1
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Wang A, Shen X, Liang N, Xie Z, Tian Z, Zhang L, Guo J, Wei F, Shi G, Wei X. Integrated cytological and transcriptomic analyses provide new insights into restoration of pollen viability in synthetic allotetraploid Brassica carinata. PLANT CELL REPORTS 2024; 43:234. [PMID: 39292285 DOI: 10.1007/s00299-024-03325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE Upregulation of genes involved in DNA damage repair and sperm cell differentiation leads to restoration of pollen viability in synthetic allotetraploid B. carinata after chromosome doubling. Apart from the well-known contribution of polyploidy to crop improvement, polyploids can also be induced for other purposes, such as to restore the viability of sterile hybrids. The mechanism related to viability transition between the sterile allodiploid and the fertile allotetraploid after chromosome doubling are not well understood. Here, we synthesised allodiploid B. carinata (2n = 2x = 17) and allotetraploid B. carinata (2n = 4x = 34) as models to investigate the cytological and transcriptomic differences during pollen development. The results showed that after chromosome doubling, the recovery of pollen viability in allotetraploid was mainly reflected in the stabilisation of microtubule spindle morphology, normal meiotic chromosome behaviour, and normal microspore development. Interestingly, the deposition and degradation of synthetic anther tapetum were not affected by polyploidy. Transcription analysis showed that the expression of genes related to DNA repair (DMC1, RAD51, RAD17, SPO11-2), cell cycle differentiation (CYCA1;2, CYCA2;3) and ubiquitination proteasome pathway (UBC4, PIRH2, CDC53) were positively up-regulated during pollen development of synthetic allotetraploid B. carinata. In summary, these results provide some refreshing updates about the ploidy-related restoration of pollen viability in newly synthesised allotetraploid B. carinata.
Collapse
Affiliation(s)
- Ao Wang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaohan Shen
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Niannian Liang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhaoran Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jialin Guo
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
He Z, Yan RG, Shang QB, Yang QE. Elevated Id2 expression causes defective meiosis and spermatogenesis in mice. Dev Dyn 2024; 253:593-605. [PMID: 38063258 DOI: 10.1002/dvdy.676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Inhibitors of DNA binding (ID) proteins mainly inhibit gene expression and regulate cell fate decisions by interacting with E-proteins. All four ID proteins (ID1-4) are present in the testis, and ID4 has a particularly important role in spermatogonial stem cell fate determination. Several lines of evidence indicate that ID proteins are involved in meiosis; however, functional experiments have not been conducted to validate this observation. RESULTS In this study, we report that ID2 is enriched in spermatocytes and that forced ID2 expression in germ cells causes defects in spermatogenesis. A detailed analysis demonstrated that Id2 overexpression (Id2 OE) decreased the total number of spermatogonia and changed the dynamics of meiosis progression. Specifically, spermatocytes were enriched in the zygotene stage, and the proportion of pachytene spermatocytes was significantly decreased, indicating defects in the zygotene-pachytene transition. The number of MLH1-positive foci per cell was decreased in pachytene spermatocytes from Id2 OE testes, suggesting abnormalities in recombination. Transcriptome analysis revealed that forced Id2 expression changed the expression of a list of genes mainly associated with meiosis and spermatid development. CONCLUSIONS ID2 protein is expressed in spermatocytes, and its genetic ablation in the germline does not affect spermatogenesis, likely due to genetic compensation of its family members. However, forced Id2 expression changes meiosis progression and causes defects in spermiogenesis. These data provide important evidence that ID proteins play pivotal roles in male meiosis and spermatid development.
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Plateau Animal Breeding and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
4
|
Liu Q, Sheng N, Zhang Z, He C, Zhao Y, Sun H, Chen J, Yang X, Tang C. Initial nutrient condition determines the recovery speed of quiescent cells in fission yeast. Heliyon 2024; 10:e26558. [PMID: 38455543 PMCID: PMC10918017 DOI: 10.1016/j.heliyon.2024.e26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Most of microbe cells spend the majority of their times in quiescence due to unfavorable environmental conditions. The study of this dominant state is crucial for understanding the basic cell physiology. Retained recovery ability is a critical property of quiescent cells, which consists of two features: how long the cells can survive (the survivability) and how fast they can recover (the recovery activity). While the survivability has been extensively studied under the background of chronological aging, how the recovery activity depends on the quiescent time and what factors influence its dynamics have not been addressed quantitatively. In this work, we systematically quantified both the survivability and the recovery activity of long-lived quiescent fission yeast cells at the single cell level under various nutrient conditions. It provides the most profound evolutionary dynamics of quiescent cell regeneration ability described to date. We found that the single cell recovery time linearly increased with the starvation time before the survivability significantly declined. This linearity was robust under various nutrient conditions and the recovery speed was predetermined by the initial nutrient condition. Transcriptome profiling further revealed that quiescence states under different nutrient conditions evolve in a common trajectory but with different speed. Our results demonstrated that cellular quiescence has a continuous spectrum of depths and its physiology is greatly influenced by environmental conditions.
