1
|
Mazza L, Bory A, Luscher A, Kloehn J, Wolfender JL, van Delden C, Köhler T. Multidrug efflux pumps of Pseudomonas aeruginosa show selectivity for their natural substrates. Front Microbiol 2025; 15:1512472. [PMID: 39850140 PMCID: PMC11754269 DOI: 10.3389/fmicb.2024.1512472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Antibiotic-resistant Gram-negative bacteria are an increasing threat to human health. Strategies to restore antibiotic efficacy include targeting multidrug efflux pumps by competitive efflux pump inhibitors. These could be derived from natural substrates of these efflux systems. In this work, we aimed to elucidate the natural substrates of the clinically relevant Mex efflux pumps of Pseudomonas aeruginosa by an untargeted metabolomic approach. We constructed a PA14 mutant, genetically deleted in the major multidrug efflux pumps MexAB-OprM, MexCD-OprJ, MexXY-OprM, and MexEF-OprN and expressed in this mutant each efflux pump individually from an inducible promoter. Comparative analysis of the exo-metabolomes identified 210 features that were more abundant in the supernatant of efflux pump overexpressors compared to the pump-deficient mutant. Most of the identified features were efflux pump specific, while only a few were shared among several Mex pumps. We identified by-products of secondary metabolites as well as signaling molecules. Supernatants of the pump-deficient mutant also showed decreased accumulation of fatty acids, including long chain homoserine lactone quorum sensing molecules. Our data suggests that Mex efflux pumps of P. aeruginosa appear to have dedicated roles in extruding signaling molecules, metabolic by-products, as well as oxidized fatty acids. These findings represent an interesting starting point for the development of competitive efflux pump inhibitors.
Collapse
Affiliation(s)
- Léna Mazza
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bory
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Alexandre Luscher
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thilo Köhler
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Al-Hussainy AF, Kaur I, Kumar A, Chahar M, Saini S, Taher WM, Alwan M, Jawad MJ, Darvishi M, Alsaikhan F. Bile's Hidden Weapon: Modulating the Microbiome and Tumor Microenvironment. Curr Microbiol 2024; 82:25. [PMID: 39614901 DOI: 10.1007/s00284-024-04004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The human gut microbiome is a dynamic and intricate ecosystem, composed of trillions of microorganisms that play a pivotal role in maintaining overall health and well-being. However, the gut microbiome is constantly exposed to various environmental factors, including the bile produced by the liver, which can significantly impact its composition and function. Bile acids, secreted by the liver and stored in the gallbladder, modulate the gut microbiome, influencing its composition and function. This altered microbiome profile can, in turn, impact the tumor microenvironment (TME), promoting an immunosuppressive environment that favors tumor growth and metastasis. Furthermore, changes in the gut microbiome can also influence the production of bile acids and other metabolites that directly affect cancer cells and their behavior. Moreover, bile acids have been shown to shape the microbiome and increase antibiotic resistance, underscoring the need for targeted interventions. This review provides a comprehensive overview of the intricate relationships between bile, the gut microbiome, and the TME, highlighting the mechanisms by which this interplay drives cancer progression and resistance to therapy. Understanding these complex interactions is crucial for developing novel therapeutic strategies that target the gut-bile-TME axis and improve patient outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Bera A, Mukherjee S, Patra N. Exploring transmembrane allostery in the MexB: DB08385 variant as a promising inhibitor-like candidate against Pseudomonas aeruginosa antibiotic resistance: a computational study. Phys Chem Chem Phys 2024; 26:17011-17027. [PMID: 38835320 DOI: 10.1039/d4cp01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pseudomonas aeruginosa, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.
Collapse
Affiliation(s)
- Abhishek Bera
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad-826004, India.
| | - Shreya Mukherjee
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad-826004, India.
