1
|
Patel RR, Vidyasagar, Singh SK, Singh M. Recent advances in inhibitor development and metabolic targeting in tuberculosis therapy. Microb Pathog 2025; 203:107515. [PMID: 40154850 DOI: 10.1016/j.micpath.2025.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Despite being a preventable and treatable disease, tuberculosis (TB) remained the second leading infectious cause of death globally in 2022, surpassed only by COVID-19. The death rate from TB is influenced by numerous factors that include antibiotic drug resistance, noncompliance with chemotherapy by patients, concurrent infection with the human immunodeficiency virus, delayed diagnosis, varying effectiveness of the Bacille-Calmette-Guerin vaccine, and other factors. Even with the recent advances in our knowledge of Mycobacterium tuberculosis and the accessibility of advanced genomic tools such as proteomics and microarrays, alongside modern methodologies, the pursuit of next-generation inhibitors targeting distinct or multiple molecular pathways remains essential to combat the increasing antimicrobial resistance. Hence, there is an urgent need to identify and develop new drug targets against TB that have unique mechanisms. Novel therapeutic targets might encompass gene products associated with various aspects of mycobacterial biology, such as transcription, metabolism, cell wall formation, persistence, and pathogenesis. This review focuses on the present state of our knowledge and comprehension regarding various inhibitors targeting key metabolic pathways of M. tuberculosis. The discussion encompasses small molecule, synthetic, peptide, natural product and microbial inhibitors and navigates through promising candidates in different phases of clinical development. Additionally, we explore the crucial enzymes and targets involved in metabolic pathways, highlighting their inhibitors. The metabolic pathways explored include nucleotide synthesis, mycolic acid synthesis, peptidoglycan biosynthesis, and energy metabolism. Furthermore, advancements in genetic approaches like CRISPRi and conditional expression systems are discussed, focusing on their role in elucidating gene essentiality and vulnerability in Mycobacteria.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vidyasagar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Virus Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Verma AK, Kim RQ, Lamprecht DA, Aguilar-Pérez C, Wong S, Veziris N, Aubry A, Bartolomé-Nebreda JM, Carbajo RJ, Wetzel J, Lamers MH. Structural and mechanistic study of a novel inhibitor analogue of M. tuberculosis cytochrome bc 1:aa 3. NPJ DRUG DISCOVERY 2025; 2:6. [PMID: 40191462 PMCID: PMC11964921 DOI: 10.1038/s44386-025-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/09/2025]
Abstract
Drug-resistant tuberculosis (TB) continues to challenge treatment options, necessitating the exploration of new compounds of novel targets. The mycobacterial respiratory complex cytochrome bc1:aa3 has emerged as a promising target, exemplified by the success of first-in-class inhibitor Q203 in phase 2 clinical trials. However, to fully exploit the potential of this target and to identify the best-in-class inhibitor more compounds need evaluation. Here, we introduce JNJ-2901, a novel Q203 analogue, that demonstrates activity against multidrug-resistant M. tuberculosis clinical strains at sub-nanomolar concentration and 4-log reduction in bacterial burden in a mouse model of TB infection. Inhibitory studies on purified enzymes validate the nanomolar inhibitions observed in mycobacterial cells. Additionally, cryo-EM structure analysis of cytochrome bc1:aa3 bound to JNJ-2901 reveals the binding pocket at the menaquinol oxidation site (Qp), akin to other substate analogue inhibitors like Q203 and TB47. Validation of the binding site is further achieved by generating and isolating the JNJ-2901 resistant mutations in M. tuberculosis, followed by purification and resistance analysis of the resistant cytochrome bc1:aa3 complex. Our comprehensive work lays the foundation for further clinical validations of JNJ-2901.
Collapse
Affiliation(s)
- Amit K. Verma
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Dirk A. Lamprecht
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Clara Aguilar-Pérez
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sarah Wong
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP. Sorbonne-Université, Fédération de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - José M. Bartolomé-Nebreda
- Global Discovery Chemistry, Janssen-Cilag, S.A., a Johnson & Johnson Innovative Medicine company, c/ Jarama, 75 A, 45007 Toledo, Spain
| | - Rodrigo J. Carbajo
- In Silico Discovery, Janssen-Cilag, S.A., a Johnson & Johnson Innovative Medicine Company, c/ Jarama, 75A, 45007 Toledo, Spain
| | - Jennefer Wetzel
- Janssen Pharmaceutica, Global Public Health, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Meindert H. Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
3
|
Süssmuth RD, Kulike‐Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 PMCID: PMC11878372 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D. Süssmuth
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Marcel Kulike‐Koczula
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Peng Gao
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 124, TC210629BerlinGermany
| | - Simone Kosol
- Medical School BerlinDepartment Human MedicineRüdesheimer Strasse 5014195BerlinGermany
| |
Collapse
|
4
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
5
|
Hong KJ, Wang TC, Tsui K. Association of acid-suppressive therapy and tuberculosis: A causal or coincidental link to the infection? Respir Investig 2025; 63:27-32. [PMID: 39615321 DOI: 10.1016/j.resinv.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Acid-suppressant proton-pump inhibitors (PPI) and histamine-2-receptor antagonists (H2RA) are associated with an increased risk of tuberculosis (TB). However, it remains unclear whether this association is causal or coincidental. METHODS Patients newly diagnosed with TB between 2000 and 2013 were identified from the Taiwan National Health Insurance Database. Each patient with TB was matched in a 1:10 ratio with patients without TB by age, sex, and index date. The time lags from the end of PPI or H2RA treatment to the index date, and respective cumulative doses in the 90 days before the index date, were analyzed for association with TB. RESULTS The age (mean [standard deviation] 60.8 [17.3] years) and sex ratio (69.4% males) were comparable between patients with TB (n = 6002) and patients without TB (n = 60,020). Previous PPI or H2RA treatment was more frequently observed in patients with TB (16.6% vs. 8.9%, p < 0.001). Concurrent antacid therapy posed the highest risk for TB (odds ratio [OR] 4.21 for PPI and 2.24 for H2RA, both p < 0.0001), and the closer to the end of the therapy, the more likely TB was detected (p for trend: 0.0077 for PPI and 0.0145 for H2RA). The cumulative doses of antacid in the 90 days before TB had an inverse relationship with TB risk. PPI, used either alone or in combination with H2RA, conferred a higher risk of TB than H2RA alone. CONCLUSIONS Tuberculosis should be considered in symptomatic patients receiving or recently ceased antacid therapy with PPI or H2RA in TB endemic areas.
Collapse
Affiliation(s)
- Kun-Jing Hong
- Department of Medical Research, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei, 106438, Taiwan
| | - Ting-Chuan Wang
- Integrative medical database center, Department of Medical Research, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei, 100225, Taiwan
| | - Kochung Tsui
- Department of Medical Research, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei, 106438, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei, 106438, Taiwan; Fu Jen Catholic University School of Medicine, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan.
| |
Collapse
|
6
|
Torres-Gómez H, Keiff F, Hortschansky P, Bernal F, Kerndl V, Meyer F, Messerschmidt N, Dal Molin M, Krüger T, Rybniker J, Brakhage AA, Kloss F. Replacement of the essential nitro group by electrophilic warheads towards nitro-free antimycobacterial benzothiazinones. Eur J Med Chem 2024; 279:116849. [PMID: 39265253 DOI: 10.1016/j.ejmech.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Nitrobenzothiazinones (BTZs) are undergoing late-stage development as a novel class of potent antitubercular drug candidates with two compounds in clinical phases. BTZs inhibit decaprenylphosphoryl-β-d-ribose oxidase 1 (DprE1), a key enzyme in cell wall biosynthesis of mycobacteria. Their mechanism of action involves an in-situ-reduction of the nitro moiety to a reactive nitroso intermediate capable of covalent binding to Cys387 in the catalytic cavity. The electron-deficient nature of the aromatic core is a key driver for the formation of hydride-Meisenheimer complexes (HMC) as main metabolites in vivo. To mimic the electrophilic character of the nitroso moiety, bioisosteric replacement with different electrophilic warheads was attempted to reduce HMC formation without compromising covalent reactivity. Herein, we synthesized and characterized various covalent warheads covering different reaction principles. Covalent inhibition was confirmed for most active antimycobacterial compounds by enzymatic inhibition assays and peptide fragment analysis.
