1
|
Aita V, Roth DJ, Zaleska A, Krasavin AV, Nicholls LH, Shevchenko M, Rodríguez-Fortuño FJ, Zayats AV. Longitudinal field controls vector vortex beams in anisotropic epsilon-near-zero metamaterials. Nat Commun 2025; 16:3807. [PMID: 40268896 PMCID: PMC12019337 DOI: 10.1038/s41467-025-58088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Structured light plays an important role in metrology, optical trapping and manipulation, communications, quantum technologies and nonlinear optics. Here, we demonstrate an alternative approach for the manipulation of vector beams carrying longitudinal field components using metamaterials with extreme anisotropy. Implementing vectorial spectroscopy, we show that the propagation of complex beams with inhomogeneous polarization is strongly affected by the interplay of the metamaterial anisotropy with the transverse and longitudinal field structure of the beam. This phenomenon is especially pronounced in the epsilon-near-zero regime, exclusively realised for light polarized along the metamaterial optical axis, strongly influencing the interaction of longitudinal fields with the metamaterial. The requirements on the balance between the transverse and longitudinal fields to maintain a polarization singularity at the beam axis allow control of the beam modal content, filtering diffraction effects and tailoring spatial polarization distributions. The understanding of the interaction of vector beams with metamaterials opens new opportunities for applications in microscopy, information encoding, biochemical sensing and quantum technologies.
Collapse
Affiliation(s)
- Vittorio Aita
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK.
| | - Diane J Roth
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK.
| | - Anastasiia Zaleska
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK
| | - Luke H Nicholls
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK
| | - Mykyta Shevchenko
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK
- National Physical Laboratory (NPL), Teddington, Middlesex, UK
| | | | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, London, UK
| |
Collapse
|
2
|
Zhou LM, Sun W, Tao ZQ, Xiong NJ, Huang C, Jiang XY, Ren YX, Yang Y, Shi YZ, Hu JG, Zhan Q. Subwavelength-scale off-axis optical nanomanipulation within Gaussian-beam traps. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:219-228. [PMID: 39927206 PMCID: PMC11806509 DOI: 10.1515/nanoph-2024-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025]
Abstract
It is generally recognized that there is only a single optical potential-well near the focus in optical traps with a focused Gaussian beam. In this work, we show that this classic Gaussian-beam optical trap has additional optical potential-wells for optical manipulation at the subwavelength scale in the off-focus transverse plane. The additional optical potential-wells are formed by the synergy of both the gradient trapping force and the transverse scattering force, though in previous studies the scattering force usually has adverse effect such as reducing trapping stability. These potential-wells work for not only the metallic particles, but also the high refractive-index dielectric particles. By engineering the contribution of the gradient force and scattering force through the particle size, the particle material and the position of the manipulation transverse plane, the force field and trapping potential-well can be tailored to trap/manipulate nanoparticles at different off-axis distance at the subwavelength scale. Our work provides new insight into optical tweezers and promises applications in optical nanomanipulation, nanoparticle sorting/separation, particle patterning and micro-fabrication on substrates.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Wan Sun
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Zong-Qiang Tao
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Ning-Jun Xiong
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Chan Huang
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Xiao-Yun Jiang
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Yu-Xuan Ren
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Yu-Zhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
| | - Ji-Gang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
3
|
Engay E, Shanei M, Mylnikov V, Wang G, Johansson P, Volpe G, Käll M. Transverse optical gradient force in untethered rotating metaspinners. LIGHT, SCIENCE & APPLICATIONS 2025; 14:38. [PMID: 39774701 PMCID: PMC11706995 DOI: 10.1038/s41377-024-01720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum. We find that a metaspinner is subject to an anomalous transverse lateral optical gradient force that acts in concert with the classical gradient force. Consequently, when two or more metaspinners are trapped together in a laser beam, they collectively orbit the optical axis in the opposite direction to their spinning motion, in stark contrast to rotors coupled through hydrodynamic or mechanical interactions. The metaspinners delineated herein not only serve to illustrate the vast possibilities of utilizing optical metasurfaces for fundamental exploration of optical torques, but they also represent potential building-blocks of artificial active matter systems, light-driven micromachinery, and general-purpose optomechanical devices.
Collapse
Affiliation(s)
- Einstom Engay
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Mahdi Shanei
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Vasilii Mylnikov
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Gan Wang
- Department of Physics, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Peter Johansson
- School of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
4
|
Sadafi M, da Mota AF, Mosallaei H. Electrostatic Orientation of Optically Asymmetric Janus Particles. ACS OMEGA 2024; 9:49172-49187. [PMID: 39713669 PMCID: PMC11656250 DOI: 10.1021/acsomega.4c05669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Janus micro- and nanoparticles, featuring unique dual-interface designs, are at the forefront of rapidly advancing fields such as optics, medicine, and chemistry. Accessible control over the position and orientation of Janus particles within a cluster is crucial for unlocking versatile applications, including targeted drug delivery, self-assembly, micro- and nanomotors, and asymmetric imaging. Nevertheless, precise mechanical manipulation of Janus particles remains a significant practical challenge across these fields. The current predominant methods, based on fluid flow, thermal gradients, or chemical reactions, have their precision and applicability limited by the properties of their background fluids. Therefore, this study proposes electrostatics to deliberately control the local orientation of optically asymmetric Janus particles (spherical and matchstick-like hybrid metal-dielectric objects) within a cluster to overcome the aforementioned restraints. We introduce a sophisticated multiphysics platform and employ it to explore and unveil the infrastructural physics behind the mechanical behavior of the particles when subjected to electrostatic stimuli in an ionic environment. We investigate how different deterministic and stochastic variables affect the particles' short- and long-term responses. By judicious engineering of amplitude, direction, and polarization of the external excitation, we demonstrate that the particles tend to undergo the desired rotational motion and converge to favorable orientations. The functionality of our approach is showcased in the context of an asymmetric imaging system based on optically asymmetric Janus particles. Our findings suggest a viable platform for adequate mechanical manipulation of Janus particles and pave the way for enabling numerous state-of-the-art applications in various fields.
Collapse
Affiliation(s)
- Mohammad
Mojtaba Sadafi
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Achiles Fontana da Mota
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Electrical Engineering, University of
Brasilia, Brasilia, Federal
District 70910-900, Brazil
| | - Hossein Mosallaei
- Metamaterials
Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Man Z, Zhang Y, Cai Y, Yuan X, Urbach HP. Construction of Chirality-Sorting Optical Force Pairs. PHYSICAL REVIEW LETTERS 2024; 133:233803. [PMID: 39714683 DOI: 10.1103/physrevlett.133.233803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
Chiral objects are abundant in nature, and although the enantiomers have almost identical physical properties apart from their handedness, they can exhibit significantly different chemical properties and biological functions. This underscores the importance of sorting chiral substances. In this Letter, we demonstrate that chirality-sorting optical force pairs can be inversely generated in a tightly focused Gaussian beam by tailoring the input polarization state. We provide a detailed method for constructing the polarization state of the incident light to create the desired chiral optical field that generates the chirality-sorting optical force pairs. These force pairs precisely trap two opposite enantiomers at distinct predetermined positions within the same equilibrium plane, enabling their simultaneous identification and separation. Notably, the trapping positions and separation distances can be freely adjusted by altering the incident polarization parameters.