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
5
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Martin-Loeches I, Bruno CJ, DeRyke CA. Perspectives on the use of ceftolozane/tazobactam: a review of clinical trial data and real-world evidence. Future Microbiol 2024; 19:465-480. [PMID: 38252038 PMCID: PMC11216532 DOI: 10.2217/fmb-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) are common healthcare-associated infections linked to high morbidity and mortality. Gram-negative pathogens, such as Pseudomonas aeruginosa, exhibit multidrug resistance and are recognized as major public health concerns, particularly among critically ill patients with HABP/VABP. Ceftolozane/tazobactam is a novel combination antibacterial agent comprising ceftolozane (a potent antipseudomonal cephalosporin) and tazobactam (a β-lactamase inhibitor). Phase III trials have demonstrated non-inferiority of ceftolozane/tazobactam to comparators, leading to the approval of ceftolozane/tazobactam for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and nosocomial pneumonia. In this article, we review the clinical trial evidence and key real-world effectiveness data of ceftolozane/tazobactam for the treatment of serious healthcare-associated Gram-negative infections, focusing on patients with HABP/VABP.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, D08 NHY1, Ireland
| | | | | |
Collapse
|
7
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Sun S, Wang M, Xiang J, Shao Y, Li L, Sedjoah RCAA, Wu G, Zhou J, Xin Z. BON domain-containing protein-mediated co-selection of antibiotic and heavy metal resistance in bacteria. Int J Biol Macromol 2023; 238:124062. [PMID: 36933600 DOI: 10.1016/j.ijbiomac.2023.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The widespread antibiotic resistance of bacteria has become one of the most severe threats to public health. However, the mechanisms that allow microbial acquisition of resistance are still poorly understood. In the present study, a novel BON domain-containing protein was heterologously expressed in Escherichia coli. It functions as an efflux pump-like to confer resistance to various antibiotics, especially for ceftazidime, with a >32-fold increase in minimum inhibitory concentration (MIC). The fluorescence spectroscopy experiment indicated that BON protein could interact with several metal ions, such as copper and silver, which has been associated with the induced co-regulation of antibiotic and heavy metal resistance in bacteria. Furthermore, the BON protein was demonstrated to spontaneously self-assemble into a trimer and generate a central pore-like architecture for antibiotic transporting. A WXG motif as a molecular switch is essential for forming the transmembrane oligomeric pores and controls the interaction between BON protein and cell membrane. Based on these findings, a mechanism termed "one-in, one-out", was proposed for the first time. The present study provides new insights into the structure and function of BON protein and a previously unidentified antibiotic resistance mechanism, filling the knowledge gap in understanding BON protein-mediated intrinsic antibiotic resistance.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiahui Xiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
9
|
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist‐Petersson K, Meloni G, Missel JW, Gourdon P. PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Sci 2022; 31:e4364. [PMID: 35762724 PMCID: PMC9210255 DOI: 10.1002/pro.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 01/17/2023]
Abstract
Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical β-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Niloofar Nayeri
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Kamil Górecki
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Eva Ramos Becares
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kaituo Wang
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Sameera S. Abeyrathna
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Pontus Gourdon
- Department of Experimental Medical ScienceLund UniversityLundSweden
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Wang J, Sun X, Xie Y, Long Y, Chen H, He X, Zou T, Mao ZW, Xia W. Identification of an Au(I) N-Heterocyclic Carbene Compound as a Bactericidal Agent Against Pseudomonas aeruginosa. Front Chem 2022; 10:895159. [PMID: 35572114 PMCID: PMC9096233 DOI: 10.3389/fchem.2022.895159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial resistance to antibiotics. We herein identify a gold(I) N-heterocyclic carbene compound as a highly potent antibacterial agent towards P. aeruginosa. The compound significantly attenuates P. aeruginosa virulence and leads to low tendency to develop bacterial resistance. The antibacterial mechanism studies show that the compound abrogates bacterial membrane integrity, exhibiting a high bactericidal activity toward P. aeruginosa. The relatively low cytotoxic compound has excellent therapeutic effects on both the eukaryotic cell co-culture and murine wound infection experiments, suggesting its potential application as a bactericidal agent to combat P. aeruginosa infection.