Collapse
Affiliation(s)
- Héctor Torres-Gómez
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - François Keiff
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Peter Hortschansky
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein- Str. 23, 07745, Jena, Germany
| | - Freddy Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Valerie Kerndl
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Meyer
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Nina Messerschmidt
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Dal Molin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein- Str. 23, 07745, Jena, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Axel A Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein- Str. 23, 07745, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany.
| |
Collapse
|
7
|
Salama EA, Elgammal Y, Wijeratne A, Lanman NA, Utturkar SM, Farhangian A, Li J, Meunier B, Hazbun TR, Seleem MN. Lansoprazole interferes with fungal respiration and acts synergistically with amphotericin B against multidrug-resistant Candida auris. Emerg Microbes Infect 2024; 13:2322649. [PMID: 38431850 PMCID: PMC10911247 DOI: 10.1080/22221751.2024.2322649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Candida auris has emerged as a problematic fungal pathogen associated with high morbidity and mortality. Amphotericin B (AmB) is the most effective antifungal used to treat invasive fungal candidiasis, with resistance rarely observed among clinical isolates. However, C. auris possesses extraordinary resistant profiles against all available antifungal drugs, including AmB. In our pursuit of potential solutions, we screened a panel of 727 FDA-approved drugs. We identified the proton pump inhibitor lansoprazole (LNP) as a potent enhancer of AmB's activity against C. auris. LNP also potentiates the antifungal activity of AmB against other medically important species of Candida and Cryptococcus. Our investigations into the mechanism of action unveiled that LNP metabolite(s) interact with a crucial target in the mitochondrial respiratory chain (complex III, known as cytochrome bc1). This interaction increases oxidative stress within fungal cells. Our results demonstrated the critical role of an active respiratory function in the antifungal activity of LNP. Most importantly, LNP restored the efficacy of AmB in an immunocompromised mouse model, resulting in a 1.7-log (∼98%) CFU reduction in the burden of C. auris in the kidneys. Our findings strongly advocate for a comprehensive evaluation of LNP as a cytochrome bc1 inhibitor for combating drug-resistant C. auris infections.
Collapse
Affiliation(s)
- Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia A. Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Atena Farhangian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Tony R. Hazbun
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Salama EA, Elgammal Y, Wijeratne A, Lanman NA, Utturkar SM, Farhangian A, Li J, Meunier B, Hazbun TR, Seleem MN. Response to the letter to the editor: Lansoprazole interferes with fungal respiration and acts synergistically with amphotericin B against multidrug-resistant Candida auris. Emerg Microbes Infect 2024; 13:2396869. [PMID: 39193644 PMCID: PMC11382729 DOI: 10.1080/22221751.2024.2396869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nadia A. Lanman
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Atena Farhangian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Tony R. Hazbun
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Kovalova T, Król S, Gamiz-Hernandez AP, Sjöstrand D, Kaila VRI, Brzezinski P, Högbom M. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A 2024; 121:e2412780121. [PMID: 39531492 PMCID: PMC11588064 DOI: 10.1073/pnas.2412780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis is one of the most common causes of death worldwide, with a rapid emergence of multi-drug-resistant strains underscoring the need for new antituberculosis drugs. Recent studies indicate that lansoprazole-a known gastric proton pump inhibitor and its intracellular metabolite, lansoprazole sulfide (LPZS)-are potential antituberculosis compounds. Yet, their inhibitory mechanism and site of action still remain unknown. Here, we combine biochemical, computational, and structural approaches to probe the interaction of LPZS with the respiratory chain supercomplex III2IV2 of Mycobacterium smegmatis, a close homolog of Mycobacterium tuberculosis supercomplex. We show that LPZS binds to the Qo cavity of the mycobacterial supercomplex, inhibiting the quinol substrate oxidation process and the activity of the enzyme. We solve high-resolution (2.6 Å) cryo-electron microscopy (cryo-EM) structures of the supercomplex with bound LPZS that together with microsecond molecular dynamics simulations, directed mutagenesis, and functional assays reveal key interactions that stabilize the inhibitor, but also how mutations can lead to the emergence of drug resistance. Our combined findings reveal an inhibitory mechanism of LPZS and provide a structural basis for drug development against tuberculosis.
Collapse
Affiliation(s)
- Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| |
Collapse
|
10
|
Phelan J, Van den Heede K, Masyn S, Verbeeck R, Clark TG, Lamprecht DA, Koul A, Wall RJ. An open-access dashboard to interrogate the genetic diversity of Mycobacterium tuberculosis clinical isolates. Sci Rep 2024; 14:24792. [PMID: 39433543 PMCID: PMC11494124 DOI: 10.1038/s41598-024-75818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Tuberculosis (TB) remains one of the leading infectious disease killers in the world. The ongoing development of novel anti-TB medications has yielded potent compounds that often target single sites with well-defined mechanisms of action. However, despite the identification of resistance-associated mutations through target deconvolution studies, comparing these findings with the diverse Mycobacterium tuberculosis populations observed in clinical settings is often challenging. To address this gap, we constructed an open-access database encompassing genetic variations from > 50,000 clinical isolates, spanning the entirety of the M. tuberculosis protein-encoding genome. This resource offers a valuable tool for investigating the prevalence of target-based resistance mutations in any drug target within clinical contexts. To demonstrate the practical application of this dataset in drug discovery, we focused on drug targets currently undergoing phase II clinical trials. By juxtaposing genetic variations of these targets with resistance mutations derived from laboratory-adapted strains, we identified multiple positions across three targets harbouring resistance-associated mutations already present in clinical isolates. Furthermore, our analysis revealed a discernible correlation between genetic diversity within each protein and their predicted essentiality. This meta-analysis, openly accessible via a dedicated dashboard, enables comprehensive exploration of genetic diversity pertaining to any drug target or resistance determinant in M. tuberculosis.
Collapse
Affiliation(s)
- Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Klaas Van den Heede
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Serge Masyn
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Rudi Verbeeck
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Dirk A Lamprecht
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium
| | - Anil Koul
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Janssen Global Public Health R&D, LLC, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Antwerpen, Belgium.
| | - Richard J Wall
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
11
|
Nitschke J, Huber R, Vossio S, Moreau D, Marcourt L, Gindro K, Queiroz EF, Soldati T, Hanna N. Discovery of anti-infective compounds against Mycobacterium marinum after biotransformation of simple natural stilbenes by a fungal secretome. Front Microbiol 2024; 15:1439814. [PMID: 39355425 PMCID: PMC11443511 DOI: 10.3389/fmicb.2024.1439814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 μM, 9 μM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.