Collapse
Affiliation(s)
- Zhongsheng Man
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
- Optics Research Group, Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ Delft, The Netherlands
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| | | | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonics Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| | | | | |
Collapse
|
6
|
Lai C, Shi Y, Huang H, Yi W, Mazzulla A, Cipparrone G, Zu Y, Ding W, Li H, Song Q, Wu PC, Wang Z, Qiu CW, Cheng X. Observation of Intricate Chiral Optical Force in a Spin-Curl Light Field. PHYSICAL REVIEW LETTERS 2024; 133:233802. [PMID: 39714648 DOI: 10.1103/physrevlett.133.233802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g., Gaussian beams and evanescent waves), showcasing the reversal of optical force against handedness (light's or particle's). Here, we elucidate the cooperative significance of incorporating multiple optical forces to generate an intricate chiral optical force in a complex spin-curl field. The interplay of distinct light properties (the transverse spin, Belinfante spin momentum, and energy vortex) is found to induce abnormal phenomena. For instance, this intriguing total force not only reverses its sign with particle handedness but also correlates strongly with particle size and light helicity. Experimental measurements of quasi-achiral and chirality-determined forces manifest our research as a paradigm for testing the holistic optical-force theorem on chiral particles, which is unattainable by previous reports that only affirm a specific type of chiral optical forces. Our study offers wide applications in chiral sensing, sorting, spintronics, metamaterials, etc.
Collapse
Affiliation(s)
- Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | | | | | | | | | | | | | | | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | | | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Yi W, Huang H, Lai C, He T, Wang Z, Dai X, Shi Y, Cheng X. Optical Forces on Chiral Particles: Science and Applications. MICROMACHINES 2024; 15:1267. [PMID: 39459141 PMCID: PMC11509618 DOI: 10.3390/mi15101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics.
Collapse
Affiliation(s)
- Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
8
|
Wang N, Ng J, Wang GP. Morphology-independent general-purpose optical surface tractor beam. Nat Commun 2024; 15:6836. [PMID: 39122709 PMCID: PMC11315692 DOI: 10.1038/s41467-024-51100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Optical tractor beams capable of pulling particles backward have garnered significant and increasing interest. Traditional optical tractor beams are limited to free space beams with small forward wavevectors, enabling them to pull selected particles. Here, we present a comprehensive theory for the optical force exerted by a surface wave using analytical and numerical calculations, revealing the relationship between the canonical momentum and optical forces. Based on this theory, we demonstrate a general purpose optical surface tractor beam that can pull any passive particle, regardless of size, composition, or geometry. The tractor beam utilizes a surface wave with negative canonical momentum characterized by a single well-defined negative Bloch k vector. The tractor beam relies on a mechanism where the negative incident force always surpasses the recoil force. As such, the tractor beam, when excited on the surface of a double-negative index metamaterial, can pull particles with different morphologies.
Collapse
Affiliation(s)
- Neng Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, China.
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China.
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Zhao Y, Chan HC, Bi K, Duan G, Liu M, Xie N, Yang Y. Chiral whispering gallery modes and chirality-dependent symmetric optical force induced by a spin-polarized surface wave of photonic Dirac semimetal. OPTICS LETTERS 2024; 49:4306-4309. [PMID: 39090920 DOI: 10.1364/ol.527933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Dirac degeneracy is a fourfold band crossing point in a three-dimensional momentum space, which possesses Fermi-arc-like surface states, and has extensive application prospects. In this work, we systematically study the exceptional effects of the robust chiral surface wave supported by photonic Dirac semimetal acts on the dielectric particles. Theoretical results show that orthogonal electromagnetic modes and helical or chiral whispering gallery modes (WGMs) of dielectric particles can be efficiently excited by the unidirectional spin-polarized surface wave. More importantly, optical forces exerted by the spin-polarized surface wave exhibit chirality-dependent symmetric behavior and high chiral Q factor with precise size selectivity. Our findings may provide potential applications in the area of chiral microcavity, spin optical devices, and optical manipulations.
Collapse
|
10
|
Xu X, Nieto-Vesperinas M, Zhou Y, Zhang Y, Li M, Rodríguez-Fortuño FJ, Yan S, Yao B. Gradient and curl optical torques. Nat Commun 2024; 15:6230. [PMID: 39043631 PMCID: PMC11266349 DOI: 10.1038/s41467-024-50440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Optical forces and torques offer the route towards full degree-of-freedom manipulation of matter. Exploiting structured light has led to the discovery of gradient and curl forces, and nontrivial optomechanical manifestations, such as negative and lateral optical forces. Here, we uncover the existence of two fundamental torque components, which originate from the reactive helicity gradient and momentum curl of light, and which represent the rotational analogues to the gradient and curl forces, respectively. Based on the two components, we introduce and demonstrate the concept of lateral optical torques, which act transversely to the spin of illumination. The orbital angular momentum of vortex beams is shown to couple to the curl torque, promising a path to extreme torque enhancement or achieving negative optical torques. These results highlight the intersection between the areas of structured light, Mie-tronics and rotational optomechanics, even inspiring new paths of manipulation in acoustics and hydrodynamics.
Collapse
Affiliation(s)
- Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francisco J Rodríguez-Fortuño
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang Y, Li Z, Che Z, Zhang W, Zhang Y, Lin Z, Lv Z, Wu C, Han L, Tang J, Zhu W, Xiao Y, Zheng H, Zhong Y, Chen Z, Yu J. Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system. Nat Commun 2024; 15:5586. [PMID: 38961090 PMCID: PMC11222497 DOI: 10.1038/s41467-024-49696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Lateral momentum conservation is typically kept in a non-absorptive rotationally symmetric system through mirror symmetry via Noether's theorem when illuminated by a homogeneous light wave. Therefore, it is still very challenging to break the mirror symmetry and generate a lateral optical force (LOF) in the rotationally symmetric system. Here, we report a general dynamic action in the SO(2) rotationally symmetric system, originating from the polarization-tuned mirror symmetry breaking (MSB) of the light scattering. We demonstrate theoretically and experimentally that MSB can be generally applied to the SO(2) rotationally symmetric system and tuned sinusoidally by polarization orientation, leading to a highly tunable and highly efficient LOF (9.22 pN/mW/μm-2) perpendicular to the propagation direction. The proposed MSB mechanism and LOF not only complete the sets of MSB of light-matter interaction and non-conservative force only using a plane wave but also provide extra polarization manipulation freedom.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhibin Li
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Che
- Guangdong Science and Technology Infrastructure Center, Guangzhou, 510033, China
| | - Wang Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yusen Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Ziqi Lin
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhan Lv
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Chunling Wu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Longwei Han
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jieyuan Tang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Xiao
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yongchun Zhong
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Lu W, Krasavin AV, Lan S, Zayats AV, Dai Q. Gradient-induced long-range optical pulling force based on photonic band gap. LIGHT, SCIENCE & APPLICATIONS 2024; 13:93. [PMID: 38653978 DOI: 10.1038/s41377-024-01452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Optical pulling provides a new degree of freedom in optical manipulation. It is generally believed that long-range optical pulling forces cannot be generated by the gradient of the incident field. Here, we theoretically propose and numerically demonstrate the realization of a long-range optical pulling force stemming from a self-induced gradient field in the manipulated object. In analogy to potential barriers in quantum tunnelling, we use a photonic band gap design in order to obtain the intensity gradients inside a manipulated object placed in a photonic crystal waveguide, thereby achieving a pulling force. Unlike the usual scattering-type optical pulling forces, the proposed gradient-field approach does not require precise elimination of the reflection from the manipulated objects. In particular, the Einstein-Laub formalism is applied to design this unconventional gradient force. The magnitude of the force can be enhanced by a factor of up to 50 at the optical resonance of the manipulated object in the waveguide, making it insensitive to absorption. The developed approach helps to break the limitation of scattering forces to obtain long-range optical pulling for manipulation and sorting of nanoparticles and other nano-objects. The developed principle of using the band gap to obtain a pulling force may also be applied to other types of waves, such as acoustic or water waves, which are important for numerous applications.