Collapse
Affiliation(s)
- Jinhui Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanxuan Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yan Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huowen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun He
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Taotao Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zong-Wan Mao
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Wei Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Cacciotto P, Basciu A, Oliva F, Malloci G, Zacharias M, Ruggerone P, Vargiu AV. Molecular rationale for the impairment of the MexAB-OprM efflux pump by a single mutation in MexA. Comput Struct Biotechnol J 2021; 20:252-260. [PMID: 35024097 PMCID: PMC8717590 DOI: 10.1016/j.csbj.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Efflux pumps of the Resistance-Nodulation-cell Division (RND) superfamily contribute to intrinsic and acquired resistance in Gram-negative pathogens by expelling chemically unrelated antibiotics with high efficiency. They are tripartite systems constituted by an inner-membrane-anchored transporter, an outer membrane factor protein, and a membrane fusion protein. Multimerization of the membrane fusion protein is an essential prerequisite for full functionality of these efflux pumps. In this work, we employed complementary computational techniques to investigate the stability of a dimeric unit of MexA (the membrane fusion protein of the MexAB-OprM RND efflux pump of Pseudomonas aeruginosa), and to provide a molecular rationale for the effect of the G72S substitution, which affects MexAB-OprM functionality by impairing the assembly of MexA. Our findings indicate that: i) dimers of this protein are stable in multiple µs-long molecular dynamics simulations; ii) the mutation drastically alters the conformational equilibrium of MexA, favouring a collapsed conformation that is unlikely to form dimers or higher order assemblies. Unveiling the mechanistic aspects underlying large conformational distortions induced by minor sequence changes is informative to efforts at interfering with the activity of this elusive bacterial weapon. In this respect, our work further confirms how molecular simulations can give important contribution and useful insights to characterize the mechanism of highly complex biological systems.
Collapse
Affiliation(s)
- Pierpaolo Cacciotto
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Andrea Basciu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Francesco Oliva
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Attilio V Vargiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| |
Collapse
|
12
|
Tang Y, Liang Z, Li G, Zhao H, An T. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. CHEMOSPHERE 2021; 283:131224. [PMID: 34153911 DOI: 10.1016/j.chemosphere.2021.131224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The aquatic environment may represent an essential route for transmission of antibiotic resistance to opportunistic human pathogens. Since industrial wastewater is discharged into the river after treatment, understanding the distribution of antibiotic resistance genes (ARGs) in river systems and the possibility of pathogens acquiring antibiotic resistance are challenges with far-reaching significance. This work mainly studied distribution profiles of pathogens and ARGs, and compared their health risk in various industrial wastewater with that of river water. Results showed that 166 pathogens were concurrently shared by the six water samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant, followed by Fusarium graminearum and Magnaporthe oryzae. The similar composition of the pathogens suggests that pathogens in river water may mainly come from sewage discharge of slaughterhouses and that changes in water quality contribute significantly to the prevalence of these pathogens. Of the 57 ARG types detected, bacitracin was the most abundant, followed by sulfonamide, chloramphenicol, tetracycline, and aminoglycoside. Strikingly, the wastewater from a pharmaceutical factory producing Chinese medicine was also rich in bacA, sul1, mexW, mexB, mexF and oprn. It can be seen from the co-occurrence patterns that pathogens and the main ARGs have strong co-occurrence. Higher abundance of offensive virulence factors in industrial wastewater and their strong correlation with pathogens containing ARGs suggest higher microbiological risk. These findings highlight the need to assess ARG acquisition by pathogens in the surface water of human-impacted environments where pathogens and ARGs may co-thrive.
Collapse
Affiliation(s)
- Yao Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huijun Zhao
- Griffith University, Griffith School Environment, Gold Coast Campus, Southport, Qld, 4222, Australia
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
MexAB-OprM Efflux Pump Interaction with the Peptidoglycan of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22105328. [PMID: 34070225 PMCID: PMC8158685 DOI: 10.3390/ijms22105328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.