Collapse
Affiliation(s)
- Qi Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Nan Sheng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhiwen Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chenjun He
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yao Zhao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Haoyuan Sun
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jianguo Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Jain A, Wu PYJ, Coudreuse D. Artificial Modulation and Rewiring of Cell Cycle Progression Using Synthetic Circuits in Fission Yeast. Methods Mol Biol 2024; 2740:89-105. [PMID: 38393470 DOI: 10.1007/978-1-0716-3557-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell cycle control is a central aspect of the biology of proliferating eukaryotic cells. However, progression through the cell cycle relies on a highly complex network, making it difficult to unravel the core design principles underlying the mechanisms that sustain cell proliferation and the ways in which they interact with other cellular pathways. In this context, the use of a synthetic approach to simplify the cell cycle network in unicellular genetic models such as fission yeast has opened the door to studying the biology of proliferating cells from unique perspectives. Here, we provide a series of methods based on a minimal cell cycle module in the fission yeast Schizosaccharomyces pombe that allows for an unprecedented artificial control of cell cycle events, enabling the rewiring and remodeling of cell cycle progression.
Collapse
Affiliation(s)
- Akanksha Jain
- Institute of Genetics and Development of Rennes, CNRS UMR 6290 and University of Rennes, Rennes, France
- Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France
| | - Pei-Yun Jenny Wu
- Institute of Genetics and Development of Rennes, CNRS UMR 6290 and University of Rennes, Rennes, France
- Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France
| | - Damien Coudreuse
- Institute of Genetics and Development of Rennes, CNRS UMR 6290 and University of Rennes, Rennes, France.
- Institute of Biochemistry and Cellular Genetics, CNRS UMR 5095 and University of Bordeaux, Bordeaux, France.
| |
Collapse
|
6
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Palacios-Blanco I, Martín-Castellanos C. Cyclins and CDKs in the regulation of meiosis-specific events. Front Cell Dev Biol 2022; 10:1069064. [PMID: 36523509 PMCID: PMC9745066 DOI: 10.3389/fcell.2022.1069064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024] Open
Abstract
How eukaryotic cells control their duplication is a fascinating example of how a biological system self-organizes specific activities to temporally order cellular events. During cell cycle progression, the cellular level of CDK (Cyclin-Dependent Kinase) activity temporally orders the different cell cycle phases, ensuring that DNA replication occurs prior to segregation into two daughter cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the core kinase, and both CDKs and cyclins are well conserved throughout evolution from yeast to humans. As key regulators, they coordinate cell cycle progression with metabolism, DNA damage, and cell differentiation. In meiosis, the special cell division that ensures the transmission of genetic information from one generation to the next, cyclins and CDKs have acquired novel functions to coordinate meiosis-specific events such as chromosome architecture, recombination, and synapsis. Interestingly, meiosis-specific cyclins and CDKs are common in evolution, some cyclins seem to have evolved to acquire CDK-independent functions, and even some CDKs associate with a non-cyclin partner. We will review the functions of these key regulators in meiosis where variation has specially flourished.
Collapse
|
9
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
10
|
Pickering M, Magner M, Keifenheim D, Rhind N. The fission yeast S-phase cyclin Cig2 can drive mitosis. Genetics 2021; 217:1-12. [PMID: 33683349 DOI: 10.1093/genetics/iyaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/14/2022] Open
Abstract
Commitment to mitosis is regulated by cyclin-dependent kinase (CDK) activity. In the fission yeast Schizosaccharomyces pombe, the major B-type cyclin, Cdc13, is necessary and sufficient to drive mitotic entry. Furthermore, Cdc13 is also sufficient to drive S phase, demonstrating that a single cyclin can regulate alternating rounds of replication and mitosis, and providing the foundation of the quantitative model of CDK function. It has been assumed that Cig2, a B-type cyclin expressed only during S phase and incapable of driving mitosis in wild-type cells, was specialized for S-phase regulation. Here, we show that Cig2 is capable of driving mitosis. Cig2/CDK activity drives mitotic catastrophe-lethal mitosis in inviably small cells-in cells that lack CDK inhibition by tyrosine-phosphorylation. Moreover, Cig2/CDK can drive mitosis in the absence of Cdc13/CDK activity and constitutive expression of Cig2 can rescue loss of Cdc13 activity. These results demonstrate that in fission yeast, not only can the presumptive M-phase cyclin drive S phase, but the presumptive S-phase cyclin can drive M phase, further supporting the quantitative model of CDK function. Furthermore, these results provide an explanation, previously proposed on the basis of computational analyses, for the surprising observation that cells expressing a single-chain Cdc13-Cdc2 CDK do not require Y15 phosphorylation for viability. Their viability is due to the fact that in such cells, which lack Cig2/CDK complexes, Cdc13/CDK activity is unable to drive mitotic catastrophe.
