1
|
Zhang X, Di Y, Wang Y, Qin J, Ye L, Wen X, Ke Z, Wang Z, He W. SIRT5-mediated desuccinylation of PPA2 enhances HIF-1alpha-dependent adaptation to hypoxic stress and colorectal cancer metastasis. EMBO J 2025; 44:2514-2540. [PMID: 40164945 PMCID: PMC12048626 DOI: 10.1038/s44318-025-00416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Metastasis is the primary cause of death in patients with colorectal cancer (CRC). Hypoxia is a hallmark of solid tumors that promotes cellular metabolic adaptation and dissemination. However, the mechanisms linking hypoxia-regulated metabolic adaptation to CRC metastasis remain unclear. Here, we found that inorganic pyrophosphatase 2 (PPA2) suppresses metastatic progression of CRC via its phosphatase function. PPA2 expression levels are reduced in CRC specimen and correlate with enhanced response to hypoxia by promoting hypoxia-inducible factor-1 (HIF-1) signaling to promote CRC cell glycolysis and dissemination. Mechanistically, PPA2 decreases HIF-1alpha stability through non-canonical ubiquitin-mediated proteasomal degradation via recruitment of E3 ligase NEDD4. Furthermore, PPA2 directly dephosphorylates NEDD4 at threonine 758 residue, resulting in its activation. Under hypoxic stress, NAD-dependent protein deacetylase sirtuin-5 promotes the dissociation of PPA2 and NEDD4 by inducing PPA2 desuccinylation at lysine 176, contributing to the improved stability of HIF-1alpha under hypoxic conditions. Our findings reveal a tumor-suppressive role of PPA2 in HIF-1alpha-dependent colorectal cancer, providing a potential therapeutic target and prognostic strategy.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangqiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zunfu Ke
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Ziyang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
2
|
Yin H, Zhang Z, Zhang Q, You Y, Zhang Z, Han Y, Zhang Q, You B. PLAU serves as a prognostic biomarker correlated with perineural invasion in HNSCC. Cancer Genet 2025; 294-295:145-155. [PMID: 40319793 DOI: 10.1016/j.cancergen.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/25/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
In head and neck squamous cell carcinoma (HNSCC), perineural invasion (PNI) is a distinctive clinicopathologic feature associated with poor survival. To improve patient prognosis, our investigation delved into the underlying mechanism of PNI in HNSCC, especially laryngeal cancer and hypopharyngeal carcinoma. Based on data from the Cancer Genome Atlas (TCGA), genes were categorized into two groups based on the presence or absence of PNI. Plasminogen activator urokinase (PLAU) was screened out as the key molecular. Next, a tissue microarray comprising 68 patients with HNSCC was used to explore the association between PLAU and nerve growth factor (NGF), a positive control of PNI. Then, the co-culture model and cell damage function experiments were used to investigate the carcinogenic effect of PLAU. CCK8 and Transwell assays confirmed the role of PLAU in promoting proliferation and metastasis. The PC12 neurite growth assay and the co-culture system suggested that PLAU influences malignant behaviors by facilitating PNI. Moreover, introducing small molecule compounds to impede PLAU and NGF can effectively revert tumor progression in vivo. PLAU promotes tumor malignancy by facilitating PNI in HNSCC, offering a novel reference for clarifying the molecular mechanisms underlying PNI and identifying potential therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Haimeng Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Zixiang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yumo Han
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Medical School of Nantong University, Nantong, 226001, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China; Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Ma A, Liang Z, Zhang H, Meng Z, Zhu J, Chen S, Lin Q, Jiang T, Tan M. UCHL1-Mediated Spastin Degradation Regulates Microtubule Severing and Hippocampal Neurite Outgrowth. J Mol Neurosci 2025; 75:54. [PMID: 40272610 DOI: 10.1007/s12031-025-02348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
As a key component of the cytoskeleton, microtubule dynamic provides structural support for neurite outgrowth. Spastin, a microtubule severing enzyme associated with hereditary spastic paraplegia (HSP), is crucial for the growth and branching of neuronal processes. Thus, the activity and function of spastin need to be strictly regulated. However, the mechanism by which spastin protein levels are regulated is still poorly understood. In the current study, we showed that UCHL1 interacted with spastin via mass spectrometry, GST-pulldown and immunoprecipitation assays. Overexpression of UCHL1 decreased the protein level of spastin, while the genetic knockdown of UCHL1 increased that of spastin. CHX chase assay showed that UCHL1 regulated the protein degradation of spastin. Application of proteasome inhibitor MG-132 suppressed UCHL1-mediated spastin degradation. Furthermore, overexpression or knockout of UCHL1 can inhibit or restore spastin-mediated microtubule severing, thereby regulating neuronal length and branch formation. These findings reveal the important regulatory mechanism of UCHL1 on spastin-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Ao Ma
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhi Liang
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Hongde Zhang
- Department of Recovery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhichao Meng
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiehao Zhu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qisheng Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Tao Jiang
- Department of Orthopedics, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510050, China.
| | - Minghui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Ye Y, Wang P, Wu D, Tang F, Shen N, Hou G. Deubiquitinating enzyme UCHL1 stabilizes CAV1 to inhibit ferroptosis and enhance docetaxel resistance in nasopharyngeal carcinoma. Anticancer Drugs 2025:00001813-990000000-00387. [PMID: 40279201 DOI: 10.1097/cad.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The overexpression of CAV1 in many cancers is linked to chemotherapy resistance, but the exact mechanisms by which CAV1 contributes to resistance in nasopharyngeal carcinoma (NPC) are not fully known. Our research aims to elucidate the potential pathways by which CAV1 contributes to chemotherapy resistance in NPC, providing a basis for developing strategies to overcome resistance. A docetaxel-resistant NPC cell line was established, and CAV1 expression was analyzed in the cell line and the resistant variant using western blot. The sensitivity of the resistant cell line to docetaxel was assessed via cell counting kit-8, colony formation assays, and flow cytometry. Flow cytometry was used to measure lipid reactive oxygen species levels, while kits were employed to determine Fe2+ and malondialdehyde concentrations. The Ubibrowser database helped identify ubiquitination enzymes that interact with CAV1. The binding relationship between UCHL1 and CAV1 was studied using co-immunoprecipitation and immunofluorescence, which also evaluated the deubiquitination activity of UCHL1 on CAV1. CAV1 is overexpressed in NPC tissues and cells, correlating with adverse patient prognoses. In docetaxel-resistant cells, CAV1 expression is elevated compared to standard NPC cells. Silencing CAV1 increased the sensitivity of these resistant cells to docetaxel. Additionally, treatment with the ferroptosis inducer erastin could counteract the effects of CAV1 overexpression on drug resistance. UCHL1 interacted with CAV1 and inhibited its ubiquitin-mediated degradation pathway. By deubiquitinating CAV1, UCHL1 stabilizes and increases its expression, which inhibits ferroptosis and enhances the resistance of NPC cells to docetaxel.
