous works focused on perovskite oxides, here, we extended the exploration for magnetic 2DEG beyond the scope of perovskite combinations, composing 2DEG with SrTiO3 and NaCl-structured EuO that owns a large saturation magnetization and a fairly high Curie temperature. We obtained the 2DEGs that show long-range magnetic order and thus unusual behaviors marked by isotropic butterfly shaped magnetoresistance and remarkable anomalous Hall effect. We found evidence for the presence of more conductive domain walls than elsewhere in the oxide layer where the 2DEG resides. More than that, a relation between interfacial magnetism and carrier density is established. On this basis, the intermediate magnetic states between short-range and long-range ordered states can be achieved. The present work provides guidance for the design of high-performance magnetic 2DEGs.
Collapse
Affiliation(s)
- Jine Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Zhang
- Fert Beijing Institute, School of Microelectronics, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, People's Republic of China
| | - Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Ma
- International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Xiaobing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shaojin Qi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Banggui Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Weisheng Zhao
- Fert Beijing Institute, School of Microelectronics, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, People's Republic of China
| | - Wei Han
- International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
25
|
Rubano A, Scigaj M, Sánchez F, Herranz G, Paparo D. Optical second harmonic generation from LaAlO 3/SrTiO 3 interfaces with different in-plane anisotropies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:135001. [PMID: 31778975 DOI: 10.1088/1361-648x/ab5ccc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxide growth with semiconductor-like accuracy allows the fabrication of atomically precise thin films and interfaces displaying a wide range of phases and functionalities that are absent in the corresponding oxide bulk materials. Among the other properties it was found that a two-dimensional electronic gas is formed under some circumstances at the LaAlO3/SrTiO3(0 0 1) interface separating two typical insulating perovskite crystals. The origin of this conducting state has been discussed at length, since different doping mechanisms can act in these material systems. Many experimental results point to the so-called polar catastrophe scenario as the principal mechanism driving the formation of the two-dimensional electronic gas. According to this mechanism, the existence of an interfacial polar discontinuity is the key ingredient to drive an electronic reconstruction at the LaAlO3/SrTiO3(0 0 1) interface and the consequent formation of a two-dimensional electron gas. This simple picture has been often questioned by the existence of material systems whose interface are predicted being non-polar according to the simplistic 'ionic' limit but that display an electrical behavior analogous to that of LaAlO3/SrTiO3(0 0 1) interfaces. This is the case of the LaAlO3/SrTiO3(1 1 0), i.e., a LaAlO3/SrTiO3 interface with a different in-plane orientation. It is evident that to solve such kind of controversies a detailed investigation of the polar or non-polar state of these interfaces is needed, although this is not simple for the lack of experimental tools that are specifically sensitive to interfacial polarity. Here we apply Optical Second Harmonic Generation to investigate LaAlO3/SrTiO3 interfaces with different in-plane orientations to bridge this gap. By comparing our results with recent theoretical findings, we will arrive to the conclusion that the real LaAlO3/SrTiO3(1 1 0) interface is strongly polar.
Collapse
Affiliation(s)
- Andrea Rubano
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli 'Federico II', Complesso universitario di Monte Sant'Angelo, via Cintia, 80126 Napoli, Italy
| | | | | | | | | |
Collapse
|
26
|
Zhou B. Ferroelectric Rashba semiconductors, AgBiP 2X 6 (X = S, Se and Te), with valley polarization: an avenue towards electric and nonvolatile control of spintronic devices. NANOSCALE 2020; 12:5533-5542. [PMID: 32091050 DOI: 10.1039/c9nr10865c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electric and nonvolatile control of spin in semiconductors represents a fundamental step towards novel electronic devices. In this work, using first-principles calculations we investigate the electronic properties of AgBiP2X6 (X = S, Se, and Te) monolayers, which may be a new member of ferroelectric Rashba semiconductors due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the electric control of spin. The AgBiP2X6 monolayers are dynamically and thermodynamically stable up to room temperature. In the AgBiP2Te6 monolayer, the calculated band structure reveals the direct band-gap semiconducting nature in the presence of highly mobile two-dimensional electron gas near the Fermi level. The inclusion of spin-orbit coupling yields the giant Rashba-type spin splitting with a Rashba parameter of 6.5 eV Å, which is even comparable to that of some known bulk Rashba semiconductors. Except for the Rashba-type spin splitting, spin-orbit coupling together with inversion symmetry breaking also gives rise to valley polarization located at the edge of the conduction bands. The strength of the Rashba-type spin splitting and location of the conduction band minimum can be significantly tuned by applying the in-plane biaxial strain. Also, we demonstrate that these remarkable features can be retained in the presence of the BN substrate. The coexistence of the Rashba-type spin splitting (in-plane spin direction) and band splitting at the K/K' valleys (out-of-plane spin direction) makes the AgBiP2Te6 monolayer interesting for spintronics and valleytronics.