Collapse
Affiliation(s)
- Wenlong Lu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Sheng Lan
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK.
| | - Qiaofeng Dai
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Shoshi JS, Mahdy MRC, Rana MR. On chip all-optical distinguishing of independently placed distinct types of single Rayleigh particle. Heliyon 2024; 10:e26722. [PMID: 38434299 PMCID: PMC10906440 DOI: 10.1016/j.heliyon.2024.e26722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In order to determine whether a particle is plasmonic, dielectric, or chiral, different complex processes and chemicals are applied in lab setups and pharmaceutical industries. Sorting or categorizing a particle based on distinct optical forces can be a novel technique. When a beam of light interacts with a particle, it usually pushes the particle in the direction of the light's propagation. Counterintuitively, it can also pull the particle toward the light beam or move it toward a lateral direction. As far as we know, to date, no comprehensive report exists regarding a single optical arrangement capable of inducing entirely distinct behaviors of force for three disparate types of independently placed single Rayleigh particle. This study introduces an all-optical technique aimed at effectively sorting nanoscale Rayleigh-sized objects employing a plasmonic substrate, when each distinct type of single particle is placed over the substrate independently. Unfortunately, this proposed technique does not work for the cluster or mixture of distinct particles. In our proposed configuration, a simple linearly polarized plane wave is incident onto the plasmonic substrate, thereby engendering completely different responses from three different types of nanoparticles: Gold (plasmonic), SiO2 (dielectric), and Chiral particles. We conducted individual tests for our setup using linearly polarized plane waves at angles of 30-degree, 45-degree, and 60-degree individually. Consistent results were obtained across all angles. In each of the three distinct setups involving the aforementioned particle, a dielectric Rayleigh particle experiences an optical pulling force, a plasmonic Rayleigh particle experiences an optical pushing force, and a chiral Rayleigh particle encounters an optical lateral force. These distinctive force behaviors manifest as a result of the intricate interplay between the material properties of the nanoparticles and the characteristics of the plane-polarized beam, encompassing aspects such as plasmonic response, chirality, and refractive index. Moreover, this technique presents an environmentally sustainable and economically viable alternative to the utilization of expensive and potentially hazardous chemicals in nanoparticle sorting processes within industrial domains.
Collapse
Affiliation(s)
- Jannatul Shahrin Shoshi
- Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka, Bangladesh
| | - M R C Mahdy
- Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mostafizur Rahman Rana
- Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
14
|
Olivo J, Ferrari H, Cuevas M. Surface recoil force on dielectric nanoparticle enhancement via graphene acoustic surface plasmon excitation: non-local effect consideration. OPTICS LETTERS 2024; 49:1249-1252. [PMID: 38426985 DOI: 10.1364/ol.511071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Controlling optomechanical interactions at sub-wavelength levels is of great importance in academic science and nanoparticle manipulation technologies. This Letter focuses on the improvement of the recoil force on nanoparticles placed close to a graphene-dielectric-metal structure. The momentum conservation involving the non-symmetric excitation of acoustic surface plasmons (ASPs), via near-field circularly polarized dipolar scattering, implies the occurrence of a huge momentum kick on the nanoparticle. Owing to the high wave vector values entailed in the near-field scattering process, it has been necessary to consider the non-locality of the graphene electrical conductivity to explore the influence of the scattering loss on this large wave vector region, which is neglected by the semiclassical model. Surprisingly, the contribution of ASPs to the recoil force is negligibly modified when the non-local effects are incorporated through the graphene conductivity. On the contrary, our results show that the contribution of the non-local scattering loss to this force becomes dominant when the particle is placed very close to the graphene sheet and that it is mostly independent of the dielectric thickness layer. Our work can be helpful for designing new and better performing large plasmon momentum optomechanical structures using scattering highly dependent on the polarization for moving dielectric nanoparticles.
Collapse
|
15
|
Salsabil SH, Dastegir Al-Quaderi G, Mahdy M. Quantum mechanical lateral force on an atom due to matter wave. Heliyon 2024; 10:e23449. [PMID: 38192828 PMCID: PMC10772092 DOI: 10.1016/j.heliyon.2023.e23449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The area of trapping the atoms or molecules using light has advanced tremendously in the last few decades. In contrast, the idea of controlling (not only trapping) the movement of atomic-sized particles using matter waves is a completely new emerging area of particle manipulation. Though a single previous report has suggested the pulling of atoms based on matter-wave tractor beams, an attempt is yet to be made to produce a lateral force using this technique. This article demonstrates an asymmetric setup that engenders reversible lateral force on an atom due to the interaction energy of the matter wave in the presence of a metal surface. Several full-wave simulations and analytical calculations were performed on a particular set-up of Xenon scatterers placed near a Copper surface, with two counter-propagating plane matter waves of Helium impinging in the direction parallel to the surface. By solving the time-independent Schrödinger equation and using the solution, quantum mechanical stress tensor formalism is applied to compute the force acting on the particle. The simulation results are in excellent agreement with the analytical calculations. The results for the adsorbed scatterer case find this technique to be an efficient cleaning procedure similar to electron-stimulated desorption for futuristic applications.
Collapse
Affiliation(s)
- Sadia Humaira Salsabil
- Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | | | - M.R.C. Mahdy
- Department of Electrical & Computer Engineering, North South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
16
|
Nan F, Rodríguez-Fortuño FJ, Yan S, Kingsley-Smith JJ, Ng J, Yao B, Yan Z, Xu X. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun 2023; 14:6361. [PMID: 37821466 PMCID: PMC10567843 DOI: 10.1038/s41467-023-42076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength). The underlying physics is attributed to the multipolar interplay in the particle, leading to a reduction in symmetry. Direct experimental evidence of switchable LOF is captured by polarization-angle-controlled manipulation of single Ag nanowires using holographic optical tweezers. This work provides a minimalist paradigm to achieve interface-free LOF for optomechanical applications, such as optical sorting and light-driven micro/nanomotors.