Collapse
Affiliation(s)
- Yixian Ye
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province
| | - Peng Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Daquan Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Fengrong Tang
- Department of Nursing, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province, China
| | - Na Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Guanghui Hou
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province
| |
Collapse
|
5
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
6
|
Soloveva N, Novikova S, Farafonova T, Tikhonova O, Zgoda V. Secretome and Proteome of Extracellular Vesicles Provide Protein Markers of Lung and Colorectal Cancer. Int J Mol Sci 2025; 26:1016. [PMID: 39940785 PMCID: PMC11816676 DOI: 10.3390/ijms26031016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) and lung cancer (LC) are leading causes of cancer-related mortality, highlighting the need for minimally invasive diagnostic, prognostic, and predictive markers for these cancers. Proteins secreted by a tumor into the extracellular space directly, known as the tumor secretome, as well as proteins in the extra-cellular vesicles (EVs), represent an attractive source of biomarkers for CRC and LC. We performed proteomic analyses on secretome and EV samples from LC (A549, NCI-H23, NCI-H460) and CRC (Caco2, HCT116, HT-29) cell lines and targeted mass spectrometry on EVs from plasma samples of 20 patients with CRC and 19 healthy controls. A total of 782 proteins were identified across the CRC and LC secretome and EV samples. Of these, 22 and 44 protein markers were significantly elevated in the CRC and LC samples, respectively. Functional annotation revealed enrichment in proteins linked to metastasis and tumor progression for both cancer types. In EVs isolated from the plasma of patients with CRC, ITGB3, HSPA8, TUBA4A, and TLN1 were reduced, whereas FN1, SERPINA1, and CST3 were elevated, compared to healthy controls. These findings support the development of minimally invasive liquid biopsy methods for the detection, prognosis, and treatment monitoring of LC and CRC.
Collapse
Affiliation(s)
| | | | | | | | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (N.S.); (S.N.); (T.F.); (O.T.)
| |
Collapse
|
7
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
9
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 PMCID: PMC11668284 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
10
|
Kambe G, Kobayashi M, Ishikita H, Koyasu S, Hammond EM, Harada H. ZBTB7A forms a heterodimer with ZBTB2 and inhibits ZBTB2 homodimerization required for full activation of HIF-1. Biochem Biophys Res Commun 2024; 733:150604. [PMID: 39197198 DOI: 10.1016/j.bbrc.2024.150604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1), recognized as a master transcription factor for adaptation to hypoxia, is associated with malignant characteristics and therapy resistance in cancers. It has become clear that cofactors such as ZBTB2 are critical for the full activation of HIF-1; however, the mechanisms downregulating the ZBTB2-HIF-1 axis remain poorly understood. In this study, we identified ZBTB7A as a negative regulator of ZBTB2 by analyzing protein sequences and structures. We found that ZBTB7A forms a heterodimer with ZBTB2, inhibits ZBTB2 homodimerization necessary for the full expression of ZBTB2-HIF-1 downstream genes, and ultimately delays the proliferation of cancer cells under hypoxic conditions. The Cancer Genome Atlas (TCGA) analyses revealed that overall survival is better in patients with high ZBTB7A expression in their tumor tissues. These findings highlight the potential of targeting the ZBTB7A-ZBTB2 interaction as a novel therapeutic strategy to inhibit HIF-1 activity and improve treatment outcomes in hypoxia-related cancers.
Collapse
Affiliation(s)
- Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Chen M, Karimpour PA, Elliott A, He D, Knifley T, Liu J, Wang C, O’Connor KL. Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties. Cancers (Basel) 2024; 16:3683. [PMID: 39518121 PMCID: PMC11545476 DOI: 10.3390/cancers16213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression. To gain mechanistic insight, we focused on Hif-1α due to the impact of integrin α6β4 on a hypoxia-associated signature. We found that nuclear localization of Hif-1α, but not Hif-2α, was substantially enhanced with integrin α6β4 signaling. Hif-1α knockdown by shRNA or chemical inhibition decreased PTPRZ1 expression, while chemical activation of Hif-1α increased it. Upstream of Hif-1α, integrin α6β4 upregulates UCHL1 to stabilize Hif-1α and ultimately regulate PTPRZ1. Inhibition of UCHL1 and PTPRZ1 dramatically decreases integrin α6β4-mediated cell migration and three-dimensional invasive growth. Finally, public breast cancer database analyses demonstrated that ITGB4 correlates with PTPRZ1 and that high expression of ITGB4, UCHL1, HIF1A, and PTPRZ1 associated with decreased overall survival, distant metastasis free survival, post progression survival, and relapse-free survival. In summary, these findings provide a novel function of integrin α6β4 in promoting tumor invasive phenotypes through UCHL1-Hif-1α-mediated regulation of PTPRZ1.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Parvanee A. Karimpour
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Elliott
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Liu S, Garcia-Marques FJ, Shen M, Bermudez A, Pitteri SJ, Stoyanova T. Ubiquitin C-terminal hydrolase L1 is a regulator of tumor growth and metastasis in double-negative prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:306-322. [PMID: 39584005 PMCID: PMC11578776 DOI: 10.62347/jnbr1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men worldwide. With heavy androgen deprivation therapies, prostate cancer may shift to androgen receptor negative and neuroendocrine negative subtype of castration resistant prostate cancer, defined as double-negative prostate cancer. Double-negative prostate cancer is associated with poor prognosis and disease mortality. The molecular mechanisms underlying the emergence of double-negative prostate cancer remain poorly understood. Here, we demonstrate that Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), is negatively correlated with androgen receptor levels in prostate cancer patients. UCH-L1 plays a functional role in tumorigenesis and metastasis in double-negative prostate cancer. Knock-down of UCH-L1 decreases double-negative prostate cancer colony formation in vitro and tumor growth in vivo. Moreover, decrease of UCH-L1 significantly delays cell migration in vitro and spontaneous metastasis and metastatic colonization in vivo. Proteomic analysis revealed that mTORC1 signaling, androgen response signaling and MYC targets are the top three decreased pathways upon UCH-L1 decrease. Further, treatment with LDN-57444, a UCH-L1 small molecule inhibitor, impairs double-negative prostate cancer cell colony formation, migration in vitro, and metastatic colonization in vivo. Our study reveals that UCH-L1 is an important regulator of double-negative prostate cancer tumor growth and progression, providing a promising therapeutic target for this subtype of metastatic prostate cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | | | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
- Department of Urology, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
13
|
Shi Y, Men X, Wang F, Li X, Zhang B. Role of long non-coding RNAs (lncRNAs) in gastric cancer metastasis: A comprehensive review. Pathol Res Pract 2024; 262:155484. [PMID: 39180802 DOI: 10.1016/j.prp.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
One of the greatest frequent types of malignancy is gastric cancer (GC). Metastasis, an essential feature of stomach cancer, results in a high rate of mortality and a poor prognosis. However, metastasis biological procedures are not well recognized. Long non-coding RNAs (lncRNAs) have a role in numerous gene regulation pathways via epigenetic modification as well as transcriptional and post-transcriptional control. LncRNAs have a role in a variety of disorders, such as cardiovascular disease, Alzheimer's, and cancer. LncRNAs are substantially related to GC incidence, progression, metastasis and drug resistance. Several research released information on the molecular processes of lncRNAs in GC pathogenesis. By interacting with a gene's promoter or enhancer region to influence gene expression, lncRNAs can operate as an oncogene or a tumor suppressor. This review includes the lncRNAs associated with metastasis of GC, which may give insights into the processes as well as potential clues for GC predicting and tracking.