Collapse
Affiliation(s)
- Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
27
|
Wadehra N, Tomar R, Varma RM, Gopal RK, Singh Y, Dattagupta S, Chakraverty S. Planar Hall effect and anisotropic magnetoresistance in polar-polar interface of LaVO 3-KTaO 3 with strong spin-orbit coupling. Nat Commun 2020; 11:874. [PMID: 32054860 PMCID: PMC7018836 DOI: 10.1038/s41467-020-14689-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022] Open
Abstract
Among the perovskite oxide family, KTaO3 (KTO) has recently attracted considerable interest as a possible system for the realization of the Rashba effect. In this work, we report a novel conducting interface by placing KTO with another insulator, LaVO3 (LVO) and report planar Hall effect (PHE) and anisotropic magnetoresistance (AMR) measurements. This interface exhibits a signature of strong spin-orbit coupling. Our experimental observations of two fold AMR and PHE at low magnetic fields (B) is similar to those obtained for topological systems and can be intuitively understood using a phenomenological theory for a Rashba spin-split system. Our experimental data show a B2 dependence of AMR and PHE at low magnetic fields that could also be explained based on our model. At high fields (~8 T), we see a two fold to four fold transition in the AMR that could not be explained using only Rashba spin-split energy spectra. Two dimensional electron gas (2DEG) at oxide interfaces is promising in modern electronic devices. Here, Wadehra et al. realize 2DEG at a novel interface composed of LaVO3 and KTaO3, where strong spin-orbit coupling and relativistic nature of the electrons in the 2DEG, leading to anisotropic magnetoresistance and planar Hall effect.
Collapse
Affiliation(s)
- Neha Wadehra
- Nanoscale Physics and Device Laboratory, Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India
| | - Ruchi Tomar
- Nanoscale Physics and Device Laboratory, Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India
| | - Rahul Mahavir Varma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangaluru, Karnataka, 560012, India
| | - R K Gopal
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Manauli, 140306, India
| | - Yogesh Singh
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Manauli, 140306, India
| | - Sushanta Dattagupta
- Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - S Chakraverty
- Nanoscale Physics and Device Laboratory, Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India.
| |
Collapse
|
28
|
Singh G, Jouan A, Herranz G, Scigaj M, Sánchez F, Benfatto L, Caprara S, Grilli M, Saiz G, Couëdo F, Feuillet-Palma C, Lesueur J, Bergeal N. Gap suppression at a Lifshitz transition in a multi-condensate superconductor. NATURE MATERIALS 2019; 18:948-954. [PMID: 31086324 DOI: 10.1038/s41563-019-0354-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
In multi-orbital materials, superconductivity can exhibit several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the band structure and selectively control the occupancy of 3d orbitals by electrostatic doping. Here, we use resonant microwave transport to extract the superfluid stiffness of the (110)-oriented LaAlO3/SrTiO3 interface in the entire phase diagram. We provide evidence of a transition from single-condensate to two-condensate superconductivity driven by continuous and reversible electrostatic doping, which we relate to the Lifshitz transition between 3d bands based on numerical simulations of the quantum well. We find that the superconducting gap is suppressed while the second band is populated, challenging Bardeen-Cooper-Schrieffer theory. We ascribe this behaviour to the existence of superconducting order parameters with opposite signs in the two condensates due to repulsive coupling. Our findings offer an innovative perspective on the possibility to tune and control multiple-orbital physics in superconducting interfaces.
Collapse
Affiliation(s)
- G Singh
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - A Jouan
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - G Herranz
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - M Scigaj
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - F Sánchez
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, Spain
| | - L Benfatto
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Roma, Italy
- Dipartimento di Fisica Università di Roma 'La Sapienza', Roma, Italy
| | - S Caprara
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Roma, Italy
- Dipartimento di Fisica Università di Roma 'La Sapienza', Roma, Italy
| | - M Grilli
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Roma, Italy
- Dipartimento di Fisica Università di Roma 'La Sapienza', Roma, Italy
| | - G Saiz
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - F Couëdo
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - C Feuillet-Palma
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - J Lesueur
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France
| | - N Bergeal
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, Paris, France.
- Université Pierre and Marie Curie, Sorbonne-Université, Paris, France.
| |
Collapse
|
29
|
Han K, Hu K, Li X, Huang K, Huang Z, Zeng S, Qi D, Ye C, Yang J, Xu H, Ariando A, Yi J, Lü W, Yan S, Wang XR. Erasable and recreatable two-dimensional electron gas at the heterointerface of SrTiO 3 and a water-dissolvable overlayer. SCIENCE ADVANCES 2019; 5:eaaw7286. [PMID: 31453328 PMCID: PMC6697431 DOI: 10.1126/sciadv.aaw7286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
While benefiting greatly from electronics, our society also faces a major problem of electronic waste, which has already caused environmental pollution and adverse human health effects. Therefore, recyclability becomes a must-have feature in future electronics. Here, we demonstrate an erasable and recreatable two-dimensional electron gas (2DEG), which can be easily created and patterned by depositing a water-dissolvable overlayer of amorphous Sr3Al2O6 (a-SAO) on SrTiO3 (STO) at room temperature. The 2DEG can be repeatedly erased or recreated by depositing the a-SAO or dissolving in water, respectively. Photoluminescence results show that the 2DEG arises from the a-SAO-induced oxygen vacancy. Furthermore, by gradually depleting the 2DEG, a transition of nonlinear to linear Hall effect is observed, demonstrating an unexpected interfacial band structure. The convenience and repeatability in the creation of the water-dissolvable 2DEG with rich physics could potentially contribute to the exploration of next generation electronics, such as environment-friendly or water-soluble electronics.
