1
|
Gien H, Rouzina I, Morse M, McCauley MJ, Williams MC. Single-molecule measurements of double-stranded DNA condensation. Biophys J 2025; 124:1340-1355. [PMID: 40170351 DOI: 10.1016/j.bpj.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Electrostatically driven double-stranded DNA (dsDNA) condensation is critical in regulating many biological processes, including bacteriophage and virus replication and the packaging of chromosomal DNA in sperm heads. Here, we review single-molecule measurements of dsDNA condensed by cationic proteins, polypeptides, and small multivalent cations. Optical tweezers (OT) measurements of dsDNA collapsed by cationic condensing agents reveal a critical condensing force unique to each condensing agent that is tunable with condensing agent concentration and ionic strength. DNA globules visualized via atomic force microscopy, transmission electron microscopy, and cryoelectron microscopy reveal condensed dsDNA adopting several conformations including highly ordered toroids with a measurable central hole and, more recently, the maximally dense, yarn-ball-like structures observed with dsDNA condensed by the HIV-1 nucleocapsid protein. The combination of these approaches provides multifaceted insight into the shape and size of electrostatically condensed dsDNA globules and the kinetics of their formation and dissolution. We also review the physics of dsDNA condensation, including recent studies that show dsDNA globule size is tunable with ionic strength. Overall, this review provides important insights into understanding dsDNA condensate-regulated biological processes, as well as potential uses for gene delivery.
Collapse
Affiliation(s)
- Helena Gien
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
2
|
Pushkaran AC, Arabi AA. Accurate prediction of DNA-Intercalator binding energies: Ensemble of short or long molecular dynamics simulations? Int J Biol Macromol 2025; 306:141408. [PMID: 39993670 DOI: 10.1016/j.ijbiomac.2025.141408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Despite the wide use of molecular dynamics (MD) simulations for binding energy predictions in biomolecular systems, results from single MD simulations are non-reproducible and often deviate from experimental values, even when longer simulations are used. This study addresses these limitations using ensemble MD simulations for the formation of DNA-intercalator complexes. Twenty-five replicas of short (10 ns) and long (100 ns) MD simulations were performed on different intercalators binding into DNA. The MM/PBSA and MM/GBSA binding energies of the Doxorubicin intercalating into DNA, including entropy and deformation energy corrections, are -7.3 ± 2.0 kcal/mol and -8.9 ± 1.6 kcal/mol, using 25 replicas of 100 ns. These values were closely reproduced even with shorter simulations of 10 ns, where the energies, averaged over 25 replicas, are -7.6 ± 2.4 kcal/mol (MM/PBSA) and -8.3 ± 2.9 kcal/mol (MM/GBSA). In both cases, the energies align well with the experimental range of -7.7 ± 0.3 to -9.9 ± 0.1 kcal/mol. This shows that reproducibility and accuracy of the binding energies depend more on the number of replicas than on the simulation length. The study was repeated for the DNA-Proflavine system, where the corrected MM/PBSA and MM/GBSA binding energies, averaged over 25 replicas of 10 ns each, are -5.6 ± 1.4 and -5.3 ± 2.3 kcal/mol, respectively. These are congruent with the experimental range of -5.9 to -7.1 kcal/mol. Bootstrap analyses revealed that 6 replicas of 100 ns or 8 replicas of 10 ns provide a good balance between computational efficiency and accuracy within 1.0 kcal/mol from experimental values.
Collapse
Affiliation(s)
- Anju Choorakottayil Pushkaran
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates
| | - Alya A Arabi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates.
| |
Collapse
|
3
|
Liu Y, Raymond O, Hodgkiss JM. Exploring Fluorescence Spectral Shifts in Aptamer-Intercalating Cyanine Dye Complexes upon Binding to Specific Small Molecules. ACS Sens 2025; 10:2266-2275. [PMID: 39999296 DOI: 10.1021/acssensors.4c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
DNA intercalating cyanine dyes, such as SYBR Green I (SG) and OliGreen (OG), are widely used in developing label-free, fluorescent aptamer-based biosensors. Despite their widespread use for direct analyte detection through changes in fluorescence intensity, the effects of dye concentrations and the specific nature of their interactions have been inadequately explored. Here, we reported how dye-to-base ratios (dbrs) influence the fluorescent response of DNA intercalating dyes in aptamer systems targeting adenosine triphosphate (ATP) and l-argininamide (LAA). We initially examined the fluorescence spectral shifts of an ATP aptamer (ABA) with SG across varying dbrs, observing an emission shift to longer wavelengths as the dbrs increased. Subsequently, systematic analysis of the ATP aptamer and SG complex (ABA/SG) at different target concentrations revealed a "signal-off" phenomenon at a very low dbr of 0.1, which transitioned to a blue shift in the fluorescence spectra at higher dbr values of 0.7 and 2.0. Further extending our research, we explored the use of OG as a ratiometric probe for detecting l-argininamide, noting similar spectral shifts to shorter wavelengths upon target binding. Absorption spectroscopy, circular dichroism (CD), and meticulously designed control studies were employed to elucidate the spectral shift phenomenon comprehensively. Our findings underscore the significant impact of dye selection and concentration on the performance of fluorescence aptasensors and demonstrate that clear spectral shifts, indicative of target binding, occur upon binding to targets, particularly at higher dye loading; however, excessive dye concentrations can perturb the aptamer structure, reducing its binding affinity. We believe that our findings will provide new insights into designing aptamer-based fluorescence assays for the sensitive and specific detection of small molecules.
Collapse
Affiliation(s)
- Yasmin Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Forensic Research & Development Department, Institute of Environmental Science and Research, PO Box 50348, Porirua 5240, New Zealand
| | - Onyekachi Raymond
- Forensic Research & Development Department, Institute of Environmental Science and Research, PO Box 50348, Porirua 5240, New Zealand
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Xu Y, Chen X, Fan S, Zhang T, Yang B, Li Z, Yamaguchi S, Zhang D. Effect of Molecular Weight of Fluorescent Dyes on DNA Separation by Capillary Electrophoresis. J Fluoresc 2025:10.1007/s10895-025-04239-5. [PMID: 40080297 DOI: 10.1007/s10895-025-04239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Capillary electrophoresis (CE) plays an important role in the quality control of dsDNA. So far, there has been various fluorescent dyes employed for the separation of dsDNA by CE. However, the molecular weight of the dyes may affect the mass to charge ratio of dsDNA-dye complex, consequently the separation performance of dsDNA will be changed. Herein, we systematically compared the fluorescent intensity and migration times when separating the dsDNA fragments labeled or intercalated by different dyes. Results showed that the concentration of SYBR Green I affected the migration times more than Gel Green and EvaGreen, which may be caused by the lower molecular weight of EvaGreen. The optimal concentration for SYBR Green I and Gel Green is 1×, and it is 0.005× for EvaGreen. There is linear relationship between dsDNA concentration (0.1-0.5 ng/µL) and fluorescence intensity when using SYBR Green I or Gel Green for separation. Finally, we have resolved the фX174-Hinc II digest in 0.5% HEC (1300k) containing 1× SYBR within 12 min, even though there is only 6 bp difference for the adjacent dsDNA fragments. Furthermore, we also obtained the virtual dsDNA bands by OpenCV according to the electropherogram.
