1
|
Lopez AD, Debnath T, Pinch M, Hansen IA. Phosphoproteomics analyses of Aedes aegypti fat body reveals blood meal-induced signaling and metabolic pathways. Heliyon 2024; 10:e40060. [PMID: 39634388 PMCID: PMC11615488 DOI: 10.1016/j.heliyon.2024.e40060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female Aedes aegypti. To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites. We observed protein phosphorylation changes in cellular pathways required for vitellogenesis, as well as proteins involved in primary cellular functions. Specifically, after a blood meal, proteins involved in ribosome synthesis, transcription, translation, and autophagy showed dynamic changes in their phosphorylation patterns. Our results provide new insight into blood meal-induced fat body dynamics and reveal potential proteins that can be targeted for interference with mosquito reproduction. Considering the devastating impact of mosquitoes on human health, worldwide, new approaches to control mosquitoes are urgently needed.
Collapse
Affiliation(s)
| | | | - Matthew Pinch
- New Mexico State University, Las Cruces, NM, 88003, USA
- The University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
2
|
Lamsal M, Luker HA, Pinch M, Hansen IA. RNAi-Mediated Knockdown of Acidic Ribosomal Stalk Protein P1 Arrests Egg Development in Adult Female Yellow Fever Mosquitoes, Aedes aegypti. INSECTS 2024; 15:84. [PMID: 38392504 PMCID: PMC10889338 DOI: 10.3390/insects15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg development. The synthesis of YPPs is regulated at both the transcriptional and translational levels. Previously, we identified the cytoplasmic protein general control nonderepressible 1 (GCN1) as a part of the translational regulatory pathway for YPP synthesis. In the current study, we used the C-terminal end of GCN1 to screen for protein-protein interactions and identified 60S acidic ribosomal protein P1 (P1). An expression analysis and RNAi-mediated knockdown of P1 was performed to further investigate the role of P1 in mosquito reproduction. We showed that in unfed (absence of a blood meal) adult A. aegypti mosquitoes, P1 was expressed ubiquitously in the mosquito organs and tissues tested. We also showed that the RNAi-mediated knockdown of P1 in unfed adult female mosquitoes resulted in a strong, transient knockdown with observable phenotypic changes in ovary length and egg deposition. Our results suggest that 60S acidic ribosomal protein P1 is necessary for mosquito reproduction and is a promising target for mosquito population control.
Collapse
Affiliation(s)
- Mahesh Lamsal
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Matthew Pinch
- Department of Biology, University of Texas El Paso, El Paso, TX 79968, USA
| | - Immo A. Hansen
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| |
Collapse
|
3
|
Yao L, Wang S, Ma R, Wei J, Song L, Liu L. Functional Analysis of Amino Acid Transporter Genes ACYPI000536 and ACYPI004320 in Acyrthosiphon pisum. INSECTS 2023; 15:20. [PMID: 38249026 PMCID: PMC10816851 DOI: 10.3390/insects15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
In recent years, pea aphids have become major pests of alfalfa. Our previous study found that "Gannong 5" is a highly aphid-resistant alfalfa variety and that "Lie Renhe" is a susceptible one. The average field susceptibility index of "Gannong 5" was 31.31, and the average field susceptibility index of "Lie Renhe" was 80.34. The uptake and balance of amino acids in insects are usually dependent on amino acid transporters. RT-qPCR was used to detect the relative expression levels of seven amino acid transporter differential genes in the different instar pea aphids fed on resistant and susceptible alfalfa varieties after 24 h, and two key genes were selected. When pea aphids fed on "Gannong 5", the expression of ACYPI004320 was significantly higher than that in pea aphids fed on "Lie Renhe"; however, the expression of ACYPI000536 was significantly lower than that in pea aphids fed on "Lie Renhe". Afterward, the RNA interference with pea aphid ACYPI000536 and ACYPI004320 genes was performed using a plant-mediated method, and gene function was verified via liquid chromatography-mass spectrometry and pea aphid sensitivity to aphid-resistant and susceptible alfalfa varieties. The results showed that the down-regulation of the ACYPI000536 gene expression led to an increase in the histidine and lysine contents in pea aphids, which, in turn, led to an increase in mortality when pea aphids fed on the susceptible variety "Lie Renhe". The down-regulation of the ACYPI004320 gene expression led to an increase in phenylalanine content in pea aphids, which, in turn, led to a decrease in mortality when pea aphids fed on the resistant variety "Gannong 5".