Collapse
|
14
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
16
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
17
|
Souabni H, Batista Dos Santos W, Cece Q, Catoire LJ, Puvanendran D, Bavro VN, Picard M. Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism. Commun Biol 2021; 4:493. [PMID: 33888866 PMCID: PMC8062640 DOI: 10.1038/s42003-021-01997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Tripartite efflux pumps built around ATP-binding cassette (ABC) transporters are membrane protein machineries that perform vectorial export of a large variety of drugs and virulence factors from Gram negative bacteria, using ATP-hydrolysis as energy source. Determining the number of ATP molecules consumed per transport cycle is essential to understanding the efficiency of substrate transport. Using a reconstituted pump in a membrane mimic environment, we show that MacAB-TolC from Escherichia coli couples substrate transport to ATP-hydrolysis with high efficiency. Contrary to the predictions of the currently prevailing "molecular bellows" model of MacB-operation, which assigns the power stroke to the ATP-binding by the nucleotide binding domains of the transporter, by utilizing a novel assay, we report clear synchronization of the substrate transfer with ATP-hydrolysis, suggesting that at least some of the power stroke for the substrate efflux is provided by ATP-hydrolysis. Our findings narrow down the window for energy consumption step that results in substrate transition into the TolC-channel, expanding the current understanding of the efflux cycle of the MacB-based tripartite assemblies. Based on that we propose a modified model of the MacB cycle within the context of tripartite complex assembly.
Collapse
Affiliation(s)
- Hager Souabni
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - William Batista Dos Santos
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Quentin Cece
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Dhenesh Puvanendran
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Martin Picard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France.
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
18
|
Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat Commun 2020; 11:4948. [PMID: 33009415 PMCID: PMC7532149 DOI: 10.1038/s41467-020-18770-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
The tripartite multidrug efflux system MexAB-OprM is a major actor in Pseudomonas aeruginosa antibiotic resistance by exporting a large variety of antimicrobial compounds. Crystal structures of MexB and of its Escherichia coli homolog AcrB had revealed asymmetric trimers depicting a directional drug pathway by a conformational interconversion (from Loose and Tight binding pockets to Open gate (LTO) for drug exit). It remains unclear how MexB acquires its LTO form. Here by performing functional and cryo-EM structural investigations of MexB at various stages of the assembly process, we unveil that MexB inserted in lipid membrane is not set for active transport because it displays an inactive LTC form with a Closed exit gate. In the tripartite complex, OprM and MexA form a corset-like platform that converts MexB into the active form. Our findings shed new light on the resistance nodulation cell division (RND) cognate partners which act as allosteric factors eliciting the functional drug extrusion.
Collapse
|
19
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
20
|
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2019; 1459:38-68. [PMID: 31588569 DOI: 10.1111/nyas.14239] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.
Collapse
Affiliation(s)
- Jessica Kobylka
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes. J Mol Biol 2019; 431:3531-3546. [DOI: 10.1016/j.jmb.2019.03.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
22
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
23
|
Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, Nakagawa A, Yamashita E. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun 2019; 10:1520. [PMID: 30944318 PMCID: PMC6447562 DOI: 10.1038/s41467-019-09463-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
In Pseudomonas aeruginosa, MexAB–OprM plays a central role in multidrug resistance by ejecting various drug compounds, which is one of the causes of serious nosocomial infections. Although the structures of the components of MexAB–OprM have been solved individually by X-ray crystallography, no structural information for fully assembled pumps from P. aeruginosa were previously available. In this study, we present the structure of wild-type MexAB–OprM in the presence or absence of drugs at near-atomic resolution. The structure reveals that OprM does not interact with MexB directly, and that it opens its periplasmic gate by forming a complex. Furthermore, we confirm the residues essential for complex formation and observed a movement of the drug entrance gate. Based on these results, we propose mechanisms for complex formation and drug efflux. In Pseudomonas aeruginosa, MexAB–OprM plays a central role in multidrug resistance by ejecting various drug compounds. Here the authors present the structure of wild-type MexAB–OprM in the presence or absence of drugs and propose mechanisms for complex formation and drug efflux.