Collapse
Affiliation(s)
- Yuqing Xu
- Engineering Research Center of Optical Instrument and System, Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China
| | - Xin Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Shuaiqiang Fan
- Engineering Research Center of Optical Instrument and System, Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China
| | - Ting Zhang
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Bo Yang
- Engineering Research Center of Optical Instrument and System, Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China.
| | - Shintaro Yamaguchi
- Graduate School of Engineering, Department of Advanced Engineering, Chemistry and Materials Engineering Program, Nagasaki University, Nagasaki City, 852-8521, Japan
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, No. 516 JunGong Road, Shanghai, 200093, China
| |
Collapse
|
5
|
Almaqwashi AA, McCauley MJ, Andersson J, Rouzina I, Westerlund F, Lincoln P, Williams MC. Binuclear ruthenium complex linker length tunes DNA threading intercalation kinetics. Biophys J 2025; 124:667-676. [PMID: 39797403 PMCID: PMC11900151 DOI: 10.1016/j.bpj.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA basepairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semirigid linker relative to the model complex. Equilibrium results suggest a DNA affinity that is an order of magnitude higher than the parent binuclear ruthenium complex, likely due to a sterically relieved DNA threading intercalation mechanism. Notably, kinetics analysis shows that less DNA elongation is required for threading intercalation compared to the parent complex, and the association rate is two orders of magnitude faster. The ruthenium complex elongates the DNA duplex by ∼0.3 nm per bound ligand to reach the equilibrium intercalated state, with a significantly different energy landscape relative to the parent complex. Mechanical properties of the ligand-saturated DNA duplex show a higher persistence length, indicating that the longer semirigid linker provides enough molecular spacing to allow a single monomer to fully stack with basepairs, comparable to the monomeric parent ruthenium complex. The DNA basepairs in the equilibrium threading intercalated state are likely intact, and the ruthenium complex is shielded from the polar solution, providing measurable single-molecule confocal fluorescence signals. The obtained confocal fluorescence imaging of the bound dye confirms mostly uniform intercalation along the tethered DNA, consistent with other intercalators. The results of this study, along with previously examined ruthenium complex variants, illustrate tunable intercalation mechanisms guided by the rational design of therapeutic and diagnostic small molecules to target and modify the DNA duplex.
Collapse
Affiliation(s)
- Ali A Almaqwashi
- Physics Department, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Johanna Andersson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
6
|
Kaur S, Bran L, Rudakov G, Wang J, Verma MS. Propidium Monoazide is Unreliable for Quantitative Live-Dead Molecular Assays. Anal Chem 2025; 97:2914-2921. [PMID: 39870608 PMCID: PMC11822742 DOI: 10.1021/acs.analchem.4c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing. In these applications, treated samples consist of different amounts of dead bacteria and a range of bacterial strains, variables that can affect the performance of PMA and lead to inconsistent findings across various research studies. To evaluate the effectiveness of PMA, we used a sensitive qPCR assay and post-treatment sample concentration to determine PMA cross-linkage and activity accurately under varying sample conditions. We report that PMA is unreliable for viability assays when the concentration and composition of the bacterial mixtures are unknown. PMA is suitable only for qualitatively assessing viability in samples containing a known number of dead microbes or extracellular DNA.
Collapse
Affiliation(s)
- Simerdeep Kaur
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura Bran
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grigorii Rudakov
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Jiangshan Wang
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohit S. Verma
- Department
of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Centre, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Gao S, Liang J, Tan C, Ma J. An oxygen-scavenging system without impact on DNA mechanical properties in single-molecule fluorescence experiments. NANOSCALE 2025; 17:3236-3242. [PMID: 39633609 DOI: 10.1039/d4nr04287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Oxygen scavenging systems (OSSs) are critical for dye stability in single-molecule fluorescence (SMF) experiments. However, the commonly used protocatechuic acid (PCA)/protocatechuate-3,4-dioxygenase (PCD) OSS alters DNA mechanical properties, limiting its applicability. To address this limitation, we examine the bilirubin oxidase (BOD) OSS, which had not been previously used in single-molecule experiments, alongside the pyranose oxidase and catalase (POC) OSS. Our results revealed that POC OSS affected DNA mechanics in a buffer-dependent manner, while BOD OSS had no discernible effect across all tested buffer conditions. Furthermore, BOD OSS significantly extended the photobleaching lifetimes of Cy3 and Cy5 dyes and caused minimal pH changes compared to PCD OSS. Collectively, these findings highlight the superior performance of BOD OSS, suggesting its potential for widespread application, particularly in experiments combining SMF with single-molecule force spectroscopy (SMFS) measurements.
Collapse
Affiliation(s)
- Shang Gao
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhang O, Lew MD. Single-molecule orientation-localization microscopy: Applications and approaches. Q Rev Biophys 2024; 57:e17. [PMID: 39710866 PMCID: PMC11771422 DOI: 10.1017/s0033583524000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
Collapse
Affiliation(s)
- Oumeng Zhang
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew D. Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Bergamaschi G, Biebricher AS, Witt H, Byfield FJ, Seymonson XMR, Storm C, Janmey PA, Wuite GJL. Heterogeneous force response of chromatin in isolated nuclei. Cell Rep 2024; 43:114852. [PMID: 39412986 DOI: 10.1016/j.celrep.2024.114852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
A quantitative description of nuclear mechanics is crucial for understanding its role in force sensing within eukaryotic cells. Recent studies indicate that the chromatin within the nucleus cannot be treated as a homogeneous material. To elucidate its material properties, we combine optical tweezers manipulation of isolated nuclei with multi-color fluorescence imaging of lamin and chromatin to map the response of nuclei to local deformations. Force spectroscopy reveals nuclear strain stiffening and an exponential force dependence, well described by a hierarchical chain model. Simultaneously, fluorescence data show a higher compliance of chromatin compared to the nuclear envelope at strains <30%. Micrococcal nuclease (MNase) digestion of chromatin results in nuclear softening and can be captured by our model. Additionally, we observe stretching responses showing a lipid tether signature, suggesting that these tethers originate from the nuclear membrane. Our combined approach allows us to elucidate the nuclear force response while mapping the deformation of lamin, (eu)chromatin, and membrane.
Collapse
Affiliation(s)
- Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Xamanie M R Seymonson
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
10
|
Liu T, Cai T, Huo J, Liu H, Li A, Yin M, Mei Y, Zhou Y, Fan S, Lu Y, Wan L, You H, Cai X. Force-enhanced sensitive and specific detection of DNA-intercalative agents directly from microorganisms at single-molecule level. Nucleic Acids Res 2024; 52:e86. [PMID: 39193913 PMCID: PMC11472145 DOI: 10.1093/nar/gkae746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Microorganisms can produce a vast array of bioactive secondary metabolites, including DNA-intercalating agents like actinomycin D, doxorubicin, which hold great potential for cancer chemotherapy. However, discovering novel DNA-intercalating compounds remains challenging due to the limited sensitivity and specificity of conventional activity assays, which require large-scale fermentation and purification. Here, we introduced the single-molecule stretching assay (SMSA) directly to microbial cultures or extracts for discovering DNA-intercalating agents, even in trace amounts of microbial cultures (5 μl). We showed that the unique changes of dsDNA in contour length and overstretching transition enable the specific detection of intercalators from complex samples without the need for extensive purification. Applying force to dsDNA also enhanced the sensitivity by increasing both the binding affinity Ka and the quantity of ligands intercalation, thus allowing the detection of weak intercalators, which are often overlooked using traditional methods. We demonstrated the effectiveness of SMSA, identified two DNA intercalator-producing strains: Streptomyces tanashiensis and Talaromyces funiculosus, and isolated three DNA intercalators: medermycin, kalafungin and ligustrone B. Interestingly, both medermycin and kalafungin, classified as weak DNA intercalators (Ka ∼103 M-1), exhibited potent anti-cancer activity against HCT-116 cancer cells, with IC50 values of 52 ± 6 and 70 ± 7 nM, respectively.