Collapse
Affiliation(s)
- Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonics Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Francisco J Rodríguez-Fortuño
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| | - Jack J Kingsley-Smith
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| |
Collapse
|
17
|
Yu H, Shen Z, Jiang K. Visualizing lateral optical force through surface plasmon-coupled emission. OPTICS LETTERS 2023; 48:5073-5076. [PMID: 37773388 DOI: 10.1364/ol.504479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
In this Letter, we report the intrinsic relationship among surface plasmon polaritons, lateral optical force, and surface plasmon-coupled emission. The spin-orbit coupling in the near field through circularly polarized beams would lead to the unidirectional excitation of surface plasmon polaritons, where the symmetry state of the electromagnetic field on the surface is broken. This asymmetric scattering would generate the counter-intuitive lateral optical force due to momentum conservation. As the inverse process of surface plasmon polaritons, surface plasmon-coupled emission enables the guide of the near-field surface plasmon polariton signal to the far field. We found that the lateral optical force produced by the unidirectional excitation of surface plasmon polaritons can be observed in the surface plasmon-coupled emission patterns. The elliptical dipole model was used to demonstrate these coupling processes. The magnitude and direction of lateral optical force can be a dipole, respectively. Moreover, the intensity convergence degree and direction of the surface plasmon-coupled emission distribution can reflect the magnitude and direction of lateral optical force, respectively. This work has great potential in the applications of weak force measurement, dynamic optical sorting, and light-matter interaction research.
Collapse
|
18
|
Zhang C, Cheng Y, Wang S. Enhanced optical forces on coupled chiral particles at arbitrary order exceptional points. OPTICS EXPRESS 2023; 31:28929-28938. [PMID: 37710701 DOI: 10.1364/oe.497693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023]
Abstract
Exceptional points (EPs)-non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce-can give rise to many intriguing phenomena in optical systems. Here, we report a study of the optical forces on chiral particles in a non-Hermitian system at EPs. The EPs are achieved by employing the unidirectional coupling of the chiral particles sitting on a dielectric waveguide under the excitation of a linearly polarized plane wave. Using full-wave numerical simulations, we demonstrate that the structure can give rise to enhanced optical forces at the EPs. Higher order EPs in general can induce stronger optical forces. In addition, the optical forces exhibit an intriguing "skin effect": the force approaches the maximum for the chiral particle at one end of the lattice. The results contribute to the understanding of optical forces in non-Hermitian systems and can find applications in designing novel optical tweezers for on-chip manipulations of chiral particles.
Collapse
|
19
|
Wang G, Han Z. Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:674-682. [PMID: 37284552 PMCID: PMC10241101 DOI: 10.3762/bjnano.14.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Light can exert radiation pressure on any object it encounters, and the resulting optical force can be used to manipulate particles at the micro- or nanoscale. In this work, we present a detailed comparison through numerical simulations of the optical forces that can be exerted on polystyrene spheres of the same diameter. The spheres are placed within the confined fields of three optical resonances supported by all-dielectric nanostructure arrays, including toroidal dipole (TD), anapoles, and quasi-bound states in continuum (quasi-BIC) resonances. By elaborately designing the geometry of a slotted-disk array, three different resonances can be supported, which are verified by the multipole decomposition analysis of the scattering power spectrum. Our numerical results show that the quasi-BIC resonance can produce a larger optical gradient force, which is about three orders of magnitude higher than those generated from the other two resonances. The large contrast in the optical forces generated with these resonances is attributed to a higher electromagnetic field enhancement provided by the quasi-BIC. These results suggest that the quasi-BIC resonance is preferred when one employs all-dielectric nanostructure arrays for the trapping and manipulation of nanoparticles by optical forces. It is important to use low-power lasers to achieve efficient trapping and avoid any harmful heating effects.
Collapse
Affiliation(s)
- Guangdong Wang
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
20
|
Lu J, Ginis V, Qiu CW, Capasso F. Polarization-Dependent Forces and Torques at Resonance in a Microfiber-Microcavity System. PHYSICAL REVIEW LETTERS 2023; 130:183601. [PMID: 37204895 DOI: 10.1103/physrevlett.130.183601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Spin-orbit interactions in evanescent fields have recently attracted significant interest. In particular, the transfer of the Belinfante spin momentum perpendicular to the propagation direction generates polarization-dependent lateral forces on particles. However, it is still elusive as to how the polarization-dependent resonances of large particles synergize with the incident light's helicity and resultant lateral forces. Here, we investigate these polarization-dependent phenomena in a microfiber-microcavity system where whispering-gallery-mode resonances exist. This system allows for an intuitive understanding and unification of the polarization-dependent forces. Contrary to previous studies, the induced lateral forces at resonance are not proportional to the helicity of incident light. Instead, polarization-dependent coupling phases and resonance phases generate extra helicity contributions. We propose a generalized law for optical lateral forces and find the existence of optical lateral forces even when the helicity of incident light is zero. Our work provides new insights into these polarization-dependent phenomena and an opportunity to engineer polarization-controlled resonant optomechanical systems.
Collapse
Affiliation(s)
- Jinsheng Lu
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Vincent Ginis
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
- Data Lab and Applied Physics, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Ferrari H, Herrero V, Cuevas M. Optical pulling force on dielectric particles via metallic slab surface plasmon excitation: a comparison between transmission and reflection schemes. OPTICS LETTERS 2023; 48:2345-2348. [PMID: 37126270 DOI: 10.1364/ol.489743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this Letter, a simple structure formed by a metallic thin layer covering a high-index substrate is used to design an optical tweezer. Owing to the interaction between the field scattered by the particle with an incident plane wave and the proposed structure, a pulling or attractive component of the optical force emerges. This component results in enhancement thanks to the surface plasmons (SPs) excitation arising from the elliptical polarization of the induced dipole moment on the particle. To further exploit the versatility of the proposed approach, we analyze two basic configurations: the reflection scheme, for which the plane wave impinges from the side where the particle is placed; and the transmission scheme, for which the incidence is made from the substrate side. Our results show that the intensity of the pulling force in the reflection scheme and for finite thickness metal layer reaches values exceeding more than twice those provided by a single metallic interface. We also demonstrate that the transmission scheme is more favorable than the reflection scheme for enhancing pulling force intensities. Our contribution can be valuable for realizing simple plasmonic schemes for improving the pulling force via interactions between the nano-particle and SP fields.
Collapse
|
22
|
Gong J, Zhang S, Duan G, Qi L, Yang Y. Optical force exerted on the two dimensional transition-metal dichalcogenide coated dielectric particle by Gaussian beam. Heliyon 2023; 9:e14314. [PMID: 36938475 PMCID: PMC10015242 DOI: 10.1016/j.heliyon.2023.e14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Two-dimensional transition-metal dichalcogenide (TMDC) exhibits a series of distinctive optical and electrical characteristics, which make it has a good application prospect in the field of optical manipulation. Based on the Mie theory, we investigate the radiation force exerted on the TMDC wrapped dielectric particle by Gaussian wave. Theoretical calculations show that the optical force spectra exhibit two resonant peaks in the visible region, which are generated by the interband exciton transitions in TMDC. Magnitude and morphology of the excitonic peaks could be modulated effectively by tuning the number of coated TMDC layers. Furthermore, the excitonic peaks transform significantly with particle size due to the variation of coupling strength between the dielectric particle and TMDC coating. The investigation provides potential applications in optical manipulations and light-matter interactions.