Collapse
Affiliation(s)
- Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xiaoping Men
- Department of Clinical Laboratory, The First Affiliated Hospital to Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Fang Wang
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xueting Li
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Biao Zhang
- School of Health Management, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
14
|
Kim CY, Lee EH, Kwak SH, Lee SH, Kim EY, Park MK, Cha YJ, Chang YS. UCHL1 Overexpression Is Related to the Aggressive Phenotype of Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:494-504. [PMID: 39362830 PMCID: PMC11468449 DOI: 10.4046/trd.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ubiquitin C-terminal hydrolase L1 (UCHL1), which encodes thiol protease that hydrolyzes a peptide bond at the C-terminal glycine residue of ubiquitin, regulates cell differentiation, proliferation, transcriptional regulation, and numerous other biological processes and may be involved in lung cancer progression. UCHL1 is mainly expressed in the brain and plays a tumor-promoting role in a few cancer types; however, there are limited reports regarding its role in lung cancer. METHODS Single-cell RNA (scRNA) sequencing using 10X chromium v3 was performed on a paired normal-appearing and tumor tissue from surgical specimens of a patient who showed unusually rapid progression. To validate clinical implication of the identified biomarkers, immunohistochemical (IHC) analysis was performed on 48 non-small cell lung cancer (NSCLC) tissue specimens, and the correlation with clinical parameters was evaluated. RESULTS We identified 500 genes overexpressed in tumor tissue compared to those in normal tissue. Among them, UCHL1, brain expressed X-linked 3 (BEX3), and midkine (MDK), which are associated with tumor growth and progression, exhibited a 1.5-fold increase in expression compared to that in normal tissue. IHC analysis of NSCLC tissues showed that only UCHL1 was specifically overexpressed. Additionally, in 48 NSCLC specimens, UCHL1 was specifically upregulated in the cytoplasm and nuclear membrane of tumor cells. Multivariable logistic analysis identified several factors, including smoking, tumor size, and high-grade dysplasia, to be typically associated with UCHL1 overexpression. Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that UCHL1 overexpression is substantially associated with poor survival outcomes. Furthermore, a strong association was observed between UCHL1 expression and the clinicopathological features of patients with NSCLC. CONCLUSION UCHL1 overexpression was associated with smoking, tumor size, and high-grade dysplasia, which are typically associated with a poor prognosis and survival outcome. These findings suggest that UCHL1 may serve as an effective biomarker of NSCLC.
Collapse
Affiliation(s)
- Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hyun Kwak
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyoung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Lin L, Deng L, Bao Y. Identifying crucial lncRNAs and mRNAs in hypoxia-induced A549 lung cancer cells and investigating their underlying mechanisms via high-throughput sequencing. PLoS One 2024; 19:e0307954. [PMID: 39236027 PMCID: PMC11376552 DOI: 10.1371/journal.pone.0307954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/01/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Rapid proliferation and outgrowth of tumor cells frequently result in localized hypoxia, which has been implicated in the progression of lung cancer. The present study aimed to identify key long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in hypoxia-induced A549 lung cancer cells, and to investigate their potential underlying mechanisms of action. METHODS High-throughput sequencing was utilized to obtain the expression profiles of lncRNA and mRNA in both hypoxia-induced and normoxia A549 lung cancer cells. Subsequently, a bioinformatics analysis was conducted on the differentially expressed molecules, encompassing functional enrichment analysis, protein-protein interaction (PPI) network analysis, and competitive endogenous RNA (ceRNA) analysis. Finally, the alterations in the expression of key lncRNAs and mRNAs were validated using real-time quantitative PCR (qPCR). RESULTS In the study, 1155 mRNAs and 215 lncRNAs were identified as differentially expressed between the hypoxia group and the normoxia group. Functional enrichment analysis revealed that the differentially expressed mRNAs were significantly enriched in various pathways, including the p53 signaling pathway, DNA replication, and the cell cycle. Additionally, key lncRNA-miRNA-mRNA relationships, such as RP11-58O9.2-hsa-miR-6749-3p-XRCC2 and SNAP25-AS1-hsa-miR-6749-3p-TENM4, were identified. Notably, the qPCR assay demonstrated that the expression of SNAP25-AS1, RP11-58O9.2, TENM4, and XRCC2 was downregulated in the hypoxia group compared to the normoxia group. Conversely, the expression of LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A was upregulated. CONCLUSION Our findings suggest a potential involvement of SNAP25-AS1, RP11-58O9.2, TENM4, XRCC2, LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A in the development of hypoxia-induced lung cancer. These key lncRNAs and mRNAs exert their functions through diverse mechanisms, including the competitive endogenous RNA (ceRNA) pathway.
