1
|
Kwon J, Kim SW, Hong S, Choi A, Choi S, Park MK, Kim HJ. MCOLN1/TRPML1-MCOLN3/TRPML3 heteromer and its coupling to Ca 2+ sensor SYT5 regulates autophagosome-lysosome fusion in a PtdIns4P-dependent manner. Autophagy 2025:1-17. [PMID: 40413756 DOI: 10.1080/15548627.2025.2510846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Macroautophagy/autophagy progresses through Ca2+-dependent multiple fusion events. Recently, we reported that the intracellular Ca2+ channel MCOLN3/TRPML3 provides Ca2+ for membrane fusion during autophagosome formation as a downstream effector of phosphatidylinositol-3-phosphate (PtdIns3P). However, the molecular mechanism of Ca2+ signaling in the late stage of autophagy remains unknown. Here, we show that the MCOLN1/TRPML1-MCOLN3/TRPML3 heteromer is the Ca2+ provider for autophagosome-lysosome fusion. MCOLN1-MCOLN3 functions downstream of PtdIns4P to release Ca2+ from autophagosomes, and the Ca2+ signal via PtdIns4P-MCOLN1-MCOLN3 is decoded by the Ca2+ sensor SYT5 (synaptotagmin 5). The binding of Ca2+ and PtdIns4P to SYT5 is critical for autophagosome-lysosome fusion by forming a fusion complex. Collectively, these results reveal that PtdIns4P-MCOLN1-MCOLN3-SYT5 constitutes the Ca2+ signaling complex in autophagosome-lysosome fusion and that MCOLN3 also regulates the late stage of autophagy through heteromerization with MCOLN1 in a phosphoinositide (PI)-dependent manner.Abbreviations: ATG, autophagy related; CPA, cyclopiazonic acid; DN, dominant-negative; GPN, glycyl-L-phenylalanine-beta-naphthylamide; KO, knockout; NH4Cl, ammonium chloride; PtdIns3K, phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol-3-phosphate; PI, phosphoinositide; SYT5, synaptotagmin 5; tfLC3, mRFP-GFP tandem fluorescent-tagged LC3; WT, wild-type.
Collapse
Affiliation(s)
- Jin Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seokwoo Hong
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Areum Choi
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Suzi Choi
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
2
|
Chbihi K, Menouni A, Berni I, Chetouani H, Abou-Said S, Amellah A, Lebegge R, Verscheure E, Vanoirbeek J, Duca RC, Godderis L, El Jaafari S. Occupational Exposure to Pesticides Among Farmworkers in Morocco: A Study Framework for Endocrine and Epigenetic Effect Assessment. TOXICS 2025; 13:340. [PMID: 40423419 DOI: 10.3390/toxics13050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
Pesticides are compounds of major use in agriculture worldwide. Nevertheless, many pesticide chemicals are classified as endocrine disruptors and potentially carcinogens. Farmers and farmworkers are particularly exposed and are at high risk of developing health-related impairments. In Morocco, the lack of awareness towards pesticide hazards and the inappropriate application of safety measures might increase the exposure as well as the risks of health concerns. In this paper, we present the framework of a study designed to assess pesticide exposure among Moroccan farmers and farmworkers and to evaluate potential health effects, namely endocrine and epigenetic impacts. Human biological monitoring will be conducted to determine pesticide levels in urine following the development and validation of sensitive chromatography methods (SPE, UPLC-MS/MS). Biomarkers of exposure include a set of parent and metabolite pesticide compounds (organophosphates, pyrethroids, triazines and urea-based pesticides). Thyroid and reproductive hormones (TSH, T3, T4, FSH and LH) as well as global and specific DNA methylation markers (5-mC, 5-hmC, N6-mA, THRB and LHR) are selected as biomarkers of effects. This provides guiding steps and methods to perform reliable exposure evaluation and health impact assessment. This study aims to expand the current knowledge on the endocrine and epigenetic risks related to pesticides, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Human Epidemiology and Environmental Health Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Aziza Menouni
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Imane Berni
- Higher Institution of Nursing Professions and Health Techniques, Laâyoune 70000, Morocco
| | - Hala Chetouani
- Human Epidemiology and Environmental Health Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
| | - Said Abou-Said
- Human Epidemiology and Environmental Health Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
| | - Amal Amellah
- Human Epidemiology and Environmental Health Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
| | - Robin Lebegge
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Eline Verscheure
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jeroen Vanoirbeek
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Radu-Corneliu Duca
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Unit of Environmental Hygiene and Human Biological Monitoring, Laboratoire National de Santé (LNS), Department of Health Protection, L-3555 Dudelange, Luxembourg
| | - Lode Godderis
- Environment & Health Unit, Department of Public Health & Primary Care, Faculty of Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Samir El Jaafari