Collapse
Affiliation(s)
- Mary Pickering
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mira Magner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dan Keifenheim
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Bustamante-Jaramillo LF, Ramos C, Martín-Castellanos C. The Meiosis-Specific Crs1 Cyclin Is Required for Efficient S-Phase Progression and Stable Nuclear Architecture. Int J Mol Sci 2021; 22:ijms22115483. [PMID: 34067465 PMCID: PMC8196990 DOI: 10.3390/ijms22115483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.
Collapse
|
12
|
Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, Böttger L, Umeda M, Schnittger A. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J Cell Biol 2021; 219:151917. [PMID: 32609301 PMCID: PMC7401817 DOI: 10.1083/jcb.201907016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Precise control of cytoskeleton dynamics and its tight coordination with chromosomal events are key to cell division. This is exemplified by formation of the spindle and execution of cytokinesis after nuclear division. Here, we reveal that the central cell cycle regulator CYCLIN DEPENDENT KINASE A;1 (CDKA;1), the Arabidopsis homologue of Cdk1 and Cdk2, partially in conjunction with CYCLIN B3;1 (CYCB3;1), is a key regulator of the microtubule cytoskeleton in meiosis. For full CDKA;1 activity, the function of three redundantly acting CDK-activating kinases (CAKs), CDKD;1, CDKD;2, and CDKD;3, is necessary. Progressive loss of these genes in combination with a weak loss-of-function mutant in CDKA;1 allowed a fine-grained dissection of the requirement of cell-cycle kinase activity for meiosis. Notably, a moderate reduction of CDKA;1 activity converts the simultaneous cytokinesis in Arabidopsis, i.e., one cytokinesis separating all four meiotic products concurrently into two successive cytokineses with cell wall formation after the first and second meiotic division, as found in many monocotyledonous species.
Collapse
Affiliation(s)
- Kostika Sofroni
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Hirotomo Takatsuka
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Chao Yang
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology, University of Osnabrück, Osnabrück, Germany
| | - Shinichiro Komaki
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Yuki Hamamura
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Lev Böttger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| | - Masaaki Umeda
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Nara, Japan
| | - Arp Schnittger
- University of Hamburg, Department of Developmental Biology, Hamburg, Germany
| |
Collapse
|
13
|
The S. pombe CDK5 Orthologue Pef1 Cooperates with Three Cyclins, Clg1, Pas1 and Psl1, to Promote Pre-Meiotic DNA Replication. Biomolecules 2021; 11:biom11010089. [PMID: 33445784 PMCID: PMC7828282 DOI: 10.3390/biom11010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Meiosis is a specialized cell division process that mediates genetic information transfer to the next generation. Meiotic chromosomal segregation occurs when DNA replication is completed during the pre-meiotic S phase. Here, we show that Schizosaccharomyces pombe Pef1, an orthologue of mammalian cyclin-dependent kinase 5 (CDK5), is required to promote pre-meiotic DNA replication. We examined the efficiency of meiotic initiation using pat1-114 mutants and found that, meiotic nuclear divisions did not occur in the pef1Δ pat1-114 strain. Deletion of pef1 also suppressed the expression of DNA replication factors and the phosphorylation of Cdc2 Tyr-15. The double deletion of clg1 and psl1 arrested meiotic initiation in pat1-114 mutant cells, similar to that of pef1-deficient cells. Meiotic progression was also slightly delayed in the pas1-deficient strain. Our results reveal that Pef1 regulates cyclin-coordinated meiotic progression.
Collapse
|
14
|
Vještica A, Bérard M, Liu G, Merlini L, Nkosi PJ, Martin SG. Cell cycle-dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance. PLoS Biol 2021; 19:e3001067. [PMID: 33406066 PMCID: PMC7815208 DOI: 10.1371/journal.pbio.3001067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/19/2021] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating. During sexual reproduction, fertilization must happen between exactly two gametes to ensure genome stability. This study shows that two mechanisms – establishment of zygotic fate and re-entry to the cell cycle – combine to prevent fission yeast zygotes fusing with further gametes.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| |
Collapse
|
15
|
Modeling the Control of Meiotic Cell Divisions: Entry, Progression, and Exit. Biophys J 2020; 119:1015-1024. [PMID: 32783879 DOI: 10.1016/j.bpj.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Upon nitrogen starvation, Schizosaccharomyces pombe exit the mitotic cell cycle and become irreversibly committed to the completion of meiosis program. Meiotic cell divisions are coordinated with sporulation events to produce haploid spores. In the last few decades, experiments on fission yeast have revealed different molecular players involved in two meiotic cell divisions, meiosis I (MI) and meiosis II (MII). How the MI entry, MI-to-MII transition, and MII exit occur because of the dynamics of the regulatory network is not well understood. In this work, we developed a comprehensive mathematical model of the network that describes the temporal dynamics of meiotic progression. The model accounts for the phenotypes of several experimental data (single and multiple mutations). We demonstrate the control strategy involving multiple feedback loops to yield two successive division cycles. The differential regulation of anaphase-promoting complex/cyclosome (APC/C) coactivators and its inhibitors is crucial for the dynamics of both MI-to-MII transition and MII exit. This model generates mechanistic insights that help in further experiments and modeling.