Collapse
Affiliation(s)
- Jingrui Gong
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shuo Zhang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Gaoyan Duan
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Limei Qi
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yang Yang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- Corresponding author.
| |
Collapse
|
23
|
Li T, Kingsley-Smith JJ, Hu Y, Xu X, Yan S, Wang S, Yao B, Wang Z, Zhu S. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. OPTICS LETTERS 2023; 48:255-258. [PMID: 36638431 DOI: 10.1364/ol.478979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Photonics is currently undergoing an era of miniaturization thanks in part to two-dimensional (2D) optical metasurfaces. Their ability to sculpt and redirect optical momentum can give rise to an optical force, which acts orthogonally to the direction of light propagation. Powered by a single unfocused light beam, these lateral optical forces (LOFs) can be used to drive advanced metavehicles and are controlled via the incident beam's polarization. However, the full control of a metavehicle on a 2D plane (i.e. forward, backward, left, and right) with a sign-switchable LOF remains a challenge. Here we present a phase-gradient metasurface route for achieving such full control while also increasing efficiency. The proposed metasurface is able to deflect a normally incident plane wave in a traverse direction by modulating the plane wave's polarization, and results in a sign-switchable recoil LOF. When applied to a metavehicle, this LOF enables a level of motion control that was previously unobtainable.
Collapse
|
24
|
Paul NK, Gomez-Diaz JS. Tunable optical traps over nonreciprocal surfaces. OPTICS EXPRESS 2022; 30:46344-46356. [PMID: 36558591 DOI: 10.1364/oe.476269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
We propose engineering optical traps over plasmonic surfaces and precisely controlling the trap position with an external bias by inducing in-plane nonreciprocity on the surface. The platform employs an incident Gaussian beam to polarize targeted nanoparticles, and exploits the interplay between nonreciprocal and spin-orbit lateral recoil forces to construct stable optical traps and manipulate their position within the surface. To model this process, we develop a theoretical framework based on the Lorentz force combined with nonreciprocal Green's functions and apply it to calculate the trapping potential. Rooted on this formalism, we explore the exciting possibilities offered by graphene to engineer stable optical traps using low-power laser beams in the mid-IR and to manipulate the trap position in a continuous manner by applying a longitudinal drift bias. Nonreciprocal metasurfaces may open new possibilities to trap, assemble and manipulate nanoparticles and overcome many challenges faced by conventional optical tweezers while dealing with nanoscale objects.
Collapse
|
25
|
Shi Y, Zhu T, Liu J, Tsai DP, Zhang H, Wang S, Chan CT, Wu PC, Zayats AV, Nori F, Liu AQ. Stable optical lateral forces from inhomogeneities of the spin angular momentum. SCIENCE ADVANCES 2022; 8:eabn2291. [PMID: 36449614 PMCID: PMC9710880 DOI: 10.1126/sciadv.abn2291] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/17/2022] [Indexed: 05/29/2023]
Abstract
Transverse spin momentum related to the spin angular momentum (SAM) of light has been theoretically studied recently and predicted to generate an intriguing optical lateral force (OLF). Despite extensive studies, there is no direct experimental evidence of a stable OLF resulting from the dominant SAM rather than the ubiquitous spin-orbit interaction in a single light beam. Here, we theoretically unveil the nontrivial physics of SAM-correlated OLF, showing that the SAM is a dominant factor for the OLF on a nonabsorbing particle, while an additional force from the canonical (orbital) momentum is exhibited on an absorbing particle due to the spin-orbit interaction. Experimental results demonstrate the bidirectional movement of 5-μm-diameter particles on both sides of the beam with opposite spin momenta. The amplitude and sign of this force strongly depend on the polarization. Our optofluidic platform advances the exploitation of exotic forces in systems with a dominant SAM, facilitating the exploration of fascinating light-matter interactions.
Collapse
Affiliation(s)
- Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hui Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shubo Wang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Anatoly V. Zayats
- Department of Physics and London Centre for Nanotechnology, King’s College London, London, UK
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wakoshi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
26
|
Kostina N, Petrov M, Bobrovs V, Shalin AS. Optical pulling and pushing forces via Bloch surface waves. OPTICS LETTERS 2022; 47:4592-4595. [PMID: 36107040 DOI: 10.1364/ol.464037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
For flexible tailoring of optical forces, as well as for extraordinary optomechanical effects, additional degrees of freedom should be introduced into a system. Here, we demonstrate that photonic crystals are a versatile platform for optical manipulation due to both Bloch surface waves (BSWs) and the complex character of the reflection coefficient paving a way for controlled optomechanical interactions. We demonstrate enhanced pulling and pushing transversal optical forces acting on a single dipolar bead above a one-dimensional photonic crystal due to directional excitation of BSWs. Our results demonstrate angle- or wavelength-assisted switching between BSW-induced optical pulling and pushing forces. Easy to fabricate for any desired spectral range, photonic crystals are shown to be prospective for precise optical sorting of nanoparticles, which are difficult to sort with conventional optomechanical methods. Our approach opens opportunities for novel, to the best of our knowledge, optical manipulation schemes and platforms, and enhanced light-matter interaction in optical trapping setups.
Collapse
|
27
|
Shi Y, Zhu T, Liu AQ, Zhou LM, Nieto-Vesperinas M, Hassanfiroozi A, Liu J, Tsai DP, Li Z, Ding W, Wang F, Li H, Song Q, Xu X, Li B, Cheng X, Wu PC, Chan CT, Qiu CW. Inverse Optical Torques on Dielectric Nanoparticles in Elliptically Polarized Light Waves. PHYSICAL REVIEW LETTERS 2022; 129:053902. [PMID: 35960581 DOI: 10.1103/physrevlett.129.053902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the rotation can be switched between clockwise and counterclockwise directions by controlling the incident angle of light. Our study suggests a new playground to harness polarization-dependent optical force and torque for advancing optical manipulations.
Collapse
Affiliation(s)
- Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Hang Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
28
|
Liu W, Zhang Y, Min C, Yuan X. Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect. OPTICS EXPRESS 2022; 30:16094-16103. [PMID: 36221461 DOI: 10.1364/oe.451250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
With the nanoscale integration advantage of near field photonics, controllable manipulation and transportation of micro-objects have possessed plentiful applications in the fields of physics, biology and material sciences. However, multifunctional optical manipulation like controllable transportation and synchronous routing by nano-devices are limited and rarely reported. Here we propose a new type of Y-shaped waveguide optical conveyor belt, which can transport and route particles along the structured waveguide based on the plasmonic spin-hall effect. The routing of micro-particles in different branches is determined by the optical force components difference at the center of the Y junction along the two branches of the waveguide. The influence of light source and structural parameters on the optical forces and transportation capability are numerically studied. The results illustrate that the proposed structured waveguide optical conveyor belt can transport the microparticles controllably in different branches of the waveguide. Due to the selective transportation ability of microparticles by the 2D waveguide, our work shows great application potential in the region of on-chip optical manipulation.