Collapse
Affiliation(s)
- Tianyu Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Teng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junfeng Huo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Meng Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Mei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueyue Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sijun Fan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
11
|
Xie C, Chen K, Chen Z, Hu Y, Pan L. A Chemo-Mechanically Coupled DNA Origami Clamp Capable of Generating Robust Compression Forces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401396. [PMID: 38973093 DOI: 10.1002/smll.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Indexed: 07/09/2024]
Abstract
DNA nanostructures have been utilized to study biological mechanical processes and construct artificial nanosystems. Many application scenarios necessitate nanodevices able to robustly generate large single molecular forces. However, most existing dynamic DNA nanostructures are triggered by probabilistic hybridization reactions between spatially separated DNA strands, which only non-deterministically generate relatively small compression forces (≈0.4 piconewtons (pN)). Here, an intercalator-triggered dynamic DNA origami nanostructure is developed, where large amounts of local binding reactions between intercalators and the nanostructure collectively lead to the robust generation of relatively large compression forces (≈11.2 pN). Biomolecular loads with different stiffnesses, 3, 4, and 6-helix DNA bundles are efficiently bent by the compression forces. This work provides a robust and powerful force-generation tool for building highly chemo-mechanically coupled molecular machines in synthetic nanosystems.
Collapse
Affiliation(s)
- Chun Xie
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kuiting Chen
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhekun Chen
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, 050043, China
| | - Linqiang Pan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
12
|
Pant P. Design and Characterization of Neutral Linker-Based Bis-Intercalator via Computer Simulations: Balancing DNA Binding and Cellular Uptake. Chem Biodivers 2024; 21:e202400768. [PMID: 38980964 DOI: 10.1002/cbdv.202400768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Bis-intercalators refer to a class of chemical compounds known for their unique ability to simultaneously intercalate, or insert, into DNA at two distinct sites. These molecules typically feature two intercalating moieties connected by a linker, allowing them to engage with DNA base pairs at multiple locations. The bis-intercalation phenomenon plays a significant role in altering the DNA structure, affecting its stability, and potentially influencing various cellular processes. These compounds have gained considerable attention in medicinal chemistry and biochemistry due to their potential applications in cancer therapy, where they may interfere with DNA replication and transcription, leading to anticancer effects. Traditionally, these molecules often possess a high positive charge to enhance their affinity for the negatively charged DNA. However, due to a high positive charge, their cellular uptake is compromised, along with their enhanced potential off-target effects. In this study, we utilized bis-intercalator TOTO and replaced the charged linker segment (propane-1,3-diammonium) with a neutral peroxodisulphuric acid linker. Using molecular modeling and computer simulations (500 ns, 3 replicas), we investigated the potential of the designed molecule as a bis-intercalator and compared the properties with the control bis-intercalator bound to DNA. We observed that the designed bis-intercalator exhibited improved DNA binding (as assessed through MM-PBSA and Delphi methods) and membrane translocation permeability. With an overall reduced charge, significantly less off-target binding of the designed molecule is also anticipated. Consequently, bis-intercalators based on peroxodisulphuric linkers can potentially target DNA effectively, and their role in the future design of bis-intercalators is foreseen.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| |
Collapse
|
13
|
Alroba AAN, Aazam ES, Zaki M. Metal complexes containing vitamin B6-based scaffold as potential DNA/BSA-binding agents inducing apoptosis in hepatocarcinoma (HepG2) cells. Mol Divers 2024:10.1007/s11030-024-10986-7. [PMID: 39289257 DOI: 10.1007/s11030-024-10986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
Collapse
Affiliation(s)
- Almuhrah A N Alroba
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Huang SC, Chen CW, Satange R, Hsieh CC, Chang CC, Wang SC, Peng CL, Chen TL, Chiang MH, Horng YC, Hou MH. Targeting DNA junction sites by bis-intercalators induces topological changes with potent antitumor effects. Nucleic Acids Res 2024; 52:9303-9316. [PMID: 39036959 PMCID: PMC11347135 DOI: 10.1093/nar/gkae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.
Collapse
Affiliation(s)
- Shih-Chun Huang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Wei Chen
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Li Peng
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Tai-Lin Chen
- Post Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
15
|
Zhao Y, Guo L, Hu J, Ren Z, Li Y, Hu M, Zhang X, Bi L, Li D, Ma H, Liu C, Sun B. Phase-separated ParB enforces diverse DNA compaction modes and stabilizes the parS-centered partition complex. Nucleic Acids Res 2024; 52:8385-8398. [PMID: 38908027 PMCID: PMC11317135 DOI: 10.1093/nar/gkae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear. Herein, we demonstrate that Bacillus subtilis ParB (Spo0J), through the multimerization of its N-terminal domain, forms phase-separated condensates along a single DNA molecule, leading to the concurrent organization of DNA into a compact structure. Specifically, in addition to the co-condensation of ParB dimers with DNA, the engagement of well-established ParB condensates with DNA allows for the compression of adjacent DNA and the looping of distant DNA. Notably, the presence of CTP promotes the formation of condensates by a low amount of ParB at parS sites, triggering two-step DNA condensation. Remarkably, parS-centered ParB-DNA co-condensate constitutes a robust nucleoprotein architecture capable of withstanding disruptive forces of tens of piconewton. Overall, our findings unveil diverse modes of DNA compaction enabled by phase-separated ParB and offer new insights into the dynamic assembly and maintenance of the bacterial partition complex.
Collapse
Affiliation(s)
- Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Kretzer B, Herényi L, Csík G, Supala E, Orosz Á, Tordai H, Kiss B, Kellermayer M. TMPyP binding evokes a complex, tunable nanomechanical response in DNA. Nucleic Acids Res 2024; 52:8399-8418. [PMID: 38943349 PMCID: PMC11317170 DOI: 10.1093/nar/gkae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 μm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.
Collapse
Affiliation(s)
- Balázs Kretzer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Levente Herényi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Eszter Supala
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Ádám Orosz
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
17
|
Xie C, Chen Z, Chen K, Hu Y, Xu F, Pan L. Diverse Chiral Nanotubes Assembled from Identical DNA Strands. NANO LETTERS 2024; 24:8696-8701. [PMID: 38967319 DOI: 10.1021/acs.nanolett.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
DNA nanotubes with controllable geometries hold a wide range of interdisciplinary applications. When preparing DNA nanotubes of varying widths or distinct chirality, existing methods require repeatedly designing and synthesizing specific DNA sequences, which can be costly and laborious. Here, we proposed an intercalator-assisted DNA tile assembly method which enables the production of DNA nanotubes of diverse widths and chirality using identical DNA strands. Through adjusting the concentration of intercalators during assembly, the twisting direction and extent of DNA tiles could be modulated, leading to the formation of DNA nanotubes featuring controllable widths and chirality. Moreover, through introducing additional intercalators and secondary annealing, right-handed nanotubes could be reconfigured into distinct left-handed nanotubes. We expect that this method could be universally applied to modulating the self-assembly pathways of various DNA tiles and other chiral materials, advancing the landscape of DNA tile assembly.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043 Hebei, China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
18
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
19
|
Mauker P, Beckmann D, Kitowski A, Heise C, Wientjens C, Davidson AJ, Wanderoy S, Fabre G, Harbauer AB, Wood W, Wilhelm C, Thorn-Seshold J, Misgeld T, Kerschensteiner M, Thorn-Seshold O. Fluorogenic Chemical Probes for Wash-free Imaging of Cell Membrane Damage in Ferroptosis, Necrosis, and Axon Injury. J Am Chem Soc 2024. [PMID: 38592946 DOI: 10.1021/jacs.3c07662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.