Collapse
Affiliation(s)
- Lin Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Lili Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yongxia Bao
- Department of Respiratory Medicine, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
16
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
17
|
Zheng F, Wang F, Wu T, Tang H, Li H, Cui X, Li C, Jiang J. Ubiquitin C-terminal hydrolase L1 activation in periodontal ligament cells mediates orthodontic tooth movement via the MAPK signaling pathway. Connect Tissue Res 2024; 65:421-432. [PMID: 39221694 DOI: 10.1080/03008207.2024.2395998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Periodontal ligament cells (PDLCs) play a significant role in orthodontic force induced bone remodeling. However, the molecular mechanisms by which PDLCs respond to mechanical stimuli and influence osteoclastic activities remain unclear. This study aims to investigate the role of UCHL1, a key deubiquitinating enzyme involved in protein degradation and cellular responses, in force-treated PDLCs during orthodontic tooth movement (OTM). MATERIALS AND METHODS In this study, we conducted in vivo and in vitro experiments using human PDLCs and a rat model of OTM. Mechanical stress was applied to PDLCs, and UCHL1 expression was analyzed through quantitative real-time polymerase chain reaction (qPCR), Western blot, and immunofluorescence staining. UCHL1 knockdown was achieved using siRNA, and its effects on osteoclast differentiation were assessed. The role of the MAPK/ERK pathway was investigated using the MEK-specific inhibitor U0126. An animal model of OTM was established, and the impact of UCHL1 inhibitor-LDN57444 on OTM and osteoclastic activity was evaluated through micro-CT analysis, histological staining, and immunohistochemistry. RESULTS Mechanical force induced UCHL1 expression in PDLCs during OTM. UCHL1 knockdown downregulated the RANKL/OPG ratio in PDLCs, affecting osteoclast differentiation. LDN57444 inhibited OTM and osteoclastic activity. UCHL1 activation correlated with ERK1/2 phosphorylation in force-treated PDLCs. CONCLUSIONS Mechanical force mediated UCHL1 activation in PDLCs promotes osteoclast differentiation via the ERK1/2 signaling pathway during OTM.
Collapse
Affiliation(s)
- Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
18
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
19
|
Iseki S, Ikeda H, Kobayashi S, Irie K, Harada H, Kakeya H. Teleocidin B-4, a PKC Activator, Upregulates Hypoxia-Inducible Factor 1 (HIF-1) Activity by Promoting the Accumulation of HIF-1α Protein via the PKCα/mTORC Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:1666-1671. [PMID: 38840407 DOI: 10.1021/acs.jnatprod.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.
Collapse
Affiliation(s)
- Shogo Iseki
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sayaka Kobayashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Collins A, Scott R, Wilson C, Abbate G, Ecclestone GB, Albanese A, Biddles D, White S, French J, Moir J, Alrawashdeh W, Wilson C, Pandanaboyana S, Hammond J, Thakkar R, Oakley F, Mann J, Mann DA, Kenneth NS. UCHL1-dependent control of hypoxia-inducible factor transcriptional activity during liver fibrosis. Biosci Rep 2024; 44:BSR20232147. [PMID: 38808772 PMCID: PMC11182734 DOI: 10.1042/bsr20232147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.
Collapse
Affiliation(s)
- Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Rebecca Scott
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Caroline L. Wilson
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Giuseppe Abbate
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, U.K
| | - Gabrielle B. Ecclestone
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| | - Adam G. Albanese
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| | - Demi Biddles
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Steven White
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Jeremy French
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - John Moir
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Wasfi Alrawashdeh
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Colin Wilson
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Sanjay Pandanaboyana
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - John S. Hammond
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Rohan Thakkar
- Department of HPB and Transplant Surgery, Freeman Hospital, Newcastle Upon Tyne, U.K
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, U.K
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Niall S. Kenneth
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology University of Liverpool, U.K
| |
Collapse
|
21
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
22
|
Wang A, Li Z, Zhang D, Chen C, Zhang H. Excessive ER-phagy mediated by FAM134B contributes to trophoblast cell mitochondrial dysfunction in preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1446-1459. [PMID: 38774969 PMCID: PMC11532218 DOI: 10.3724/abbs.2024065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 11/01/2024] Open
Abstract
Autophagy dysregulation and Ca 2+-induced mitochondrial dysfunction in trophoblast cells are proposed to contribute to preeclampsia (PE) development. FAM134B is identified as a receptor associated with endoplasmic reticulum autophagy (ER-phagy). In this study, the placentas of normal pregnant women and PE patients are collected and analyzed by immunohistochemistry, quantitative real-time PCR, and western blot analysis. The effects of ER-phagy are investigated in HTR8/SVneo cells. Significantly increased levels of FAM134B, inositol-1,4,5-triphosphate receptor type 1 (IP3R), calnexin, cleaved caspase 3 and cytochrome C are detected in the PE placenta and sodium nitroprusside (SNP)-treated HTR-8/SVneo cells. Overexpression of FAM134B in HTR-8/SVneo cells results in increased apoptosis, impaired invasion capacity, and diminished mitochondrial function, while an autophagy inhibitor improves mitochondrial performance. Excessive ER-phagy is also associated with an increased concentration of gamma linolenic acid. Our findings suggest that FAM134B contributes to trophoblast apoptosis by mediating ER-mitochondria Ca 2+ transfer through mitochondria-associated endoplasmic reticulum membranes (MAMs) and subsequent mitochondrial function, further enhancing our understanding of PE etiology.
Collapse
Affiliation(s)
- Andi Wang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseasesthe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zhuo Li
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseasesthe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Dan Zhang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseasesthe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Chang Chen
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Hua Zhang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
23
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
25
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Imhoff RD, Patel R, Safdar MH, Jones HBL, Pinto-Fernandez A, Vendrell I, Chen H, Muli CS, Krabill AD, Kessler BM, Wendt MK, Das C, Flaherty DP. Covalent Fragment Screening and Optimization Identifies the Chloroacetohydrazide Scaffold as Inhibitors for Ubiquitin C-terminal Hydrolase L1. J Med Chem 2024; 67:4496-4524. [PMID: 38488146 DOI: 10.1021/acs.jmedchem.3c01661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.
Collapse
Affiliation(s)
- Ryan D Imhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
| | - Rishi Patel
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad Hassan Safdar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hannah B L Jones
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Hao Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christine S Muli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, U.K
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Michael K Wendt
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Schmidt M, Grethe C, Recknagel S, Kipka GM, Klink N, Gersch M. N-Cyanopiperazines as Specific Covalent Inhibitors of the Deubiquitinating Enzyme UCHL1. Angew Chem Int Ed Engl 2024; 63:e202318849. [PMID: 38239128 DOI: 10.1002/anie.202318849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells. Notably, transitioning from 5-membered pyrrolidines to 6-membered heterocycles eliminated PARK7 binding and introduced context-dependent reversibility of the isothiourea linkage to the catalytic cysteine of UCHL1. Compound potency and specificity were analysed by a range of biochemical assays and with a crystal structure of a cyanopiperazine in covalent complex with UCHL1. The structure revealed a compound-induced conformational restriction of the cross-over loop, which underlies the observed inhibitory potencies. Through the rationalization of specificities of different cyanamides, we introduce a framework for the investigation of protein reactivity of bioactive nitriles of this compound class. Our results represent an encouraging case study for the refining of electrophilic compounds into chemical probes, emphasizing the potential to engineer specificity through subtle chemical modifications around the warhead.