Collapse
|
29
|
Peng J, Jia S, Zhang C, Wang S. Optical force and torque on small particles induced by polarization singularities. OPTICS EXPRESS 2022; 30:16489-16498. [PMID: 36221490 DOI: 10.1364/oe.458060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 06/16/2023]
Abstract
Optical forces in the near fields have important applications in on-chip optical manipulations of small particles and molecules. Here, we report a study of optical force and torque on small particles induced by the optical polarization singularities of a gold cylinder. We show that the scattering of the cylinder generates both electric and magnetic C lines (i.e., lines of polarization singularities) in the near fields. The intrinsic spin density of the C lines can induce complex optical torque on a dielectric/magnetic particle, and the near-field evolutions of the C lines are accompanied by a gradient force on the particle. The force and torque manifest dramatic spatial variations, providing rich degrees of freedom for near-field optical manipulations. The study, for the first time to our knowledge, uncovers the effect of optical polarization singularities on light-induced force and torque on small particles. The results contribute to the understanding of chiral light-matter interactions and can find applications in on-chip optical manipulations and optical sensing.
Collapse
|
30
|
Wu X, Ehehalt R, Razinskas G, Feichtner T, Qin J, Hecht B. Light-driven microdrones. NATURE NANOTECHNOLOGY 2022; 17:477-484. [PMID: 35449413 DOI: 10.1038/s41565-022-01099-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 μm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.
Collapse
Affiliation(s)
- Xiaofei Wu
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | - Raphael Ehehalt
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Jin Qin
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
31
|
Taghavi M, Salary MM, Mosallaei H. Multifunctional metasails for self-stabilized beam-riding and optical communication. NANOSCALE ADVANCES 2022; 4:1727-1740. [PMID: 36132157 PMCID: PMC9418755 DOI: 10.1039/d1na00747e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
The photonic propulsion of lightsails can be used to accelerate spacecraft to relativistic velocities, providing a feasible route for the exploration of interstellar space in the human lifetime. Breakthrough Starshot is an initiative aiming to launch lightsail-driven spacecrafts accelerated to a relativistic velocity of 0.2c via radiation pressure of a high-power laser beam in order to probe the habitable zone of Alpha Centauri, located 4.2 light years away from the Earth, and transmit back the scientific data collected in the flyby mission to an Earth-based receiver. The success of such a mission requires the lightsail to provide maximal acceleration while featuring beam-riding stability under the illumination of an intense laser beam during the launch phase. Moreover, the large-area lightsail can be harnessed to improve the margin in the photon-starved downlink channel throughout the communication phase by maximizing the gain of the transmitter despite extending the acceleration period and reducing the stability margin due to the elimination of a portion of the propulsion segments. Owing to the potential of metasurfaces to serve as low-weight versatile multifunctional photonic components, metasurface-based lightsails or metasails are deemed to be ideal candidates to simultaneously address the requirements of photonic propulsion and optical communication in laser-driven deep-space probes. Here, we demonstrate the design of a multifunctional metasail for providing high acceleration and enabling the self-stabilized beam-riding of a spacecraft with a detached payload from the sail while maximizing the transmission gain in the downlink optical communication. The metasail consists of two interleaved sub-arrays of dielectric unit cells operating based on the Pancharatnam-Berry geometric phase, optimized to meet the propulsion and communication requirements, respectively. The beam-riding stability of the sail is analyzed through simulation of the motion trajectory during the acceleration phase, while taking into account the effect of the relativistic Doppler shift, and the downlink communication performance is enabled by providing the required conjugate phase by the metasail elements, resulting in beam collimation. The obtained results verify the multifunctionality of the platform and point toward the promise of metasails for extended mission applications.
Collapse
|
32
|
Cho J, Hwang M, Shin M, Oh J, Cho J, Son JG, Yeom B. Chiral Plasmonic Nanowaves by Tilted Assembly of Unidirectionally Aligned Block Copolymers with Buckling-Induced Microwrinkles. ACS NANO 2021; 15:17463-17471. [PMID: 34606232 DOI: 10.1021/acsnano.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral-structured nanoscale materials exhibit chiroptical properties with preferential absorptions of circularly polarized light. The distinctive optical responses of chiral materials have great potential for advanced optical and biomedical applications. However, the fabrication of three-dimensional structures with mirrored nanoscale geometry is still challenging. This study introduces chiral plasmonic nanopatterns in wavy shapes based on the unidirectional alignment of block copolymer thin films and their tilted transfer, combined with buckling processes. The cylindrical nanodomains of polystyrene-block-poly(2-vinylpyridine) thin films were unidirectionally aligned over a large area by the shear-rolling process. The aligned block copolymer thin films were transferred onto uniaxially prestrained polydimethylsiloxane films at certain angles relative to the stretching directions. The strain was then released to induce buckling. The aligned nanopatterns across the axis of the formed microwrinkles were selectively infiltrated with gold ions. After reduction by plasma treatment, chiral plasmonic nanowave patterns were fabricated with the presence of mirror-reflected circular dichroism spectra. This fabrication method does not require any lithography processing or innately chiral biomaterials, which can be advantageous over other conventional fabrication methods for artificial nanoscale chiral materials.
Collapse
Affiliation(s)
- Junghyun Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Myonghoo Hwang
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minkyung Shin
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinwoo Oh
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
33
|
Tunable multichannel Photonic spin Hall effect in metal-dielectric-metal waveguide. Sci Rep 2021; 11:14138. [PMID: 34238971 PMCID: PMC8266915 DOI: 10.1038/s41598-021-93517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
The discovery of Photonic spin Hall effect (PSHE) on surface plasmon polaritons (SPPs) is an important progress in photonics. In this paper, a method of realizing multi-channel PSHE in two-dimensional metal-air-metal waveguide is proposed. By modulating the phase difference \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi$$\end{document}ϕ and polar angle \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta$$\end{document}θ of the dipole source, the SPP can propagate along a specific channel. We further prove that PSHE results from the component wave interference theory. We believe that our findings will rich the application of SPPs in optical devices.
Collapse
|
34
|
Abujetas DR, Marqués MI, Sánchez-Gil JA. Modulated flipping torque, spin-induced radiation pressure, and chiral sorting exerted by guided light. OPTICS EXPRESS 2021; 29:16969-16979. [PMID: 34154248 DOI: 10.1364/oe.412638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/01/2021] [Indexed: 06/13/2023]
Abstract
In recent years, optical forces and torques have been investigated in sub-wavelength evanescent fields yielding a rich phenomenology of fundamental and applied interest. Here we demonstrate analytically that guided modes carrying transverse spin density induce optical torques depending on the character, either electric or magnetic, of the dipolar particles. The existence of a nonzero longitudinal extraordinary linear spin momentum suitable to manipulate optical forces and torques modifies optical forces either enhancing or inhibiting radiation pressure. Hybrid modes supported by cylindrical waveguides also exhibit intrinsic helicity that leads to a rich distribution of longitudinal optical torques. Finally, we show that chiral dipolar particles also undergo lateral forces induced by transverse spin density, amenable to chiral particle sorting. These properties are revealed in configurations on achiral and chiral dipolar particles within confined geometries throughout the electromagnetic spectra.