Collapse
Affiliation(s)
- Philipp Mauker
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, 81377 Munich, Germany
| | - Daniela Beckmann
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Grosshaderner Strasse 9, 82152 Martinsried, Germany
| | - Annabel Kitowski
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, 81377 Munich, Germany
| | - Constanze Heise
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, 81377 Munich, Germany
| | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andrew J Davidson
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, U.K
| | - Simone Wanderoy
- University Hospital, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gabin Fabre
- Pharmacology & Transplantation, UMR 1248 INSERM, University of Limoges, 87000 Limoges, France
| | - Angelika B Harbauer
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Will Wood
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, U.K
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, 81377 Munich, Germany
| | - Thomas Misgeld
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Grosshaderner Strasse 9, 82152 Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, 81377 Munich, Germany
| |
Collapse
|
20
|
Park J, Kim JJ, Ryu JK. Mechanism of phase condensation for chromosome architecture and function. Exp Mol Med 2024; 56:809-819. [PMID: 38658703 PMCID: PMC11059216 DOI: 10.1038/s12276-024-01226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Chromosomal phase separation is involved in a broad spectrum of chromosome organization and functional processes. Nonetheless, the intricacy of this process has left its molecular mechanism unclear. Here, we introduce the principles governing phase separation and its connections to physiological roles in this context. Our primary focus is contrasting two phase separation mechanisms: self-association-induced phase separation (SIPS) and bridging-induced phase separation (BIPS). We provide a comprehensive discussion of the distinct features characterizing these mechanisms and offer illustrative examples that suggest their broad applicability. With a detailed understanding of these mechanisms, we explore their associations with nucleosomes and chromosomal biological functions. This comprehensive review contributes to the exploration of uncharted territory in the intricate interplay between chromosome architecture and function.
Collapse
Affiliation(s)
- Jeongveen Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Jun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
- Institute of Applied Physics of Seoul National University, Seoul, 08826, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
21
|
Halma MTJ, Xu L. Life under tension: the relevance of force on biological polymers. BIOPHYSICS REPORTS 2024; 10:48-56. [PMID: 38737478 PMCID: PMC11079598 DOI: 10.52601/bpr.2023.230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 05/14/2024] Open
Abstract
Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- LUMICKS B. V., 1081 HV, Amsterdam, the Netherlands
| | - Longfu Xu
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Park SY, Trinh KTL, Song YJ, Lee NY. Pipette-free field-deployable molecular diagnostic kit for bimodal visual detection of infectious RNA viruses. Biotechnol J 2024; 19:e2300521. [PMID: 38403439 DOI: 10.1002/biot.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus μL-1 for SFTSV and 103 copies μL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.
Collapse
Affiliation(s)
- So Yeon Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Joshi J, McCauley MJ, Morse M, Muccio MR, Kanlong JG, Rocha MS, Rouzina I, Musier-Forsyth K, Williams MC. Mechanism of DNA Intercalation by Chloroquine Provides Insights into Toxicity. Int J Mol Sci 2024; 25:1410. [PMID: 38338688 PMCID: PMC10855526 DOI: 10.3390/ijms25031410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Chloroquine has been used as a potent antimalarial, anticancer drug, and prophylactic. While chloroquine is known to interact with DNA, the details of DNA-ligand interactions have remained unclear. Here we characterize chloroquine-double-stranded DNA binding with four complementary approaches, including optical tweezers, atomic force microscopy, duplex DNA melting measurements, and isothermal titration calorimetry. We show that chloroquine intercalates into double stranded DNA (dsDNA) with a KD ~ 200 µM, and this binding is entropically driven. We propose that chloroquine-induced dsDNA intercalation, which happens in the same concentration range as its observed toxic effects on cells, is responsible for the drug's cytotoxicity.
Collapse
Affiliation(s)
- Joha Joshi
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (J.J.); (M.J.M.); (M.M.)
| | - Micah J. McCauley
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (J.J.); (M.J.M.); (M.M.)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (J.J.); (M.J.M.); (M.M.)
| | - Michael R. Muccio
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (M.R.M.); (J.G.K.); (I.R.); (K.M.-F.)
| | - Joseph G. Kanlong
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (M.R.M.); (J.G.K.); (I.R.); (K.M.-F.)
| | - Márcio S. Rocha
- Department of Physics, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil;
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (M.R.M.); (J.G.K.); (I.R.); (K.M.-F.)
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA; (M.R.M.); (J.G.K.); (I.R.); (K.M.-F.)
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA; (J.J.); (M.J.M.); (M.M.)
| |
Collapse
|
24
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
25
|
Malinowska AM, van Mameren J, Peterman EJG, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods Mol Biol 2024; 2694:3-28. [PMID: 37823997 DOI: 10.1007/978-1-0716-3377-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, allowing for accurate measurement of the forces applied to these objects. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes the technique well suited for the study of biological processes from the single-cell down to the single-molecule level. In this chapter, we aim to provide an introduction to the use of optical tweezers for single-molecule analyses. We start from the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance. Finally, we will provide an overview of the broad applications in context of biological research, with the emphasis on the measurement modes, experimental assays, and possible combinations with fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Agata M Malinowska
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost van Mameren
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Zou Z, Liang J, Jia Q, Bai D, Xie W, Wu W, Tan C, Ma J. A versatile and high-throughput flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization. NANOSCALE 2023; 15:17443-17454. [PMID: 37859523 DOI: 10.1039/d3nr03214k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A flow-cell offers many advantages for single-molecule studies. But, its merit as a quantitative single-molecule tool has long been underestimated. In this work, we developed a gas-pumped fully calibrated flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization. Such a flow-cell system has considered the hydrodynamic drags on biomolecules and hence can apply and measure force up to more than 100 pN in sub-pN precision with an ultra-high force stability (force drift <0.01 pN in 10 minutes) and tuning accuracy (∼0.04 pN). Meanwhile, it also allows acquiring force signals and fluorescence images at the same time, parallelly tracking hundreds of protein motors in real time as well as monitoring the conformational changes of biomolecules under a well-controlled force, as demonstrated by a series of single-molecule experiments in this work, including the studies of DNA overstretching dynamics, transcription under force and DNA folding/unfolding dynamics. Interesting findings, such as the very tight association of single-stranded binding (SSB) proteins with ssDNA and the reversed transcription, have also been made. These results together lay down an essential foundation for a flow-cell to be used as a versatile, quantitative and high-throughput tool for single-molecule manipulation and visualization.
Collapse
Affiliation(s)
- Zhenyu Zou
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, P.R. China
| | - Di Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, P.R. China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, P.R. China
| | - Wenqiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, P.R. China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
27
|
Li Y, Rochfort KD, Collins D, Grintzalis K. Development of Sensitive Methods for the Detection of Minimum Concentrations of DNA on Martian Soil Simulants. Life (Basel) 2023; 13:1999. [PMID: 37895382 PMCID: PMC10608431 DOI: 10.3390/life13101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Several methods used for the quantification of DNA are based on UV absorbance or the fluorescence of complexes with intercalator dyes. Most of these intercalators are used in gels to visualize DNA and its structural integrity. Due to many extraterrestrial samples, such as meteorites or comets, which are likely to contain very small amounts of biological material, and because the ability to detect this material is crucial for understanding the origin and evolution of life in the universe, the development of assays that can detect DNA at low limits and withstand the rigors of space exploration is a pressing need in the field of astrobiology. In this study, we present a comparison of optimized protocols used for the fast and accurate quantification of DNA using common intercalator dyes. The sensitivity of assays exceeded that generated by any commercial kit and allowed for the accurate quantification of minimum concentrations of DNA. The methods were successful when applied to the detection and measurement of DNA spiked on soil samples. Furthermore, the impact of UV radiation as a harsh condition on the surface of Mars was assessed by DNA degradation and this was also confirmed by gel electrophoresis. Overall, the methods described provide economical, simple-step, and efficient approaches for the detection of DNA and can be used in future planetary exploration missions as tests used for the extraction of nucleic acid biosignatures.