Collapse
Affiliation(s)
- Kun Han
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Kaige Hu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Xiao Li
- Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Ke Huang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Zhen Huang
- Department of Physics and NUSNNI-Nanocore, National University of Singapore, 117411 Singapore, Singapore
| | - Shengwei Zeng
- Department of Physics and NUSNNI-Nanocore, National University of Singapore, 117411 Singapore, Singapore
| | - Dongchen Qi
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Chen Ye
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Jian Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
| | - Huan Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Ariando Ariando
- Department of Physics and NUSNNI-Nanocore, National University of Singapore, 117411 Singapore, Singapore
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan New South Wales 2308 Australia
| | - Weiming Lü
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Shishen Yan
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - X. Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| |
Collapse
|
30
|
Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nat Commun 2019; 10:3052. [PMID: 31296861 PMCID: PMC6624272 DOI: 10.1038/s41467-019-10961-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/07/2019] [Indexed: 11/08/2022] Open
Abstract
The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such asymmetric oxide heterostructures with initially centrosymmetric materials provide a general strategy for tuning the Rashba SOI in artificial quantum materials. The two-dimensional electron gases that form at LaAlO3/SrTiO3 heterostructure interfaces feature strong spin-orbit interactions, leading to proposed spintronic applications. Lin et al. show that the design of asymmetric heterostructures enables the Rashba spin-orbit interaction to be tuned between two regimes.
Collapse
|
31
|
Puebla J, Auvray F, Yamaguchi N, Xu M, Bisri SZ, Iwasa Y, Ishii F, Otani Y. Photoinduced Rashba Spin-to-Charge Conversion via an Interfacial Unoccupied State. PHYSICAL REVIEW LETTERS 2019; 122:256401. [PMID: 31347901 DOI: 10.1103/physrevlett.122.256401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Indexed: 06/10/2023]
Abstract
At interfaces with inversion symmetry breaking, the Rashba effect couples the motion of the electrons to their spin; as a result, a spin charge interconversion mechanism can occur. These interconversion mechanisms commonly exploit Rashba spin splitting at the Fermi level by spin pumping or spin torque ferromagnetic resonance. Here, we report evidence of significant photoinduced spin-to-charge conversion via Rashba spin splitting in an unoccupied state above the Fermi level at the Cu(111)/α-Bi_{2}O_{3} interface. We predict an average Rashba coefficient of 1.72×10^{-10} eV m at 1.98 eV above the Fermi level, by a fully relativistic first principles analysis of the interfacial electronic structure with spin orbit interaction. We find agreement with our observation of helicity dependent photoinduced spin-to-charge conversion excited at 1.96 eV at room temperature, with a spin current generation of J_{s}=10^{6} A/m^{2}. The present Letter shows evidence of efficient spin charge conversion exploiting Rashba spin splitting at excited states, harvesting light energy without magnetic materials or external magnetic fields.
