1
|
Yau R, Pavloudi C, Zeng Y, Saw J, Eleftherianos I. Infection with the entomopathogenic nematodes Steinernema alters the Drosophila melanogaster larval microbiome. PLoS One 2025; 20:e0323657. [PMID: 40378358 DOI: 10.1371/journal.pone.0323657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
The fruit fly Drosophila melanogaster is a vital model for studying the microbiome due to the availability of genetic resources and procedures. To understand better the importance of microbial composition in shaping immune modulation, we can investigate the role of the microbiota through parasitic infection. For this, we use entomopathogenic nematodes (EPN) of the genus Steinernema which exhibit remarkable ability to efficiently infect a diverse array of insect species, facilitated by the mutualistic bacteria Xenorhabdus found within their gut. To examine the microbiome changes in D. melanogaster larvae in response to Steinernema nematode infection, D. melanogaster late second to early third instar larvae were exposed separately to S. carpocapsae and S. hermaphroditum infective juveniles. We have found that S. carpocapsae infective juveniles are more pathogenic to D. melanogaster larvae compared to the closely related S. hermaphroditum. Our microbiome analysis also indicates substantial changes in the size and composition of the D. melanogaster larval microbiome during infection with either nematode species compared to the uninfected controls. Our results serve as a foundation for future studies to elucidate the entomopathogenic-specific effector molecules that alter the D. melanogaster microbiome and understand the role of the microbiome in regulating insect anti-nematode immune processes.
Collapse
Affiliation(s)
- Raymond Yau
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Christina Pavloudi
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
- European Marine Biological Resource Centre-European Research Infrastructure Consortium (EMBRC-ERIC), Paris, France
| | - Yingying Zeng
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Jimmy Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
2
|
Powell JE, Motta EV, Liberti J, Sotelo K, Engel P, Moran NA. Lack of significant effect of gut microbiota on weight gain in newly emerged worker honeybee. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242151. [PMID: 40144287 PMCID: PMC11937919 DOI: 10.1098/rsos.242151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025]
Abstract
The western honeybee, Apis mellifera, harbours a simple and distinct microbiota that has been linked to various positive outcomes for the host. Among these cited benefits is improved weight gain for bees that have been inoculated with their native microbes. This result has been challenged by recent studies which investigated the impact of the gut microbiota on behavioural maturation and associated physiological changes and revealed no effect of the gut microbiota on weight gain. Therefore, we re-examined the role of the microbiota in weight gain by comparing microbiota-deprived bees with those inoculated with gut homogenate or defined communities composed of isolates representing the major bacterial taxa inhabiting the bee gut. We observed no differences in weight gain of adult bees or of their gut tissues across these groups. Further analysis based on nurse/forager cuticular hydrocarbon status and bacterial composition also revealed no significant changes. These results suggest the need for more nuanced investigations aimed at exploring factors such as the conditions in the hive of origin, including larval nutrition.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Erick V.S. Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Kathleen Sotelo
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Mehra L, Bhowmik S, Makharia GK, Das P. Intestinal stem cell niche: An upcoming area of immense importance in gastrointestinal disorders. Indian J Gastroenterol 2025; 44:8-23. [PMID: 39514159 DOI: 10.1007/s12664-024-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
The intestinal stem cell (ISC) niche is vital for maintaining the integrity and function of the intestinal epithelium. ISC populations, characterized by their high proliferation and multipotency, reside within a specialized microenvironment at the base of crypts. Crypt base columnar (CBC) cells at the deepest part of crypts serve as replicating ISCs, while position 4 label-retaining cells (LRCs) located higher up in the crypts are also important for ISC maintenance during experiments. The interplay between CBCs, position 4 LRCs, transient amplifying (TA) cells and other niche components, including the pericrypt stromal cells, ensures a continuous supply of differentiated epithelial cells. Recent advancements in ISC biomarker studies have provided valuable insights into their molecular signatures, regulatory pathways and roles in the pathogenesis of intestinal disorders. Understanding the ISC niche has significant therapeutic implications, as manipulating ISC behaviors and regenerating damaged or diseased intestinal tissue show promise for novel therapeutic approaches. ISC organoids have also provided a platform for studying intestinal diseases and testing personalized therapies. This comprehensive review covers the anatomical composition, physiological regulation, ISC biomarker studies, contribution to intestinal disorder pathogenesis and potential therapeutic implications of the ISC niche.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Subham Bhowmik
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutritions, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| |
Collapse
|
4
|
Gale JT, Kreutz R, Gottfredson Morgan SJ, Davis EK, Hough C, Cisneros Cancino WA, Burnside B, Barney R, Hunsaker R, Hoyt AT, Cluff A, Nosker M, Sefcik C, Beales E, Beltz J, Frandsen PB, Schmidt P, Chaston JM. Environment and diet shape the geography-specific Drosophila melanogaster microbiota composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617096. [PMID: 39416031 PMCID: PMC11482821 DOI: 10.1101/2024.10.07.617096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Geographic and environmental variation in the animal microbiota can be directly linked to the evolution and wild fitness of their hosts but often appears to be disordered. Here, we sought to better understand patterns that underlie wild variation in the microbiota composition of Drosophila melanogaster . First, environmental temperature predicted geographic variation in fly microbial communities better than latitude did. The microbiota also differed between wild flies and their diets, supporting previous conclusions that the fly microbiota is not merely a reflection of diet. Flies feeding on different diets varied significantly in their microbiota composition, and flies sampled from individual apples were exceptionally depauperate for the Lactic Acid Bacteria (LAB), a major bacterial group in wild and laboratory flies. However, flies bore significantly more LAB when sampled from other fruits or compost piles. Follow-up analyses revealed that LAB abundance in the flies uniquely responds to fruit decomposition, whereas other microbiota members better indicate temporal seasonal progression. Finally, we show that diet-dependent variation in the fly microbiota is associated with phenotypic differentiation of fly lines collected in a single orchard. These last findings link covariation between the flies' dietary history, microbiota composition, and genetic variation across relatively small (single-orchard) landscapes, reinforcing the critical role that environment-dependent variation in microbiota composition can play in local adaptation and genomic differentiation of a model animal host. SIGNIFICANCE STATEMENT The microbial communities of animals influence their hosts' evolution and wild fitness, but it is hard to predict and explain how the microbiota varies in wild animals. Here, we describe that the microbiota composition of wild Drosophila melanogaster can be ordered by temperature, humidity, geographic distance, diet decomposition, and diet type. We show how these determinants of microbiota variation can help explain lactic acid bacteria (LAB) abundance in the flies, including the rarity of LAB in some previous studies. Finally, we show that wild fly phenotypes segregate with the flies' diet and microbiota composition, illuminating links between the microbiota and host evolution. Together, these findings help explain how variation in microbiota compositions can shape an animal's life history.