Collapse
Affiliation(s)
- Yongda Li
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland; (Y.L.); (D.C.)
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, D09 Y5NO Dublin, Ireland;
| | - David Collins
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland; (Y.L.); (D.C.)
| | | |
Collapse
|
28
|
da Silva Dos Reis Condé CA, de Andrade Querino AL, Silva H, Navarro M. Silver(I) complexes containing N-heterocyclic carbene azole drugs: Synthesis, characterization, cytotoxic activity, and their BSA interactions. J Inorg Biochem 2023; 246:112303. [PMID: 37413946 DOI: 10.1016/j.jinorgbio.2023.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Cancer is one of the main public health problems globally, there is a public demand for better drugs. Rational strategies or approaches are used to improve the success of drug discovery. Our strategy was to the repurposing of well-known antifungal agents as potential anticancer drugs, such as Clotrimazole (CTZ) and Ketoconazole (KTZ). We prepared the respective iodide imidazolium salt L1: (CTZ-Me)I and L2: (KTZ-Me)I to be the intermediates toward the synthesis of its respective NHC ligand and achieve the respective silver(I)-monoNHC and silver(I)-bisNHC derivatives: [Ag(L1)I] (1), [AgI(L2)] (2) [Ag(L1)2]I. (3), [Ag(L2)2]I. (4), as well as their corresponding coordination compounds [Ag(CTZ)2]NO3 (5) and [Ag(KTZ)2]NO3 (6) where these ligands (CTZ and KTZ) coordinate to silver through the N-imidazole atom. These compounds (L1, L2 and complexes 1-6) exhibited significant activity against the tested cancer cell lines (B16-F1, murine melanoma strains and CT26WT, murine colon carcinoma). The silver(I) complexes were more active than the free ligands, complexes 2 and 4 being the most selective in B16-F1 cancer cell line. Two possibles biological targets such as DNA and albumin were examined for the observed anticancer activity. Results show that DNA is not the main target, however, the interactions with albumin suggest it can transport/delivery the metal complexes.
Collapse
Affiliation(s)
- Camila Aparecida da Silva Dos Reis Condé
- Laboratório de Química Bioinorgânica e Catálises (LaQBIC), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ana Luiza de Andrade Querino
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heveline Silva
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maribel Navarro
- Laboratório de Química Bioinorgânica e Catálises (LaQBIC), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
29
|
Jeong J, Szczepaniak G, Das SR, Matyjaszewski K. Synthesis of RNA-Amphiphiles via Atom Transfer Radical Polymerization in the Organic Phase. PRECISION CHEMISTRY 2023; 1:326-331. [PMID: 37529716 PMCID: PMC10389804 DOI: 10.1021/prechem.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 08/03/2023]
Abstract
The combination of hydrophobic polymers with nucleic acids is a fascinating way to engineer the self-assembly behavior of nucleic acids into diverse nanostructures such as micelles, vesicles, nanosheets, and worms. Here we developed a robust route to synthesize a RNA macroinitiator with protecting groups on the 2'-hydroxyl groups in the solid phase using an oligonucleotide synthesizer. The protecting groups successfully solubilized the RNA macroinitiator, enabling atom transfer radical polymerization (ATRP) of hydrophobic monomers. As a result, the RNA-polymer hybrids obtained by ATRP exhibited enhanced chemical stability by suppressing cleavage. In addition, we demonstrated evidence of controlled polymerization behavior as well as control over the molecular weight of the hydrophobic polymers grown from RNA. We envision that this methodology will expand the field of RNA-polymer conjugates while vastly enhancing the possibility to alter and engineer the properties of RNA-based polymeric materials.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Xu J, Wang GA, Gao L, Wu L, Lei Q, Deng H, Li F. Enabling programmable dynamic DNA chemistry using small-molecule DNA binders. Nat Commun 2023; 14:4248. [PMID: 37460620 DOI: 10.1038/s41467-023-40032-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The binding of small molecules to the double helical structure of DNA, through either intercalation or minor groove binding, may significantly alter the stability and functionality of DNA, which is a fundamental basis for many therapeutic and sensing applications. Here, we report that small-molecule DNA binders can also be used to program reaction pathways of a dynamic DNA reaction, where DNA strand displacement can be tuned quantitatively according to the affinity, charge, and concentrations of a given DNA binder. The binder-induced nucleic acid strand displacement (BIND) thus enables innovative technologies to accelerate the discovery and characterization of bioactive small molecules. Specifically, we demonstrate the comprehensive characterization of existing and newly discovered DNA binders, where critical parameters for binding affinity and sequence selectivity can be obtained in a single, unbiased molecular platform without the need for any specialized equipment. We also engineer a tandem BIND system as a high-throughput screening assay for discovering DNA binders, through which 8 DNA binders were successfully discovered from a library of 700 compounds.
Collapse
Affiliation(s)
- Junpeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Lu Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Lang Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
31
|
Liu K, Grasso EM, Pu S, Zou M, Liu S, Eliezer D, Keeney S. Structure and DNA-bridging activity of the essential Rec114-Mei4 trimer interface. Genes Dev 2023; 37:518-534. [PMID: 37442580 PMCID: PMC10393192 DOI: 10.1101/gad.350461.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo, these proteins form large immunostaining foci that are integrated with higher-order chromosome structures. In vitro, they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C terminus of Rec114 with the N terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.
Collapse
Affiliation(s)
- Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Emily M Grasso
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mengyang Zou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
- Program in Structural Biology, Weill Cornell Medicine, New York, New York 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
32
|
DeJaco RF, Majikes JM, Liddle JA, Kearsley AJ. Binding, brightness, or noise? Extracting temperature-dependent properties of dye bound to DNA. Biophys J 2023; 122:1364-1375. [PMID: 36871160 PMCID: PMC10111365 DOI: 10.1016/j.bpj.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
We present a method for extracting temperature-dependent thermodynamic and photophysical properties of SYTO-13 dye bound to DNA from fluorescence measurements. Together, mathematical modeling, control experiments, and numerical optimization enable dye binding strength, dye brightness, and experimental noise (or error) to be discriminated from one another. By focusing on the low-dye-coverage regime, the model avoids bias and can simplify quantification. Utilizing the temperature-cycling capabilities and multi-reaction chambers of a real-time PCR machine increases throughput. Significant well-to-well and plate-to-plate variation is quantified by using total least squares to account for error in both fluorescence and nominal dye concentration. Properties computed independently for single-stranded DNA and double-stranded DNA by numerical optimization are consistent with intuition and explain the advantageous performance of SYTO-13 in high-resolution melting and real-time PCR assays. Distinguishing between binding, brightness, and noise also clarifies the mechanism for the increased fluorescence of dye in a solution of double-stranded DNA compared to single-stranded DNA; in fact, the explanation changes with temperature.