Collapse
|
16
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
17
|
A processive phosphorylation circuit with multiple kinase inputs and mutually diversional routes controls G1/S decision. Nat Commun 2020; 11:1836. [PMID: 32296067 PMCID: PMC7160111 DOI: 10.1038/s41467-020-15685-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Studies on multisite phosphorylation networks of cyclin-dependent kinase (CDK) targets have opened a new level of signaling complexity by revealing signal processing routes encoded into disordered proteins. A model target, the CDK inhibitor Sic1, contains linear phosphorylation motifs, docking sites, and phosphodegrons to empower an N-to-C terminally directed phosphorylation process. Here, we uncover a signal processing mechanism involving multi-step competition between mutually diversional phosphorylation routes within the S-CDK-Sic1 inhibitory complex. Intracomplex phosphorylation plays a direct role in controlling Sic1 degradation, and provides a mechanism to sequentially integrate both the G1- and S-CDK activities while keeping S-CDK inhibited towards other targets. The competing phosphorylation routes prevent premature Sic1 degradation and demonstrate how integration of MAPK from the pheromone pathway allows one to tune the competition of alternative phosphorylation paths. The mutually diversional phosphorylation circuits may be a general way for processing multiple kinase signals to coordinate cellular decisions in eukaryotes. The decision of whether and when a cell divides is tightly controlled. Here, the authors show in yeast that there is a multi-step competition between different phosphorylation states and sites in the S phase CDK-Sic1 complex, which controls Sic1 degradation and coordinates the precise timing of the G1/S transition.
Collapse
|
18
|
Basu S, Roberts EL, Jones AW, Swaffer MP, Snijders AP, Nurse P. The Hydrophobic Patch Directs Cyclin B to Centrosomes to Promote Global CDK Phosphorylation at Mitosis. Curr Biol 2020; 30:883-892.e4. [PMID: 32084401 PMCID: PMC7063568 DOI: 10.1016/j.cub.2019.12.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 11/15/2022]
Abstract
The cyclin-dependent kinases (CDKs) are the major cell-cycle regulators that phosphorylate hundreds of substrates, controlling the onset of S phase and M phase [1, 2, 3]. However, the patterns of substrate phosphorylation increase are not uniform, as different substrates become phosphorylated at different times as cells proceed through the cell cycle [4, 5]. In fission yeast, the correct ordering of CDK substrate phosphorylation can be established by the activity of a single mitotic cyclin-CDK complex [6, 7]. Here, we investigate the substrate-docking region, the hydrophobic patch, on the fission yeast mitotic cyclin Cdc13 as a potential mechanism to correctly order CDK substrate phosphorylation. We show that the hydrophobic patch targets Cdc13 to the yeast centrosome equivalent, the spindle pole body (SPB), and disruption of this motif prevents both centrosomal localization of Cdc13 and the onset of mitosis but does not prevent S phase. CDK phosphorylation in mitosis is compromised for approximately half of all mitotic CDK substrates, with substrates affected generally being those that require the highest levels of CDK activity to become phosphorylated and those that are located at the SPB. Our experiments suggest that the hydrophobic patch of mitotic cyclins contributes to CDK substrate selection by directing the localization of Cdc13-CDK to centrosomes and that this localization of CDK contributes to the CDK substrate phosphorylation necessary to ensure proper entry into mitosis. Finally, we show that mutation of the hydrophobic patch prevents cyclin B1 localization to centrosomes in human cells, suggesting that this mechanism of cyclin-CDK spatial regulation may be conserved across eukaryotes. The hydrophobic patch of human and yeast cyclin B directs it to the centrosome Loss of the yeast cyclin B hydrophobic patch allows S phase but prevents mitosis Compartmentalized mitotic CDK phosphorylation relies on the hydrophobic patch
Collapse
Affiliation(s)
- Souradeep Basu
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Emma L Roberts
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
19
|
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, Stolze SC, Vezon D, Chelysheva L, Orban‐Nemeth Z, Pochon G, Nakagami H, Schlögelhofer P, Grelon M, Schnittger A. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. EMBO J 2020; 39:e101625. [PMID: 31556459 PMCID: PMC6996576 DOI: 10.15252/embj.2019101625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Meiosis is key to sexual reproduction and genetic diversity. Here, we show that the Arabidopsis cyclin-dependent kinase Cdk1/Cdk2 homolog CDKA;1 is an important regulator of meiosis needed for several aspects of meiosis such as chromosome synapsis. We identify the chromosome axis protein ASYNAPTIC 1 (ASY1), the Arabidopsis homolog of Hop1 (homolog pairing 1), essential for synaptonemal complex formation, as a target of CDKA;1. The phosphorylation of ASY1 is required for its recruitment to the chromosome axis via ASYNAPTIC 3 (ASY3), the Arabidopsis reductional division 1 (Red1) homolog, counteracting the disassembly activity of the AAA+ ATPase PACHYTENE CHECKPOINT 2 (PCH2). Furthermore, we have identified the closure motif in ASY1, typical for HORMA domain proteins, and provide evidence that the phosphorylation of ASY1 regulates the putative self-polymerization of ASY1 along the chromosome axis. Hence, the phosphorylation of ASY1 by CDKA;1 appears to be a two-pronged mechanism to initiate chromosome axis formation in meiosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Kostika Sofroni