Collapse
Affiliation(s)
| | - Senshan Wang
- Gansu Provincial Crop Pest Biological Control Engineering Laboratory, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (R.M.); (J.W.); (L.S.); (L.L.)
| | | | | | | | | |
Collapse
|
4
|
Griffin RA, Glover CN, McCuaig JD, Blewett TA. Waterborne amino acids: uptake and functional roles in aquatic animals. J Exp Biol 2023; 226:jeb245375. [PMID: 37843468 DOI: 10.1242/jeb.245375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Dissolved organic matter is a ubiquitous component of freshwater and marine environments, and includes small nutrient molecules, such as amino acids, which may be available for uptake by aquatic biota. Epithelial transporters, including cotransporters, uniporters and antiporters, facilitate the absorption of dissolved amino acids (often against concentration gradients). Although there is a lack of mechanistic and molecular characterization of such transporters, pathways for the direct uptake of amino acids from the water appear to exist in a wide range of marine phyla, including Porifera, Cnidaria, Platyhelminthes, Brachiopoda, Mollusca, Nemertea, Annelida, Echinodermata, Arthropoda and Chordata. In these animals, absorbed amino acids have several putative roles, including osmoregulation, hypoxia tolerance, shell formation and metabolism. Therefore, amino acids dissolved in the water may play an important, but overlooked, role in aquatic animal nutrition.
Collapse
Affiliation(s)
- Robert A Griffin
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| | - Jenelle D McCuaig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
5
|
Ling L, Raikhel AS. Amino acid-dependent regulation of insulin-like peptide signaling is mediated by TOR and GATA factors in the disease vector mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2303234120. [PMID: 37579141 PMCID: PMC10450652 DOI: 10.1073/pnas.2303234120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4, ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1, ilp2, ilp3, ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4, ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes.
Collapse
Affiliation(s)
- Lin Ling
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing210096, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, CA92521
- Institute of Integrative Genome Biology, University of California, Riverside, CA92521
| |
Collapse
|
6
|
Pinch M, Muka T, Kandel Y, Lamsal M, Martinez N, Teixeira M, Boudko DY, Hansen IA. General control nonderepressible 1 interacts with cationic amino acid transporter 1 and affects Aedes aegypti fecundity. Parasit Vectors 2022; 15:383. [PMID: 36271393 PMCID: PMC9587632 DOI: 10.1186/s13071-022-05461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Theodore Muka
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mahesh Lamsal
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Nathan Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | | | | | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
7
|
Harrison RE, Chen K, South L, Lorenzi A, Brown MR, Strand MR. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes. Parasit Vectors 2022; 15:127. [PMID: 35413939 PMCID: PMC9004051 DOI: 10.1186/s13071-022-05252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Kangkang Chen
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lilith South
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Ange Lorenzi
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
9
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
10
|
Nepomuceno DB, Paim RMM, Araújo RN, Pereira MH, Pessoa GCD, Koerich LB, Sant'Anna MRV, Gontijo NF. The role of LuloPAT amino acid/proton symporters in midgut alkalinization in the sandfly Lutzomyia longipalpis (Diptera - Psychodidae). JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103973. [PMID: 31715141 DOI: 10.1016/j.jinsphys.2019.103973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
In Lutzomyia longipalpis females, which are the main vectors of Leishmania infantum in the Americas, hematophagy is crucial for ovary development. The control of pH in the midgut during blood digestion is important to the functioning of the digestive enzymes, which release amino acids in the luminal compartment that are then transported through the enterocytes to the hemolymph for delivery to the ovary and other organs. In the present work, we investigated transport systems known as LuloPATs that are present in the midgut of L. longipalpis but not in other organs. These transporters achieve symport of amino acids with H+ ions, and one of them (LuloPAT1) is orthologous to a transporter described in Aedes aegypti. According to our results, the transcription levels of LuloPAT1 increased significantly immediately after a blood meal. Based on the variation of the fluorescence of fluorescein with the pH of the medium, we developed a technique that shows the acidification of the cytoplasm of gut cells when amino acids are cotransported with H+ from the lumen into the enterocytes. In our experiments, the midguts of the sandflies were dissected and opened longitudinally so that added amino acids could enter the enterocytes via the lumen (PAT carriers are apical). LuloPAT1 transporters are part of a complex of mechanisms that act synergistically to promote gut alkalinization as soon as blood intake by the vector occurs. In dissected but not longitudinally opened midguts, added amino acids could only enter through the basolateral region of enterocytes. However, alkalinization of the lumen was observed because the entry of some amino acids into the cytoplasm of enterocytes triggers a luminal alkalinization mechanism independent of LuloPATs. These findings provide new perspectives that will enable the characterization of the set of signaling pathways involved in pH regulation within the L. longipalpis midgut.