- Human Epidemiology and Environmental Health Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
| |
Collapse
|
3
|
Du N, Kompotis K, Sato M, Pedron E, Androvic S, Brown S. Behavioural phenotypes of Dicer knockout in the mouse SCN. Eur J Neurosci 2024; 60:6634-6651. [PMID: 39551620 PMCID: PMC11612849 DOI: 10.1111/ejn.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
The suprachiasmatic nucleus (SCN) is the master clock that directly dictates behavioural rhythms to anticipate the earth's light/dark cycles. Although post-transcriptional regulators called microRNAs have been implicated in physiological SCN function, how the absence of the entire mature miRNome impacts SCN output has not yet been explored. To study the behavioural consequences of miRNA depletion in the SCN, we first generated a mouse model in which Dicer is inactivated in the SCN by crossing Syt10Cre mice with Dicerflox mice to study behavioural consequences of miRNA depletion in the SCN. Loss of all mature miRNAs in the SCN shortened the circadian period length by ~37 minutes at the tissue level and by ~45 minutes at the locomotor activity level. Moreover, knockout animals exhibited a reduction in the precision of the circadian rhythm with more variable activity onsets under both LD 12:12 and DD conditions. We also observed that knockouts with higher onset variations were inclined to develop ultradian rhythms under constant light. In a second mouse model, recombination of Dicerflox via Cre delivery specifically in the SCN resulted in loss of behavioural rhythms in some animals depending on the injection efficiency. Together, our observations highlight the importance of microRNAs for a physiological SCN function and their pivotal role in robust circadian oscillations.
Collapse
Affiliation(s)
- Ngoc‐Hien Du
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
- Present address:
Laboratory for Biomedical MicrofluidicsSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | | | - Miho Sato
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Erica Pedron
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Sabrina Androvic
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| | - Steven Brown
- Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Muzammil AN, Barathan M, Yazid MD, Sulaiman N, Makpol S, Mohamed Ibrahim N, Jaafar F, Abdullah NAH. A systematic scoping review of the multifaceted role of phoenixin in metabolism: insights from in vitro and in vivo studies. Front Endocrinol (Lausanne) 2024; 15:1406531. [PMID: 39398330 PMCID: PMC11466790 DOI: 10.3389/fendo.2024.1406531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.
Collapse
Affiliation(s)
- Adiba Najwa Muzammil
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. Synaptotagmin-9 in mouse retina. Vis Neurosci 2024; 41:E003. [PMID: 39291699 PMCID: PMC11417998 DOI: 10.1017/s0952523824000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 09/19/2024]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Medical Education, Creighton University, Omaha, NE, USA
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
7
|
Xiao-Hong H, Meng W, Yang-Yang P, Jiang-Feng F, Jing-Lei W, Ling Z, Ya-Ying W, Tong-Xiang Z, Tian Z, Tian-Yi D, Yan C, Si-Jiu Y. Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis. Cell Signal 2024; 115:111010. [PMID: 38128707 DOI: 10.1016/j.cellsig.2023.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Follicle-stimulating hormone (FSH), luteinizing hormone (LH), miR-23a, apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase (JNK), autophagy and apoptosis play crucial roles in follicular development. However, their role in yak granulosa cells (GCs) remains unknown. Therefore, we examined the effect of miR-23a, ASK1, FSH, and LH on apoptosis, autophagy, and the release and reception of some steroid hormones in these cells. Our results showed that miR-23a overexpression significantly increased the abundance of Beclin1, the LC3II/I ratio, and the number of Ad-mRFP-GFP-LC3-labeled autophagosomes, and decreased p62 abundance. Additionally, Bax abundance and the number of terminal deoxynucleotidyl transferase deoxynucleotide triphosphate nick end labeling-positive cells were reduced, while Bcl2 expression was increased. Overexpression of miR-23a also significantly increased the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. Here, treating yak GCs with miR-23a decreased ASK1 expression, which regulates ASK1/JNK-mediated apoptosis, autophagy, E2 and P4 levels, and ER-α/β abundance. In contrast, treatment of yak GCs with FSH (10 μg/mL) and LH (100 μg/mL) increased miR-23a abundance, regulating the subsequent effect on ASK1/JNK-mediated apoptosis, autophagy, ER-α/β abundance, and E2 and P4 concentrations. In conclusion, miR-23a enhances autophagy in yak GCs, attenuates apoptosis, and increases ER-α/β abundance and E2 and P4 concentrations by downregulating ASK1. Additionally, FSH and LH can regulate these effects of miR-23a by altering its expression. These results provide important insights that can inform the development of strategies to reduce abnormal follicular atresia and improve the reproductive rate of yaks.