Collapse
|
5
|
Jiménez-Padilla Y, Chan Y, Aletta MS, Lachance MA, Simon AF. The effect of microbiome on social spacing in Drosophila melanogaster depends on genetic background and sex. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001270. [PMID: 39381640 PMCID: PMC11461029 DOI: 10.17912/micropub.biology.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiome modulates many essential functions including metabolism, immunity, and behaviour. Specifically, within behaviour, social behaviours such as sociability, aggregation, mating preference, avoidance, oviposition, and aggression are known to be regulated in part by this host-microbiome relationship. Here, we show the microbiome's role in the determination of social spacing in a sex- and genotype-specific manner. Future work can be done on characterizing the microbiome in each of these fly strains to identify the species of microbes present as well as their abundance.
Collapse
Affiliation(s)
| | - Yen Chan
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | - M. Sol Aletta
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | | | - Anne F Simon
- Biology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis 2024; 18:e0012458. [PMID: 39236074 PMCID: PMC11407667 DOI: 10.1371/journal.pntd.0012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Phlebotomine sand flies are vectors of the protozoan parasite Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the impact of host species and environment on the gut microbiome. To address this issue, a comparative analysis of the microbiota of sand fly vector populations of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in Tunisia was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize and compare the overall bacterial and fungal composition of field-collected sand flies: Phlebotomus papatasi, Ph. perniciosus, Ph. riouxi, and Ph. sergenti. Thirty-eight bacterial genera belonging to five phyla were identified in 117 female specimens. The similarities and differences between the microbiome data from different samples collected from three collections were determined using principal coordinate analysis (PCoA). Substantial variations in the bacterial composition were found between geographically distinct populations of the same sand fly species, but not between different species at the same location, suggesting that the microbiota content was structured according to environmental factors rather than host species. These findings suggest that host phylogeny may play a minor role in determining the insect gut microbiota, and its potential to affect the transmission of the Leishmania parasite appear to be very low. These results highlight the need for further studies to decode sand fly Leishmania-microbiota interactions, as even the same bacterial species, such as Enterococcus faecalis, can exert completely opposite effects when confronted with different pathogens within various host insects and vice versa.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Tabbabi A, Mizushima D, Yamamoto DS, Kato H. Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasit Vectors 2023; 16:310. [PMID: 37653518 PMCID: PMC10472604 DOI: 10.1186/s13071-023-05939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Blood-sucking phlebotomine sand flies are vectors of the protozoan parasites Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the factors that modify the gut microbiota composition of sand flies. As a key step toward addressing this issue, we investigated the impact of host species on the gut bacterial composition in Phlebotomus and Lutzomyia sand flies reared under the same conditions. METHODS Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize the overall bacterial composition of three laboratory-reared sandflies: Phlebotomus papatasi, Ph. duboscqi, and Lutzomyia longipalpis. RESULTS Our results showed that the larvae of the three sand fly species harbored almost the same microbes but had different relative abundances. Adult Ph. papatasi and Ph. duboscqi revealed similar microbiome compositions, which were distinct from that of adult Lu. longipalpis. Furthermore, we showed that Ph. papatasi and Ph. duboscqi are hosts for different bacterial genera. The experiment was repeated twice to improve accuracy and increase reliability of the data, and the same results were obtained even when a distinct composition of the microbiome among the same species was identified probably because of the use of different larvae food batch. CONCLUSIONS The present study provides key insights into the role of host species in the gut microbial content of different sand fly species reared under the same conditions, which may influence their susceptibility to Leishmania infection.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
9
|
Huang L, Chen C. Employing pigs to decipher the host genetic effect on gut microbiome: advantages, challenges, and perspectives. Gut Microbes 2023; 15:2205410. [PMID: 37122143 PMCID: PMC10153013 DOI: 10.1080/19490976.2023.2205410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The gut microbiota is a complex and diverse ecosystem comprised of trillions of microbes and plays an essential role in host's immunity, metabolism, and even behaviors. Environmental and host factors drive the huge variations in the gut microbiome among individuals. Here, we summarize accumulated evidences about host genetic effect on the gut microbial compositions with emphases on the correlation between host genetic kinship and the similarity of microbial compositions, heritability estimates of microbial taxa, and identification of genomic variants associated with the gut microbiome in pigs as well as in humans. A proportion of bacterial taxa have been reported to be heritable, and numerous variants associated with the diversity of the gut microbiota or specific taxa have been identified in both humans and pigs. LCT and ABO gene have been replicated in multiple studies, and its mechanism have been elucidated clearly. We also discuss the main advantages and challenges using pigs as experimental animals in exploring host genetic effect on the gut microbial composition and provided our insights on the perspectives in this area.
Collapse
Affiliation(s)
- Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
10
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Bacterial Metabolism and Transport Genes Are Associated with the Preference of Drosophila melanogaster for Dietary Yeast. Appl Environ Microbiol 2022; 88:e0072022. [PMID: 35913151 PMCID: PMC9397100 DOI: 10.1128/aem.00720-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many animal traits are influenced by their associated microorganisms ("microbiota"). To expand our understanding of the relationship between microbial genotype and host phenotype, we report an analysis of the influence of the microbiota on the dietary preference of the fruit fly Drosophila melanogaster. First, we confirmed through experiments on flies reared bacteria-free ("axenic") or in monoassociation with two different strains of bacteria that the microbiota significantly influences fruit fly dietary preference across a range of ratios of dietary yeast:dietary glucose. Then, focusing on microbiota-dependent changes in fly dietary preference for yeast (DPY), we performed a metagenome-wide association (MGWA) study to define microbial species specificity for this trait and to predict bacterial genes that influence it. In a subsequent mutant analysis, we confirmed that disrupting a subset of the MGWA-predicted genes influences fly DPY, including for genes involved in thiamine biosynthesis and glucose transport. Follow-up tests revealed that the bacterial influence on fly DPY did not depend on bacterial modification of the glucose or protein content of the fly diet, suggesting that the bacteria mediate their effects independent of the fly diet or through more specific dietary changes than broad ratios of protein and glucose. Together, these findings provide additional insight into bacterial determinants of host nutrition and behavior by revealing specific genetic disruptions that influence D. melanogaster DPY. IMPORTANCE Associated microorganisms ("microbiota") impact the physiology and behavior of their hosts, and defining the mechanisms underlying these interactions is a major gap in the field of host-microbe interactions. This study expands our understanding of how the microbiota can influence dietary preference for yeast (DPY) of a model host, Drosophila melanogaster. First, we show that fly preferences for a range of different dietary yeast:dietary glucose ratios vary significantly with the identity of the microbes that colonize the fruit flies. We then performed a metagenome-wide association study to identify candidate bacterial genes that contributed to some of these bacterial influences. We confirmed that disrupting some of the predicted genes, including genes involved in glucose transport and thiamine biosynthesis, resulted in changes to fly DPY and show that the influence of two of these genes is not through changes in dietary ratios of protein to glucose. Together, these efforts expand our understanding of the bacterial genetic influences on a feeding behavior of a model animal host.