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Erik Wijnker
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Yuki Hamamura
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Lena Carstens
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
- Present address:
Plant Developmental Biology & Plant PhysiologyKiel UniversityKielGermany
| | - Hirofumi Harashima
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Present address:
Solution Research LaboratoryAS ONE CorporationKawasakiku, KawasakiJapan
| | | | - Daniel Vezon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Liudmila Chelysheva
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Zsuzsanna Orban‐Nemeth
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
- Present address:
Institute of Molecular PathologyVienna BiocenterViennaAustria
| | - Gaëtan Pochon
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | | | - Peter Schlögelhofer
- Department of Chromosome BiologyMax F. Perutz LaboratoriesVienna BiocenterUniversity of ViennaViennaAustria
| | - Mathilde Grelon
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
20
|
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. Quantitative Phosphoproteomics Reveals the Signaling Dynamics of Cell-Cycle Kinases in the Fission Yeast Schizosaccharomyces pombe. Cell Rep 2019; 24:503-514. [PMID: 29996109 PMCID: PMC6057490 DOI: 10.1016/j.celrep.2018.06.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple protein kinases regulate cell-cycle progression, of which the cyclin-dependent kinases (CDKs) are thought to act as upstream master regulators. We have used quantitative phosphoproteomics to analyze the fission yeast cell cycle at sufficiently high temporal resolution to distinguish fine-grain differences in substrate phosphorylation dynamics on a proteome-wide scale. This dataset provides a useful resource for investigating the regulatory dynamics of cell-cycle kinases and their substrates. For example, our analysis indicates that the substrates of different mitotic kinases (CDK, NIMA-related, Polo-like, and Aurora) are phosphorylated in sequential, kinase-specific waves during mitosis. Phosphoproteomics analysis after chemical-genetic manipulation of CDK activity suggests that the timing of these waves is established by the differential dependency of the downstream kinases on upstream CDK. We have also examined the temporal organization of phosphorylation during G1/S, as well as the coordination between the NDR-related kinase Orb6, which controls polarized growth, and other cell-cycle kinases. Global analysis of phosphorylation dynamics during the fission yeast cell cycle Reveals kinase-specific waves of phosphorylation throughout interphase and mitosis Mitotic kinases show significantly different dependencies on upstream CDK activity Kinases directly downstream of CDK mediate earlier waves of mitotic phosphorylation
Collapse
Affiliation(s)
- Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
21
|
Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S, Pelletier JF, Ehrlich C, Lew DJ, Field CM, Gladfelter AS. Unconventional Cell Division Cycles from Marine-Derived Yeasts. Curr Biol 2019; 29:3439-3456.e5. [PMID: 31607535 PMCID: PMC7076734 DOI: 10.1016/j.cub.2019.08.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.
Collapse
Affiliation(s)
- Lorna M Y Mitchison-Field
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA
| | - José M Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin M Stormo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Van Dierdonck
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - James F Pelletier
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ehrlich
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Christine M Field
- Marine Biological Laboratory, Woods Hole, MA 02354, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA.
| |
Collapse
|
22
|
Bouftas N, Wassmann K. Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle 2019; 18:1537-1548. [PMID: 31208271 PMCID: PMC6619999 DOI: 10.1080/15384101.2019.1632139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
B-type cyclins in association with Cdk1 mediate key steps of mitosis and meiosis, by phosphorylating a plethora of substrates. Progression through the meiotic cell cycle requires the execution of two cell divisions named meiosis I and II without intervening S-phase, to obtain haploid gametes. These two divisions are highly asymmetric in the large oocyte. Chromosome segregation in meiosis I and sister chromatid segregation in meiosis II requires the sharp, switch-like inactivation of Cdk1 activity, which is brought about by degradation of B-type cyclins and counteracting phosphatases. Importantly and contrary to mitosis, inactivation of Cdk1 must not allow S-phase to take place at exit from meiosis I. Here, we describe recent studies on the regulation of translation and degradation of B-type cyclins in mouse oocytes, and how far their roles are redundant or specific, with a special focus on the recently discovered oocyte-specific role of cyclin B3.