Collapse
Affiliation(s)
- Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Stefania Vossio
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson F. Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Wang H, Li B, Sun Y, Ma Q, Feng Y, Jia Y, Wang W, Su M, Liu X, Shu B, Zheng J, Sang S, Yan Y, Wu Y, Zhang Y, Gao Q, Li P, Wang J, Ma F, Li X, Yan D, Wang D, Zou X, Liao Y. NIR-II AIE Luminogen-Based Erythrocyte-Like Nanoparticles with Granuloma-Targeting and Self-Oxygenation Characteristics for Combined Phototherapy of Tuberculosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406143. [PMID: 39072892 DOI: 10.1002/adma.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Tuberculosis, a fatal infectious disease caused by Mycobacterium tuberculosis (M.tb), is difficult to treat with antibiotics due to drug resistance and short drug half-life. Phototherapy represents a promising alternative to antibiotics in combating M.tb. Exploring an intelligent material allowing effective tuberculosis treatment is definitely appealing, yet a significantly challenging task. Herein, an all-in-one biomimetic therapeutic nanoparticle featured by aggregation-induced second near-infrared emission, granuloma-targeting, and self-oxygenation is constructed, which can serve for prominent fluorescence imaging-navigated combined phototherapy toward tuberculosis. After camouflaging the biomimetic erythrocyte membrane, the nanoparticles show significantly prolonged blood circulation and increased selective accumulation in tuberculosis granuloma. Upon laser irradiation, the loading photosensitizer of aggregation-induced emission photosensitizer elevates the production of reactive oxygen species (ROS), causing M.tb damage and death. The delivery of oxygen to relieve the hypoxic granuloma microenvironment supports ROS generation during photodynamic therapy. Meanwhile, the photothermal agent, Prussian blue nanoparticles, plays the role of good photothermal killing effect on M.tb. Moreover, the growth and proliferation of granuloma and M.tb colonies are effectively inhibited in the nanoparticle-treated tuberculous granuloma model mice, suggesting the combined therapeutic effects of enhancing photodynamic therapy and photothermal therapy.
Collapse
Affiliation(s)
- Huanhuan Wang
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yan Sun
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qiang Ma
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yue Jia
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Min Su
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xueting Liu
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Jundun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Shuo Sang
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yan Yan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yanqiu Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Yunlong Zhang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Qiuxia Gao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Peiran Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Fei Ma
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, 516006, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoming Zou
- The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, 528200, China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| |
Collapse
|
13
|
Chilamakuru NB, Vn AD, G VB, Pallaprolu N, Dande A, Nair D, Pemmadi RV, Reddy Y P, Peraman R. New synergistic benzoquinone scaffolds as inhibitors of mycobacterial cytochrome bc1 complex to treat multi-drug resistant tuberculosis. Eur J Med Chem 2024; 272:116479. [PMID: 38733886 DOI: 10.1016/j.ejmech.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Through a comprehensive molecular docking study, a unique series of naphthoquinones clubbed azetidinone scaffolds was arrived with promising binding affinity to Mycobacterial Cytbc1 complex, a drug target chosen to kill multi-drug resistant Mycobacterium tuberculosis (MDR-Mtb). Five compounds from series-2, 2a, 2c, 2g, 2h, and 2j, showcased significant in vitro anti-tubercular activities against Mtb H37Rv and MDR clinical isolates. Further, synergistic studies of these compounds in combination with INH and RIF revealed a potent bactericidal effect of compound 2a at concentration of 0.39 μg/mL, and remaining (2c, 2g, 2h, and 2j) at 0.78 μg/mL. Exploration into the mechanism study through chemo-stress assay and proteome profiling uncovered the down-regulation of key proteins of electron-transport chain and Cytbc1 inhibition pathway. Metabolomics corroborated these proteome findings, and heightened further understanding of the underlying mechanism. Notably, in vitro and in vivo animal toxicity studies demonstrated minimal toxicity, thus underscoring the potential of these compounds as promising anti-TB agents in combination with RIF and INH. These active compounds adhered to Lipinski's Rule of Five, indicating the suitability of these compounds for drug development. Particular significance of molecules NQ02, 2a, and 2h, which have been patented (Published 202141033473).
Collapse
Affiliation(s)
- Naresh Babu Chilamakuru
- Research Scholar, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India
| | - Azger Dusthackeer Vn
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai, 600031, Tamil Nadu, India
| | - Varadaraj Bhat G
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nikhil Pallaprolu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India
| | - Aishwarya Dande
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India
| | - Dina Nair
- ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai, 600031, Tamil Nadu, India
| | - Raghuveer Varma Pemmadi
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India; Department of Pharmaceutical Chemistry, A.K.R.G College of Pharmacy, Nallajerla, Andhra Pradesh 534112.
| | - Padmanabha Reddy Y
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India
| | - Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Ananthapuramu, 515721, Andhra Pradesh, India; Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India.
| |
Collapse
|
14
|
Nyenhuis DA, Watanabe S, Bernstein R, Swenson RE, Raju N, Sabbasani VR, Mushti C, Lee D, Carter C, Tjandra N. Structural Relationships to Efficacy for Prazole-Derived Antivirals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308312. [PMID: 38447164 PMCID: PMC11095225 DOI: 10.1002/advs.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Susan Watanabe
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Rebecca Bernstein
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Rolf E. Swenson
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Natarajan Raju
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Venkata R. Sabbasani
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Chandrasekhar Mushti
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Duck‐Yeon Lee
- Biochemistry Core FacilityNHLBINIHBethesdaMD20892USA
| | - Carol Carter
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| |
Collapse
|
15
|
Gries R, Chhen J, van Gumpel E, Theobald SJ, Sonnenkalb L, Utpatel C, Metzen F, Koch M, Dallenga T, Djaout K, Baulard A, Dal Molin M, Rybniker J. Discovery of dual-active ethionamide boosters inhibiting the Mycobacterium tuberculosis ESX-1 secretion system. Cell Chem Biol 2024; 31:699-711.e6. [PMID: 38181799 DOI: 10.1016/j.chembiol.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Drug-resistant Mycobacterium tuberculosis (Mtb) remains a major public health concern requiring complementary approaches to standard anti-tuberculous regimens. Anti-virulence molecules or compounds that enhance the activity of antimicrobial prodrugs are promising alternatives to conventional antibiotics. Exploiting host cell-based drug discovery, we identified an oxadiazole compound (S3) that blocks the ESX-1 secretion system, a major virulence factor of Mtb. S3-treated mycobacteria showed impaired intracellular growth and a reduced ability to lyse macrophages. RNA sequencing experiments of drug-exposed bacteria revealed strong upregulation of a distinct set of genes including ethA, encoding a monooxygenase activating the anti-tuberculous prodrug ethionamide. Accordingly, we found a strong ethionamide boosting effect in S3-treated Mtb. Extensive structure-activity relationship experiments revealed that anti-virulence and ethionamide-boosting activity can be uncoupled by chemical modification of the primary hit molecule. To conclude, this series of dual-active oxadiazole compounds targets Mtb via two distinct mechanisms of action.
Collapse
Affiliation(s)
- Raphael Gries
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Jason Chhen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Edeltraud van Gumpel
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lindsay Sonnenkalb
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christian Utpatel
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Fabian Metzen
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Tobias Dallenga
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany; Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Kamel Djaout
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Alain Baulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Michael Dal Molin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany.
| |
Collapse
|
16
|
Harden SA, Courbon GM, Liang Y, Kim AS, Rubinstein JL. A simple assay for inhibitors of mycobacterial oxidative phosphorylation. J Biol Chem 2024; 300:105483. [PMID: 37992805 PMCID: PMC10770618 DOI: 10.1016/j.jbc.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.