Collapse
Affiliation(s)
- Robert F DeJaco
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| | - Jacob M Majikes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Alexander Liddle
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Anthony J Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
33
|
Gautam D, Pandey S, Chen J. Effect of Flow Rate and Ionic Strength on the Stabilities of YOYO-1 and YO-PRO-1 Intercalated in DNA Molecules. J Phys Chem B 2023; 127:2450-2456. [PMID: 36917775 PMCID: PMC10088364 DOI: 10.1021/acs.jpcb.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Single-molecule DNA studies have improved our understanding of the DNAs' structure and their interactions with other molecules. A variety of DNA labeling dyes are available for single-molecule studies, among which the bis-intercalating dye YOYO-1 and mono-intercalating dye YO-PRO-1 are widely used. They have an extraordinarily strong affinity toward DNA and are bright with a high quantum yield (>0.5) when bound to DNAs. However, it is still not clear how these dyes behave in DNA molecules under higher ionic strength and strong buffer flow. Here, we have studied the effect of ionic strength and flow rate of buffer on their binding in single DNA molecules. The larger the flow rate and the higher the ionic strength, the faster the intercalated dyes are washed away from the DNAs. In the buffer with 1 M ionic strength, YOYO-1 and YO-PRO-1 are mostly washed away from DNA within 2 min of moderate buffer flow.
Collapse
Affiliation(s)
- Dinesh Gautam
- Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Srijana Pandey
- Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
34
|
Tukur F, Bagra B, Jayapalan A, Liu M, Tukur P, Wei J. Plasmon-Exciton Coupling Effect in Nanostructured Arrays for Optical Signal Amplification and SARS-CoV-2 DNA Sensing. ACS APPLIED NANO MATERIALS 2023; 6:2071-2082. [PMID: 36789152 PMCID: PMC9888407 DOI: 10.1021/acsanm.2c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A surface plasmon resonance (SPR)-enhanced optical signal using a nanoslit array and acridine orange (AO) dye system at a flexible poly(dimethylsiloxane) (PDMS) substrate was achieved in this work and demonstrated a simple sensing scheme to directly detect SARS-CoV-2 nucleic acid via DNA hybridization. A simple nanoimprinting pattern transfer technique was introduced to form uniform reproducible nanoslit arrays where the dimensions of the slit array were controlled by the thickness of the gold film. The plasmon-exciton coupling effect on the optical enhancement of different dye molecules, i.e., AO, propidium iodide (PI), or dihydroethidium (DHE) attached to the nanoslit surfaces, was examined thoroughly by measuring the surface reflection and fluorescence imaging. The results indicate that the best overlap of the plasmon resonance wavelength to the excitation spectrum of AO presented the largest optical enhancement (∼57×) compared to the signal at flat gold surfaces. Based on this finding, a sensitive assay for detecting DNA hybridization was generated using the interaction of the selected SARS-CoV-2 ssDNA and dsDNA with AO to trigger the metachromatic behavior of the dye at the nanoarray surfaces. We found strong optical signal amplification on the formation of acridine-ssDNA complexes and a quenched signal upon hybridization to the complementary target DNA (ct-DNA) along with a blue shift in the fluorescence of AO-dsDNAs. A quantitative evaluation of the ct-DNA concentration in a range of 100-0.08 nM using both the reflection and emission imaging signals demonstrated two linear regimes with a lowest detection limit of 0.21 nM. The sensing method showed high sensitivity and distinguished signals from 1-, 2-, and 3-base mismatched DNA targets, as well as high stability and reusability. This approach toward enhancing optical signal for DNA sensing offers promise in a general, rapid, and direct vision detection method for nucleic acid analytes.
Collapse
|
35
|
Takahashi S, Oshige M, Katsura S, Nagahara Y. A new fluorescence labeling method for molecular analysis of double-stranded DNA. Anal Biochem 2023; 662:115000. [PMID: 36470466 DOI: 10.1016/j.ab.2022.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
In this study, a double-stranded DNA (dsDNA) fluorescent labeling method was developed using the fusion proteins of fluorescent protein (FP), and 7 kDa DNA-binding family members including Sso7d from Sulfolobus solfataricus, Aho7c from Acidianus hospitalis, ATSV7 from Acidianus tailed spindle virus and Sto7 from Sulfolobus tokodaii. Using this fluorescent DNA labeling method, we succeeded in single-molecule imaging of bacteriophage λDNA molecules stretched on glass surfaces. The fluorescence of the λDNA with FP fusion proteins decayed 2.4- to 6.4-fold slower than that of the typical intercalating method with SYTOX Green (SxG). In addition, the dynamic behaviors of FP-fused Aho7c-λDNA were relaxed and stretched with and without buffer flow, respectively, in microflow channels and were similar to that with typical intercalating dye, such as YOYO-1 and SxG. this fluorescent DNA labeling method. This fluorescent DNA labeling method can solve the problem of rapid fluorescence decay due to the intercalating dyes and therefore can be expected as an alternative to compound-based fluorescent dye. Thus, this study establishes FP fusion proteins as useful fluorescent DNA probes at the single-molecule level.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun, Saitama, 350-0394, Japan.
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Aramaki, Gunma, 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Aramaki, Gunma, 371-8510, Japan
| | - Yukitoshi Nagahara
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun, Saitama, 350-0394, Japan
| |
Collapse
|
36
|
Lim HJ, Hong S, Jin H, Chua B, Son A. A multi-functional reagent suitable for 1-step rapid DNA intercalation fluorescence-based screening of total bacteria in drinking water. CHEMOSPHERE 2023; 313:137541. [PMID: 36526135 DOI: 10.1016/j.chemosphere.2022.137541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The prerequisites for rapid screening of total bacteria in drinking water are low detection limit and convenience. Inspired by commercial adenosine 5'-triphosphate (ATP) based total bacterial detection kits, we pursued likewise convenience but with much lower detection limit. Existing intercalation fluorescence-based techniques employ multiple reagents to permeate the cell membrane and intercalate dye into the DNA in discrete sequential steps. A simple multi-functional reagent is proposed to do the same within one step. Surfactants (TritonX and SDS), and intercalating dyes (SYBR green, SYBR gold) were examined for their mutual compatibility and augmented with EDTA. Evaluation was performed with Gram negative Escherichia coli K12 (E. coli K12) and Gram positive Bacillus subtilis (B. subtilis) at serial dilution ratios from 10-6 to 10-2. Comparison was made with absorbance (600 nm) measurements and a commercial ATP kit. Using charge integrated photodetection, the proposed 1-step reagent achieved an LOD (1.00 × 10-6, B. subtilis) that is two orders of magnitude lower than that of ATP kit (LOD = 1.06× 10-4). This means it could detect minute quantity of total bacteria that is otherwise undetected by the ATP kit.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Seungwon Hong
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyowon Jin
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
37
|
Xie C, Chen Z, Chen K, Hu Y, Pan L. Regulating the Polymerization of DNA Structures via Allosteric Control of Monomers. ACS NANO 2023; 17:1505-1510. [PMID: 36633930 DOI: 10.1021/acsnano.2c10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Regulation of self-assembly is crucial in constructing structural biomaterials, such as tunable DNA nanostructures. Traditional tuning of self-assembled DNA nanostructures was mainly conducted by introducing external stimuli after the assembly process. Here, we explored the allosteric assembly of DNA structures via introducing external stimuli during the assembly process to produce structurally heterogeneous polymerization products. We demonstrated that ethidium bromide (EB), a DNA intercalator, could increase the left-handed out-of-plane chirality of curved DNA structures. Then, EB and double strands were introduced as competing stimuli to transform monomers into allosteric conformations, leading to three different polymerization products. The steric trap between different polymerization products promoted the polymerized structures to keep their geometric properties, like chirality, under varying intensity of external stimuli. Our strategy harnesses allosteric effects for assembly of DNA-based materials and is expected to expand the design space for advanced control in synthetic materials.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 Hebei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
38
|
Ding F, Cocco S, Raj S, Manosas M, Nguyen T, Spiering M, Bensimon D, Allemand JF, Croquette V. Displacement and dissociation of oligonucleotides during DNA hairpin closure under strain. Nucleic Acids Res 2022; 50:12082-12093. [PMID: 36478056 PMCID: PMC9757040 DOI: 10.1093/nar/gkac1113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
The hybridization kinetic of an oligonucleotide to its template is a fundamental step in many biological processes such as replication arrest, CRISPR recognition, DNA sequencing, DNA origami, etc. Although single kinetic descriptions exist for special cases of this problem, there are no simple general prediction schemes. In this work, we have measured experimentally, with no fluorescent labelling, the displacement of an oligonucleotide from its substrate in two situations: one corresponding to oligonucleotide binding/unbinding on ssDNA and one in which the oligonucleotide is displaced by the refolding of a dsDNA fork. In this second situation, the fork is expelling the oligonucleotide thus significantly reducing its residence time. To account for our data in these two situations, we have constructed a mathematical model, based on the known nearest neighbour dinucleotide free energies, and provided a good estimate of the residence times of different oligonucleotides (DNA, RNA, LNA) of various lengths in different experimental conditions (force, temperature, buffer conditions, presence of mismatches, etc.). This study provides a foundation for the dynamics of oligonucleotide displacement, a process of importance in numerous biological and bioengineering contexts.