Collapse
Affiliation(s)
- Nora Bouftas
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Nurse P, Hayles J. Using genetics to understand biology. Heredity (Edinb) 2019; 123:4-13. [PMID: 31189902 PMCID: PMC6781147 DOI: 10.1038/s41437-019-0209-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Paul Nurse
- The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK
| | | |
Collapse
|
24
|
Patterson JO, Rees P, Nurse P. Noisy Cell-Size-Correlated Expression of Cyclin B Drives Probabilistic Cell-Size Homeostasis in Fission Yeast. Curr Biol 2019; 29:1379-1386.e4. [PMID: 30955932 PMCID: PMC6488275 DOI: 10.1016/j.cub.2019.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
How cells correct deviations from a mean cell size at mitosis remains uncertain. Classical cell-size homeostasis models are the sizer, timer, and adder [1]. Sizers postulate that cells divide at some threshold size; timers, that cells grow for a set time; and adders, that cells add a constant volume before division. Here, we show that a size-based probabilistic model of cell-size control at the G2/M transition (P(Div)) can generate realistic cell-size homeostasis in silico. In fission yeast cells, Cyclin BCdc13 scales with size, and we propose that this increases the likelihood of mitotic entry, while molecular noise in its expression adds a probabilistic component to the model. Varying Cdc13 expression levels exogenously using a newly developed tetracycline inducible promoter shows that both the level and variability of its expression influence cell size at division. Our results demonstrate that as cells grow larger, their probability of dividing increases, and this is sufficient to generate cell-size homeostasis. Size-correlated Cdc13 expression forms part of the molecular circuitry of this system. A size-correlated division probability can generate cell-size homeostasis Cyclin B concentration scales noisily with size in fission yeast Cells with stochastically suprathreshold cyclin B are the ones that divide A new tetracycline inducible promoter with linear dose response is developed
Collapse
Affiliation(s)
- James O Patterson
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK.
| | - Paul Rees
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK; Imaging Platform, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1ST, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
25
|
Norris V. Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life (Basel) 2019; 9:E27. [PMID: 30866455 PMCID: PMC6462897 DOI: 10.3390/life9010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or "paradigm quakes" on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
26
|
CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genet 2019; 15:e1007876. [PMID: 30640914 PMCID: PMC6331086 DOI: 10.1371/journal.pgen.1007876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
CDKs (cyclin-dependent kinases) associate with different cyclins to form different CDK-complexes that are fundamental for an ordered cell cycle progression, and the coordination of this progression with different aspects of the cellular physiology. During meiosis programmed DNA double-strand breaks (DSBs) initiate recombination that in addition to generating genetic variability are essential for the reductional chromosome segregation during the first meiotic division, and therefore for genome stability and viability of the gametes. However, how meiotic progression and DSB formation are coordinated, and the role CDKs have in the process, is not well understood. We have used single and double cyclin deletion mutants, and chemical inhibition of global CDK activity using the cdc2-asM17 allele, to address the requirement of CDK activity for DSB formation and recombination in fission yeast. We report that several cyclins (Cig1, Cig2, and the meiosis-specific Crs1) control DSB formation and recombination, with a major contribution of Crs1. Moreover, complementation analysis indicates specificity at least for this cyclin, suggesting that different CDK complexes might act in different pathways to promote recombination. Down-regulation of CDK activity impinges on the formation of linear elements (LinEs, protein complexes required for break formation at most DSB hotspot sites). This defect correlates with a reduction in the capability of one structural component (Rec25) to bind chromatin, suggesting a molecular mechanism by which CDK controls break formation. However, reduction in DSB formation in cyclin deletion mutants does not always correspondingly correlate with a proportional reduction in meiotic recombination (crossovers), suggesting that specific CDK complexes might also control downstream events balancing repair pathways. Therefore, our work points to CDK regulation of DSB formation as a key conserved feature in the initiation of meiotic recombination, in addition to provide a view of possible roles CDK might have in other steps of the recombination process. Meiotic division is a cell division process where a single round of DNA replication is followed by two sequential chromosome segregations, the first reductional (homologous chromosomes separate) and the second equational (sister chromatids segregate). As a consequence diploid organisms halve ploidy, producing haploid gametes that after fertilization generate a new diploid organism with a complete chromosome complement. At early stages of meiosis physical exchange between homologous chromosomes ensures the accurate following reductional segregation. Physical exchange is provided by recombination that initiates with highly-controlled self-inflicted DNA damage (DSBs, double strand breaks). We have found that the conserved CDK (cyclin-dependent kinase) activity controls DSB formation in fission yeast. Available data were uncertain about the conservation of CDK in the process, and thus our work points to a broad evolutionary conservation of this regulation. Regulation is exerted at least by controlling chromatin-binding of one structural component of linear elements, a protein complex related to the synaptonemal complex and required for high levels of DSBs. Correspondingly, depletion of CDK activity impairs formation of these structures. In addition, CDK might control homeostatic mechanisms, critical to maintain efficient levels of recombination across the genome and, therefore, high rates of genetic exchange between parental chromosomes.