Collapse
|
35
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
36
|
Zhang Z, Min C, Fu Y, Zhang Y, Liu W, Yuan X. Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light. OPTICS EXPRESS 2021; 29:6282-6292. [PMID: 33726153 DOI: 10.1364/oe.418900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Waveguide optical tweezers can capture and transport nanoparticles, and have important applications in biology, physics, and materials science. However, traditional waveguide optical tweezers need to couple incident light into one end of the waveguide, which causes problems such as difficulty in alignment and low efficiency. Here, we propose a new type of waveguide optical tweezers based on spin-orbit coupling of light. Under the effect of spin-orbit coupling between the waveguide and nearby particles illuminated by a circularly polarized light, the particles experience a lateral recoil force and a strong optical gradient force, which make particles in a large area to be trapped near the waveguide and then transmitted along the waveguide, avoiding the coupling of light into one end of the waveguide. We further demonstrate that the particles can be transmitted along a curved waveguide and even rotated along a ring-shaped waveguide, and its transmission direction can be simply switched by adjusting the spin polarization of incident light. This work has significance in the research of optical on-chip nano-tweezers.
Collapse
|
37
|
Abstract
We formulate and experimentally validate a set of spin–momentum equations which are analogous to the Maxwell’s equations and govern spin–orbit coupling in electromagnetic guided waves. The Maxwell-like spin–momentum equations reveal the spin–momentum locking, the chiral spin texture of the field, Berry phase, and the spin–orbit interaction in the optical near field. The observed spin–momentum behavior can be extended to other classical waves, such as acoustic, fluid, gas, and gravitational waves. Spin–momentum locking, a manifestation of topological properties that governs the behavior of surface states, was studied intensively in condensed-matter physics and optics, resulting in the discovery of topological insulators and related effects and their photonic counterparts. In addition to spin, optical waves may have complex structure of vector fields associated with orbital angular momentum or nonuniform intensity variations. Here, we derive a set of spin–momentum equations which describes the relationship between the spin and orbital properties of arbitrary complex electromagnetic guided modes. The predicted photonic spin dynamics is experimentally verified with four kinds of nondiffracting surface structured waves. In contrast to the one-dimensional uniform spin of a guided plane wave, a two-dimensional chiral spin swirl is observed for structured guided modes. The proposed framework opens up opportunities for designing the spin structure and topological properties of electromagnetic waves with practical importance in spin optics, topological photonics, metrology and quantum technologies and may be used to extend the spin-dynamics concepts to fluid, acoustic, and gravitational waves.
Collapse
|
38
|
Bi H, Lobet M, Saikin SK, Li Y, Huo C, Jian J, Wu X, Reichert J, Aspuru-Guzik A, Mazur E. Optically Induced Molecular Logic Operations. ACS NANO 2020; 14:15248-15255. [PMID: 33140948 DOI: 10.1021/acsnano.0c05513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular electronics is a promising route for down-sizing electronic devices. Tip-enhanced Raman spectroscopy provides us a setup to probe current-driven molecular junctions that are considered as prototypes of molecular electronic devices. In this setup, the plasmonic tip concentrates optical fields to a degree that allows observing optical response of single molecules. Simultaneously, the tip can also induce a localized optical angular momentum, which has been seldomly considered in previous studies. Here, we propose that the induced optical angular momentum can interact with the probed molecule and strongly modify the response signal. Specifically, we demonstrate the ability to control the vibrational resonance of current-driven molecular junctions with the optical angular momentum. This precise control of light-matter interactions at the nanoscale allows us to demonstrate multiple logic operations. These results provide a fundamental understanding of future molecular electronics applications.
Collapse
Affiliation(s)
- Hai Bi
- MIIT Key Laboratory of Critical Material Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Michaël Lobet
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
- Centre Spatial de Liège, Avenue du Pré-Aily, B-4031 Angleur, Belgium
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
- Kebotix, Inc., 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yang Li
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Chanyuan Huo
- MIIT Key Laboratory of Critical Material Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiahuang Jian
- MIIT Key Laboratory of Critical Material Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaohong Wu
- MIIT Key Laboratory of Critical Material Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Joachim Reichert
- Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Alán Aspuru-Guzik
- Department of Chemistry and Department of Computer Sciences, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eric Mazur
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
39
|
Tanaka YY, Albella P, Rahmani M, Giannini V, Maier SA, Shimura T. Plasmonic linear nanomotor using lateral optical forces. SCIENCE ADVANCES 2020; 6:6/45/eabc3726. [PMID: 33148646 PMCID: PMC7673677 DOI: 10.1126/sciadv.abc3726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 05/22/2023]
Abstract
Optical force is a powerful tool to actuate micromachines. Conventional approaches often require focusing and steering an incident laser beam, resulting in a bottleneck for the integration of the optically actuated machines. Here, we propose a linear nanomotor based on a plasmonic particle that generates, even when illuminated with a plane wave, a lateral optical force due to its directional side scattering. This force direction is determined by the orientation of the nanoparticle rather than a field gradient or propagation direction of the incident light. We demonstrate the arrangements of the particles allow controlling the lateral force distributions with the resolution beyond the diffraction limit, which can produce movements, as designed, of microobjects in which they are embedded without shaping and steering the laser beam. Our nanomotor to engineer the experienced force can open the door to a new class of micro/nanomechanical devices that can be entirely operated by light.
Collapse
Affiliation(s)
- Yoshito Y Tanaka
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Pablo Albella
- Department of Applied Physics, University of Cantabria, Santander, Spain
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Vincenzo Giannini
- Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas(CSIC), Serrano 121, 28006 Madrid, Spain
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tsutomu Shimura
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
40
|
Kiselev A, Achouri K, Martin OJF. Multipole interplay controls optical forces and ultra-directional scattering. OPTICS EXPRESS 2020; 28:27547-27560. [PMID: 32988046 DOI: 10.1364/oe.400387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
We analyze the superposition of Cartesian multipoles to reveal the mechanisms underlying the origin of optical forces. We show that a multipolar decomposition approach significantly simplifies the analysis of this problem and leads to a very intuitive explanation of optical forces based on the interference between multipoles. We provide an in-depth analysis of the radiation coming from the object, starting from low-order multipole interactions up to quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical force as well as the total radiation directivity can be well controlled. The theory developed in this paper may also serve as a reference for ultra-directional light steering applications.
Collapse
|
41
|
Chen H, Zheng H, Lu W, Liu S, Ng J, Lin Z. Lateral Optical Force due to the Breaking of Electric-Magnetic Symmetry. PHYSICAL REVIEW LETTERS 2020; 125:073901. [PMID: 32857552 DOI: 10.1103/physrevlett.125.073901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Lateral optical forces in a direction perpendicular to light propagation have attracted increasing interest in recent years. Up to now, all lateral forces can be attributed to the symmetry breaking in the lateral directions caused by either the morphology of the scatterer geometry or the optical fields impinging on the scatterer. Here we demonstrate, both numerically and analytically, that when an isotropic scatterer breaks the electric-magnetic symmetry, a new type of anomalous lateral force can be induced along the direction of translational invariance where the illumination striking the scatterer has no propagation, field gradient, or spin density vortex (Belinfante's spin momentum). Our analytical results are rigorous for an arbitrary size scatterer, ensuring the universality of our conclusion. Furthermore, the electric-magnetic symmetry-breaking-induced lateral force is comparable in magnitude to other components of the optical force and reversible in direction for different polarizations of the illuminating light, rendering it capable of practical optical manipulation as well as enriching the understanding of light-matter interaction.