Collapse
Affiliation(s)
| | - Florent Auvray
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Naoya Yamaguchi
- Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mingran Xu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | | | - Yoshihiro Iwasa
- CEMS, RIKEN, Saitama, 351-0198, Japan
- Quantum Phase Electronic Center (QPEC) and Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fumiyuki Ishii
- Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
- Nanomaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yoshichika Otani
- CEMS, RIKEN, Saitama, 351-0198, Japan
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| |
Collapse
|
32
|
Gan Y, Christensen DV, Zhang Y, Zhang H, Krishnan D, Zhong Z, Niu W, Carrad DJ, Norrman K, von Soosten M, Jespersen TS, Shen B, Gauquelin N, Verbeeck J, Sun J, Pryds N, Chen Y. Diluted Oxide Interfaces with Tunable Ground States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805970. [PMID: 30637817 DOI: 10.1002/adma.201805970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/31/2018] [Indexed: 06/09/2023]
Abstract
The metallic interface between two oxide insulators, such as LaAlO3 /SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1- x Mnx O3 /STO (0 ≤ x ≤ 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of nc = 2.8 × 1013 cm-2 , where a peak TSC ≈255 mK of superconducting transition temperature is observed. Moreover, the LaAl1- x Mnx O3 turns ferromagnetic at x ≥ 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only dxy electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 × 1012 cm-2 < ns ≤ 1.1 × 1013 cm-2 ) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
Collapse
Affiliation(s)
- Yulin Gan
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| | - Dennis Valbjørn Christensen
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| | - Yu Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
- National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongrui Zhang
- National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dileep Krishnan
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wei Niu
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| | - Damon James Carrad
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Kion Norrman
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| | - Merlin von Soosten
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Thomas Sand Jespersen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Baogen Shen
- National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nicolas Gauquelin
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Johan Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jirong Sun
- National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| | - Yunzhong Chen
- Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark
| |
Collapse
|
33
|
Zhang H, Yan X, Zhang X, Wang S, Xiong C, Zhang H, Qi S, Zhang J, Han F, Wu N, Liu B, Chen Y, Shen B, Sun J. Unusual Electric and Optical Tuning of KTaO 3-Based Two-Dimensional Electron Gases with 5d Orbitals. ACS NANO 2019; 13:609-615. [PMID: 30604953 DOI: 10.1021/acsnano.8b07622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling electronic processes in low-dimension electron systems is centrally important for both fundamental and applied researches. While most of the previous works focused on SrTiO3-based two-dimensional electron gases (2DEGs), here we report on a comprehensive investigation in this regard for amorphous-LaAlO3/KTaO3 2DEGs with the Fermi energy ranging from ∼13 meV to ∼488 meV. The most important observation is the dramatic variation of the Rashba spin-orbit coupling (SOC) as Fermi energy sweeps through 313 meV: The SOC effective field first jumps and then drops, leading to a cusp of ∼2.6 T. Above 313 meV, an additional species of mobile electrons emerges, with a 50-fold enhanced Hall mobility. A relationship between spin relaxation distance and the degree of band filling has been established in a wide range. It indicates that the maximal spin precession length is ∼70.1 nm and the maximal Rashba spin splitting energy is ∼30 meV. Both values are much larger than the previously reported ones. As evidenced by density functional theory calculation, these unusual phenomena are closely related to the distinct band structure of the 2DEGs composed of 5d electrons. The present work further deepens our understanding of perovskite conducting interfaces, particularly those composed of 5d transition-metal oxides.
Collapse
Affiliation(s)
- Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Xi Yan
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Xuejing Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Shuai Wang
- Department of Physics , Beijing Normal University , Beijing 100875 , Peoples' Republic of China
| | - Changmin Xiong
- Department of Physics , Beijing Normal University , Beijing 100875 , Peoples' Republic of China
| | - Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Shaojin Qi
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Jine Zhang
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Furong Han
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Ning Wu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Banggui Liu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , Peoples' Republic of China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , Peoples' Republic of China
| |
Collapse
|
34
|
Wang L, Pan W, Hu WX, Sun DY. Strain-induced indirect-to-direct bandgap transition in an np-type LaAlO 3/SrTiO 3(110) superlattice. Phys Chem Chem Phys 2019; 21:7075-7082. [DOI: 10.1039/c8cp07761d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By applying uniaxial in-plane strains, an indirect-to-direct bandgap transition occurs in the polar LaAlO3/SrTiO3 (110) superlattices.
Collapse
Affiliation(s)
- L. Wang
- Department of Physics
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - W. Pan
- Department of Physics
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - W. X. Hu
- The computer Center
- East China Normal University
- Shanghai 200241
- People's Republic of China
| | - D. Y. Sun
- Department of Physics
- East China Normal University
- Shanghai 200241
- People's Republic of China
| |
Collapse
|
35
|
Huang Z, Renshaw Wang X, Rusydi A, Chen J, Yang H, Venkatesan T. Interface Engineering and Emergent Phenomena in Oxide Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802439. [PMID: 30133012 DOI: 10.1002/adma.201802439] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Complex oxide interfaces have mesmerized the scientific community in the last decade due to the possibility of creating tunable novel multifunctionalities, which are possible owing to the strong interaction among charge, spin, orbital, and structural degrees of freedom. Artificial interfacial modifications, which include defects, formal polarization, structural symmetry breaking, and interlayer interaction, have led to novel properties in various complex oxide heterostructures. These emergent phenomena not only serve as a platform for investigating strong electronic correlations in low-dimensional systems but also provide potentials for exploring next-generation electronic devices with high functionality. Herein, some recently developed strategies in engineering functional oxide interfaces and their emergent properties are reviewed.
Collapse
Affiliation(s)
- Zhen Huang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Xiao Renshaw Wang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Andrivo Rusydi
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Jingsheng Chen
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Hyunsoo Yang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Thirumalai Venkatesan
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| |
Collapse
|
36
|
Majorana Fermions in One-Dimensional Structures at LaAlO3/SrTiO3 Oxide Interfaces. CONDENSED MATTER 2018. [DOI: 10.3390/condmat3040037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We study one-dimensional structures that may be formed at the LaAlO 3 /SrTiO 3 oxide interface by suitable top gating. These structures are modeled via a single-band model with Rashba spin-orbit coupling, superconductivity and a magnetic field along the one-dimensional chain. We first discuss the conditions for the occurrence of a topological superconducting phase and the related formation of Majorana fermions at the chain endpoints, highlighting a close similarity between this model and the Kitaev model, which also reflects in a similar condition the formation of a topological phase. Solving the model in real space, we also study the spatial extension of the wave function of the Majorana fermions and how this increases with approaching the limit condition for the topological state. Using a scattering matrix formalism, we investigate the stability of the Majorana fermions in the presence of disorder and discuss the evolution of the topological phase with increasing disorder.