Collapse
|
12
|
Ørsted M, Yashiro E, Hoffmann AA, Kristensen TN. Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genet 2022; 18:e1010206. [PMID: 35604942 PMCID: PMC9166449 DOI: 10.1371/journal.pgen.1010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/03/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
It is becoming increasingly clear that microbial symbionts influence key aspects of their host’s fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations. It is becoming increasingly clear that organisms and the microbes that live on or in them–their microbiome–affect each other in profound ways that we are just beginning to understand. For instance, a diverse microbiome can help maintain metabolic functions or fight pathogens causing diseases. A disrupted microbiome may be especially critical for animals and plants that occur in low numbers because of threats from e.g. human exploitation or climate change, as they may already suffer from genetic challenges such as inbreeding and reduced evolutionary potential. The importance of such a reduction in population size, called a bottleneck, on the microbial diversity and the potential interactive effects on host health remains unexplored. Here we experimentally test these associations by investigating the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found that restricting the population size constrain the host’s genetic variation and simultaneously decreases the diversity of the microbiome that they harbor, and that both effects were detrimental to host fitness. The microbial communities in inbred host populations were less robust than in their non-inbred counterparts, suggesting that we should increasingly consider the microbiome diversity, which may ultimately influence the health and persistence of threatened species.
Collapse
Affiliation(s)
- Michael Ørsted
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Erika Yashiro
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
| | - Ary A. Hoffmann
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Torsten Nygaard Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Matthews MK, Malcolm J, Chaston JM. Microbiota Influences Fitness and Timing of Reproduction in the Fruit Fly Drosophila melanogaster. Microbiol Spectr 2021; 9:e0003421. [PMID: 34585986 PMCID: PMC8557915 DOI: 10.1128/spectrum.00034-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/21/2021] [Indexed: 11/20/2022] Open
Abstract
Associated microorganisms ("microbiota") play a central role in determining many animals' survival and reproduction characteristics. The impact of these microbial influences on an animal's fitness, or population growth, in a given environment has not been defined as clearly. We focused on microbiota-dependent host fitness by measuring life span and fecundity in Drosophila melanogaster fruit flies reared individually with 14 different bacterial species. Consistent with previous observations, the different bacteria significantly influenced the timing of fly life span and fecundity. Using Leslie matrices, we show that fly fitness was lowest when the microbes caused the flies to invest in life span over fecundity. Computational permutations showed that the positive fitness effect of investing in reproduction was reversed if fly survival over time was low, indicating that the observed fitness influences of the microbes could be context dependent. Finally, we showed that fly fitness is not influenced by bacterial genes that shape fly life span or fly triglyceride content, a trait that is related to fly survival and reproduction. Also, metagenome-wide association did not identify any microbial genes that were associated with variation in fly fitness. Therefore, the bacterial genetic basis for influencing fly fitness remains unknown. We conclude that bacteria influence a fly's reproductive timing more than total reproductive output and that (e.g., environmental) conditions that influence fly survival likely determine which bacteria benefit fly fitness. IMPORTANCE The ability of associated microorganisms ("microbiota") to influence animal life history traits has been recognized and investigated, especially in the past 2 decades. For many microbial communities, there is not always a clear definition of whether the microbiota or its members are beneficial, pathogenic, or relatively neutral to their hosts' fitness. In this study, we report the influence of individual members of the microbiota on Drosophila melanogaster fitness using Leslie matrices that combine the microbial influences on fly survival and reproduction into a single fitness measure. Our results are consistent with a previous report that, in the laboratory, acetic acid bacteria are more beneficial to the flies than many strains of lactic acid bacteria. We add to the previous finding by showing that this benefit depends on fly survival rate. Together, our work helps to show how the microbiota of a fly influences its laboratory fitness and how these effects may translate to a wild setting.
Collapse
Affiliation(s)
- Melinda K. Matthews
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - Jaanna Malcolm
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| | - John M. Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
14
|
Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila. BMC Biol 2021; 19:187. [PMID: 34565363 PMCID: PMC8474910 DOI: 10.1186/s12915-021-01124-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS). Results We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT). Conclusion Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01124-y.
Collapse
|
15
|
Keith SA, Bishop C, Fallacaro S, McCartney BM. Arc1 and the microbiota together modulate growth and metabolic traits in Drosophila. Development 2021; 148:271091. [PMID: 34323271 DOI: 10.1242/dev.195222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.
Collapse
Affiliation(s)
- Scott A Keith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cassandra Bishop
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha Fallacaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Zhou F, Liu B, Liu X, Li Y, Wang L, Huang J, Luo G, Wang X. The Impact of Microbiome and Microbiota-Derived Sodium Butyrate on Drosophila Transcriptome and Metabolome Revealed by Multi-Omics Analysis. Metabolites 2021; 11:298. [PMID: 34066348 PMCID: PMC8148185 DOI: 10.3390/metabo11050298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used Drosophila as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome. We established both a sterile Drosophila model and a conventional Drosophila model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile Drosophila model and the conventional Drosophila model. The analysis of gut microbial using 16S rRNA sequencing showed sodium butyrate treatment also influenced Drosophila bacterial structures. In addition, Drosophila metabolites identified by ultra-high performance liquid chromatography-MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work provides a better understanding of host-microbiome interactions at the molecular level with multi-omics data.
Collapse
Affiliation(s)
- Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (F.Z.); (X.L.); (L.W.); (J.H.)
| | - Biaodi Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (B.L.); (Y.L.)
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (F.Z.); (X.L.); (L.W.); (J.H.)
| | - Yan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (B.L.); (Y.L.)
| | - Luoluo Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (F.Z.); (X.L.); (L.W.); (J.H.)
| | - Jia Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (F.Z.); (X.L.); (L.W.); (J.H.)
| | - Guanzheng Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (B.L.); (Y.L.)
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (F.Z.); (X.L.); (L.W.); (J.H.)
| |
Collapse
|
17
|
Doña J, Virrueta Herrera S, Nyman T, Kunnasranta M, Johnson KP. Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites. Front Microbiol 2021; 12:642543. [PMID: 33935998 PMCID: PMC8085356 DOI: 10.3389/fmicb.2021.642543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
18
|
Ankrah NYD, Barker BE, Song J, Wu C, McMullen JG, Douglas AE. Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. mSystems 2021. [PMID: 33947801 DOI: 10.1101/2021.01.20.427455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.