Collapse
Affiliation(s)
- Han Xiao-Hong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Pan Yang-Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Fan Jiang-Feng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Jing-Lei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Ling
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang Ya-Ying
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhang Tong-Xiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Tian
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ding Tian-Yi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yu Si-Jiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China.
| |
Collapse
|
8
|
Choi AJ, Hefley BS, Nicholas SE, Cunningham RL, Karamichos D. Novel Correlation between TGF-β1/-β3 and Hormone Receptors in the Human Corneal Stroma. Int J Mol Sci 2023; 24:13635. [PMID: 37686439 PMCID: PMC10487450 DOI: 10.3390/ijms241713635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigated the interplay between transforming growth factor beta (TGF-β1/T1 and TGF-β3/T3), and sex hormone receptors using our 3D in vitro cornea stroma model. Primary human corneal fibroblasts (HCFs) from healthy donors were plated in transwells at 106 cells/well and cultured for four weeks. HCFs were supplemented with stable vitamin C (VitC) and stimulated with T1 or T3. 3D construct proteins were analyzed for the androgen receptor (AR), progesterone receptor (PR), estrogen receptor alpha (ERα) and beta (ERβ), luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), gonadotropin-releasing hormone receptor (GnRHR), KiSS1-derived peptide receptor (KiSS1R/GPR54), and follicle-stimulating hormone subunit beta (FSH-B). In female constructs, T1 significantly upregulated AR, PR, ERα, FSHR, GnRHR, and KiSS1R. In male constructs, T1 significantly downregulated FSHR and FSH-B and significantly upregulated ERα, ERβ, and GnRHR. T3 caused significant upregulation in expressions PR, ERα, ERβ, LHR, FSHR, and GNRHR in female constructs, and significant downregulation of AR, ERα, and FSHR in male constructs. Semi-quantitative Western blot findings present the interplay between sex hormone receptors and TGF-β isoforms in the corneal stroma, which is influenced by sex as a biological variable (SABV). Additional studies are warranted to fully delineate their interactions and signaling mechanisms.
Collapse
Affiliation(s)
- Alexander J. Choi
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Brenna S. Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
9
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
10
|
Zhang M, Yang K, Wang QH, Xie L, Liu Q, Wei R, Tao Y, Zheng HL, Lin N, Xu H, Yang L, Wang H, Zhang T, Xue Z, Cao JL, Pan Z. The Cytidine N-Acetyltransferase NAT10 Participates in Peripheral Nerve Injury-Induced Neuropathic Pain by Stabilizing SYT9 Expression in Primary Sensory Neurons. J Neurosci 2023; 43:3009-3027. [PMID: 36898834 PMCID: PMC10146489 DOI: 10.1523/jneurosci.2321-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling Xie
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ninghua Lin
- Department of Anesthesiology, Yantai affiliated Hospital of Binzhou Medical University, Yantai 264000, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhouya Xue
- Department of Anesthesiology, Yancheng affiliated Hospital of Xuzhou Medical University, Yancheng 224008, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
11
|