Collapse
|
37
|
Swartz AG, Cheung AKC, Yoon H, Chen Z, Hikita Y, Raghu S, Hwang HY. Superconducting Tunneling Spectroscopy of Spin-Orbit Coupling and Orbital Depairing in Nb:SrTiO_{3}. PHYSICAL REVIEW LETTERS 2018; 121:167003. [PMID: 30387624 DOI: 10.1103/physrevlett.121.167003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 06/08/2023]
Abstract
We have examined the intrinsic spin-orbit coupling and orbital depairing in thin films of Nb-doped SrTiO_{3} by superconducting tunneling spectroscopy. The orbital depairing is geometrically suppressed in the two-dimensional limit, enabling a quantitative evaluation of the Fermi level spin-orbit scattering using Maki's theory. The response of the superconducting gap under in-plane magnetic fields demonstrates short spin-orbit scattering times τ_{so}≤1.1 ps. Analysis of the orbital depairing indicates that the heavy electron band contributes significantly to pairing. These results suggest that the intrinsic spin-orbit scattering time in SrTiO_{3} is comparable to those associated with Rashba effects in SrTiO_{3} interfacial conducting layers and can be considered significant in all forms of superconductivity in SrTiO_{3}.
Collapse
Affiliation(s)
- Adrian G Swartz
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Alfred K C Cheung
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Hyeok Yoon
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Zhuoyu Chen
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Yasuyuki Hikita
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Srinivas Raghu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
38
|
Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W, Sun J. High-Mobility Spin-Polarized Two-Dimensional Electron Gases at EuO/KTaO_{3} Interfaces. PHYSICAL REVIEW LETTERS 2018; 121:116803. [PMID: 30265094 DOI: 10.1103/physrevlett.121.116803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional electron gases (2DEGs) at oxide interfaces, which provide unique playgrounds for emergent phenomena, have attracted increasing attention in recent years. While most of the previous works focused on the 2DEGs at LaAlO_{3}/SrTiO_{3} interfaces, here we report on a new kind of 2DEGs formed between a magnetic insulator EuO and a high-k perovskite KTaO_{3}. The 2DEGs are not only highly conducting, with a maximal Hall mobility of 111.6 cm^{2}/V s at 2 K, but also well spin polarized, showing strongly hysteretic magnetoresistance up to 25 K and well-defined anomalous Hall effect up to 70 K. Moreover, unambiguous correspondences between the hysteretic behaviors of 2DEGs and the EuO layer are captured, suggesting the proximity effect of the latter on the former. This is confirmed by the results of density-functional theory calculations: Through interlayer exchange, EuO drives the neighboring TaO_{2} layer into a ferromagnetic state. The present work opens new avenues for the exploration for high performance spin-polarized 2DEGs at oxide interfaces.
Collapse
Affiliation(s)
- Hongrui Zhang
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Yun
- International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Xuejing Zhang
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Zhang
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Ma
- International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Xi Yan
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fei Wang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Gang Li
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rui Li
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tahira Khan
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Liu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Banggui Liu
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Han
- International Centre for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
39
|
Ghising P, Das D, Das S, Hossain Z. Kondo effect with tunable spin-orbit interaction in LaTiO 3/CeTiO 3/SrTiO 3 heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:285002. [PMID: 29855435 DOI: 10.1088/1361-648x/aac977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have fabricated epitaxial films of CeTiO3 (CTO) on (0 0 1) oriented SrTiO3 (STO) substrates, which exhibit highly insulating and diamagnetic properties. X-ray photoelectron spectroscopy was used to establish the 3+ valence state of the Ce and Ti ions. Furthermore, we have also fabricated δ (CTO) doped LaTiO3 (LTO)/SrTiO3 thin films which exhibit variety of interesting properties including Kondo effect and spin-orbit interaction (SOI) at low temperatures. The SOI shows a non-monotonic behaviour as the thickness of the CTO layer is increased and is reflected in the value of characteristic SOI field ([Formula: see text]) obtained from weak anti-localization fitting. The maximum value of [Formula: see text] is 1.00 T for δ layer thickness of 6 u.c. This non-monotonic behaviour of SOI is attributed to the strong screening of the confining potential at the interface. The screening effect is enhanced by the CTO layer thickness and the dielectric constant of STO which increases at low temperatures. Due to the strong screening, electrons confined at the interface are spread deeper into the STO bulk where it starts to populate the Ti [Formula: see text] subbands; consequently the Fermi level crosses over from [Formula: see text] to the [Formula: see text] subbands. At the crossover region of [Formula: see text] where there is orbital mixing, SOI goes through a maximum.