Collapse
Affiliation(s)
- Nana Y D Ankrah
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Brandon E Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, USA
| | - Joan Song
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Cindy Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Ankrah NYD, Barker BE, Song J, Wu C, McMullen JG, Douglas AE. Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. mSystems 2021; 6:e01369-20. [PMID: 33947801 PMCID: PMC8269265 DOI: 10.1128/msystems.01369-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.
Collapse
Affiliation(s)
- Nana Y D Ankrah
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Brandon E Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, USA
| | - Joan Song
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Cindy Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Silva V, Palacios-Muñoz A, Okray Z, Adair KL, Waddell S, Douglas AE, Ewer J. The impact of the gut microbiome on memory and sleep in Drosophila. J Exp Biol 2021; 224:jeb233619. [PMID: 33376141 PMCID: PMC7875489 DOI: 10.1242/jeb.233619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome has been proposed to influence diverse behavioral traits of animals, although the experimental evidence is limited and often contradictory. Here, we made use of the tractability of Drosophila melanogaster for both behavioral analyses and microbiome studies to test how elimination of microorganisms affects a number of behavioral traits. Relative to conventional flies (i.e. with unaltered microbiome), microbiologically sterile (axenic) flies displayed a moderate reduction in memory performance in olfactory appetitive conditioning and courtship assays. The microbiological status of the flies had a small or no effect on anxiety-like behavior (centrophobism) or circadian rhythmicity of locomotor activity, but axenic flies tended to sleep for longer and displayed reduced sleep rebound after sleep deprivation. These last two effects were robust for most tests conducted on both wild-type Canton S and w1118 strains, as well for tests using an isogenized panel of flies with mutations in the period gene, which causes altered circadian rhythmicity. Interestingly, the effect of absence of microbiota on a few behavioral features, most notably instantaneous locomotor activity speed, varied among wild-type strains. Taken together, our findings demonstrate that the microbiome can have subtle but significant effects on specific aspects of Drosophila behavior, some of which are dependent on genetic background.
Collapse
Affiliation(s)
- Valeria Silva
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - John Ewer
- Instituto de Neurociencias, and Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
21
|
Bombin A, Cunneely O, Eickman K, Bombin S, Ruesy A, Su M, Myers A, Cowan R, Reed L. Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms 2020; 8:E1972. [PMID: 33322411 PMCID: PMC7763083 DOI: 10.3390/microorganisms8121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiotic microbiota can help its host to overcome nutritional challenges, which is consistent with a holobiont theory of evolution. Our project investigated the effects produced by the microbiota community, acquired from the environment and horizontal transfer, on metabolic traits related to obesity. The study applied a novel approach of raising Drosophila melanogaster, from ten wild-derived genetic lines on naturally fermented peaches, preserving genuine microbial conditions. Larvae raised on the natural and standard lab diets were significantly different in every tested phenotype. Frozen peach food provided nutritional conditions similar to the natural ones and preserved key microbial taxa necessary for survival and development. On the peach diet, the presence of parental microbiota increased the weight and development rate. Larvae raised on each tested diet formed microbial communities distinct from each other. The effect that individual microbial taxa produced on the host varied significantly with changing environmental and genetic conditions, occasionally to the degree of opposite correlations.
Collapse
Affiliation(s)
- Andrei Bombin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| | | | | | | | | | | | | | | | - Laura Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (O.C.); (K.E.); (S.B.); (A.R.); (M.S.); (A.M.); (R.C.)
| |
Collapse
|
22
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Abstract
Beneficial microorganisms associated with animals derive their nutritional requirements entirely from the animal host, but the impact of these microorganisms on host metabolism is largely unknown. The focus of this study was the experimentally tractable tripartite symbiosis between the pea aphid Acyrthosiphon pisum, its obligate intracellular bacterial symbiont Buchnera, and the facultative bacterium Hamiltonella which is localized primarily to the aphid hemolymph (blood). Metabolome experiments on, first, multiple aphid genotypes that naturally bear or lack Hamiltonella and, second, one aphid genotype from which Hamiltonella was experimentally eliminated revealed no significant effects of Hamiltonella on aphid metabolite profiles, indicating that Hamiltonella does not cause major reconfiguration of host metabolism. However, the titer of just one metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), displayed near-significant enrichment in Hamiltonella-positive aphids in both metabolome experiments. AICAR is a by-product of biosynthesis of the essential amino acid histidine in Buchnera and, hence, an index of histidine biosynthetic rates, suggesting that Buchnera-mediated histidine production is elevated in Hamiltonella-bearing aphids. Consistent with this prediction, aphids fed on [13C]histidine yielded a significantly elevated 12C/13C ratio of histidine in Hamiltonella-bearing aphids, indicative of increased (∼25%) histidine synthesized de novo by Buchnera However, in silico analysis predicted an increase of only 0.8% in Buchnera histidine synthesis in Hamiltonella-bearing aphids. We hypothesize that Hamiltonella imposes increased host demand for histidine, possibly for heightened immune-related functions. These results demonstrate that facultative bacteria can alter the dynamics of host metabolic interactions with co-occurring microorganisms, even when the overall metabolic homeostasis of the host is not substantially perturbed.IMPORTANCE Although microbial colonization of the internal tissues of animals generally causes septicemia and death, various animals are persistently associated with benign or beneficial microorganisms in their blood or internal organs. The metabolic consequences of these persistent associations for the animal host are largely unknown. Our research on the facultative bacterium Hamiltonella, localized primarily to the hemolymph of pea aphids, demonstrated that although Hamiltonella imposed no major reconfiguration of the aphid metabolome, it did alter the metabolic relations between the aphid and its obligate intracellular symbiont, Buchnera Specifically, Buchnera produced more histidine in Hamiltonella-positive aphids to support both Hamiltonella demand for histidine and Hamiltonella-induced increase in host demand. This study demonstrates how microorganisms associated with internal tissues of animals can influence specific aspects of metabolic interactions between the animal host and co-occurring microorganisms.
Collapse
|
24
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster. Appl Environ Microbiol 2020; 86:AEM.00305-20. [PMID: 32144104 DOI: 10.1128/aem.00305-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging.IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction.