Collapse
Affiliation(s)
- Mirko Schmidt
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Christian Grethe
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| |
Collapse
|
28
|
Li J, Liang Y, Zhou S, Chen J, Wu C. UCHL1 contributes to insensitivity to endocrine therapy in triple-negative breast cancer by deubiquitinating and stabilizing KLF5. Breast Cancer Res 2024; 26:44. [PMID: 38468288 DOI: 10.1186/s13058-024-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.
Collapse
Affiliation(s)
- Juan Li
- Department of Breast Surgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Liang
- Department of Health Management & Institute of Health Management, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jie Chen
- Department of Breast Surgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chihua Wu
- Department of Breast Surgery, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
29
|
Shirai Y, Suwa T, Kobayashi M, Koyasu S, Harada H. DDX5 enhances HIF-1 activity by promoting the interaction of HIF-1α with HIF-1β and recruiting the resulting heterodimer to its target gene loci. Biol Cell 2024; 116:e2300077. [PMID: 38031929 DOI: 10.1111/boc.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Cancer cells acquire malignant characteristics and therapy resistance by employing the hypoxia-inducible factor 1 (HIF-1)-dependent adaptive response to hypoxic microenvironment in solid tumors. Since the underlying molecular mechanisms remain unclear, difficulties are associated with establishing effective therapeutic strategies. RESULTS We herein identified DEAD-box helicase 5 (DDX5) as a novel activator of HIF-1 and found that it enhanced the heterodimer formation of HIF-1α and HIF-1β and facilitated the recruitment of the resulting HIF-1 to its recognition sequence, hypoxia-response element (HRE), leading to the expression of a subset of cancer-related genes under hypoxia. CONCLUSIONS This study reveals that the regulation of HIF-1 recruitment to HRE is an important regulatory step in the control of HIF-1 activity. SIGNIFICANCE The present study provides novel insights for the development of strategies to inhibit the HIF-1-dependent expression of cancer-related genes.
Collapse
Affiliation(s)
- Yukari Shirai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Su L, Gao K, Tian Y, Xiao X, Lu C, Xu J, Yan X. Mitochondrial Esterase Activity Measured at the Single Organelle Level by Nano-flow Cytometry. Anal Chem 2024; 96:810-820. [PMID: 38173421 DOI: 10.1021/acs.analchem.3c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Monitoring mitochondrial esterase activity is crucial not only for investigating mitochondrial metabolism but also for assessing the effectiveness of mitochondrial-targeting prodrugs. However, accurately detecting esterase activity within mitochondria poses challenges due to its ubiquitous presence in cells and the uncontrolled localization of fluorogenic probes. To overcome this hurdle and reveal variations among different mitochondria, we isolated mitochondria and preserved their activity and functionality in a buffered environment. Subsequently, we utilized a laboratory-built nano-flow cytometer in conjunction with an esterase-responsive calcein-AM fluorescent probe to measure the esterase activity of individual mitochondria. This approach enabled us to investigate the influence of temperature, pH, metal ions, and various compounds on the mitochondrial esterase activity without any interference from other cellular constituents. Interestingly, we observed a decline in the mitochondrial esterase activity following the administration of mitochondrial respiratory chain inhibitors. Furthermore, we found that mitochondrial esterase activity was notably higher in the presence of a high concentration of ATP compared to that of ADP and AMP. Additionally, we noticed a correlation between elevated levels of complex IV and increased mitochondrial esterase activity. These findings suggest a functional connection between the mitochondrial respiratory chain and mitochondrial esterase activity. Moreover, we detected an upsurge in mitochondrial esterase activity during the early stages of apoptosis, while cellular esterase activity decreased. This highlights the significance of analyzing enzyme activity within specific organelle subregions. In summary, the integration of a nano-flow cytometer and fluorescent dyes introduces a novel method for quantifying mitochondrial enzyme activity with the potential to uncover the alterations and unique functions of other mitochondrial enzymes.
Collapse
Affiliation(s)
- Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Kaimin Gao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xu Xiao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Cheng Lu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jingyi Xu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
31
|
Wang R, Cai X, Li X, Li J, Liu X, Wang J, Xiao W. USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling. J Biol Chem 2024; 300:105532. [PMID: 38072059 PMCID: PMC10805703 DOI: 10.1016/j.jbc.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 01/02/2024] Open
Abstract
HIF1α is one of the master regulators of the hypoxia signaling pathway and its activation is regulated by multiple post-translational modifications (PTMs). Deubiquitination mediated by deubiquitylating enzymes (DUBs) is an essential PTM that mainly modulates the stability of target proteins. USP38 belongs to the ubiquitin-specific proteases (USPs). However, whether USP38 can affect hypoxia signaling is still unknown. In this study, we used quantitative real-time PCR assays to identify USPs that can influence hypoxia-responsive gene expression. We found that overexpression of USP38 increased hypoxia-responsive gene expression, but knockout of USP38 suppressed hypoxia-responsive gene expression under hypoxia. Mechanistically, USP38 interacts with HIF1α to deubiquitinate K11-linked polyubiquitination of HIF1α at Lys769, resulting in stabilization and subsequent activation of HIF1α. In addition, we show that USP38 attenuates cellular ROS and suppresses cell apoptosis under hypoxia. Thus, we reveal a novel role for USP38 in the regulation of hypoxia signaling.