Collapse
Affiliation(s)
- Pramod Ghising
- Department of Physics, Condensed Matter-Low Dimensional Systems Laboratory, Indian Institute of Technology, Kanpur-208016, India
| | | | | | | |
Collapse
|
40
|
Wakatsuki R, Nagaosa N. Nonreciprocal Current in Noncentrosymmetric Rashba Superconductors. PHYSICAL REVIEW LETTERS 2018; 121:026601. [PMID: 30085693 DOI: 10.1103/physrevlett.121.026601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
We study theoretically the nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors with the Rashba spin-orbit interaction. The resistivity R depends on the current I linearly under the external magnetic field B, i.e., R=R_{0}(1+γBI), which is called the magnetochiral anisotropy. It is found that the coefficient γ is gigantically enhanced by the superconducting fluctuation with the components of both spin singlet and triplet pairings, compared with that in the normal state. This finding offers a method to quantitatively estimate the ratio of the pairing interactions between the singlet and triplet channels including its sign.
Collapse
Affiliation(s)
- Ryohei Wakatsuki
- Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan
| | - Naoto Nagaosa
- Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
41
|
Effect of Nb concentration on the spin-orbit coupling strength in Nb-doped SrTiO 3 epitaxial thin films. Sci Rep 2018; 8:5739. [PMID: 29636543 PMCID: PMC5893625 DOI: 10.1038/s41598-018-23967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022] Open
Abstract
Several oxide materials have attracted much interest for the application in spintronic devices due to unusual properties originating from the strongly correlated orbital and spin degrees of freedom. One missing part in oxide spintronics is a good spin channel featured by strong spin-orbit coupling (SOC) which enables an efficient control of the electron’s spin. We have systematically investigated the dependence of the SOC strength of Sr(NbxTi1−x)O3 thin films on Nb concentration (nNb = 2~20 at. %) as a deeper exploration of a recent finding of the strong SOC in a heavily Nb-doped SrTiO3 (Sr(Nb0.2Ti0.8)O3) epitaxial film. Apart from a finding of a proportionality of the SOC to nNb, we have observed an intriguing temperature dependence of the SOC strength and the anisotropic magnetoresistance (MR) in the intermediate nNb region. These phenomena are associated with the temperature dependence of Landé g-factor and the change of the band structure, which is consistent with the result of density functional theory (DFT) calculation.
Collapse
|
42
|
Song K, Ryu S, Lee H, Paudel TR, Koch CT, Park B, Lee JK, Choi SY, Kim YM, Kim JC, Jeong HY, Rzchowski MS, Tsymbal EY, Eom CB, Oh SH. Direct imaging of the electron liquid at oxide interfaces. NATURE NANOTECHNOLOGY 2018; 13:198-203. [PMID: 29402977 DOI: 10.1038/s41565-017-0040-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
The breaking of symmetry across an oxide heterostructure causes the electronic orbitals to be reconstructed at the interface into energy states that are different from their bulk counterparts 1 . The detailed nature of the orbital reconstruction critically affects the spatial confinement and the physical properties of the electrons occupying the interfacial orbitals2-4. Using an example of two-dimensional electron liquids forming at LaAlO3/SrTiO3 interfaces5,6 with different crystal symmetry, we show that the selective orbital occupation and spatial quantum confinement of electrons can be resolved with subnanometre resolution using inline electron holography. For the standard (001) interface, the charge density map obtained by inline electron holography shows that the two-dimensional electron liquid is confined to the interface with narrow spatial extension (~1.0 ± 0.3 nm in the half width). On the other hand, the two-dimensional electron liquid formed at the (111) interface shows a much broader spatial extension (~3.3 ± 0.3 nm) with the maximum density located ~2.4 nm away from the interface, in excellent agreement with density functional theory calculations.
Collapse
Affiliation(s)
- Kyung Song
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Sangwoo Ryu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Hyungwoo Lee
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tula R Paudel
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
| | - Christoph T Koch
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Bumsu Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Ja Kyung Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Jong Chan Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Engineering (UNIST), Ulsan, Republic of Korea
| | - Hu Young Jeong
- School of Materials Science and Engineering, Ulsan National Institute of Science and Engineering (UNIST), Ulsan, Republic of Korea
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Engineering (UNIST), Ulsan, Republic of Korea
| | - Mark S Rzchowski
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
| | - Chang-Beom Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sang Ho Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| |
Collapse
|
43
|
Pai YY, Tylan-Tyler A, Irvin P, Levy J. Physics of SrTiO 3-based heterostructures and nanostructures: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036503. [PMID: 29424362 DOI: 10.1088/1361-6633/aa892d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Collapse
Affiliation(s)
- Yun-Yi Pai
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States of America. Pittsburgh Quantum Institute, Pittsburgh, PA 15260, United States of America
| | | | | | | |
Collapse
|
44
|
Singh G, Jouan A, Benfatto L, Couëdo F, Kumar P, Dogra A, Budhani RC, Caprara S, Grilli M, Lesne E, Barthélémy A, Bibes M, Feuillet-Palma C, Lesueur J, Bergeal N. Competition between electron pairing and phase coherence in superconducting interfaces. Nat Commun 2018; 9:407. [PMID: 29379023 PMCID: PMC5789063 DOI: 10.1038/s41467-018-02907-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin-orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high-energy dxz/dyz bands in the quantum well, more apt to host superconductivity.