Collapse
Affiliation(s)
- Serena A Harden
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - Angelina S Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
18
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
19
|
Murnane R, Zloh M, Tanna S, Allen R, Santana-Gomez F, Parish T, Brucoli F. Synthesis and antitubercular activity of novel 4-arylalkyl substituted thio-, oxy- and sulfoxy-quinoline analogues targeting the cytochrome bc1 complex. Bioorg Chem 2023; 138:106659. [PMID: 37336104 DOI: 10.1016/j.bioorg.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
A library of 4-substituted quinolines was synthesised based on the structural features of the privileged 4-(benzylthio)-6-methoxy-2-methylquinoline scaffold. Quinoline-based chemical probes have proven to be effective anti-tuberculosis agents with the ability of inhibiting components of Mycobacterium tuberculosis (MTB) respiratory chain including the b subunit of the cytochrome bc1 complex. Novel 4-(arylalkyl)-thio, -oxy and sulfoxy-quinoline analogues were tested for their ability to inhibit the growth of MTB H37Rv and QcrB mutant strains, and the compounds mode of action was investigated. Members of the 4-subtituted thio- and sulfoxyquinoline series exhibited significant growth inhibitory activity in the high nanomolar range against wild-type MTB and induced depletion of intracellular ATP. These probes also showed reduced potency in the QcrB T313I mutant strain, thus indicating the cytochrome bc1 oxidase complex as the molecular target. Interestingly, new 4-(quinolin-2-yl)oxy-quinoline 4i was more selective for the QcrB T313I strain compared to the wild-type strain.
Collapse
Affiliation(s)
- Robert Murnane
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mire Zloh
- Faculty of Pharmacy, University Business Academy, Novi Sad 2100, Serbia; UCL School of Pharmacy, UCL, London WC1N 1AX, UK
| | - Sangeeta Tanna
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Renee Allen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Felipe Santana-Gomez
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
20
|
Gries R, Dal Molin M, Chhen J, van Gumpel E, Dreyer V, Niemann S, Rybniker J. Characterization of Two Novel Inhibitors of the Mycobacterium tuberculosis Cytochrome bc1 Complex. Antimicrob Agents Chemother 2023; 67:e0025123. [PMID: 37358461 PMCID: PMC10353358 DOI: 10.1128/aac.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Drug-resistant tuberculosis is a global health care threat calling for novel effective treatment options. Here, we report on two novel cytochrome bc1 inhibitors (MJ-22 and B6) targeting the Mycobacterium tuberculosis respiratory chain with excellent intracellular activities in human macrophages. Both hit compounds revealed very low mutation frequencies and distinct cross-resistance patterns with other advanced cytochrome bc1 inhibitors.
Collapse
Affiliation(s)
- Raphael Gries
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michael Dal Molin
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jason Chhen
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Edeltraud van Gumpel
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
21
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
22
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
23
|
Lake MA, Adams KN, Nie F, Fowler E, Verma AK, Dei S, Teodori E, Sherman DR, Edelstein PH, Spring DR, Troll M, Ramakrishnan L. The human proton pump inhibitors inhibit Mycobacterium tuberculosis rifampicin efflux and macrophage-induced rifampicin tolerance. Proc Natl Acad Sci U S A 2023; 120:e2215512120. [PMID: 36763530 PMCID: PMC7614234 DOI: 10.1073/pnas.2215512120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Tuberculosis treatment requires months-long combination chemotherapy with multiple drugs, with shorter treatments leading to relapses. A major impediment to shortening treatment is that Mycobacterium tuberculosis becomes tolerant to the administered drugs, starting early after infection and within days of infecting macrophages. Multiple lines of evidence suggest that macrophage-induced drug tolerance is mediated by mycobacterial drug efflux pumps. Here, using assays to directly measure drug efflux, we find that M. tuberculosis transports the first-line antitubercular drug rifampicin through a proton gradient-dependent mechanism. We show that verapamil, a known efflux pump inhibitor, which inhibits macrophage-induced rifampicin tolerance, also inhibits M.tuberculosis rifampicin efflux. As with macrophage-induced tolerance, the calcium channel-inhibiting property of verapamil is not required for its inhibition of rifampicin efflux. By testing verapamil analogs, we show that verapamil directly inhibits M. tuberculosis drug efflux pumps through its human P-glycoprotein (PGP)-like inhibitory activity. Screening commonly used drugs with incidental PGP inhibitory activity, we find many inhibit rifampicin efflux, including the proton pump inhibitors (PPIs) such as omeprazole. Like verapamil, the PPIs inhibit macrophage-induced rifampicin tolerance as well as intramacrophage growth, which has also been linked to mycobacterial efflux pump activity. Our assays provide a facile screening platform for M. tuberculosis efflux pump inhibitors that inhibit in vivo drug tolerance and growth.
Collapse
Affiliation(s)
- M. Alexandra Lake
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AWCambridge, UK
- Medical Research Council Laboratory of Molecular Biology, CB2 0QHCambridge, UK
| | - Kristin N. Adams
- Department of Microbiology, University of Washington, Seattle98195
| | - Feilin Nie
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Elaine Fowler
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Amit K. Verma
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AWCambridge, UK
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019Sesto Fiorentino (FI), Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019Sesto Fiorentino (FI), Italy
| | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle98195
| | - Paul H. Edelstein
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AWCambridge, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David R. Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Mark Troll
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AWCambridge, UK
- Medical Research Council Laboratory of Molecular Biology, CB2 0QHCambridge, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AWCambridge, UK
- Medical Research Council Laboratory of Molecular Biology, CB2 0QHCambridge, UK
| |
Collapse
|
24
|
Jeffreys L, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, Nixon GL, Fisher NE, Hong WD, Leung SC, Aljayyoussi G, Bibby J, Almeida DV, Converse PJ, Fotouhi N, Berry NG, Nuermberger EL, Upton AM, O’Neill PM, Ward SA, Biagini GA. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:221-238. [PMID: 36606559 PMCID: PMC9926492 DOI: 10.1021/acsinfecdis.2c00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.