Widmer S, Seefried FR, von Rohr P, Häfliger IM, Spengeler M, Drögemüller C. Associated regions for multiple birth in Brown Swiss and Original Braunvieh cattle on chromosomes 15 and 11. Anim Genet 2022; 53:557-569. [PMID: 35748198 PMCID: PMC9539900 DOI: 10.1111/age.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Twin and multiple births have negative effects on the performance and health of cows and calves. To decipher the genetic architecture of this trait in the two Swiss Brown Swiss cattle populations, we performed various association analyses based on de-regressed breeding values. Genome-wide association analyses were executed using ~600 K imputed SNPs for the maternal multiple birth trait in ~3500 Original Braunvieh and ~7800 Brown Swiss animals. Significantly associated QTL were observed on different chromosomes for both breeds. We have identified on chromosome 11 a QTL that explains ~6% of the total genetic variance of the maternal multiple birth trait in Original Braunvieh. For the Brown Swiss breed, we have discovered a QTL on chromosome 15 that accounts for ~4% of the total genetic variance. For Original Braunvieh, subsequent haplotype analysis revealed a 90-kb window on chromosome 11 at 88 Mb, where a likely regulatory region is located close to the ID2 gene. In Brown Swiss, a 130-kb window at 75 Mb on chromosome 15 was identified. Analysis of whole-genome sequence data using linkage-disequilibrium estimation revealed possible causal variants for the identified QTL. A presumably regulatory variant in the non-coding 5' region of the ID2 gene was strongly associated with the haplotype for Original Braunvieh. In Brown Swiss, an intron variant in PRDM11, one 3' UTR variant in SYT13 and three intergenic variants 5' upstream of SYT13 were identified as candidate variants for the trait multiple birth maternal. In this study, we report for the first time QTL for the trait of multiple births in Original Braunvieh and Brown Swiss cattle. Moreover, our findings are another step towards a better understanding of the complex genetic architecture of this polygenic trait.
Collapse
Affiliation(s)
- Sarah Widmer
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | | | - Irene M. Häfliger
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | - Cord Drögemüller
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| |
Collapse
|
12
|
George AJ, Dong B, Lail H, Gomez M, Hoffiz YC, Ware CB, Fang N, Murphy AZ, Hrabovszky E, Wanders D, Mabb AM. The E3 ubiquitin ligase RNF216/TRIAD3 is a key coordinator of the hypothalamic-pituitary-gonadal axis. iScience 2022; 25:104386. [PMID: 35620441 PMCID: PMC9126796 DOI: 10.1016/j.isci.2022.104386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS. Rnf216/Triad3 controls GnRH production and intrinsic hypothalamic cell activity Rnf216/Triad3 knockout male mice have greater reproductive impairments than females Rnf216/Triad3 controls the HPG axis differently in males and females Rnf216/Triad3 knockout male mice have reactive microglia in the hypothalamus
Collapse
|
13
|
Utomo B, Rimayanti R, Triana IN, Fadholly A. Melanocortin-4 receptor and leptin as genes for the selection of superior Madrasin cattle. Vet World 2021; 14:3224-3228. [PMID: 35153416 PMCID: PMC8829405 DOI: 10.14202/vetworld.2021.3224-3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Aim: The genetic improvement of cattle through livestock section is based on quantitative, qualitative, and molecular characteristics. This study examined polymorphisms of the melanocortin-4 receptor (MC4R) and leptin genes as a reference for the selection of superior breeds in Madrasin cattle. Materials and Methods: The leptin and MC4R genes of Madrasin cattle were amplified using polymerase chain reaction (PCR); then, restriction fragment length polymorphism of the leptin gene was performed using the restriction enzyme BsaA1, at site 2793 with ACGT point position. Results: The leptin gene was divided into three bands, namely, AA with one fragment (522 bp), CG with two fragments (441 bp and 81 bp), and AG with three fragments (522 bp, 441 bp, and 81 bp). The MCR-4 gene was divided into three bands, namely, 493 bp, 318 bp, and 175 bp. Conclusion: The MC4R and leptin genes can act as molecular markers for growth traits in Madrasin cattle and can be used to genetically optimize and improve growth. The GG allele of the MC4R gene and the AA allele of the leptin gene can be used in Madrasin cattle.