Collapse
Affiliation(s)
- Denise Barguil Nepomuceno
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Rafaela Magalhães Macedo Paim
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Li X, Jin B, Dong Y, Chen X, Tu Z, Gu J. Two of the three Transformer-2 genes are required for ovarian development in Aedes albopictus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:92-105. [PMID: 30914323 PMCID: PMC6636634 DOI: 10.1016/j.ibmb.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 05/23/2023]
Abstract
In Drosophila melanogaster, transformer-2 (tra2) plays an essential role in the sex-specific splicing of doublesex (dsx) and fruitless (fru), two key transcription factor genes that program sexual differentiation and regulate sexual behavior. In the present study, the sequences and expression profiles of three tra2 (Aalbtra2) genes in the Asian tiger mosquito, Aedes albopictus (Ae. albopictus) were characterized. Phylogenetic analysis revealed that these paralogs resulted from two duplication events. The first occurred in the common ancestor of Culicidae, giving rise to the tra2-α and tra2-β clades that are found across divergent mosquito genera, including Aedes, Culex, and Anopheles. The second occurred within the tra2-α clade, giving rise to tra2-γ in Ae. albopictus. In addition to the conserved RNA recognition motif (RRM), arginine-rich/serine-rich regions (RS domains) and a linker region, a glycine-rich region located between the RRM and RS2 was observed in Tra2-α and Tra2-γ of Ae. albopictus that has not yet been described in the Tra2 proteins of dipteran insects. Quantitative real-time PCR detected relatively high levels of transcripts from all three tra2 paralogs in 0-2 h embryos, suggesting maternal deposition of these transcripts. All three Aalbtra2 genes were highly expressed in the ovary, while Aalbtra2-β was also highly expressed in the testis. RNAi-mediated knockdown of any or all Aalbtra2 genes did not result in an obvious switch of the sex-specificity in dsx and fru splicing in the whole-body samples. However, knockdown of transcripts from all three tra2 genes significantly reduced the female isoform of dsx mRNA and increased the male isoform of the dsx mRNA in both the ovary and the fat body in adult females. Furthermore, knockdown of either Aalbtra2-α or Aalbtra2-γ or all three Aalbtra2 led to a decrease in ovariole number and ovary size after a blood meal. Taken together, these results indicate that two of the three tra2 genes affect female ovarian development.
Collapse
Affiliation(s)
- Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Binbin Jin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Centre of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
12
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
13
|
Steyfkens F, Zhang Z, Van Zeebroeck G, Thevelein JM. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Front Pharmacol 2018; 9:191. [PMID: 29662449 PMCID: PMC5890159 DOI: 10.3389/fphar.2018.00191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development of receptors from nutrient transporters during evolution. The nutrient-sensing transceptor system in yeast for activation of the PKA pathway has served as a paradigm for similar studies on candidate nutrient transceptors in other eukaryotes and we succinctly discuss the many examples of transceptors that have already been documented in other yeast species, filamentous fungi, plants, and animals, including the examples in human cells.