Collapse
Affiliation(s)
- Laura
N. Jeffreys
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Alison Ardrey
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Taghreed A. Hafiz
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Lauri-Anne Dyer
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Ashley J. Warman
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Nada Mosallam
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Gemma L. Nixon
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Nicholas E. Fisher
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - W. David Hong
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Suet C. Leung
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Ghaith Aljayyoussi
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Jaclyn Bibby
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Deepak V. Almeida
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Paul J. Converse
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Nader Fotouhi
- Global
Alliance for TB Drug Development, New York, New York10005, United States
| | - Neil G. Berry
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Eric L. Nuermberger
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Anna M. Upton
- Global
Alliance for TB Drug Development, New York, New York10005, United States
- Evotec
(US) Inc., 303B College Road East, Princeton, New Jersey08540, United States
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Stephen A. Ward
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Giancarlo A. Biagini
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| |
Collapse
|
25
|
Sindhu T, Rajamanikandan S, Jeyakanthan J, Pal D. Investigation of protein-ligand binding motions through protein conformational morphing and clustering of cytochrome bc1-aa3 super complex. J Mol Graph Model 2023; 118:108347. [PMID: 36208591 DOI: 10.1016/j.jmgm.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Cytochrome b (QcrB) is considered an essential subunit in the electron transport chain that coordinates the action of the entire cytochrome bc1 oxidase. It has been identified as an attractive drug target for a new promising clinical candidate Q203 that depletes the intracellular ATP levels in the bacterium, Mycobacterium tuberculosis. However, single point polymorphism (T313A/I) near the quinol oxidation site of QcrB developed resistance to Q203. In the present study, we analyze the structural changes and drug-resistance mechanism of QcrB due to the point mutation in detail through conformational morphing and molecular docking studies. By morphing, we generated conformers between the open and closed state of the electron transporting cytochrome bc1-aa3 super complex. We clustered them to identify four intermediate structures and relevant intra- and intermolecular motions that may be of functional relevance, especially the binding of Q203 in wild and mutant QcrB intermediate structures and their alteration in developing drug resistance. The difference in the binding score and hydrogen bond interactions between Q203 and the wild-type and mutant intermediate structures of QcrB from molecular docking studies showed that the point mutation T313A severely affected the binding affinity of the candidate drug. Together, the findings provide an in-depth understanding of QcrB inhibition in different conformations, including closed, intermediate, and open states of cytochrome bc1-aa3 super complex in Mycobacterium tuberculosis at the atomic level. We also obtain insights for designing QcrB and cytochrome bc1-aa3 inhibitors as potential therapeutics that may combat drug resistance in tuberculosis.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sundarraj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital (BIHER), Chennai, Tamil Nadu, India
| | | | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
26
|
Sarrazin M, Martin BP, Avellan R, Gnawali GR, Poncin I, Le Guenno H, Spilling CD, Cavalier JF, Canaan S. Synthesis and Biological Characterization of Fluorescent Cyclipostins and Cyclophostin Analogues: New Insights for the Diagnosis of Mycobacterial-Related Diseases. ACS Infect Dis 2022; 8:2564-2578. [PMID: 36379042 DOI: 10.1021/acsinfecdis.2c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with cystic fibrosis (CF) have a significantly higher risk of acquiring nontuberculous mycobacteria infections, predominantly due to Mycobacterium abscessus, than the healthy population. Because M. abscessus infections are a major cause of clinical decline and morbidity in CF patients, improving treatment and the detection of this mycobacterium in the context of a polymicrobial culture represents a critical component to better manage patient care. We report here the synthesis of fluorescent Dansyl derivatives of four active cyclipostins and cyclophostin analogues (CyCs) and provide new insights regarding the CyC's lack of activity against Gram-negative and Gram-positive bacteria, and above all into their mode of action against intramacrophagic M. abscessus cells. Our results pointed out that the intracellularly active CyC accumulate in acidic compartments within macrophage cells, that this accumulation appears to be essential for their delivery to mycobacteria-containing phagosomes, and consequently, for their antimicrobial effect against intracellular replicating M. abscessus, and that modification of such intracellular localization via disruption of endolysosomal pH strongly affects the CyC accumulation and efficacy. Moreover, we discovered that these fluorescent compounds could become efficient probes to specifically label mycobacterial species with high sensitivity, including M. abscessus in the presence several other pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. Collectively, all present and previous data emphasized the therapeutic potential of unlabeled CyCs and the attractiveness of the fluorescent CyC as a potential new efficient diagnostic tool to be exploited in future diagnostic developments against mycobacterial-related infections, especially against M. abscessus.
Collapse
Affiliation(s)
- Morgane Sarrazin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Benjamin P Martin
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Giri Raj Gnawali
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Isabelle Poncin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Hugo Le Guenno
- Microscopy Core Facility, IMM FR3479, CNRS, Aix-Marseille Univ, Marseille 13009, France
| | - Christopher D Spilling
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | | | - Stéphane Canaan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| |
Collapse
|
27
|
Zhang JY, Zhu XQ. Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile. Molecules 2022; 27:7252. [PMID: 36364079 PMCID: PMC9658978 DOI: 10.3390/molecules27217252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
In this work, we compared the hydride-donating ability of five-membered benzoheterocyclic compounds (FMB) and six-membered benzoheterocyclic compounds (SMB), isomers of DMBI and DMIZ and of DMPZ and DMPX, using detailed thermodynamic driving forces [ΔGo (XH)], kinetic intrinsic barriers (ΔG≠XH/X), and thermo-kinetic parameters [ΔG≠° (XH)]. For DMBI and DMIZ, the values of ΔGo (XH), ΔG≠XH/X, and ΔG≠° (XH) are 49.2 and 53.7 kcal/mol, 35.88 and 42.04 kcal/mol, and 42.54 and 47.87 kcal/mol, respectively. For DMPZ and DMPX, the values of ΔGo (XH), ΔG≠XH/X, and ΔG≠° (XH) are 73.2 and 79.5 kcal/mol, 35.34 and 25.02 kcal/mol, and 54.27 and 52.26 kcal/mol, respectively. It is easy to see that the FMB isomers are thermodynamically dominant and that the SMB isomers are kinetically dominant. Moreover, according to the analysis of ΔG≠° (XH), compared to the SMB isomers, the FMB isomers have a stronger hydride-donating ability in actual chemical reactions.
Collapse
|
28
|
Beebe J, Josephraj S, Wang CJ, Danielson J, Cui Q, Huang C, Barlow L, Zhang RH, Zhang T, Nakshatri H, Dong Z, Li X, Liu JY, Zhang JT. Therapeutic Activity of the Lansoprazole Metabolite 5-Hydroxy Lansoprazole Sulfide in Triple-Negative Breast Cancer by Inhibiting the Enoyl Reductase of Fatty Acid Synthase. J Med Chem 2022; 65:13681-13691. [PMID: 36257066 DOI: 10.1021/acs.jmedchem.2c00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid synthase (FASN), a sole cytosolic enzyme responsible for de-novo lipid synthesis, is overexpressed in cancer but not in normal non-lipogenic tissues. FASN has been targeted, albeit no such inhibitor has been approved. Proton pump inhibitors (PPIs), approved for digestive disorders, were found to inhibit FASN with anticancer activities in attempting to repurpose Food and Drug Administration-approved drugs. Indeed, PPI usage benefited breast cancer patients and increased their response rate. Due to structural similarity, we thought that their metabolites might extend anticancer effects of PPIs by inhibiting FASN. Here, we tested this hypothesis and found that 5-hydroxy lansoprazole sulfide (5HLS), the end lansoprazole metabolite, was more active than lansoprazole in inhibiting FASN function and regulation of NHEJ repair of oxidative DNA damage via PARP1. Surprisingly, 5HLS inhibits the enoyl reductase, whereas lansoprazole inhibits the thioesterase of FASN. Thus, PPI metabolites may contribute to the lasting anticancer effects of PPIs by inhibiting FASN.
Collapse
Affiliation(s)
- Jenny Beebe
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sophia Josephraj
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Chao J Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jacob Danielson
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Qingbin Cui
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Lincoln Barlow
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ryan H Zhang
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Taolan Zhang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Zizheng Dong
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Xiaohong Li
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell & Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
29
|
Novel Antibacterial Activity of Febuxostat, an FDA-Approved Antigout Drug against Mycobacterium tuberculosis Infection. Antimicrob Agents Chemother 2022; 66:e0076222. [PMID: 36040172 PMCID: PMC9487535 DOI: 10.1128/aac.00762-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.