Collapse
Affiliation(s)
- Budi Utomo
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Indah Norma Triana
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Amaq Fadholly
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
14
|
Wang H, Bu S, Tang J, Li Y, Liu C, Dong J. PTPN5 promotes follicle-stimulating hormone secretion through regulating intracellular calcium homeostasis. FASEB J 2021; 35:e21756. [PMID: 34270805 DOI: 10.1096/fj.202002752rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 5 (PTPN5), also called striatal-enriched protein tyrosine phosphatase (STEP), is highly expressed in neurons of the basal ganglia, hippocampus, cortex, and related structures, also in the pituitary. Gonadotropins are the key regulator of the reproduction in mammals. In this study, PTPN5 is detected to express in murine pituitary in a developmental manner. Moreover, the expression of PTPN5 in the pituitary is heavily reduced after ovary removal. Follicle-stimulating hormone (FSH) secretion in gonadotropes is regulated by PTPN5 via binding GnRH to GnRH-R. Two parallel signaling pathways, Gs-protein kinase A (PKA)-PTPN5 and Gq-phospholipases C (PLC)-p38 MAPK-PTPN5, cooperatively regulate GnRH-induced FSH secretion. We also show that influx of Ca2+ activates the Ca2+ -dependent phosphatase calcineurin, leading to the phosphorylation and activation of PTPN5. The intracellular release of Ca2+ is reduced via TC2153. In conclusion, blocking or knocking out of PTPN5 reduces the release of FSH in whole pituitary. Mechanically, PTPN5 regulates gonadotropes' function through regulating intracellular calcium homeostasis.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Jiajian Tang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunhua Liu
- Department of Physiology, Shandong First Medical University, Taian, China
| | - Junhong Dong
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
15
|
van Westen R, Poppinga J, Díez Arazola R, Toonen RF, Verhage M. Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proc Natl Acad Sci U S A 2021; 118:e2012137118. [PMID: 33903230 PMCID: PMC8106342 DOI: 10.1073/pnas.2012137118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.
Collapse
Affiliation(s)
- Rhodé van Westen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Josse Poppinga
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rocío Díez Arazola
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Han DX, Sun XL, Wang CJ, Yu ZW, Zheng Y, Huang YJ, Wang WH, Jiang H, Gao Y, Yuan B, Zhang JB. Differentially expressed lncRNA-m433s1 regulates FSH secretion by functioning as a miRNA sponge in male rat anterior pituitary cells†. Biol Reprod 2020; 101:416-425. [PMID: 31201415 DOI: 10.1093/biolre/ioz100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/11/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators that have multiple functions in a variety of biological processes. However, the contributions of lncRNAs to follicle-stimulating hormone (FSH) secretion remain largely unknown. In this study, we first identified a novel lncRNA, lncRNA-m433s1, as an intergenic lncRNA located in the cytoplasm. We next used MS2-RIP assays to demonstrate that lncRNA-m433s1 interacted with miR-433. Furthermore, we detected the levels of lncRNA-m433s1, miR-433, and Fshβ expression, FSH concentrations, and apoptosis upon overexpression and knockdown of lncRNA-m433s1, revealing that lncRNA-m433s1 upregulated Fshβ expression. Globally, lncRNA-m433s1 reduced the inhibitory effect of miR-433 on Fshβ and further regulated FSH secretion as a competing endogenous RNA (ceRNA) by sponging miR-433. This ceRNA model will provide novel insight into the regulatory mechanisms of lncRNAs associated with rat reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Jie Huang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wen-Hua Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
17
|
Utomo B, Putranto ED, Fadholly A. Profile of follicle-stimulating hormone and polymorphism of follicle-stimulating hormone receptor in Madrasin cattle with ovarian hypofunction. Vet World 2020; 13:879-883. [PMID: 32636582 PMCID: PMC7311873 DOI: 10.14202/vetworld.2020.879-883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The follicle-stimulating hormone (FSH) gene is an essential regulator of fertility in livestock. This study aims to provide information on the genetic makeup of Madrasin cattle experiencing hypofunction by the FSH profile and FSH receptors (FSHR) polymorphism. Materials and Methods Blood samples were collected from the Bangkalan regency in Indonesia. DNA was isolated and purified following the extraction protocol of polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. Results Our results showed that the FSH gene had a band length of 310 bp and produce two alleles (A and B) with restriction enzymes at 250 bp, 230 bp, and 145 bp. Furthermore, the FSHR gene had a band length of 303 bp and produced two homozygous genotypes: GG at bp 239 and CC at bp 188. Conclusion Based on these differences, there was no change in allele frequency and genotype between Madura and Madrasin cattle due to crossbreeding with Limousin cattle. Thus, further detailed investigations of Madrasin cattle are required to elucidate the profile of the LH and LHR genes.