Collapse
Affiliation(s)
- Rui Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
32
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
33
|
Yang D, Zhang M, Chen W, Lu Q, Wan S, Du X, Li Y, Li B, Wu W, Wang C, Li N, Peng S, Tang H, Hua J. UCHL1 maintains microenvironmental homeostasis in goat germline stem cells. FASEB J 2023; 37:e23306. [PMID: 37934018 DOI: 10.1096/fj.202301674rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenbo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shicheng Wan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Xiaomin Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, College of Life Sciences, Yulin University, Yulin, China
| | - Yunxiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Wenping Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Congliang Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Epshtein Y, Mathew B, Chen W, Jacobson JR. UCHL1 Regulates Radiation Lung Injury via Sphingosine Kinase-1. Cells 2023; 12:2405. [PMID: 37830619 PMCID: PMC10572187 DOI: 10.3390/cells12192405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
GADD45a is a gene we previously reported as a mediator of responses to acute lung injury. GADD45a-/- mice express decreased Akt and increased Akt ubiquitination due to the reduced expression of UCHL1 (ubiquitin c-terminal hydrolase L1), a deubiquitinating enzyme, while GADD45a-/- mice have increased their susceptibility to radiation-induced lung injury (RILI). Separately, we have reported a role for sphingolipids in RILI, evidenced by the increased RILI susceptibility of SphK1-/- (sphingosine kinase 1) mice. A mechanistic link between UCHL1 and sphingolipid signaling in RILI is suggested by the known polyubiquitination of SphK1. Thus, we hypothesized that the regulation of SphK1 ubiquitination by UCHL1 mediates RILI. Initially, human lung endothelial cells (EC) subjected to radiation demonstrated a significant upregulation of UCHL1 and SphK1. The ubiquitination of EC SphK1 after radiation was confirmed via the immunoprecipitation of SphK1 and Western blotting for ubiquitin. Further, EC transfected with siRNA specifically for UCHL1 or pretreated with LDN-5744, as a UCHL1 inhibitor, prior to radiation were noted to have decreased ubiquitinated SphK1 in both conditions. Further, the inhibition of UCHL1 attenuated sphingolipid-mediated EC barrier enhancement was measured by transendothelial electrical resistance. Finally, LDN pretreatment significantly augmented murine RILI severity. Our data support the fact that the regulation of SphK1 expression after radiation is mediated by UCHL1. The modulation of UCHL1 affecting sphingolipid signaling may represent a novel RILI therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.E.); (W.C.)
| |
Collapse
|
35
|
Yan Q, Shi S, Ge Y, Wan S, Li M, Li M. UCHL1 alleviates apoptosis in chondrocytes via upregulation of HIF‑1α‑mediated mitophagy. Int J Mol Med 2023; 52:99. [PMID: 37681473 PMCID: PMC10555477 DOI: 10.3892/ijmm.2023.5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Stem cell‑based tissue engineering has shown significant potential for rapid restoration of injured cartilage tissues. Stem cells frequently undergo apoptosis because of the prevalence of oxidative stress and inflammation in the microenvironment at the sites of injury. Our previous study demonstrated that stabilization of hypoxia‑inducible factor 1α (HIF‑1α) is key to resisting apoptosis in chondrocytes. Recently, it was reported that Ubiquitin C‑terminal hydrolase L1 (UCHL1) can stabilize HIF‑1α by abrogating the ubiquitination process. However, the effect of UCHL1 on apoptosis in chondrocytes remains unclear. Herein, adipose‑derived stem cells were differentiated into chondrocytes. Next, the CRISPR activation (CRISPRa) system, LDN‑57444 (LDM; a specific inhibitor for UCHL1), KC7F2 (a specific inhibitor for HIF‑1α), and 3‑methyladenine (a specific inhibitor for mitophagy) were used to activate or block UCHL1, HIF‑1α, and mitophagy. Mitophagy, apoptosis, and mitochondrial function in chondrocytes were detected using immunofluorescence, TUNEL staining, and flow cytometry. Moreover, the oxygen consumption rate of chondrocytes was measured using the Seahorse XF 96 Extracellular Flux Analyzer. UCHL1 expression was increased in hypoxia, which in turn regulated mitophagy and apoptosis in the chondrocytes. Further studies revealed that UCHL1 mediated hypoxia‑regulated mitophagy in the chondrocytes. The CRISPRa module was utilized to activate UCHL1 effectively for 7 days; endogenous activation of UCHL1 accelerated mitophagy, inhibited apoptosis, and maintained mitochondrial function in the chondrocytes, which was mediated by HIF‑1α. Taken together, UCHL1 could block apoptosis in chondrocytes via upregulation of HIF‑1α-mediated mitophagy and maintain mitochondrial function. These results indicate the potential of UCHL1 activation using the CRISPRa system for the regeneration of cartilage tissue.
Collapse
Affiliation(s)
- Qiqian Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shanwei Shi
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Yang Ge
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Shuangquan Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Mingfei Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| | - Maoquan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280
- Guangdong Academy of Stomatology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
36
|
Han D, Wang L, Jiang S, Yang Q. The ubiquitin-proteasome system in breast cancer. Trends Mol Med 2023:S1471-4914(23)00096-5. [PMID: 37328395 DOI: 10.1016/j.molmed.2023.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
37
|
Feng Z, Tao S, Huang Z, Zheng B, Kong X, Xiang Y, Zhang Q, Song H, Xu Z, Wei X, Zhao F, Chen J. The deubiquitinase UCHL1 negatively controls osteoclastogenesis by regulating TAZ/NFATC1 signalling. Int J Biol Sci 2023; 19:2319-2332. [PMID: 37215988 PMCID: PMC10197889 DOI: 10.7150/ijbs.82152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The ubiquitin‒proteasome system (UPS) plays a key role in maintaining protein homeostasis and bone remodelling. However, the role of deubiquitinating enzymes (DUBs) in bone resorption is still not well defined. Here, we identified the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) as a negative regulator of osteoclastogenesis by using the GEO database, proteomic analysis, and RNAi. Osteoclast-specific UCHL1 conditional knockout mice exhibited a severe osteoporosis phenotype in an ovariectomized model. Mechanistically, UCHL1 deubiquitinated and stabilized the transcriptional coactivator with PDZ-binding motif (TAZ) at the K46 residue, thereby inhibiting osteoclastogenesis. The TAZ protein underwent K48-linked polyubiquitination, which was degraded by UCHL1. As a substrate of UCHL1, TAZ regulates NFATC1 through a nontranscriptional coactivator function by competing with calcineurin A (CNA) for binding to NFATC1, which inhibits NFATC1 dephosphorylation and nuclear transport to impede osteoclastogenesis. Moreover, overexpression of UCHL1 locally alleviated acute and chronic bone loss. These findings suggest that activating UCHL1 may serve as a novel therapeutic approach targeting bone loss in various bone pathological states.