Collapse
|
30
|
Khan A, Poojary SS, Bhave KK, Nandan SR, Iyer KR, Coutinho EC. Prediction of QcrB Inhibition as a Measure of Antitubercular Activity with Machine Learning Protocols. ACS OMEGA 2022; 7:18094-18102. [PMID: 35664614 PMCID: PMC9161412 DOI: 10.1021/acsomega.2c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 05/07/2023]
Abstract
It has always been a challenge to develop interventional therapies for Mycobacterium tuberculosis. Over the years, several attempts at developing such therapies have hit a dead-end owing to rapid mutation rates of the tubercular bacilli and their ability to lay dormant for years. Recently, cytochrome bcc complex (QcrB) has shown some promise as a novel target against the tubercular bacilli, with Q203 being the first molecule acting on this target. In this paper, we report the deployment of several ML-based approaches to design molecules against QcrB. Machine learning (ML) models were developed based on a data set of 350 molecules using three different sets of molecular features, i.e., MACCS keys, ECFP6 fingerprints, and Mordred descriptors. Each feature set was trained on eight ML classifier algorithms and optimized to classify molecules accurately. The support vector machine-based classifier using the ECFP6 feature set was found to be the best classifier in this study. Further, screening of the known imidazopyridine amide inhibitors demonstrated that the model correctly classified the most potent molecules as actives, hence validating the model for future applications.
Collapse
Affiliation(s)
- Afreen
A. Khan
- Department
of Pharmaceutical Chemistry, Vasvik Research Centre, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| | - Sannidhi S. Poojary
- Department
of Pharmaceutical Chemistry, Vasvik Research Centre, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| | - Ketki K. Bhave
- Department
of Pharmaceutical Chemistry, Vasvik Research Centre, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| | - Santosh R. Nandan
- Ambernath
Organics Pvt. Ltd., 222,
The Summit Business Bay, Andheri (E), Mumbai 400 093, India
| | - Krishna R. Iyer
- Department
of Pharmaceutical Chemistry, Vasvik Research Centre, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| | - Evans C. Coutinho
- Department
of Pharmaceutical Chemistry, Vasvik Research Centre, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India
| |
Collapse
|
31
|
Design, synthesis and antibacterial activity against pathogenic mycobacteria of conjugated hydroxamic acids, hydrazides and O-alkyl/O-acyl protected hydroxamic derivatives. Bioorg Med Chem Lett 2022; 64:128692. [PMID: 35307568 DOI: 10.1016/j.bmcl.2022.128692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
With the aim to discover new antituberculous molecules, three novel series of 23 hydroxamic acids, 13 hydrazides, and 9O-alkyl/O-acyl protected hydroxamic acid derivatives have been synthesized, and fully characterized by spectral 1H NMR, 13C NMR, HRMS) analysis. These compounds were further biologically screened for their in vitro antibacterial activities against three pathogenic mycobacteria - M. abscessus S and R, M. marinum, and M. tuberculosis - as well as for their toxicity towards murine macrophages by the resazurin microtiter assay (REMA). Among the 45 derivatives, 17 compounds (3 hydroxamic acids, 9 hydrazides, and 5O-alkyl/O-acyl protected hydroxamic acids) were nontoxic against murine macrophages. When tested for their antibacterial activity, hydroxamic acid 9 h was found to be the most potent inhibitor against M. abscessus S and R only. Regarding hydrazide series, only 7h was active against M. abscessus R, M. marinum and M. tuberculosis; while the O-acyl protected hydroxamic acid derivatives 14d and 15d displayed promising antibacterial activity against both M. marinum and M. tuberculosis. Since such hydroxamic- and hydrazide-chelating groups have been reported to impair the activity of the peptide deformylase, in silico molecular docking studies in M. tuberculosis peptide deformylase enzyme active site were further performed with 7h in order to predict the possible interaction mode and binding energy of this molecule at the molecular level.
Collapse
|
32
|
Gupta Y, Goicoechea S, Romero JG, Mathur R, Caulfield TR, Becker DP, Durvasula R, Kempaiah P. Repurposing Lansoprazole and Posaconazole to treat leishmaniasis: Integration of in vitro testing, pharmacological corroboration, and mechanisms of action. J Food Drug Anal 2022; 30:128-149. [PMID: 35647721 PMCID: PMC9931003 DOI: 10.38212/2224-6614.3394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis remains a serious public health problem in many tropical regions of the world. Among neglected tropical diseases, the mortality rate of leishmaniasis is second only to malaria. All currently approved therapeutics have toxic side effects and face rapidly increasing resistance. To identify existing drugs with antileishmanial activity and predict the mechanism of action, we designed a drug-discovery pipeline utilizing both in-silico and in-vitro methods. First, we screened compounds from the Selleckchem Bio-Active Compound Library containing ~1622 FDA-approved drugs and narrowed these down to 96 candidates based on data mining for possible anti-parasitic properties. Next, we completed preliminary in-vitro testing of compounds against Leishmania amastigotes and selected the most promising active compounds, Lansoprazole and Posaconazole. We identified possible Leishmania drug targets of Lansoprazole and Posaconazole using several available servers. Our in-silico screen identified likely Lansoprazole targets as the closely related calcium-transporting ATPases (LdBPK_352080.1, LdBPK_040010.1, and LdBPK_170660.1), and the Posaconazole target as lanosterol 14-alpha-demethylase (LdBPK_111100.1). Further validation showed LdBPK_352080.1 to be the most plausible target based on induced-fit docking followed by long (100ns) MD simulations to confirm the stability of the docked complexes. We present a likely ion channel-based mechanism of action of Lansoprazole against Leishmania calcium-transporting ATPases, which are essential for parasite metabolism and infectivity. The LdBPK_111100.1 interaction with Posaconazole is very similar to the known fungal orthologue. Herein, we present two novel anti-leishmanial agents, Posaconazole and Lansoprazole, already approved by the FDA for different indications and propose plausible mechanisms of action for their antileishmanial activity.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL,
USA
| | - Steven Goicoechea
- Loyola University Chicago Stritch School of Medicine, Chicago, IL,
USA
- Center for Community and Global Health, Loyola University Stritch School of Medicine, Maywood, IL,
USA
| | - Jesus G. Romero
- Institute of Experimental Biology and School of Biology, Central University of Venezuela,
Venezuela
| | - Raman Mathur
- Loyola University Chicago Stritch School of Medicine, Chicago, IL,
USA
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL,
USA
- Department of Quantitative Health Science, Division of Computational Biology, Mayo Clinic, Jacksonville, FL,
USA
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL,
USA
| | | | | |
Collapse
|
33
|
Abstract
We previously identified a series of triazolopyrimidines with antitubercular activity. We determined that Mycobacterium tuberculosis strains with mutations in QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cytochrome bd oxidase deletion strain was more sensitive to this series. We isolated resistant mutants with mutations in Rv1339. Compounds led to the depletion of intracellular ATP levels and were active against intracellular bacteria, but they did not inhibit human mitochondrial respiration. These data are consistent with triazolopyrimidines acting via inhibition of QcrB.
Collapse
|
34
|
Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model 2022; 28:35. [PMID: 35022913 DOI: 10.1007/s00894-021-04993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.