Collapse
Affiliation(s)
- Fangyuan Ding
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- Center for Synthetic Biology, Chao Family Comprehensive Cancer Center, Department of Developmental and Cell Biology, and Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Simona Cocco
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Saurabh Raj
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, 110016, India
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Thao Thi Thu Nguyen
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Michelle M Spiering
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David Bensimon
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, F-75005, Paris, France
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jean-François Allemand
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, F-75005, Paris, France
| | - Vincent Croquette
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), CNRS, Inserm, École Normale Supérieure, PSL Research University, F-75005, Paris, France
- ESPCI Paris, Université PSL, Paris, France
| |
Collapse
|
39
|
Imaging the Infection Cycle of T7 at the Single Virion Level. Int J Mol Sci 2022; 23:ijms231911252. [PMID: 36232552 PMCID: PMC9569847 DOI: 10.3390/ijms231911252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
T7 phages are E. coli-infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging. Here we used TIRF microscopy to uncover the spatial dynamics of the target recognition and binding by individual T7 phage particles. In the initial phase, T7 virions bound reversibly to the bacterial membrane via two-dimensional diffusive exploration. Stable bacteriophage anchoring was achieved by tail-fiber complex to receptor binding which could be observed in detail by atomic force microscopy (AFM) under aqueous buffer conditions. The six anchored fibers of a given T7 phage-displayed isotropic spatial orientation. The viral infection led to the onset of an irreversible structural program in the host which occurred in three distinct steps. First, bacterial cell surface roughness, as monitored by AFM, increased progressively. Second, membrane blebs formed on the minute time scale (average ~5 min) as observed by phase-contrast microscopy. Finally, the host cell was lysed in a violent and explosive process that was followed by the quick release and dispersion of the phage progeny. DNA ejection from T7 could be evoked in vitro by photothermal excitation, which revealed that genome release is mechanically controlled to prevent premature delivery of host-lysis genes. The single-particle approach employed here thus provided an unprecedented insight into the details of the complete viral cycle.
Collapse
|
40
|
Liu Y, Pei Y, Xu J, Cheng Y, Tong Q, You H. Force-Dependent Intercalative Bulky DNA Adduct Formation Detected by Single-Molecule Stretching. Anal Chem 2022; 94:13623-13630. [PMID: 36129494 DOI: 10.1021/acs.analchem.2c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitatively analyzing the binding topology and reactivity is essential for understanding the cytotoxic or tumorigenic activities of bulky DNA adducts formed by chemotherapeutic drugs or carcinogens. Biochemical methods require purification of DNA and discontinuous steps to digest or label the adducts and thus have difficulties in identifying the binding topology and are not suitable for detecting unstable adducts. Herein, we used a single-molecule stretching assay to characterize the number of intercalative adducts, the formation kinetics, and the mechanical properties of intercalative DNA adducts based on measuring adduct-induced DNA elongation. We analyzed various reactive conditions, including formaldehyde-mediated anthracycline-DNA adducts, UV light-catalyzed psoralen-DNA adducts, and liver S9 fraction-catalyzed aflatoxin B1-DNA adducts. We showed that adduct formation abilities are correlated with the noncovalent intercalation binding ability. External forces on double-stranded DNA increased the intercalation of ligands and can result in a 1.8- to 5.3-fold increase in DNA adduct formation.
Collapse
Affiliation(s)
- Yajun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufeng Pei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuanlei Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
Nguyen T, Li S, Chang JTH, Watters JW, Ng H, Osunsade A, David Y, Liu S. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat Commun 2022; 13:3988. [PMID: 35810158 PMCID: PMC9271091 DOI: 10.1038/s41467-022-31738-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Biomolecular condensation constitutes an emerging mechanism for transcriptional regulation. Recent studies suggest that the co-condensation between transcription factors (TFs) and DNA can generate mechanical forces driving genome rearrangements. However, the reported forces generated by protein-DNA co-condensation are typically below one piconewton (pN), questioning its physiological significance. Moreover, the force-generating capacity of these condensates in the chromatin context remains unknown. Here, we show that Sox2, a nucleosome-binding pioneer TF, forms co-condensates with DNA and generates forces up to 7 pN, exerting considerable mechanical tension on DNA strands. We find that the disordered domains of Sox2 are required for maximum force generation but not for condensate formation. Furthermore, we show that nucleosomes dramatically attenuate the mechanical stress exerted by Sox2 by sequestering it from coalescing on bare DNA. Our findings reveal that TF-mediated DNA condensation can exert significant mechanical stress on the genome which can nonetheless be attenuated by the chromatin architecture.
Collapse
Affiliation(s)
- Tuan Nguyen
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Jeremy T-H Chang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Htet Ng
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Adewola Osunsade
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
42
|
The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition. Proc Natl Acad Sci U S A 2022; 119:e2116462119. [PMID: 35658074 DOI: 10.1073/pnas.2116462119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SignificanceBloom syndrome helicase (BLM) is a multifunctional helicase that primarily catalyzes the separation of two single strands of DNA. Here, using a single-molecule optical tweezers approach combined with confocal microscopy, we monitored both the enzymatic activity and oligomeric status of BLM at the same time. Strikingly, a head-on collision of BLM-medicated DNA unwinding forks was found to effectively switch their oligomeric state and activity. Specifically, BLMs, upon collision, immediately fuse across the fork junctions and covert their activities from dsDNA unwinding to ssDNA translocation and protein displacement. These findings explain how BLM plays multiple functional roles in homologous recombination (HR). The single-molecule approach used here provides a reference model for investigating the relationship between protein oligomeric state and function.