Collapse
Affiliation(s)
- Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhaobo Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yufeng Xiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qibin Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haixin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhikun Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Fengdong Zhao
- ✉ Corresponding authors: Jian Chen () and Fengdong Zhao ()
| | - Jian Chen
- ✉ Corresponding authors: Jian Chen () and Fengdong Zhao ()
| |
Collapse
|
38
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
39
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
40
|
Burkart S, Weusthof C, Khorani K, Steen S, Stögbauer F, Unger K, Hess J, Zitzelsberger H, Belka C, Kurth I, Hess J. A Novel Subgroup of UCHL1-Related Cancers Is Associated with Genomic Instability and Sensitivity to DNA-Damaging Treatment. Cancers (Basel) 2023; 15:cancers15061655. [PMID: 36980544 PMCID: PMC10099714 DOI: 10.3390/cancers15061655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Identification of molecularly-defined cancer subgroups and targeting tumor-specific vulnerabilities have a strong potential to improve treatment response and patient outcomes but remain an unmet challenge of high clinical relevance, especially in head and neck squamous cell carcinoma (HNSC). EXPERIMENTAL DESIGN We established a UCHL1-related gene set to identify and molecularly characterize a UCHL1-related subgroup within TCGA-HNSC by integrative analysis of multi-omics data. An extreme gradient boosting model was trained on TCGA-HNSC based on GSVA scores for gene sets of the MSigDB to robustly predict UCHL1-related cancers in other solid tumors and cancer cell lines derived thereof. Potential vulnerabilities of UCHL1-related cancer cells were elucidated by an in-silico drug screening approach. RESULTS We established a 497-gene set, which stratified the TCGA-HNSC cohort into distinct subgroups with a UCHL1-related or other phenotype. UCHL1-related HNSC were characterized by higher frequencies of genomic alterations, which was also evident for UCHL1-related cancers of other solid tumors predicted by the classification model. These data indicated an impaired maintenance of genomic integrity and vulnerability for DNA-damaging treatment, which was supported by a favorable prognosis of UCHL1-related tumors after radiotherapy, and a higher sensitivity of UCHL1-related cancer cells to irradiation or DNA-damaging compounds (e.g., Oxaliplatin). CONCLUSION Our study established UCHL1-related cancers as a novel subgroup across most solid tumor entities with a unique molecular phenotype and DNA-damaging treatment as a specific vulnerability, which requires further proof-of-concept in pre-clinical models and future clinical trials.
Collapse
Affiliation(s)
- Sebastian Burkart
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christopher Weusthof
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Karam Khorani
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sonja Steen
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Claus Belka
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
41
|
The NRSF/REST transcription factor in hallmarks of cancer: From molecular mechanisms to clinical relevance. Biochimie 2023; 206:116-134. [PMID: 36283507 DOI: 10.1016/j.biochi.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
The RE-1 silencing transcription factor (REST), or neuron restrictive silencing factor (NRSF), was first identified as a repressor of neuronal genes in non-neuronal tissue. Interestingly, this transcription factor may act as a tumor suppressor or an oncogenic role in developing neuroendocrine and other tumors in patients. The hallmarks of cancer include six biological processes, including proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, inducing angiogenesis, and activating invasion and metastasis. In addition to two emerging hallmarks, the reprogramming of energy metabolism and evasion of the immune response are all implicated in the development of human tumors. It is essential to know the role of these processes as they will affect the outcome of alternatives for cancer treatment. Various studies in this review demonstrate that NRSF/REST affects the different hallmarks of cancer that could position NRSF/REST as an essential target in the therapy and diagnosis of certain types of cancer.
Collapse
|
42
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
43
|
Yang D, Lu Q, Peng S, Hua J. Ubiquitin C-terminal hydrolase L1 (UCHL1), a double-edged sword in mammalian oocyte maturation and spermatogenesis. Cell Prolif 2023; 56:e13347. [PMID: 36218038 PMCID: PMC9890544 DOI: 10.1111/cpr.13347] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent studies have shown that ubiquitin-mediated cell apoptosis can modulate protein interaction and involve in the progress of oocyte maturation and spermatogenesis. As one of the key regulators involved in ubiquitin signal, ubiquitin C-terminal hydrolase L1 (UCHL1) is considered a molecular marker associated with spermatogonia stem cells. However, the function of UCHL1 was wildly reported to regulate various bioecological processes, such as Parkinson's disease, lung cancer, breast cancer and colon cancer, how UCHL1 affects the mammalian reproductive system remains an open question. METHODS We identified papers through electronic searches of PubMed database from inception to July 2022. RESULTS Here, we summarize the important function of UCHL1 in controlling mammalian oocyte development, regulating spermatogenesis and inhibiting polyspermy, and we posit the balance of UCHL1 was essential to maintaining reproductive cellular and tissue homeostasis. CONCLUSION This study considers the 'double-edged sword' role of UCHL1 during gametogenesis and presents new insights into UCHL1 in germ cells.
Collapse
Affiliation(s)
- Donghui Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Collaborative Innovation Center of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
44
|
Li C, Edeni D, Platkin S, Liu R, Li J, Hossain M, Rahman M, Islam H, Phillips JL, Xu D. Effect of Gene 33/Mig6/ERRFI1 on hexavalent chromium-induced transformation of human bronchial epithelial cells depends on the length of exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:227-247. [PMID: 36715065 DOI: 10.1080/26896583.2022.2147358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) compounds are environmental and occupational lung carcinogens. The present study followed the chronic effect of Cr(VI) on the neoplastic transformation of BEAS-2B lung bronchial epithelial cells with or without deletion of Gene 33 (Mig6, EFFRI1), a multifunctional adaptor protein. We find that Gene 33-deleted cells exhibit increased anchorage-independent growth compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure. Gene 33-deleted cells show a higher level of cell proliferation and are more resistant to acute Cr(VI) toxicity compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure, despite that 24-week-transformed cells have increased resistance to acute Cr(VI) toxicity. However, Gene 33-deleted cells show increased migration after transformed by both 8-week and 24-week Cr(VI) exposures. Furthermore, only cells transformed by 24 weeks of Cr(VI) exposure can form subcutaneous tumors in nude mice. Although no significant difference in the size of tumors formed by the two cell types, there is a marked difference in the histological manifestation and more MMP3 expression in tumors from Gene 33-deleted cells. Our results demonstrate progressive neoplastic transformation of BEAS-2B cells and the adaptation of these cells to Gene 33 deletion during chronic exposure to Cr(VI).