Collapse
Affiliation(s)
- Ntombikayise Tembe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kgothatso E Machaba
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Hezekiel M Kumalo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
35
|
Matsa R, Makam P, Sethi G, Thottasseri AA, Kizhakkandiyil AR, Ramadas K, Mariappan V, Pillai AB, Kannan T. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. RSC Adv 2022; 12:18333-18346. [PMID: 35799934 PMCID: PMC9215125 DOI: 10.1039/d2ra02163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
An array of pyridine appended 2-hydrazinylthiazole derivatives has been synthesized to discover novel chemotherapeutic agents for Mycobacterium tuberculosis (Mtb). The drug-likeness of pyridine appended 2-hydrazinylthiazole derivatives was validated using the Lipinski and Veber rules. The designed thiazole molecules have been synthesized through Hantzsch thiazole methodologies. The in vitro antimycobacterial studies have been conducted using Luciferase reporter phage (LRP) assay. Out of thirty pyridine appended 2-hydrazinylthiazole derivatives, the compounds 2b, 3b, 5b, and 8b have exhibited good antimycobacterial activity against Mtb, an H37Rv strain with the minimum inhibitory concentration in the range of 6.40–7.14 μM. In addition, in vitro cytotoxicity of active molecules has been observed against Human Embryonic Kidney Cell lines (HEK293t) using MTT assay. The compounds 3b and 8b are nontoxic and their cell viability is 87% and 96.71% respectively. The in silico analyses of the pyridine appended 2-hydrazinylthiazole derivatives have been studied to find the mode of binding of the active compounds with KasA protein of Mtb. The active compounds showed a strong binding score (−5.27 to −6.23 kcal mol−1). Thirty novel pyridine-appended 2-hydrazinylthiazole derivatives have been synthesized and tested for their antimycobacterial activity against Mictrobactrium tuberculosis, H37Rv strain.![]()
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry 605 014, India
| | - Parameshwar Makam
- Dr Param Laboratories, Plot No. 478, BN. Reddy Nagar, Cherlapally, Hyderabad, Telangana 500 051, India
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Guneswar Sethi
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | | | | | - Krishna Ramadas
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | | |
Collapse
|
36
|
Ahmed S, Nandi S, Saxena AK. An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin Ther Pat 2021; 32:243-260. [PMID: 34846976 DOI: 10.1080/13543776.2022.2012151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Tuberculosis (TB) caused by Mycobacterium tuberculosis (M.tb) has been a global challenge as 1.4 million deaths were reported in 2019, which included deaths attributed to HIV-TB co-infection. It is curable by the prescribed Directly Observed Treatment Short (DOTS) course, but the situation becomes critical and alarming due to multi-drug resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. Hence there has been an urgent need to develop novel M.tb chemotherapeutics to overcome this situation. AREAS COVERED This review provides an overview and update on recent developments on the novel therapeutics for the treatment of TB from the important published and granted patents (2018-present). EXPERT OPINION The discovery of potent chemotherapeutics with reduced toxicity to combat M.tb particularly MDR and XDR-TB is a major challenge in antitubercular drug development. The missing of any doses during the DOTS treatment and poor immunity particularly in HIV patients has been a major cause for the development of drug resistance. Hence the major focus has to be on novel targets with their inhibitors and novel molecules both of natural and synthetic origins along with repurposed drugs for the complete eradication of tuberculosis.
Collapse
Affiliation(s)
- Sarfaraz Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - Anil K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
37
|
Mir FA, Jha SK. Proton Pump Inhibitor "Lansoprazole" Inhibits Locus Coeruleus's Neuronal Activity and Increases Rapid Eye Movement Sleep. ACS Chem Neurosci 2021; 12:4265-4274. [PMID: 34730349 DOI: 10.1021/acschemneuro.1c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Alteration of the bodily CO2 concentration and proton pump activity affects the sleep architecture. The brainstem locus coeruleus (LC) area plays an essential role in rapid eye movement (REM) sleep generation and chemoregulation. Previously, we reported that lansoprazole injections (intraperitoneal) increased REM sleep in the rats. However, it is not known if proton pumps in the LC influence REM sleep. Here, we studied the effects of lansoprazole in the LC on the neuronal activity and REM sleep expression. Male Wistar rats (250-300 g) were surgically prepared for sleep recording and drug microinjections into the LC. We determined the localization of proton pumps and expression levels of cFOS in the LC neurons immunohistochemically. Sleep-wake was recorded before and after the microinjections of drugs/vehicles. Our results demonstrate (i) the presence of proton pumps in the LC neurons, (ii) that the microinjection of lansoprazole into the LC reduced the number of cFOS+ve-TH+ve double-labeled neurons in the LC by 52.6% (p < 0.001) compared to the vehicle and (iii) that low and high doses of lansoprazole significantly increased REM sleep by 32% (p < 0.001) and 60% (p < 0.001), respectively, compared to the vehicle. Our results suggest that the proton pumps modulate the LC's noradrenergic (NE-ergic) neuronal activity and REM sleep. The increased amount of REM sleep can be attributed to the inhibition of the LC NE-ergic activity. Further, the REM sleep amount increased after the lansoprazole microinjections into the LC with a significant increase in the REM sleep episode numbers. Overall, our results suggest that proton pumps in the LC may be involved in REM sleep generation.
Collapse
Affiliation(s)
- Fayaz A. Mir
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K. Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
38
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
39
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII 2CIV 2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). eLife 2021; 10:e71959. [PMID: 34590581 PMCID: PMC8523172 DOI: 10.7554/elife.71959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
The imidazopyridine telacebec, also known as Q203, is one of only a few new classes of compounds in more than 50 years with demonstrated antituberculosis activity in humans. Telacebec inhibits the mycobacterial respiratory supercomplex composed of complexes III and IV (CIII2CIV2). In mycobacterial electron transport chains, CIII2CIV2 replaces canonical CIII and CIV, transferring electrons from the intermediate carrier menaquinol to the final acceptor, molecular oxygen, while simultaneously transferring protons across the inner membrane to power ATP synthesis. We show that telacebec inhibits the menaquinol:oxygen oxidoreductase activity of purified Mycobacterium smegmatis CIII2CIV2 at concentrations similar to those needed to inhibit electron transfer in mycobacterial membranes and Mycobacterium tuberculosis growth in culture. We then used electron cryomicroscopy (cryoEM) to determine structures of CIII2CIV2 both in the presence and absence of telacebec. The structures suggest that telacebec prevents menaquinol oxidation by blocking two different menaquinol binding modes to prevent CIII2CIV2 activity.
Collapse
Affiliation(s)
- David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rana Abdelaziz
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | | | - Peter Imming
- Department of Pharmaceutical/Medicinal Chemistry and Clinical Pharmacy, Martin-Luther-Universitaet Halle-WittenbergHalle (Saale)Germany
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, The University of TorontoTorontoCanada
- Department of Biochemistry, The University of TorontoTorontoCanada
| |
Collapse
|
41
|
Sindhu T, Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol 2021; 15:380-392. [PMID: 34602044 DOI: 10.2174/1874467214666210928152512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
The cytochrome bc1-aa3 supercomplex plays an essential role in the cellular respiratory system of Mycobacterium Tuberculosis. It transfers electrons from menaquinol to cytochrome aa3 (Complex IV) via cytochrome bc1 (Complex III), which reduces the oxygen. The electron transfer from a variety of donors into oxygen through the respiratory electron transport chain is essential to pump protons across the membrane creating an electrochemical transmembrane gradient (proton motive force, PMF) that regulates the synthesis of ATP via the oxidative phosphorylation process. Cytochrome bc1-aa3 supercomplex in M. tuberculosis is, therefore, a major drug target for antibiotic action. In recent years, several respiratory chain components have been targeted for developing new candidate drugs, illustrating the therapeutic potential of obstructing energy conversion of M. tuberculosis. The recently available cryo-EM structure of mycobacterial cytochrome bc1-aa3 supercomplex with open and closed conformations has opened new avenues for understanding its structure and function for developing more effective, new therapeutics against pulmonary tuberculosis. In this review, we discuss the role and function of several components, subunits, and drug targeting elements of the supercomplex cytochrome bc1-aa3, and its potential inhibitors in detail.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| | - Pal Debnath
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka. India
| |
Collapse
|
42
|
Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome bc1 Inhibitor and Pretomanid Combination Kills Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0095621. [PMID: 34152815 DOI: 10.1128/aac.00956-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, harbors a branched electron transport chain, preventing the bactericidal action of cytochrome bc1 inhibitors (e.g., TB47). Here, we investigated, using luminescent mycobacterial strains, the in vitro combination activity of cytochrome bc1 inhibitors and nitric oxide (NO) donors including pretomanid (PMD) and explored the mechanisms of combination activity. The TB47 and PMD combination quickly abolished the light emission of luminescent bacilli, as was the case for the combination of TB47 and aurachin D, a putative cytochrome bd inhibitor. The TB47 and PMD combination inhibited M. tuberculosis oxygen consumption, decreased ATP levels, and had a delayed bactericidal effect. The NO scavenger carboxy-PTIO prevented the bactericidal activity of the drug combination, suggesting the requirement for NO. In addition, cytochrome bc1 inhibitors were largely bactericidal when administered with DETA NONOate, another NO donor. Proteomic analysis revealed that the cotreated bacilli had a compromised expression of the dormancy regulon proteins, PE/PPE proteins, and proteins required for the biosynthesis of several cofactors, including mycofactocin. Some of these proteomic changes, e.g., the impaired dormancy regulon induction, were attributed to PMD. In conclusion, combination of cytochrome bc1 inhibitors with PMD inhibited M. tuberculosis respiration and killed the bacilli. The activity of cytochrome bc1 inhibitors can be greatly enhanced by NO donors. Monitoring of luminescence may be further exploited to screen cytochrome bd inhibitors.