Collapse
Affiliation(s)
- Kenta Tsutsumi
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Ryo Yonehara
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shintaro Maeda
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.,The Scripps Research Institute Department of Integrative Structural and Computational Biology, North Torrey Pines Road, La Jolla, CA, 10550, USA
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.,University of Tsukuba Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
24
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Titrating Levels of TolC in E. coli: A Sensitive Approach to Quantifying Efflux. ACS Infect Dis 2019; 5:49-54. [PMID: 30489063 DOI: 10.1021/acsinfecdis.8b00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The susceptibility of small molecules to Gram-negative bacterial efflux is typically evaluated using an antibacterial activity-based efflux ratio, which is computed as the ratio of the antibacterial activity for a wild-type strain and its isogenic efflux mutant (typically lacking genes encoding major efflux pumps). The magnitude of the ratio is often used as an efflux index. However, early in drug discovery, hits with suboptimal physicochemical properties often lack whole cell inhibition against wild-type strains, which makes efflux ratios indeterminable. To address this gap, we developed an assay to titrate levels of total efflux by varying the TolC expression using an arabinose-inducible promoter (pBAD) in an Escherichia coli Δ tolC strain. We provide a proof of concept for the assay using sets of related compounds from two antibiotic classes and show that the TolC titration provides a sensitive method for rank ordering compounds with respect to their efflux susceptibility.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Samir H. Moussa
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ruben Tommasi
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
25
|
Masi M, Dumont E, Vergalli J, Pajovic J, Réfrégiers M, Pagès JM. Fluorescence enlightens RND pump activity and the intrabacterial concentration of antibiotics. Res Microbiol 2018; 169:432-441. [DOI: 10.1016/j.resmic.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 02/01/2023]
|
26
|
Puvanendran D, Cece Q, Picard M. Reconstitution of the activity of RND efflux pumps: a “bottom-up” approach. Res Microbiol 2018; 169:442-449. [DOI: 10.1016/j.resmic.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/11/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
|
27
|
Vargiu AV, Ramaswamy VK, Malvacio I, Malloci G, Kleinekathöfer U, Ruggerone P. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim Biophys Acta Gen Subj 2018; 1862:836-845. [PMID: 29339082 DOI: 10.1016/j.bbagen.2018.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 01/11/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. METHODS A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. RESULTS We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. CONCLUSIONS Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. GENERAL SIGNIFICANCE We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps.
Collapse
Affiliation(s)
- Attilio Vittorio Vargiu
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato (CA), Italy.
| | - Venkata Krishnan Ramaswamy
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Ivana Malvacio
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| | - Ulrich Kleinekathöfer
- Department of Physics & Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato (CA), Italy
| |
Collapse
|
28
|
Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters. Methods Mol Biol 2018; 1700:113-145. [PMID: 29177829 DOI: 10.1007/978-1-4939-7454-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Efflux pumps are the major determinants in bacterial multidrug resistance. In Gram-negative bacteria, efflux transporters are organized as macromolecular tripartite machineries that span the two-membrane cell envelope of the bacterium. Biochemical data on purified proteins are essential to draw a mechanistic picture of this highly dynamical, multicomponent, efflux system. We describe protocols for the reconstitution and the in vitro study of transporters belonging to RND and ABC superfamilies: the AcrAB-TolC and MacAB-TolC efflux systems from Escherichia coli and the MexAB-OprM efflux pump from Pseudomonas aeruginosa.