Collapse
|
26
|
Dittmer J, Gabrieli P. Transstadial metabolic priming mediated by larval nutrition in female Aedes albopictus mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104053. [PMID: 32251651 DOI: 10.1016/j.jinsphys.2020.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are important vectors of human pathogens, which are transmitted by female mosquitoes via blood-feeding. Larval nutrition can have an important impact on the number of blood meals taken by adult females shortly after emergence, as nutritional deficiencies during the larval stage may result in pre-vitellogenic blood meals, which are not invested into egg development but into the endogenous nutrient reserves of the female. Here, we investigated the impact of nutrient deprivation during the larval stage on adult nutrient metabolism, longevity and blood-seeking behaviour in females of the invasive Asian tiger mosquito Aedes albopictus. We demonstrate that Ae. albopictus females are able to compensate for nutrient deprivation during the larval stage by increasing their development time until sufficient nutrients are acquired. Nonetheless, nutrient-poor larval conditions had a long-lasting priming effect on adult female metabolism, since these females accumulated lower nutrient reserves from carbohydrates and survived longer compared to females reared in nutrient-rich larval conditions. Moreover, nutrient and ATP levels of females from nutrient-poor larval conditions remained stable over a longer timespan without access to additional carbohydrates. This suggests differences in adult female metabolism in response to larval nutrition, with potential impact on the vectorial capacity of female mosquitoes.
Collapse
Affiliation(s)
- Jessica Dittmer
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- Department of Biology & Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
27
|
Eetemadi A, Rai N, Pereira BMP, Kim M, Schmitz H, Tagkopoulos I. The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health. Front Microbiol 2020; 11:393. [PMID: 32318028 PMCID: PMC7146706 DOI: 10.3389/fmicb.2020.00393] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Food and human health are inextricably linked. As such, revolutionary impacts on health have been derived from advances in the production and distribution of food relating to food safety and fortification with micronutrients. During the past two decades, it has become apparent that the human microbiome has the potential to modulate health, including in ways that may be related to diet and the composition of specific foods. Despite the excitement and potential surrounding this area, the complexity of the gut microbiome, the chemical composition of food, and their interplay in situ remains a daunting task to fully understand. However, recent advances in high-throughput sequencing, metabolomics profiling, compositional analysis of food, and the emergence of electronic health records provide new sources of data that can contribute to addressing this challenge. Computational science will play an essential role in this effort as it will provide the foundation to integrate these data layers and derive insights capable of revealing and understanding the complex interactions between diet, gut microbiome, and health. Here, we review the current knowledge on diet-health-gut microbiota, relevant data sources, bioinformatics tools, machine learning capabilities, as well as the intellectual property and legislative regulatory landscape. We provide guidance on employing machine learning and data analytics, identify gaps in current methods, and describe new scenarios to be unlocked in the next few years in the context of current knowledge.
Collapse
Affiliation(s)
- Ameen Eetemadi
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Beatriz Merchel Piovesan Pereira
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Microbiology, University of California, Davis, Davis, CA, United States
| | - Minseung Kim
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Process Integration and Predictive Analytics (PIPA LLC), Davis, CA, United States
| | - Harold Schmitz
- Graduate School of Management, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Process Integration and Predictive Analytics (PIPA LLC), Davis, CA, United States
| |
Collapse
|
28
|
Henry Y, Overgaard J, Colinet H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp Biochem Physiol A Mol Integr Physiol 2020; 241:110626. [DOI: 10.1016/j.cbpa.2019.110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
29
|
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Guelbeogo WM, Sagnon N, Riehle MM, Vernick KD. Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric Microbiome Taxa in the Asian Malaria Mosquito Anopheles stephensi. Front Microbiol 2020; 11:306. [PMID: 32174902 PMCID: PMC7054466 DOI: 10.3389/fmicb.2020.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Eugeni Belda Cuesta
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Chung SH, Parker BJ, Blow F, Brisson JA, Douglas AE. Host and symbiont genetic determinants of nutritional phenotype in a natural population of the pea aphid. Mol Ecol 2020; 29:848-858. [PMID: 31945243 DOI: 10.1111/mec.15355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
A defining feature of the nutritional ecology of plant sap-feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA-provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine-free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine-free diet and aromatic-free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.
Collapse
Affiliation(s)
- Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | | | - Frances Blow
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | | | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Walters AW, Hughes RC, Call TB, Walker CJ, Wilcox H, Petersen SC, Rudman SM, Newell PD, Douglas AE, Schmidt PS, Chaston JM. The microbiota influences the Drosophila melanogaster life history strategy. Mol Ecol 2020; 29:639-653. [PMID: 31863671 DOI: 10.1111/mec.15344] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Organisms are locally adapted when members of a population have a fitness advantage in one location relative to conspecifics in other geographies. For example, across latitudinal gradients, some organisms may trade off between traits that maximize fitness components in one, but not both, of somatic maintenance or reproductive output. Latitudinal gradients in life history strategies are traditionally attributed to environmental selection on an animal's genotype, without any consideration of the possible impact of associated microorganisms ("microbiota") on life history traits. Here, we show in Drosophila melanogaster, a key model for studying local adaptation and life history strategy, that excluding the microbiota from definitions of local adaptation is a major shortfall. First, we reveal that an isogenic fly line reared with different bacteria varies the investment in early reproduction versus somatic maintenance. Next, we show that in wild fruit flies, the abundance of these same bacteria was correlated with the latitude and life history strategy of the flies, suggesting geographic specificity of the microbiota composition. Variation in microbiota composition of locally adapted D. melanogaster could be attributed to both the wild environment and host genetic selection. Finally, by eliminating or manipulating the microbiota of fly lines collected across a latitudinal gradient, we reveal that host genotype contributes to latitude-specific life history traits independent of the microbiota and that variation in the microbiota can suppress or reverse the differences between locally adapted fly lines. Together, these findings establish the microbiota composition of a model animal as an essential consideration in local adaptation.
Collapse
Affiliation(s)
- Amber W Walters
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Tanner B Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Carson J Walker
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hailey Wilcox
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Samara C Petersen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Newell
- Department of Biological Sciences, SUNY Oswego, Oswego, NY, USA
| | - Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
32
|
Mushegian AA, Tougeron K. Animal-Microbe Interactions in the Context of Diapause. THE BIOLOGICAL BULLETIN 2019; 237:180-191. [PMID: 31714855 DOI: 10.1086/706078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dormancy and diapause are key adaptations in many organisms, enabling survival of temporarily or seasonally unsuitable environmental conditions. In this review, we examine how our understanding of programmed developmental and metabolic arrest during diapause intersects with the increasing body of knowledge about animal co-development and co-evolution with microorganisms. Host-microbe interactions are increasingly understood to affect a number of metabolic, physiological, developmental, and behavioral traits and to mediate adaptations to various environments. Therefore, it is timely to consider how microbial factors might affect the expression and evolution of diapause in a changing world. We examine how a range of host-microbe interactions, from pathogenic to mutualistic, may have an impact on diapause phenotypes. Conversely, we examine how the discontinuities that diapause introduces into animal host generations can affect the ecology of microbial communities and the evolution of host-microbe interactions. We discuss these issues as they relate to physiology, evolution of development, local adaptation, disease ecology, and environmental change. Finally, we outline research questions that bridge the historically distinct fields of seasonal ecology and host-microbe interactions.