Collapse
|
43
|
Karale UB, Shinde AU, Babar DA, Sangu KG, Vagolu SK, Eruva VK, Jadav SS, Misra S, Dharmarajan S, Rode HB. 3-Aryl-substituted imidazo[1,2-a]pyridines as antituberculosis agents. Arch Pharm (Weinheim) 2021; 354:e2000419. [PMID: 34185337 DOI: 10.1002/ardp.202000419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/24/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Novel inhibitors are needed to tackle tuberculosis. Herein, we report the 3-aryl-substituted imidazo[1,2-a]pyridines as potent antituberculosis agents. A small library of 3-aryl-substituted imidazo[1,2-a]pyridines was synthesized using direct arylation, followed by nitro reduction and finally Pd-catalyzed C-N coupling reactions. The compounds thus obtained were evaluated against Mycobacterium tuberculosis H37Rv. Compound 26 was identified as an antituberculosis lead with a minimum inhibitory concentration of 2.3 μg/ml against M. tuberculosis H37Rv. This compound showed a selectivity index of 35. The docking of 26 in the active site of the M. tuberculosis cytochrome bc1 complex cytochrome b subunit (Mtb QcrB) revealed key π-π interactions of compound 26 with the Tyr389 and Trp312 residues of Mtb QcrB.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Akash U Shinde
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Dattatraya A Babar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Komal G Sangu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Vamshi K Eruva
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.,Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Surender S Jadav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.,Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sriram Dharmarajan
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
46
|
Kenyon EJ, Kirkwood NK, Kitcher SR, Goodyear RJ, Derudas M, Cantillon DM, Baxendale S, de la Vega de León A, Mahieu VN, Osgood RT, Wilson CD, Bull JC, Waddell SJ, Whitfield TT, Ward SE, Kros CJ, Richardson GP. Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. JCI Insight 2021; 6:145704. [PMID: 33735112 PMCID: PMC8133782 DOI: 10.1172/jci.insight.145704] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.
Collapse
Affiliation(s)
| | | | | | | | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, and
| | - Daire M. Cantillon
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon J. Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
47
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Lee BS, Hards K, Engelhart CA, Hasenoehrl EJ, Kalia NP, Mackenzie JS, Sviriaeva E, Chong SMS, Manimekalai MSS, Koh VH, Chan J, Xu J, Alonso S, Miller MJ, Steyn AJC, Grüber G, Schnappinger D, Berney M, Cook GM, Moraski GC, Pethe K. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med 2021; 13:e13207. [PMID: 33283973 PMCID: PMC7799364 DOI: 10.15252/emmm.202013207] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1 F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Kiel Hards
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| | - Curtis A Engelhart
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Erik J Hasenoehrl
- Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNYUSA
| | - Nitin P Kalia
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Ramalingaswami FellowClinical Microbiology DivisionCSIR‐IIIMJammu and KashmirIndia
| | - Jared S Mackenzie
- Africa Health Research InstituteNelson R. Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Ekaterina Sviriaeva
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Shi Min Sherilyn Chong
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Nanyang Institute of Technology in Health and MedicineInterdisciplinary Graduate SchoolNanyang Technological UniversitySingaporeSingapore
| | | | - Vanessa H Koh
- Department of MicrobiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease ProgrammeDepartment of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
| | - John Chan
- Department of MedicineAlbert Einstein College of MedicineBronxNYUSA
| | - Jiayong Xu
- Department of MedicineAlbert Einstein College of MedicineBronxNYUSA
| | - Sylvie Alonso
- Department of MicrobiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Disease ProgrammeDepartment of Microbiology and ImmunologyNational University of SingaporeSingaporeSingapore
| | - Marvin J Miller
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameINUSA
| | - Adrie J C Steyn
- Africa Health Research InstituteNelson R. Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyUniversity of AlabamaBirminghamALUSA
| | - Gerhard Grüber
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Dirk Schnappinger
- Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Michael Berney
- Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxNYUSA
| | - Gregory M Cook
- Department of Microbiology and ImmunologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| | - Garrett C Moraski
- Department of Chemistry and BiochemistryMontana State UniversityBozemanMTUSA
| | - Kevin Pethe
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
49
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
50
|
Monakhova N, Korduláková J, Vocat A, Egorova A, Lepioshkin A, Salina EG, Nosek J, Repková E, Zemanová J, Jurdáková H, Górová R, Roh J, Degiacomi G, Sammartino JC, Pasca MR, Cole ST, Mikušová K, Makarov V. Design and Synthesis of Pyrano[3,2- b]indolones Showing Antimycobacterial Activity. ACS Infect Dis 2021; 7:88-100. [PMID: 33352041 DOI: 10.1021/acsinfecdis.0c00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latent Mycobacterium tuberculosis infection presents one of the largest challenges for tuberculosis control and novel antimycobacterial drug development. A series of pyrano[3,2-b]indolone-based compounds was designed and synthesized via an original eight-step scheme. The synthesized compounds were evaluated for their in vitro activity against M. tuberculosis strains H37Rv and streptomycin-starved 18b (SS18b), representing models for replicating and nonreplicating mycobacteria, respectively. Compound 10a exhibited good activity with MIC99 values of 0.3 and 0.4 μg/mL against H37Rv and SS18b, respectively, as well as low toxicity, acceptable intracellular activity, and satisfactory metabolic stability and was selected as the lead compound for further studies. An analysis of 10a-resistant M. bovis mutants disclosed a cross-resistance with pretomanid and altered relative amounts of different forms of cofactor F420 in these strains. Complementation experiments showed that F420-dependent glucose-6-phosphate dehydrogenase and the synthesis of mature F420 were important for 10a activity. Overall these studies revealed 10a to be a prodrug that is activated by an unknown F420-dependent enzyme in mycobacteria.
Collapse
Affiliation(s)
- Natalia Monakhova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | | | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Anna Egorova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Alexander Lepioshkin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Elena G. Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | | | | | | | | | | | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové 50005, Czech Republic
| | - Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| |
Collapse
|