Collapse
|
29
|
Pagès JM. [Antibiotic transport and membrane permeability: new insights to fight bacterial resistance]. Biol Aujourdhui 2017; 211:149-154. [PMID: 29236663 DOI: 10.1051/jbio/2017020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/14/2022]
Abstract
A main challenge in medicinal chemistry is to determine the parameters modulating the in cellulo drug concentration needed for a therapeutic action. In Gram-negative antibacterial research, the concern is to evaluate the antibiotic permeation across the outer and inner membranes, that delineate the periplasm surrounding the bacterial cytoplasm. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is the first pivotal step for antibiotics. The research and the development of new antimicrobials mostly rely on their capacity to reach critical concentrations in the vicinity of their intracellular target. Despite several decades of studies focused on antibiotic/drug activity against bacterial cells using different approaches, no consensus regarding the analysis of the kinetics and accumulation in individual bacterium and in bacterial populations is available to understand the drug translocation into living bacteria as a first step of drug action. Our TRANSLOCATION consortium supports the development of reliable and robust methods to quantify penetration and efflux processes in Gram-negative bacteria and recently we have developed a reliable and efficient method to determine the intra-bacterial concentration of fluorescent antibiotics. By using these powerful approaches, new concepts, "Resident Time Concentration Close to Target" (RTC2T) and "Structure Intracellular Concentration Activity Relationship" (SICAR), have been proposed in order to link chemical and structural aspects with the bacterial membrane and transport aspects. Using RTC2T and SICAR indexes, a new dissection of antibiotic translocation-transport can be obtained to better understand and improve the antibiotic pharmacophoric groups that are related to permeation and efflux.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- UMR_MD1, Transporteurs Membranaires, Chimiorésistance et Drug Design, Faculté de Médecine et Faculté de Pharmacie, 27 boulevard Jean-Moulin, 13385 Marseille cedex 05, France
| |
Collapse
|
30
|
Su CC, Yin L, Kumar N, Dai L, Radhakrishnan A, Bolla JR, Lei HT, Chou TH, Delmar JA, Rajashankar KR, Zhang Q, Shin YK, Yu EW. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat Commun 2017; 8:171. [PMID: 28761097 PMCID: PMC5537355 DOI: 10.1038/s41467-017-00217-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A direct observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer. Multidrug efflux pumps significantly contribute for bacteria resistance to antibiotics. Here the authors present the structure of Campylobacter jejuni CmeB pump combined with functional FRET assays to propose a transport mechanism where each CmeB protomers is functionally independent from the trimer.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Linxiang Yin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Lei Dai
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | | | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Kanagalaghatta R Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Bldg. 436E, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Yeon-Kyun Shin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA. .,Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
31
|
Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps. mBio 2017; 8:mBio.00500-17. [PMID: 28743808 PMCID: PMC5527304 DOI: 10.1128/mbio.00500-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H+ accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic “reaccommodation” might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs.
Collapse
|
32
|
Zhong G, Cheng J, Liang ZC, Xu L, Lou W, Bao C, Ong ZY, Dong H, Yang YY, Fan W. Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections. Adv Healthc Mater 2017; 6. [PMID: 28135045 DOI: 10.1002/adhm.201601134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/12/2016] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa is often implicated in burn wound infections; its inherent drug resistance often renders these infections extremely challenging to treat. This is further compounded by the problem of emerging drug resistance and the dearth of novel antimicrobial drug discovery in recent years. In the perennial search for effective antimicrobial compounds, the authors identify short synthetic β-sheet folding peptides, IRIKIRIK (IK8L), IRIkIrIK (IK8-2D), and irikirik (IK8D) as prime candidates owing to their high potency against Gram-negative bacteria. In this study, the peptides are first assayed against 20 clinically isolated multidrug-resistant P. aeruginosa strains in comparison with the conventional antibiotics imipenem and ceftazidime, and IK8L is demonstrated to be the most effective. IK8L also exhibits superior antibacterial killing kinetics compared to imipenem and ceftazidime. From transmission electron microscopy, confocal microscopy, and protein release analyses, IK8L shows membrane-lytic antimicrobial mechanism. Repeated use of IK8L does not induce drug resistance, while the bacteria develop resistance against the antibiotics after several times of treatment at sublethal doses. Analysis of mouse blood serum chemistry reveals that peptide does not induce systemic toxicity. The potential utility of IK8L in the in vivo treatment of P. aeruginosa-infected burn wounds is further demonstrated in a mouse model.