Collapse
Affiliation(s)
- G Singh
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - A Jouan
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - L Benfatto
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy.
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy.
| | - F Couëdo
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - P Kumar
- National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - A Dogra
- National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - R C Budhani
- Condensed Matter Low Dimensional Systems Laboratory, Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
| | - S Caprara
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - M Grilli
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Lesne
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - A Barthélémy
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - M Bibes
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - C Feuillet-Palma
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - J Lesueur
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - N Bergeal
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France.
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France.
| |
Collapse
|
45
|
Rout PK, Maniv E, Dagan Y. Link between the Superconducting Dome and Spin-Orbit Interaction in the (111) LaAlO_{3}/SrTiO_{3} Interface. PHYSICAL REVIEW LETTERS 2017; 119:237002. [PMID: 29286685 DOI: 10.1103/physrevlett.119.237002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We measure the gate voltage (V_{g}) dependence of the superconducting properties and the spin-orbit interaction in the (111)-oriented LaAlO_{3}/SrTiO_{3} interface. Superconductivity is observed in a dome-shaped region in the carrier density-temperature phase diagram with the maxima of superconducting transition temperature T_{c} and the upper critical fields lying at the same V_{g}. The spin-orbit interaction determined from the superconducting parameters and confirmed by weak-antilocalization measurements follows the same gate voltage dependence as T_{c}. The correlation between the superconductivity and spin-orbit interaction as well as the enhancement of the parallel upper critical field, well beyond the Chandrasekhar-Clogston limit, suggest that superconductivity and the spin-orbit interaction are linked in a nontrivial fashion. We propose possible scenarios to explain this unconventional behavior.
Collapse
Affiliation(s)
- P K Rout
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - E Maniv
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Y Dagan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Niu W, Zhang Y, Gan Y, Christensen DV, Soosten MV, Garcia-Suarez EJ, Riisager A, Wang X, Xu Y, Zhang R, Pryds N, Chen Y. Giant Tunability of the Two-Dimensional Electron Gas at the Interface of γ-Al 2O 3/SrTiO 3. NANO LETTERS 2017; 17:6878-6885. [PMID: 28968124 DOI: 10.1021/acs.nanolett.7b03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional electron gases (2DEGs) formed at the interface between two oxide insulators provide a rich platform for the next generation of electronic devices. However, their high carrier density makes it rather challenging to control the interface properties under a low electric field through a dielectric solid insulator, that is, in the configuration of conventional field-effect transistors. To surpass this long-standing limit, we used ionic liquids as the dielectric layer for electrostatic gating of oxide interfaces in an electric double layer transistor (EDLT) configuration. Herein, we reported giant tunability of the physical properties of 2DEGs at the spinel/perovskite interface of γ-Al2O3/SrTiO3 (GAO/STO). By modulating the carrier density thus the band filling with ionic-liquid gating, the system experiences a Lifshitz transition at a critical carrier density of 3.0 × 1013 cm-2, where a remarkably strong enhancement of Rashba spin-orbit interaction and an emergence of Kondo effect at low temperatures are observed. Moreover, as the carrier concentration depletes with decreasing gating voltage, the electron mobility is enhanced by more than 6 times in magnitude, leading to the observation of clear quantum oscillations. The great tunability of GAO/STO interface by EDLT gating not only shows promise for design of oxide devices with on-demand properties but also sheds new light on the electronic structure of 2DEG at the nonisostructural spinel/perovskite interface.
Collapse
Affiliation(s)
- Wei Niu
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Yu Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Yulin Gan
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Dennis V Christensen
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Merlin V Soosten
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Eduardo J Garcia-Suarez
- Center for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Anders Riisager
- Center for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Xuefeng Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Yongbing Xu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Rong Zhang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Yunzhong Chen
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| |
Collapse
|
47
|
Cheng L, Wei L, Liang H, Yan Y, Cheng G, Lv M, Lin T, Kang T, Yu G, Chu J, Zhang Z, Zeng C. Optical Manipulation of Rashba Spin-Orbit Coupling at SrTiO 3-Based Oxide Interfaces. NANO LETTERS 2017; 17:6534-6539. [PMID: 28968111 DOI: 10.1021/acs.nanolett.7b02128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spin-orbit coupling (SOC) plays a crucial role for spintronics applications. Here we present the first demonstration that the Rashba SOC at the SrTiO3-based interfaces is highly tunable by photoinduced charge doping, that is, optical gating. Such optical manipulation is nonvolatile after the removal of the illumination in contrast to conventional electrostatic gating and also erasable via a warming-cooling cycle. Moreover, the SOC evolutions tuned by illuminations with different wavelengths at various gate voltages coincide with each other in different doping regions and collectively form an upward-downward trend curve: In response to the increase of conductivity, the SOC strength first increases and then decreases, which can be attributed to the orbital hybridization of Ti 3d subbands. More strikingly, the optical manipulation is effective enough to tune the interferences of Bloch wave functions from constructive to destructive and therefore to realize a transition from weak localization to weak antilocalization. The present findings pave a way toward the exploration of photoinduced nontrivial quantum states and the design of optically controlled spintronic devices.