Collapse
Affiliation(s)
- Fenella Steyfkens
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Flanders, Belgium
| |
Collapse
|
14
|
Fukutani KF, Kasprzykowski JI, Paschoal AR, Gomes MDS, Barral A, de Oliveira CI, Ramos PIP, de Queiroz ATL. Meta-Analysis of Aedes aegypti Expression Datasets: Comparing Virus Infection and Blood-Fed Transcriptomes to Identify Markers of Virus Presence. Front Bioeng Biotechnol 2018; 5:84. [PMID: 29376049 PMCID: PMC5768613 DOI: 10.3389/fbioe.2017.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 02/05/2023] Open
Abstract
The mosquito Aedes aegypti (L.) is vector of several arboviruses including dengue, yellow fever, chikungunya, and more recently zika. Previous transcriptomic studies have been performed to elucidate altered pathways in response to viral infection. However, the intrinsic coupling between alimentation and infection were unappreciated in these studies. Feeding is required for the initial mosquito contact with the virus and these events are highly dependent. Addressing this relationship, we reinterrogated datasets of virus-infected mosquitoes with two different diet schemes (fed and unfed mosquitoes), evaluating the metabolic cross-talk during both processes. We constructed coexpression networks with the differentially expressed genes of these comparison: virus-infected versus blood-fed mosquitoes and virus-infected versus unfed mosquitoes. Our analysis identified one module with 110 genes that correlated with infection status (representing ~0.7% of the A. aegypti genome). Furthermore, we performed a machine-learning approach and summarized the infection status using only four genes (AAEL012128, AAEL014210, AAEL002477, and AAEL005350). While three of the four genes were annotated as hypothetical proteins, AAEL012128 gene is a membrane amino acid transporter correlated with viral envelope binding. This gene alone is able to discriminate all infected samples and thus should have a key role to discriminate viral infection in the A. aegypti mosquito. Moreover, validation using external datasets found this gene as differentially expressed in four transcriptomic experiments. Therefore, these genes may serve as a proxy of viral infection in the mosquito and the others 106 identified genes provides a framework to future studies.
Collapse
Affiliation(s)
| | - José Irahe Kasprzykowski
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Biotechnology in Health and Investigative Medicine, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Alexandre Rossi Paschoal
- Federal University of Technology-Paraná, UTFPR, Campus Cornélio Procópio, Cornélio Procópio, Brazil
| | | | - Aldina Barral
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Health Sciences, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Health Sciences, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Biotechnology in Health and Investigative Medicine, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Post-Graduation Program in Applied Computation, Universida de Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
15
|
Thairu MW, Cheng S, Hansen AK. A sRNA in a reduced mutualistic symbiont genome regulates its own gene expression. Mol Ecol 2017; 27:1766-1776. [PMID: 29134727 DOI: 10.1111/mec.14424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
Abstract
Similar to other nutritional endosymbionts that are obligate for host survival, the mutualistic aphid endosymbiont, Buchnera, has a highly reduced genome with few regulatory elements. Until recently, it was thought that aphid hosts were primarily responsible for regulating their symbiotic relationship. However, we recently revealed that Buchnera displays differential protein regulation, but not mRNA expression. We also identified a number of conserved small RNAs (sRNAs) that are expressed among Buchnera taxa. In this study, we investigate whether differential protein regulation in Buchnera is the result of post-transcriptional gene regulation via sRNAs. We characterize the sRNA profile of two Buchnera life stages: (i) when Buchnera is transitioning from an extracellular proliferating state in aphid embryos and (ii) when Buchnera is in an intracellular nonproliferating state in aphid bacteriocytes (specialized symbiont cells). Overall, we identified 90 differentially expressed sRNAs, 97% of which were upregulated in aphid embryos. Of these sRNAs, the majority were predicted to be involved in the regulation of various metabolic processes, including arginine biosynthesis. Using a heterologous dual expression vector, we reveal for the first time that a Buchnera antisense sRNA can post-transcriptionally interact with its cognate Buchnera coding sequence, carB, a gene involved in arginine biosynthesis. These results corroborate our in vivo RNAseq and proteomic data, where the candidate antisense sRNA carB and the protein CarB are significantly upregulated in aphid embryos. Overall, we demonstrate that Buchnera may regulate gene expression independently from its host by utilizing sRNAs.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Siyuan Cheng
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Program in Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
16
|