Collapse
|
43
|
Paul B, Chaubet L, Verver DE, Montoya G. Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA. Nucleic Acids Res 2022; 50:5208-5225. [PMID: 34951457 PMCID: PMC9122593 DOI: 10.1093/nar/gkab1272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Cas12a is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here, we selected a target site on bacteriophage λ-DNA and used optical tweezers combined with fluorescence to provide mechanistic insight into wild type Cas12a and three engineered variants, where the specific dsDNA and the unspecific ssDNA cleavage are dissociated (M1 and M2) and a third one which nicks the target DNA (M3). At low forces wtCas12a and the variants display two main off-target binding sites, while on stretched dsDNA at higher forces numerous binding events appear driven by the mechanical distortion of the DNA and partial matches to the crRNA. The multiple binding events onto dsDNA at high tension do not lead to cleavage, which is observed on the target site at low forces when the DNA is flexible. In addition, activity assays also show that the preferential off-target sites for this crRNA are not cleaved by wtCas12a, indicating that λ-DNA is only severed at the target site. Our single molecule data indicate that the Cas12a scaffold presents singular mechanical properties, which could be used to generate new endonucleases with biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Bijoya Paul
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Loïc Chaubet
- LUMICKS, Pilotenstraat 41, 1059 CH, Amsterdam, The Netherlands
| | | | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
44
|
Costa EA, Gonçalves AP, Batista JAD, Bazoni RF, Santos AA, Rocha MS. New Insights into the Mechanism of Action of the Drug Chloroquine: Direct Interaction with DNA and Cytotoxicity. J Phys Chem B 2022; 126:3512-3521. [PMID: 35533378 DOI: 10.1021/acs.jpcb.2c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chloroquine (CLQ) and hydroxychloroquine (HCLQ) are compounds largely employed in the treatment of various human diseases for decades. Nevertheless, a number of intrinsic details concerning their mechanisms of action, especially at the molecular level, are still unknown or have presented controversial results in the literature. Using optical tweezers, here, we investigate at the single-molecule level the molecular mechanism of action of the drug CLQ in its intrinsic interaction with the double-stranded (ds)DNA molecule, one of its targets inside cells, determining the binding modes and the physicochemical (binding) parameters of the interaction. In particular, we show that the ionic strength of the surrounding medium strongly influences such interaction, changing even the main binding mode. In addition, the cytotoxicity of CLQ against three different cell lines was also investigated here, allowing one to evaluate and compare the effect of the drug on the cell viability. In particular, we show that CLQ is highly cytotoxic at a very low (a few micromolar) concentration range for all cell lines tested. These results were rigorously compared to the equivalent ones obtained for the closely related compound hydroxychloroquine (HCLQ), allowing a critical comparison between the action of these drugs at the molecular and cellular levels.
Collapse
Affiliation(s)
- Ethe A Costa
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Amanda P Gonçalves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Josiane A D Batista
- Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Raniella F Bazoni
- Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, Espírito Santo 29.932-900, Brazil
| | - Anésia A Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Márcio S Rocha
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
45
|
The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Nakagawa Y, Hishida T, Hatano E, Sumaru K, Morishita K, Morimoto M, Yokojima S, Nakamura S, Uchida K. Photoinduced cytotoxicity of photochromic symmetric diarylethene derivatives: the relation of structure and cytotoxicity. Org Biomol Chem 2022; 20:3211-3217. [PMID: 35352079 DOI: 10.1039/d2ob00224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photopharmacology has been attracting attention for the development of drugs with fewer side effects and lower toxicity by introducing a photoswitch structure in the drug and controlling its spatiotemporal effects by light irradiation. Ideally, to achieve precise spatiotemporal control, it is desirable to use photoresponsive molecules that act as anticancer agents based on molecular switch mechanisms at the molecular level. However, very few reports on photoinduced cytotoxicity have used photoresponsive molecules with simple structures. Here, we investigate the photoinduced cytotoxicity of twelve diarylethene derivatives having thiazole or pyridine rings in their molecules and evaluate them in terms of molecular structure and size. Our results provide insight into molecular design principles for diarylethene with a simple structure toward achieving precise control based on molecular-level switch mechanisms.
Collapse
Affiliation(s)
- Yuma Nakagawa
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan.
| | - Tatsuya Hishida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan.
| | - Eri Hatano
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan.
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.,Cluster for Science Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinichiro Nakamura
- Cluster for Science Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan. .,Cluster for Science Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
47
|
Seredinski S, Boos F, Günther S, Oo JA, Warwick T, Izquierdo Ponce J, Lillich FF, Proschak E, Knapp S, Gilsbach R, Pflüger-Müller B, Brandes RP, Leisegang MS. DNA topoisomerase inhibition with the HIF inhibitor acriflavine promotes transcription of lncRNAs in endothelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1023-1035. [PMID: 35228897 PMCID: PMC8844413 DOI: 10.1016/j.omtn.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/21/2022] [Indexed: 02/08/2023]
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF1) is an important driver of cancer and is therefore an attractive drug target. Acriflavine (ACF) has been suggested to inhibit HIF1, but its mechanism of action is unknown. Here we investigated the interaction of ACF with DNA and long non-coding RNAs (lncRNAs) and its function in human endothelial cells. ACF promoted apoptosis and reduced proliferation, network formation, and angiogenic capacity. It also induced changes in gene expression, as determined by RNA sequencing (RNA-seq), which could not be attributed to specific inhibition of HIF1. A similar response was observed in murine lung endothelial cells. Although ACF increased and decreased a similar number of protein-coding genes, lncRNAs were preferentially upregulated under normoxic and hypoxic conditions. An assay for transposase accessibility with subsequent DNA sequencing (ATAC-seq) demonstrated that ACF induced strong changes in chromatin accessibility at lncRNA promoters. Immunofluorescence showed displacement of DNA:RNA hybrids. Such effects might be due to ACF-mediated topoisomerase inhibition, which was indeed the case, as reflected by DNA unwinding assays. Comparison with other acridine derivatives and topoisomerase inhibitors suggested that the specific function of ACF is an effect of acridinium-class compounds. This study demonstrates that ACF inhibits topoisomerases rather than HIF specifically and that it elicits a unique expression response of lncRNAs.
Collapse
Affiliation(s)
- Sandra Seredinski
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Frederike Boos
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Judit Izquierdo Ponce
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Felix F Lillich
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
48
|
Hsiao YT, Tsai CN, Chen TH, Hsieh CL. Label-Free Dynamic Imaging of Chromatin in Live Cell Nuclei by High-Speed Scattering-Based Interference Microscopy. ACS NANO 2022; 16:2774-2788. [PMID: 34967599 DOI: 10.1021/acsnano.1c09748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatin is a DNA-protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.
Collapse
Affiliation(s)
- Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Chia-Ni Tsai
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Te-Hsin Chen
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 1 Roosevelt Road Section 4, Taipei 10617, Taiwan
| |
Collapse
|
49
|
Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun 2022; 13:584. [PMID: 35102151 PMCID: PMC8803869 DOI: 10.1038/s41467-022-28082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed. Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.
Collapse
|
50
|
Paul A, Alper J. Calculating the force-dependent unbinding rate of biological macromolecular bonds from force-ramp optical trapping assays. Sci Rep 2022; 12:82. [PMID: 34996945 PMCID: PMC8741823 DOI: 10.1038/s41598-021-03690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
The non-covalent biological bonds that constitute protein–protein or protein–ligand interactions play crucial roles in many cellular functions, including mitosis, motility, and cell–cell adhesion. The effect of external force (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F$$\end{document}F) on the unbinding rate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{\text{off}}\left(F\right)$$\end{document}koffF) of macromolecular interactions is a crucial parameter to understanding the mechanisms behind these functions. Optical tweezer-based single-molecule force spectroscopy is frequently used to obtain quantitative force-dependent dissociation data on slip, catch, and ideal bonds. However, analyses of this data using dissociation time or dissociation force histograms often quantitatively compare bonds without fully characterizing their underlying biophysical properties. Additionally, the results of histogram-based analyses can depend on the rate at which force was applied during the experiment and the experiment’s sensitivity. Here, we present an analytically derived cumulative distribution function-like approach to analyzing force-dependent dissociation force spectroscopy data. We demonstrate the benefits and limitations of the technique using stochastic simulations of various bond types. We show that it can be used to obtain the detachment rate and force sensitivity of biological macromolecular bonds from force spectroscopy experiments by explicitly accounting for loading rate and noisy data. We also discuss the implications of our results on using optical tweezers to collect force-dependent dissociation data.
Collapse
Affiliation(s)
- Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA.,Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA. .,Eukaryotic Pathogens Innovation Center, Clemson University, SC, Clemson, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|