Collapse
Affiliation(s)
- Long Cheng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Laiming Wei
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Haixing Liang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yuedong Yan
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Guanghui Cheng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Meng Lv
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China
| | - Tie Lin
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China
| | - Tingting Kang
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China
| | - Guolin Yu
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China
| | - Junhao Chu
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University , Shanghai 200062, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Changgan Zeng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B, Sun J. Highly Mobile Two-Dimensional Electron Gases with a Strong Gating Effect at the Amorphous LaAlO 3/KTaO 3 Interface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36456-36461. [PMID: 28972361 DOI: 10.1021/acsami.7b12814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional electron gas (2DEG) at the perovskite oxide interface exhibits a lot of exotic properties, presenting a promising platform for the exploration of emergent phenomena. While most of the previous works focused on SrTiO3-based 2DEG, here we report on the fabrication of high-quality 2DEGs by growing an amorphous LaAlO3 layer on a (001)-orientated KTaO3 substrate, which is a 5d metal oxide with a polar surface, at a high temperature that is usually adopted for crystalline LaAlO3. Metallic 2DEGs with a Hall mobility as high as ∼2150 cm2/(V s) and a sheet carrier density as low as 2 × 1012 cm-2 are obtained. For the first time, the gating effect on the transport process is studied, and its influence on spin relaxation and inelastic and elastic scattering is determined. Remarkably, the spin relaxation time can be strongly tuned by a back gate. It is reduced by a factor of ∼69 while the gate voltage is swept from -25 to +100 V. The mechanism that dominates the spin relaxation is elucidated.
Collapse
Affiliation(s)
- Hui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Hongrui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Xi Yan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Xuejing Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Jing Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Furong Han
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Banggui Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences , Beijing 100190, Peoples' Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences , Beijing 100049, Peoples' Republic of China
| |
Collapse
|
49
|
Tsai MS, Li CS, Guo ST, Song MY, Singh AK, Lee WL, Chu MW. Off-Stoichiometry Driven Carrier Density Variation at the Interface of LaAlO 3/SrTiO 3. Sci Rep 2017; 7:1770. [PMID: 28496105 PMCID: PMC5431992 DOI: 10.1038/s41598-017-02039-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/05/2017] [Indexed: 11/28/2022] Open
Abstract
The interface between LaAlO3 (LAO) and SrTiO3 (STO) has attracted enormous interests due to its rich physical phenomena, such as metallic nature, magnetism and superconductivity. In this work, we report our experimental investigations on the influence of the LAO stoichiometry to the metallic interface. Taking advantage of the oxide molecular beam epitaxy (MBE) technique, a series of high quality LAO films with different nominal La/Al ratios and LAO thicknesses were grown on the TiO2-terminated STO substrates, where systematic variations of the LAO lattice constant and transport property were observed. In particular, the sheet density can be largely reduced by nearly an order of magnitude with merely about 20% increase in the nominal La/Al ratio. Our finding provides an effective method on tuning the electron density of the two-dimensional electron liquid (2DEL) at the LAO/STO interface.
Collapse
Affiliation(s)
- Ming-Shiu Tsai
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Chi-Sheng Li
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Shih-Ting Guo
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ming-Yuan Song
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Akhilesh Kr Singh
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| | - Wei-Li Lee
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| | - M-W Chu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
50
|
Hardy WJ, Isaac B, Marshall P, Mikheev E, Zhou P, Stemmer S, Natelson D. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO 3/SrTiO 3/SmTiO 3 Quantum Well Structures. ACS NANO 2017; 11:3760-3766. [PMID: 28350436 DOI: 10.1021/acsnano.6b08427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heterointerfaces of SrTiO3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO3/SrTiO3, support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO3 sandwiched between layers of SmTiO3, in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T2) to a non-Fermi liquid (ρ ∝ T5/3) by controlling the SrTiO3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.
Collapse
Affiliation(s)
- Will J Hardy
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Brandon Isaac
- Materials Department, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Patrick Marshall
- Materials Department, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Evgeny Mikheev
- Materials Department, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Panpan Zhou
- Department of Physics and Astronomy, Rice University , Houston, Texas 77005, United States
| | - Susanne Stemmer
- Materials Department, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice University , Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|