Collapse
Affiliation(s)
- Guansheng Zhong
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Junchi Cheng
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Liang Xu
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Weiyang Lou
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Chang Bao
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Zhan Yuin Ong
- School of Physics and Astronomy and Leeds Institute of Biomedical and Clinical Sciences; University of Leeds; Leeds LS2 9JT UK
| | - Huihui Dong
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Weimin Fan
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| |
Collapse
|
33
|
Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2:17001. [PMID: 28224989 DOI: 10.1038/nmicrobiol.2017.1] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
34
|
Abstract
Membrane protein reconstitution in liposomes is an invaluable technique to study numerous properties of membrane proteins in vitro. Kinetics, substrate specificity, and protein-protein interaction of membrane proteins can be investigated once they are embedded in the liposome bilayer. Both protocols described here aim to investigate the efflux pump MexA-MexB-OprM from Pseudomonas aeruginosa, a proteins complex embedded in both membranes of this Gram-negative bacteria. This tri-partite system, which by-passes the periplams, is involved in antibiotic resistance. First, we describe a protocol to study MexB, the actual transporter, and second we propose an alternate protocol where the tripartite system is investigated as a whole.
Collapse
Affiliation(s)
- Alice Verchère
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie, UMR 8015 Centre National de la Recherche Scientifique, Université Paris Descartes, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Martin Picard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique, FRC 550, Centre National de la Recherche Scientifique, Université Paris 7, 13, rue Pierre-et-Marie-Curie, 75005, Paris, France
| |
Collapse
|
35
|
Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2016; 60:6726-6734. [PMID: 27572404 DOI: 10.1128/aac.00724-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023] Open
Abstract
The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and β-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host.
Collapse
|
36
|
Abstract
Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity.
Collapse
|
37
|
Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies. Antibiotics (Basel) 2015; 4:544-66. [PMID: 27025640 PMCID: PMC4790312 DOI: 10.3390/antibiotics4040544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used extensively during several decades and we are now facing the emergence of multidrug resistant strains. It has become a major public concern, urging the need to discover new strategies to combat them. Among the different ways used by bacteria to resist antibiotics, the active efflux is one of the main mechanisms. In Gram-negative bacteria the efflux pumps are comprised of three components forming a long edifice crossing the complete cell wall from the inside to the outside of the cell. Blocking these pumps would permit the restoration of the effectiveness of the current antibiotherapy which is why it is important to increase our knowledge on the different proteins involved in these complexes. A tremendous number of experiments have been performed on the inner membrane protein AcrB from Escherichia coli and, to a lesser extent, the protein partners forming the AcrAB-TolC pump, but less information is available concerning the efflux pumps from other virulent Gram-negative bacteria. The present review will focus on the OprM outer membrane protein from the MexAB-OprM pump of Pseudomonas aeruginosa, highlighting similarities and differences compare to the archetypal AcrAB-TolC in terms of structure, function, and assembly properties.
Collapse
|
38
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
39
|
Ntsogo Enguéné VY, Verchère A, Phan G, Broutin I, Picard M. Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexB-OprM efflux pump from Pseudomonas aeruginosa. Front Microbiol 2015; 6:541. [PMID: 26082762 PMCID: PMC4451422 DOI: 10.3389/fmicb.2015.00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/16/2015] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps are membrane transporters that actively extrude various substrates, leading to multidrug resistance (MDR). In this study, we have designed a new test that allows investigating the assembly of the MexA-MexB-OprM efflux pump from the Gram negative bacteria Pseudomonas aeruginosa. The method relies on the streptavidin-mediated pull-down of OprM proteoliposomes upon interaction with MexAB proteoliposomes containing a biotin function carried by lipids. We give clear evidence for the importance of MexA in promoting and stabilizing the assembly of the MexAB-OprM complex. In addition, we have investigated the effect of the role of the lipid anchor of MexA as well as the role of the proton motive force on the assembly and disassembly of the efflux pump. The assay presented here allows for an accurate investigation of the assembly with only tens of microgram of protein and could be adapted to 96 wells plates. Hence, this work provides a basis for the medium-high screening of efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Véronique Yvette Ntsogo Enguéné
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Alice Verchère
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| |
Collapse
|