Chung HN, Rodriguez SD, Carpenter VK, Vulcan J, Bailey CD, Nageswara-Rao M, Li Y, Attardo GM, Hansen IA. Fat Body Organ Culture System in Aedes Aegypti, a Vector of Zika Virus. J Vis Exp 2017. [PMID: 28872112 PMCID: PMC5614350 DOI: 10.3791/55508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The insect fat body plays a central role in insect metabolism and nutrient storage, mirroring functions of the liver and fat tissue in vertebrates. Insect fat body tissue is usually distributed throughout the insect body. However, it is often concentrated in the abdomen and attached to the abdominal body wall. The mosquito fat body is the sole source of yolk proteins, which are critical for egg production. Therefore, the in vitro culture of mosquito fat body tissues represents an important system for the study of mosquito physiology, metabolism, and, ultimately, egg production. The fat body culture process begins with the preparation of solutions and reagents, including amino acid stock solutions, Aedes physiological saline salt stock solution (APS), calcium stock solution, and fat body culture medium. The process continues with fat body dissection, followed by an experimental treatment. After treatment, a variety of different analyses can be performed, including RNA sequencing (RNA-Seq), qPCR, Western blots, proteomics, and metabolomics. In our example experiment, we demonstrate the protocol through the excision and culture of fat bodies from the yellow fever mosquito, Aedes aegypti, a principal vector of arboviruses including dengue, chikungunya, and Zika. RNA from fat bodies cultured under a physiological condition known to upregulate yolk proteins versus the control were subject to RNA-Seq analysis to demonstrate the potential utility of this procedure for investigations of gene expression.
Collapse
Affiliation(s)
- Hae-Na Chung
- Department of Biology, New Mexico State University
| | | | | | - Julia Vulcan
- Department of Biology, New Mexico State University
| | | | | | - Yiyi Li
- Department of Computer Sciences, New Mexico State University
| | - Geoffrey M Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Immo A Hansen
- Department of Biology, New Mexico State University; Institute of Applied Biosciences, New Mexico State University;
| |
Collapse
|
17
|
Xia J, Yang Z, Gong C, Xie W, Pan H, Guo Z, Zheng H, Yang X, Sun X, Kang S, Yang F, Wu Q, Wang S, Cong B, Teng X, Zhang Y. Genome-wide Identification and Expression Analysis of Amino Acid Transporters in the Whitefly, Bemisia tabaci (Gennadius). Int J Biol Sci 2017; 13:735-747. [PMID: 28655999 PMCID: PMC5485629 DOI: 10.7150/ijbs.18153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
The whitefly (Bemisia tabaci) is a cosmopolitan and devastating pest of agricultural crops and ornamentals. B. tabaci causes extensive damage by feeding on phloem and by transmitting plant viruses. Like many other organisms, insects depend on amino acid transporters (AATs) to transport amino acids into and out of its cells. We present a genome-wide and transcriptome-wide investigation of the following two families of AATs in B. tabaci biotype B: amino acid/auxin permease (AAAP) and amino acid/polyamine/organocation (APC). A total of 14 putative APCs and 25 putative AAAPs were identified, and a 10-paralog B. tabaci-specific expansion of AAAPs was found by maximum likelihood phylogeny. Detailed gene structure information revealed that 9 members of the B. tabaci-specific AAAP family expansion closely situated on a same scaffold. Expression profiling of the B. tabaci B APC and AAAP genes as affected by stage and plant host showed diverse expression patterns. The analysis of evolutionary rates indicated that purifying selection can explain the B. tabaci-specific AAAP expansion. RNA interference (RNAi)-mediated suppression of two AAAP genes (BtAAAP15 and BtAAAP21) significantly increased the mortality of B. tabaci B adults. The results provide a foundation for future functional analysis of APC and AAAP genes in B. tabaci.
Collapse
Affiliation(s)
- Jixing Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866 China.,Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080 China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.,College of Plant Protection, Hunan Agricultural University, Changsha, 41000 China
| | - Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huipeng Pan
- Department of Entomology, South China Agricultural University, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, 510642 China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Huixin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China.,College of Plant Protection, Hunan Agricultural University, Changsha, 41000 China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaodong Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin Cong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866 China
| | - Xianfeng Teng
- Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080 China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
18
|
Gonzales KK, Hansen IA. Artificial Diets for Mosquitoes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121267. [PMID: 28009851 PMCID: PMC5201408 DOI: 10.3390/ijerph13121267] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), population replacement strategies (PR), and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.
Collapse
Affiliation(s)
- Kristina K Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|