Collapse
|
27
|
Hayles J, Nurse P. Introduction to Fission Yeast as a Model System. Cold Spring Harb Protoc 2018; 2018:pdb.top079749. [PMID: 28733415 DOI: 10.1101/pdb.top079749] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we briefly outline the history of fission yeast, its life cycle, and aspects of its biology that make it a useful model organism for studying problems of eukaryotic molecular and cell biology.
Collapse
Affiliation(s)
- Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
28
|
The telomere bouquet facilitates meiotic prophase progression and exit in fission yeast. Cell Discov 2017; 3:17041. [PMID: 29123917 PMCID: PMC5674143 DOI: 10.1038/celldisc.2017.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/28/2017] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosome arrangement and oscillation promote the pairing of homologous chromosomes for meiotic recombination. This dramatic movement involves clustering of telomeres at the nuclear membrane to form the so-called telomere bouquet. In fission yeast, the telomere bouquet is formed near the spindle pole body (SPB), which is the microtubule organising centre, functionally equivalent to the metazoan centrosome. Disruption of bouquet configuration impedes homologous chromosome pairing, meiotic recombination and spindle formation. Here, we demonstrate that the bouquet is maintained throughout meiotic prophase and promotes timely prophase exit in fission yeast. Persistent DNA damages, induced during meiotic recombination, activate the Rad3 and Chk1 DNA damage checkpoint kinases and extend the bouquet stage beyond the chromosome oscillation period. The auxin-inducible degron system demonstrated that premature termination of the bouquet stage leads to severe extension of prophase and consequently spindle formation defects. However, this delayed exit from meiotic prophase was not caused by residual DNA damage. Rather, loss of chromosome contact with the SPB caused delayed accumulation of CDK1-cyclin B at the SPB, which correlated with impaired SPB separation. In the absence of the bouquet, CDK1-cyclin B localised near the telomeres but not at the SPB at the later stage of meiotic prophase. Thus, bouquet configuration is maintained throughout meiotic prophase, by which this spatial organisation may facilitate local and timely activation of CDK1 near the SPB. Our findings illustrate that chromosome contact with the nuclear membrane synchronises meiotic progression of the nucleoplasmic chromosomes with that of the cytoplasmic SPB.
Collapse
|
29
|
Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters. Biochem Soc Trans 2017; 45:635-652. [PMID: 28620026 DOI: 10.1042/bst20160281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
We present a systems biology view on pseudoenzymes that acknowledges that genes are not selfish: the genome is. With network function as the selectable unit, there has been an evolutionary bonus for recombination of functions of and within proteins. Many proteins house a functionality by which they 'read' the cell's state, and one by which they 'write' and thereby change that state. Should the writer domain lose its cognate function, a 'pseudoenzyme' or 'pseudosignaler' arises. GlnK involved in Escherichia coli ammonia assimilation may well be a pseudosignaler, associating 'reading' the nitrogen state of the cell to 'writing' the ammonium uptake activity. We identify functional pseudosignalers in the cyclin-dependent kinase complexes regulating cell-cycle progression. For the mitogen-activated protein kinase pathway, we illustrate how a 'dead' pseudosignaler could produce potentially selectable functionalities. Four billion years ago, bioenergetics may have shuffled 'electron-writers', producing various networks that all served the same function of anaerobic ATP synthesis and carbon assimilation from hydrogen and carbon dioxide, but at different ATP/acetate ratios. This would have enabled organisms to deal with variable challenges of energy need and substrate supply. The same principle might enable 'gear-shifting' in real time, by dynamically generating different pseudo-redox enzymes, reshuffling their coenzymes, and rerouting network fluxes. Non-stationary pH gradients in thermal vents together with similar such shuffling mechanisms may have produced a first selectable proton-motivated pyrophosphate synthase and subsequent ATP synthase. A combination of functionalities into enzymes, signalers, and the pseudo-versions thereof may offer fitness in terms of plasticity, both in real time and in evolution.