Collapse
|
33
|
Dobson AJ, Boulton-McDonald R, Houchou L, Svermova T, Ren Z, Subrini J, Vazquez-Prada M, Hoti M, Rodriguez-Lopez M, Ibrahim R, Gregoriou A, Gkantiragas A, Bähler J, Ezcurra M, Alic N. Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genet 2019; 15:e1008212. [PMID: 31356597 PMCID: PMC6662994 DOI: 10.1371/journal.pgen.1008212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/27/2019] [Indexed: 01/17/2023] Open
Abstract
Ageing populations pose one of the main public health crises of our time. Reprogramming gene expression by altering the activities of sequence-specific transcription factors (TFs) can ameliorate deleterious effects of age. Here we explore how a circuit of TFs coordinates pro-longevity transcriptional outcomes, which reveals a multi-tissue and multi-species role for an entire protein family: the E-twenty-six (ETS) TFs. In Drosophila, reduced insulin/IGF signalling (IIS) extends lifespan by coordinating activation of Aop, an ETS transcriptional repressor, and Foxo, a Forkhead transcriptional activator. Aop and Foxo bind the same genomic loci, and we show that, individually, they effect similar transcriptional programmes in vivo. In combination, Aop can both moderate or synergise with Foxo, dependent on promoter context. Moreover, Foxo and Aop oppose the gene-regulatory activity of Pnt, an ETS transcriptional activator. Directly knocking down Pnt recapitulates aspects of the Aop/Foxo transcriptional programme and is sufficient to extend lifespan. The lifespan-limiting role of Pnt appears to be balanced by a requirement for metabolic regulation in young flies, in which the Aop-Pnt-Foxo circuit determines expression of metabolic genes, and Pnt regulates lipolysis and responses to nutrient stress. Molecular functions are often conserved amongst ETS TFs, prompting us to examine whether other Drosophila ETS-coding genes may also affect ageing. We show that five out of eight Drosophila ETS TFs play a role in fly ageing, acting from a range of organs and cells including the intestine, adipose and neurons. We expand the repertoire of lifespan-limiting ETS TFs in C. elegans, confirming their conserved function in ageing and revealing that the roles of ETS TFs in physiology and lifespan are conserved throughout the family, both within and between species. Understanding the basic biology of ageing may help us to reduce the burden of ill-health that old age brings. Ageing is modulated by changes to gene expression, which are orchestrated by the coordinate activity of proteins called transcription factors (TFs). E-twenty six (ETS) TFs are a large family with cellular functions that are conserved across animal taxa. In this study, we examine a longevity-promoting transcriptional circuit composed of two ETS TFs, Pnt and Aop, and Foxo, a forkhead TF with evolutionarily-conserved pro-longevity functions. This leads us to demonstrate that the activity of the majority of ETS TFs in multiple tissues and even different animal taxa regulates lifespan, indicating that roles in ageing are a general feature of this family of transcriptional regulators.
Collapse
Affiliation(s)
- Adam J. Dobson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Richard Boulton-McDonald
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Lara Houchou
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Tatiana Svermova
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ziyu Ren
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jeremie Subrini
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | - Mimoza Hoti
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Maria Rodriguez-Lopez
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Rita Ibrahim
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Afroditi Gregoriou
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alexis Gkantiragas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Dittmer J, Alafndi A, Gabrieli P. Fat body-specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus. PLoS Biol 2019; 17:e3000238. [PMID: 31071075 PMCID: PMC6508604 DOI: 10.1371/journal.pbio.3000238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/04/2019] [Indexed: 11/22/2022] Open
Abstract
The high vector competence of mosquitoes is intrinsically linked to their reproductive strategy because females need a vertebrate blood meal to develop large batches of eggs. However, the molecular mechanisms and pathways regulating mosquito host-seeking behaviour are largely unknown. Here, we test whether host-seeking behaviour may be linked to the female's energy reserves, with low energy levels triggering the search for a nutrient-rich blood meal. Our results demonstrate that sugar feeding delays host-seeking behaviour in the invasive tiger mosquito Aedes albopictus, but the levels of energy reserves do not correlate with changes in host-seeking behaviour. Using tissue-specific gene expression analyses, we show for the first time, to our knowledge, that sugar feeding alone induces a transient up-regulation of several vitellogenesis-related genes in the female fat body, resembling the transcriptional response after a blood meal. Specifically, high expression levels of a vitellogenin gene (Vg-2) correlated with the lowest host-seeking activity of sugar-fed females. Knocking down the Vg-2 gene via RNA interference (RNAi) restored host-seeking behaviour in these females, firmly establishing that Vg-2 gene expression has a pivotal role in regulating host-seeking behaviour in young Ae. albopictus females. The identification of a molecular mechanism regulating host-seeking behaviour in mosquitoes could pave the way for novel vector control strategies aiming to reduce the biting activity of mosquitoes. From an evolutionary perspective, this is the first demonstration of vitellogenin genes controlling feeding-related behaviours in nonsocial insects, while vitellogenins are known to regulate caste-specific foraging and brood-care behaviours in eusocial insects. Hence, this work confirms the key role of vitellogenin in controlling feeding-related behaviours in distantly related insect orders, suggesting that this function could be more ubiquitous than previously thought.
Collapse
Affiliation(s)
- Jessica Dittmer
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Ayad Alafndi
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
35
|
Wynants E, Frooninckx L, Crauwels S, Verreth C, De Smet J, Sandrock C, Wohlfahrt J, Van Schelt J, Depraetere S, Lievens B, Van Miert S, Claes J, Van Campenhout L. Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. MICROBIAL ECOLOGY 2019; 77:913-930. [PMID: 30430196 DOI: 10.1007/s00248-018-1286-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to gain insight into the microbial quality, safety and bacterial community composition of black soldier fly larvae (Hermetia illucens) reared at different facilities on a variety of organic waste streams. For seven rearing cycles, both on laboratory-scale and in large-scale facilities at several locations, the microbiota of the larvae was studied. Also samples of the substrate used and the residue (= leftover substrate after rearing, existing of non-consumed substrate, exuviae and faeces) were investigated. Depending on the sample, it was subjected to plate counting, Illumina Miseq sequencing and/or detection of specific food pathogens. The results revealed that the substrates applied at the various locations differed substantially in microbial numbers as well as in the bacterial community composition. Furthermore, little similarity was observed between the microbiota of the substrate and that of the larvae reared on that substrate. Despite substantial differences between the microbiota of larvae reared at several locations, 48 species-level operational taxonomic units (OTUs) were shared by all larvae, among which most belonged to the phyla Firmicutes and Proteobacteria. Although the substrate is assumed to be an important source of bacteria, our results suggest that a variety of supposedly interacting factors-both abiotic and biotic-are likely to affect the microbiota in the larvae. In some larvae and/or residue samples, potential foodborne pathogens such as Salmonella and Bacillus cereus were detected, emphasising that decontamination technologies are required when the larvae are used in feed, just as for other feed ingredients, or eventually in food.