Collapse
Affiliation(s)
- Budi Utomo
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Emmanuel Djoko Putranto
- Department of Veterinary Clinical, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Amaq Fadholly
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
18
|
Ruhl DA, Bomba-Warczak E, Watson ET, Bradberry MM, Peterson TA, Basu T, Frelka A, Evans CS, Briguglio JS, Basta T, Stowell MHB, Savas JN, Roopra A, Pearce RA, Piper RC, Chapman ER. Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways. Nat Commun 2019; 10:3532. [PMID: 31387992 PMCID: PMC6684635 DOI: 10.1038/s41467-019-11459-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022] Open
Abstract
The synaptotagmin (syt) proteins have been widely studied for their role in regulating fusion of intracellular vesicles with the plasma membrane. Here we report that syt-17, an unusual isoform of unknown function, plays no role in exocytosis, and instead plays multiple roles in intracellular membrane trafficking. Syt-17 is localized to the Golgi complex in hippocampal neurons, where it coordinates import of vesicles from the endoplasmic reticulum to support neurite outgrowth and facilitate axon regrowth after injury. Further, we discovered a second pool of syt-17 on early endosomes in neurites. Loss of syt-17 disrupts endocytic trafficking, resulting in the accumulation of excess postsynaptic AMPA receptors and defective synaptic plasticity. Two distinct pools of syt-17 thus control two crucial, independent membrane trafficking pathways in neurons. Function of syt-17 appears to be one mechanism by which neurons have specialized their secretory and endosomal systems to support the demands of synaptic communication over sprawling neurite arbors. The functional role of synaptotagmin-17 (syt-17) has remained unanswered. In this study, authors demonstrate that syt-17 exists in two distinct pools in hippocampal neurons (Golgi complex and early endosomes), where it served two completely independent functions: controlling neurite outgrowth and synaptic physiology
Collapse
Affiliation(s)
- David A Ruhl
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma T Watson
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Mazdak M Bradberry
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Trina Basu
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Chantell S Evans
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Briguglio
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
19
|
Lenzi C, Stevens J, Osborn D, Hannah MJ, Bierings R, Carter T. Synaptotagmin 5 regulates Ca 2+-dependent Weibel-Palade body exocytosis in human endothelial cells. J Cell Sci 2019; 132:jcs.221952. [PMID: 30659119 DOI: 10.1242/jcs.221952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Elevations of intracellular free Ca2+ concentration ([Ca2+]i) are a potent trigger for Weibel-Palade body (WPB) exocytosis and secretion of von Willebrand factor (VWF) from endothelial cells; however, the identity of WPB-associated Ca2+-sensors involved in transducing acute increases in [Ca2+]i into granule exocytosis remains unknown. Here, we show that synaptotagmin 5 (SYT5) is expressed in human umbilical vein endothelial cells (HUVECs) and is recruited to WPBs to regulate Ca2+-driven WPB exocytosis. Western blot analysis of HUVECs identified SYT5 protein, and exogenously expressed SYT5-mEGFP localised almost exclusively to WPBs. shRNA-mediated knockdown of endogenous SYT5 (shSYT5) reduced the rate and extent of histamine-evoked WPB exocytosis and reduced secretion of the WPB cargo VWF-propeptide (VWFpp). The shSYT5-mediated reduction in histamine-evoked WPB exocytosis was prevented by expression of shRNA-resistant SYT5-mCherry. Overexpression of SYT5-EGFP increased the rate and extent of histamine-evoked WPB exocytosis, and increased secretion of VWFpp. Expression of a Ca2+-binding defective SYT5 mutant (SYT5-Asp197Ser-EGFP) mimicked depletion of endogenous SYT5. We identify SYT5 as a WPB-associated Ca2+ sensor regulating Ca2+-dependent secretion of stored mediators from vascular endothelial cells.
Collapse
Affiliation(s)
- Camille Lenzi
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | | | - Daniel Osborn
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| | - Matthew J Hannah
- Microbiology Services Colindale, Public Health England, London, NW9 5EQ, UK
| | - Ruben Bierings
- Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1006 AD Amsterdam, PO Box 9190, The Netherlands
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW18 ORE, UK
| |
Collapse
|
20
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
21
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Pinheiro PS, Houy S, Sørensen JB. C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 2016; 139:943-958. [DOI: 10.1111/jnc.13865] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paulo S. Pinheiro
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Sébastien Houy
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|