Collapse
Affiliation(s)
- Cen Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dina Edeni
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Sarah Platkin
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Raymond Liu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Jiangwei Li
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Maheen Hossain
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mozibur Rahman
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Humayun Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John L Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
45
|
Bononi A, Wang Q, Zolondick AA, Bai F, Steele-Tanji M, Suarez JS, Pastorino S, Sipes A, Signorato V, Ferro A, Novelli F, Kim JH, Minaai M, Takinishi Y, Pellegrini L, Napolitano A, Xu R, Farrar C, Goparaju C, Bassi C, Negrini M, Pagano I, Sakamoto G, Gaudino G, Pass HI, Onuchic JN, Yang H, Carbone M. BAP1 is a novel regulator of HIF-1α. Proc Natl Acad Sci U S A 2023; 120:e2217840120. [PMID: 36656861 PMCID: PMC9942908 DOI: 10.1073/pnas.2217840120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1β forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.
Collapse
Affiliation(s)
- Angela Bononi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Qian Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Alicia A. Zolondick
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI96822
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Mika Steele-Tanji
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Joelle S. Suarez
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Sandra Pastorino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Abigail Sipes
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | | | - Angelica Ferro
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Jin-Hee Kim
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Michael Minaai
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI96822
| | - Yasutaka Takinishi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Laura Pellegrini
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Andrea Napolitano
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Ronghui Xu
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Christine Farrar
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Chandra Goparaju
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Cristian Bassi
- Department of Translational Medicine LTTA Centre University of Ferrara, Ferrara44121, Italy
| | - Massimo Negrini
- Department of Translational Medicine LTTA Centre University of Ferrara, Ferrara44121, Italy
| | - Ian Pagano
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Greg Sakamoto
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Giovanni Gaudino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University, New York, NY10016
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI96813
| |
Collapse
|
46
|
Pivotal Role of Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) in Uterine Leiomyoma. Biomolecules 2023; 13:biom13020193. [PMID: 36830563 PMCID: PMC9953523 DOI: 10.3390/biom13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Uterine leiomyomas are smooth-muscle tumors originating in the myometrium and are the most common pelvic tumors in women of reproductive age. Symptomatic tumors may result in abnormal uterine bleeding, bladder dysfunction, pelvic discomfort, and reproductive issues, such as infertility and miscarriage. There are currently few non-invasive treatments for leiomyoma, but there are no practical early intervention or preventive methods. In this study, human uterine leiomyoma and myometrial tissues were used to detect the protein and mRNA expression levels of UCHL1. To explore the effects of UCHL1 knockdown and inhibition in leiomyoma and myometrial cells, we determined the mRNA expressions of COL1A1 and COL3A1. Collagen gel contraction and wound-healing assays were performed on myometrial and leiomyoma cells. We found that UCHL1 expression was considerably higher in uterine leiomyomas than in the myometrium. COL1A1 and COL3A1 expression levels were downregulated after inhibition of UCHL1 in human leiomyoma cells. Furthermore, the elimination of UCHL1 significantly decreased the migration and contractility of leiomyoma cells. In conclusion, these results indicate that UCHL1 is involved in the growth of leiomyoma in humans. For the treatment of uterine leiomyoma, targeting UCHL1 activity may be a unique and possible therapeutic strategy.
Collapse
|
47
|
Koyasu S, Horita S, Saito K, Kobayashi M, Ishikita H, Chow CCT, Kambe G, Nishikawa S, Menju T, Morinibu A, Okochi Y, Tabuchi Y, Onodera Y, Takeda N, Date H, Semenza GL, Hammond EM, Harada H. ZBTB2 links p53 deficiency to HIF-1-mediated hypoxia signaling to promote cancer aggressiveness. EMBO Rep 2023; 24:e54042. [PMID: 36341521 PMCID: PMC9827547 DOI: 10.15252/embr.202154042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant activation of the hypoxia-inducible transcription factor HIF-1 and dysfunction of the tumor suppressor p53 have been reported to induce malignant phenotypes and therapy resistance of cancers. However, their mechanistic and functional relationship remains largely unknown. Here, we reveal a mechanism by which p53 deficiency triggers the activation of HIF-1-dependent hypoxia signaling and identify zinc finger and BTB domain-containing protein 2 (ZBTB2) as an important mediator. ZBTB2 forms homodimers via its N-terminus region and increases the transactivation activity of HIF-1 only when functional p53 is absent. The ZBTB2 homodimer facilitates invasion, distant metastasis, and growth of p53-deficient, but not p53-proficient, cancers. The intratumoral expression levels of ZBTB2 are associated with poor prognosis in lung cancer patients. ZBTB2 N-terminus-mimetic polypeptides competitively inhibit ZBTB2 homodimerization and significantly suppress the ZBTB2-HIF-1 axis, leading to antitumor effects. Our data reveal an important link between aberrant activation of hypoxia signaling and loss of a tumor suppressor and provide a rationale for targeting a key mediator, ZBTB2, to suppress cancer aggressiveness.
Collapse
Affiliation(s)
- Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological MedicineFukushima Medical UniversityFukushimaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Christalle CT Chow
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Yasushi Okochi
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Faculty of MedicineKyoto UniversityKyotoJapan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research CenterUniversity of ToyamaToyamaJapan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of MedicineHokkaido UniversitySapporoJapan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Gregg L Semenza
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ester M Hammond
- MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
48
|
Le TT, Oudin MJ. Understanding and modeling nerve-cancer interactions. Dis Model Mech 2023; 16:dmm049729. [PMID: 36621886 PMCID: PMC9844229 DOI: 10.1242/dmm.049729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The peripheral nervous system plays an important role in cancer progression. Studies in multiple cancer types have shown that higher intratumoral nerve density is associated with poor outcomes. Peripheral nerves have been shown to directly regulate tumor cell properties, such as growth and metastasis, as well as affect the local environment by modulating angiogenesis and the immune system. In this Review, we discuss the identity of nerves in organs in the periphery where solid tumors grow, the known mechanisms by which nerve density increases in tumors, and the effects these nerves have on cancer progression. We also discuss the strengths and weaknesses of current in vitro and in vivo models used to study nerve-cancer interactions. Increased understanding of the mechanisms by which nerves impact tumor progression and the development of new approaches to study nerve-cancer interactions will facilitate the discovery of novel treatment strategies to treat cancer by targeting nerves.
Collapse
Affiliation(s)
- Thanh T. Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
49
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
50
|
Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14225493. [PMID: 36428585 PMCID: PMC9688902 DOI: 10.3390/cancers14225493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group (p = 9.268 × 10-9) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256-1) and NSCLC (AUC: 0.721; 95% CI: 0.6384-0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction.
Collapse
|