Collapse
Affiliation(s)
- E Wynants
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium.
| | - L Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Campus Geel, 2440, Geel, Belgium
| | - S Crauwels
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - C Verreth
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - J De Smet
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - C Sandrock
- Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - J Wohlfahrt
- Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - J Van Schelt
- Koppert Biological Systems, Berkel en Rodenrijs, 2650, AD, The Netherlands
| | | | - B Lievens
- Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, 2860, Sint-Katelijne-Waver, Belgium
| | - S Van Miert
- Thomas More University of Applied Sciences, RADIUS, Campus Geel, 2440, Geel, Belgium
| | - J Claes
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - L Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
| |
Collapse
|
36
|
Fromont C, Adair KL, Douglas AE. Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies. Mol Ecol 2019; 28:1826-1841. [PMID: 30714238 DOI: 10.1111/mec.15041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.
Collapse
Affiliation(s)
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, New York
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
37
|
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host. Appl Environ Microbiol 2019; 85:AEM.01882-18. [PMID: 30389767 DOI: 10.1128/aem.01882-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 01/05/2023] Open
Abstract
Interactions between species shape the formation and function of microbial communities. In the gut microbiota of animals, cross-feeding of metabolites between microbes can enhance colonization and influence host physiology. We examined a mutually beneficial interaction between two bacteria isolated from the gut microbiota of Drosophila, i.e., Acetobacter fabarum and Lactobacillus brevis After developing an in vitro coculture assay, we utilized a genetic screen to identify A. fabarum genes required for enhanced growth with L. brevis The screen, and subsequent genetic analyses, showed that the gene encoding pyruvate phosphate dikinase (ppdK) is required for A. fabarum to benefit fully from coculture. By testing strains with mutations in a range of metabolic genes, we provide evidence that A. fabarum can utilize multiple fermentation products of L. brevis Mutualism between the bacteria in vivo affects gnotobiotic Drosophila melanogaster; flies associated with A. fabarum and L. brevis showed >1,000-fold increases in bacterial cell density and significantly lower triglyceride storage than monocolonized flies. Mutation of ppdK decreased A. fabarum density in flies cocolonized with L. brevis, consistent with the model in which Acetobacter employs gluconeogenesis to assimilate Lactobacillus fermentation products as a source of carbon in vivo We propose that cross-feeding between these groups is a common feature of microbiota in Drosophila IMPORTANCE The digestive tracts of animals are home to a community of microorganisms, the gut microbiota, which affects the growth, development, and health of the host. Interactions among microbes in this inner ecosystem can influence which species colonize the gut and can lead to changes in host physiology. We investigated a mutually beneficial interaction between two bacterial species from the gut microbiota of fruit flies. By coculturing the bacteria in vitro, we were able to identify a metabolic gene required for the bacteria to grow better together than they do separately. Our data suggest that one species consumes the waste products of the other, leading to greater productivity of the microbial community and modifying the nutrients available to the host. This study provides a starting point for investigating how these and other bacteria mutually benefit by sharing metabolites and for determining the impact of mutualism on host health.
Collapse
|
38
|
Leftwich PT, Hutchings MI, Chapman T. Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation. Bioessays 2018; 40:e1800053. [PMID: 30311675 DOI: 10.1002/bies.201800053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022]
Abstract
All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
39
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Ma D, Leulier F. The importance of being persistent: The first true resident gut symbiont in Drosophila. PLoS Biol 2018; 16:e2006945. [PMID: 30071013 PMCID: PMC6091974 DOI: 10.1371/journal.pbio.2006945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2018] [Indexed: 12/05/2022] Open
Abstract
In the animal kingdom, nutritional mutualism is a perpetual and intimate dialogue carried out between the host and its associated gut community members. This dialogue affects many aspects of the host’s development and physiology. Some constituents of the animal gut microbiota can stably reside within the host for years, and such long-term persistence might be a prerequisite for these microbes to assert their beneficial impact. How long-term persistence is established and maintained is an interesting question, and several classic model organisms associated with cultivable resident strains are used to address this question. However, in Drosophila, this model has long eluded fly geneticists. In this issue of PLOS Biology, Pais and colleagues present the most rigorous and comprehensive demonstration to date that persistence and gut residency do take place in the digestive tract of Drosophila melanogaster. This natural gut isolate of Acetobacter thailandicus stably colonizes the adult fly foregut, accelerates larval maturation, and boosts host fecundity and fertility as efficiently as the known laboratory strains. The discovery of such stable association will be a boon for the Drosophila community interested in host–microbiota interaction, as it not only provides a novel model to unravel the molecular underpinnings of persistence but also opens a new arena for using Drosophila to study the implications of gut persistence in evolution and ecology.
Collapse
Affiliation(s)
- Dali Ma
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, France
- * E-mail: (FL); (DM)
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Lyon, France
- * E-mail: (FL); (DM)
| |
Collapse
|
41
|
Douglas AE. The Drosophila model for microbiome research. Lab Anim (NY) 2018; 47:157-164. [PMID: 29795158 DOI: 10.1038/s41684-018-0065-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiome is increasingly recognized to play an important role in shaping the health and fitness of animals, including humans. Drosophila is emerging as a valuable model for microbiome research, combining genetic and genomic resources with simple protocols to manipulate the microbiome, such that microbiologically sterile flies and flies bearing a standardized microbiota can readily be produced in large numbers. Studying Drosophila has the potential to increase our understanding of how the microbiome influences host traits, and allows opportunities for hypothesis testing of microbial impacts on human health. Drosophila is being used to investigate aspects of host-microbe interactions, including the metabolism, the immune system and behavior. Drosophila offers a valuable alternative to rodent and other mammalian models of microbiome research for fundamental discovery of microbiome function, enabling improved research cost effectiveness and benefits for animal welfare.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
42
|
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B. Of genes and microbes: solving the intricacies in host genomes. Protein Cell 2018; 9:446-461. [PMID: 29611114 PMCID: PMC5960464 DOI: 10.1007/s13238-018-0532-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.