Collapse
|
30
|
Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities. Genes (Basel) 2017; 8:genes8030105. [PMID: 28335524 PMCID: PMC5368709 DOI: 10.3390/genes8030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Collapse
|
31
|
Li GL, Qian H. Transcriptome using Illumina sequencing reveals the traits of spermatogenesis and developing testes in Eriocheir sinensis. PLoS One 2017; 12:e0172478. [PMID: 28212420 PMCID: PMC5315355 DOI: 10.1371/journal.pone.0172478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/05/2017] [Indexed: 11/19/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) has the spermatozoa with typical aflagellate, decondensed chromatin, cup-shaped nuclei, and radial arms. However, the mechanism of spermatogenesis during which the specific spermatozoa are generated in this species is yet unclear. Here, the transcriptome of developing testis in E. sinensis was analyzed using the ways of RNA-seq and bioinformatics analysis to identify candidate genes potentially involved in development of testis and spermatogenesis. The Illumina HiSeq2500 sequencing of three replicons of samples produced a total of 145.19 M clean reads representing with a total of 21.34 Gb bases and 45.48% GC content. 56.30% clean reads were mapped to the draft genome of E. sinensis. The assembly of the transcriptome yielded contigs of 5691802 sequences and unigenes of 406527 sequences. Total 24246 and 40793 transcripts were annotated using Swissprot and Nr database, respectively. There were 48213 (70.31%) and 7858 (46.25%) transcripts with identity of more than 99 matching to mature testis unigenes in the databases of Nr and EST, respectively. The analytic results of KOG, GO and KEGG showed wide potential molecular functions of transcripts in the developing testes. KEGG analysis of unigenes yielded total 9422 predicted genes. Those predicted genes were involved in total 216 KEGG pathways related to the physiological activities of developing testis. 1975 predicted genes were involved in cellular and subcellular structural alteration of male germ cells. There were important roles of some pathways in the processes of morphological and structural biogenesis pertaining to testis development and spermatogenesis. Other 583 unigenes encoding the genetic and epigenetic factors also be found, which might contribute to the decondensation and stability of decondensed nuclei in the spermatozoa. These predicted events provide a view of the potential molecular mechanisms of development of testis and spermatogenesis in E. sinensis.
Collapse
Affiliation(s)
- Gen-Liang Li
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hui Qian
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
32
|
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. CDK Substrate Phosphorylation and Ordering the Cell Cycle. Cell 2016; 167:1750-1761.e16. [PMID: 27984725 PMCID: PMC5161751 DOI: 10.1016/j.cell.2016.11.034] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/14/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023]
Abstract
S phase and mitotic onset are brought about by the action of multiple different cyclin-CDK complexes. However, it has been suggested that changes in the total level of CDK kinase activity, rather than substrate specificity, drive the temporal ordering of S phase and mitosis. Here, we present a phosphoproteomics-based systems analysis of CDK substrates in fission yeast and demonstrate that the phosphorylation of different CDK substrates can be temporally ordered during the cell cycle by a single cyclin-CDK. This is achieved by rising CDK activity and the differential sensitivity of substrates to CDK activity over a wide dynamic range. This is combined with rapid phosphorylation turnover to generate clearly resolved substrate-specific activity thresholds, which in turn ensures the appropriate ordering of downstream cell-cycle events. Comparative analysis with wild-type cells expressing multiple cyclin-CDK complexes reveals how cyclin-substrate specificity works alongside activity thresholds to fine-tune the patterns of substrate phosphorylation.
Collapse
Affiliation(s)
- Matthew P Swaffer
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Andrew W Jones
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
33
|
Devic M, Roscoe T. Seed maturation: Simplification of control networks in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:335-346. [PMID: 27717470 DOI: 10.1016/j.plantsci.2016.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/05/2016] [Accepted: 08/21/2016] [Indexed: 05/09/2023]
Abstract
Networks controlling developmental or metabolic processes in plants are often complex as a consequence of the duplication and specialisation of the regulatory genes as well as the numerous levels of transcriptional and post-transcriptional controls added during evolution. Networks serve to accommodate multicellular complexity and increase robustness to environmental changes. Mathematical simplification by regrouping genes or pathways in a limited number of hubs has facilitated the construction of models for complex traits. In a complementary approach, a biological simplification can be achieved by using genetic modification to understand the core and singular ancestral function of the network, which is likely to be more prevalent within the plant kingdom rather than specific to a species. With this viewpoint, we review examples of simplification successfully undertaken in yeast and other organisms. A strategy of progressive complementation of single, double and triple mutants of seed maturation confirmed the fundamental role of the AFL sub-family of B3 transcription factors as master regulators of seed maturation, illustrating that biological simplification of complex networks could be more widely applied in plants. Defining minimal control networks will facilitate evolutionary comparisons of regulatory processes and the identification of an essential gene set for synthetic biology.
Collapse
Affiliation(s)
- Martine Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 3500 CNRS-IRD UMR DIADE, Centre IRD de Montpellier, 911 avenue Agropolis BP64501, 34394, Montpellier, France.
| | - Thomas Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 3500 CNRS-IRD UMR DIADE, Centre IRD de Montpellier, 911 avenue Agropolis BP64501, 34394, Montpellier, France
| |
Collapse
|
34
|
Garg SG, Martin WF. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. Genome Biol Evol 2016; 8:1950-70. [PMID: 27345956 PMCID: PMC5390555 DOI: 10.1093/gbe/evw136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically evolving lineages viable by rescuing the incipient eukaryotic lineage from Muller's ratchet. The origin of mitochondria was, in this view, the decisive incident that precipitated symbiosis-specific cell biological problems, the solutions to which were the salient features that distinguish eukaryotes from prokaryotes: A nuclear membrane, energetically affordable ATP-dependent protein-protein interactions in the cytosol, and a cell cycle involving reduction division and reciprocal recombination (sex).
Collapse
Affiliation(s)
- Sriram G Garg
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|