Collapse
Affiliation(s)
- Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China.
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
| | - Xizhan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yakun Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Schwarzer M, Strigini M, Leulier F. Gut Microbiota and Host Juvenile Growth. Calcif Tissue Int 2018; 102:387-405. [PMID: 29214457 DOI: 10.1007/s00223-017-0368-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual's intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host's juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.
Collapse
Affiliation(s)
- Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France.
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic.
| | - Maura Strigini
- INSERM, U1059, Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, 42023, Saint-Étienne, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France
| |
Collapse
|
44
|
Uncovering Genomic Regions Associated with Trypanosoma Infections in Wild Populations of the Tsetse Fly Glossina fuscipes. G3-GENES GENOMES GENETICS 2018; 8:887-897. [PMID: 29343494 PMCID: PMC5844309 DOI: 10.1534/g3.117.300493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vector-borne diseases are responsible for > 1 million deaths every year but genomic resources for most species responsible for their transmission are limited. This is true for neglected diseases such as sleeping sickness (Human African Trypanosomiasis), a disease caused by Trypanosoma parasites vectored by several species of tseste flies within the genus Glossina. We describe an integrative approach that identifies statistical associations between trypanosome infection status of Glossina fuscipes fuscipes (Gff) flies from Uganda, for which functional studies are complicated because the species cannot be easily maintained in laboratory colonies, and ∼73,000 polymorphic sites distributed across the genome. Then, we identify candidate genes involved in Gff trypanosome susceptibility by taking advantage of genomic resources from a closely related species, G. morsitans morsitans (Gmm). We compiled a comprehensive transcript library from 72 published and unpublished RNAseq experiments of trypanosome-infected and uninfected Gmm flies, and improved the current Gmm transcriptome assembly. This new assembly was then used to enhance the functional annotations on the Gff genome. As a consequence, we identified 56 candidate genes in the vicinity of the 18 regions associated with Trypanosoma infection status in Gff. Twenty-nine of these genes were differentially expressed (DE) among parasite-infected and uninfected Gmm, suggesting that their orthologs in Gff may correlate with disease transmission. These genes were involved in DNA regulation, neurophysiological functions, and immune responses. We highlight the power of integrating population and functional genomics from related species to enhance our understanding of the genetic basis of physiological traits, particularly in nonmodel organisms.
Collapse
|
45
|
Moskalev A, Shaposhnikov M, Zemskaya N, Belyi A, Dobrovolskaya E, Patova A, Guvatova Z, Lukyanova E, Snezhkina A, Kudryavtseva A. Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila. BMC Genomics 2018; 19:77. [PMID: 29504896 PMCID: PMC5836829 DOI: 10.1186/s12864-018-4471-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. Results Here, we studied the effects of fucoxanthin on the Drosophila aging process at the molecular and the whole organism levels. At the organismal level, fucoxanthin increased the median lifespan and had a positive effect on fecundity, fertility, intestinal barrier function, and nighttime sleep. Transcriptome analysis revealed 57 differentially expressed genes involved in 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among the most represented molecular pathways induced by fucoxanthin, a significant portion is related to longevity, including MAPK, mTOR, Wnt, Notch, and Hippo signaling pathways, autophagy, translation, glycolysis, oxidative phosphorylation, apoptosis, immune response, neurogenesis, sleep, and response to DNA damage. Conclusions Life-extending effects of fucoxanthin are associated with differential expression of longevity-associated genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4471-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Belyi
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Eugenia Dobrovolskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Anna Patova
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
46
|
Wang Y, Staubach F. Individual variation of natural D.melanogaster-associated bacterial communities. FEMS Microbiol Lett 2018; 365:4828325. [DOI: 10.1093/femsle/fny017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yun Wang
- Department of Evolutionary Biology and Ecology, Institute of Biology I, Albert Ludwigs University Freiburg, Hauptstrasse 1, Freiburg 79104, Germany
| | - Fabian Staubach
- Department of Evolutionary Biology and Ecology, Institute of Biology I, Albert Ludwigs University Freiburg, Hauptstrasse 1, Freiburg 79104, Germany
| |
Collapse
|
47
|
Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME JOURNAL 2018; 12:959-972. [PMID: 29358735 DOI: 10.1038/s41396-017-0020-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/20/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Abstract
Animals are routinely colonized by microorganisms. Despite many studies documenting the microbial taxa associated with animals, the pattern and ecological determinants of among-animal variation in microbial communities are poorly understood. This study quantified the bacterial communities associated with natural populations of Drosophila melanogaster. Across five collections, each fly bore 16-78 OTUs, predominantly of the Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae. Positive relationships, mostly among related OTUs, dominated both the significant co-occurrences and co-association networks among bacteria, and OTUs with important network positions were generally of intermediate abundance and prevalence. The prevalence of most OTUs was well predicted by a neutral model suggesting that ecological drift and passive dispersal contribute significantly to microbiome composition. However, some Acetobacteraceae and Lactobacillaceae were present in more flies than predicted, indicative of superior among-fly dispersal. These taxa may be well-adapted to the Drosophila habitat from the perspective of dispersal as the principal benefit of the association to the microbial partners. Taken together, these patterns indicate that both stochastic processes and deterministic processes relating to the differential capacity for persistence in the host habitat and transmission between hosts contribute to bacterial community assembly in Drosophila melanogaster.
Collapse
|
48
|
Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.289. [PMID: 28834395 PMCID: PMC5746472 DOI: 10.1002/wdev.289] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
49
|
Mackay TFC, Huang W. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.289. [PMID: 28834395 PMCID: PMC5746472 DOI: 10.1002/wdev.289+10.1002/wdev.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2024]
Abstract
Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
50
|
Fan X, Gaur U, Yang M. Intestinal Homeostasis and Longevity: Drosophila Gut Feeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:157-168. [PMID: 30232758 DOI: 10.1007/978-981-13-1117-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The association between intestinal homeostasis and life span has caught the attention of the research community worldwide. There have been multiple evidences which support the role of gut homeostasis in aging. The Drosophila gastrointestinal tract is very similar to the mammalian gut, and therefore it can directly be used as a model to understand the association between gut microbiota, immune system, and aging in humans. In current review we have discussed the importance of gut microbiota in aging. Also we have highlighted the importance of host immune system and gut aging. Since the increased microbial load in the gut activates the host immune system, the dysregulated microbiota can have direct implications in gut aging. The proliferation and renewal of intestinal stem cells can also affect gut aging. Another important aspect that we have discussed is the communication between the gut and the other organ systems which affect the overall aging process. Altogether we propose that the Drosophila gut can be a good model to improve our understanding of human gut aging.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Beijing, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|