Collapse
Affiliation(s)
- Huajin Chen
- School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Hongxia Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Wanli Lu
- School of Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Shiyang Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute of Information Optics and Key Laboratory of Optical Information Detecting and Display Technology of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhifang Lin
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Meng Y, Liedl C, Pucher S, Rauschenbeutel A, Schneeweiss P. Imaging and Localizing Individual Atoms Interfaced with a Nanophotonic Waveguide. PHYSICAL REVIEW LETTERS 2020; 125:053603. [PMID: 32794877 DOI: 10.1103/physrevlett.125.053603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Single particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique has not been available for nanophotonic atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber. Near-resonant light is scattered off the atoms and imaged while counteracting heating mechanisms via degenerate Raman cooling. We detect trapped atoms within 150 ms and record image sequences of given atoms. Building on our technique, we perform two experiments which are conditioned on the number and position of the nanofiber-trapped atoms. We measure the transmission of nanofiber-guided resonant light and verify its exponential scaling in the few-atom limit, in accordance with Beer-Lambert's law. Moreover, depending on the interatomic distance, we observe interference of the fields that two simultaneously trapped atoms emit into the nanofiber. The demonstrated technique enables postselection and possible feedback schemes and thereby opens the road toward a new generation of experiments in quantum nanophotonics.
Collapse
Affiliation(s)
- Y Meng
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - C Liedl
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - S Pucher
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - A Rauschenbeutel
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - P Schneeweiss
- Vienna Center for Quantum Science and Technology, TU Wien-Atominstitut, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
43
|
Zhu T, Shi Y, Ding W, Tsai DP, Cao T, Liu AQ, Nieto-Vesperinas M, Sáenz JJ, Wu PC, Qiu CW. Extraordinary Multipole Modes and Ultra-Enhanced Optical Lateral Force by Chirality. PHYSICAL REVIEW LETTERS 2020; 125:043901. [PMID: 32794795 DOI: 10.1103/physrevlett.125.043901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Strong mode coupling and Fano resonances arisen from exceptional interaction between resonant modes in single nanostructures have raised much attention for their advantages in nonlinear optics, sensing, etc. Individual electromagnetic multipole modes such as quadrupoles, octupoles, and their counterparts from mode coupling (toroidal dipole and nonradiating anapole mode) have been well investigated in isolated or coupled nanostructures with access to high Q factors in bound states in the continuum. Albeit the extensive study on ordinary dielectric particles, intriguing aspects of light-matter interactions in single chiral nanostructures is lacking. Here, we unveil that extraordinary multipoles can be simultaneously superpositioned in a chiral nanocylinder, such as two toroidal dipoles with opposite moments, and electric and magnetic sextupoles. The induced optical lateral forces and their scattering cross sections can thus be either significantly enhanced in the presence of those multipoles with high-Q factors, or suppressed by the bound states in the continuum. This work for the first time reveals the complex correlation between multipolar effects, chiral coupling, and optical lateral force, providing a distinct way for advanced optical manipulation.
Collapse
Affiliation(s)
- Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| | - Yuzhi Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Weiqiang Ding
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Din Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Juan José Sáenz
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|
44
|
Fu Y, Zhang Y, Min C, Fu K, Yuan X. Lateral forces on particles induced by magnetic spin-orbit coupling. OPTICS EXPRESS 2020; 28:13116-13124. [PMID: 32403792 DOI: 10.1364/oe.390214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Optical forces in optical tweezers enable non-contact, non-destructive trapping and manipulation of particles. One such force has been found to originate from the spin-orbit coupling of light, which produces a counter-intuitive lateral optical force on metal nanoparticles due to the spin of the electric-field components of light. Here we reveal that the spin-orbit coupling of the magnetic-field components of light also produces a lateral optical force on particles. To study this lateral force, we designed a gapped structure composed of a dielectric particle near photonic crystal surface, and found that the lateral force originates from the spin-dependent excitation of a Bloch surface wave. We further demonstrate that the lateral force can be modified by tuning the structural parameters of the gapped structure and by exploiting the magnetic resonance modes of the particle. This work should contribute to a deeper understanding of the magnetic spin-orbit coupling between light and matter and promote the development of particle manipulation on dielectric platforms.
Collapse
|
45
|
Šípová-Jungová H, Andrén D, Jones S, Käll M. Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. Chem Rev 2019; 120:269-287. [DOI: 10.1021/acs.chemrev.9b00401] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hana Šípová-Jungová
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Daniel Andrén
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Steven Jones
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|
46
|
Ginis V, Liu L, She A, Capasso F. Using the Belinfante momentum to retrieve the polarization state of light inside waveguides. Sci Rep 2019; 9:14879. [PMID: 31619705 PMCID: PMC6796005 DOI: 10.1038/s41598-019-51028-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
Current day high speed optical communication systems employ photonic circuits using platforms such as silicon photonics. In these systems, the polarization state of light drifts due to effects such as polarization mode dispersion and nonlinear phenomena generated by photonic circuit building blocks. As the complexity, the number, and the variety of these building blocks grows, the demand increases for an in-situ polarization determination strategy. Here, we show that the transfer of the Belinfante momentum to particles in the evanescent field of waveguides depends in a non-trivial way on the polarization state of light within that waveguide. Surprisingly, we find that the maxima and minima of the lateral force are not produced with circularly polarized light, corresponding to the north and south poles of the Poincaré sphere. Instead, the maxima are shifted along the great circle of the sphere due to the phase differences between the scattered TE and TM components of light. This effect allows for an unambiguous reconstruction of the local polarization state of light inside a waveguide. Importantly, this technique depends on interaction with only the evanescent tails of the fields, allowing for a minimally invasive method to probe the polarization within a photonic chip.
Collapse
Affiliation(s)
- Vincent Ginis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA. .,Data Lab/Applied Physics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.
| | - Lulu Liu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Alan She
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
47
|
Intravaia F, Oelschläger M, Reiche D, Dalvit DAR, Busch K. Quantum Rolling Friction. PHYSICAL REVIEW LETTERS 2019; 123:120401. [PMID: 31633977 DOI: 10.1103/physrevlett.123.120401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/10/2023]
Abstract
An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium dynamics, the anomalous Doppler effect, and spin-momentum locking of light mediates an intriguing interplay between the atom's translational and rotational motion. In turn, this deeply affects the drag force in a way that is reminiscent of classical rolling friction. Our fully non-Markovian and nonequilibrium description reveals counterintuitive features characterizing the atom's velocity-dependent rotational dynamics. These results prompt interesting directions for tuning the interaction and for investigating nonequilibrium dynamics as well as the properties of confined light.
Collapse
Affiliation(s)
- F Intravaia
- Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, 12489 Berlin, Germany
| | | | - D Reiche
- Max-Born-Institut, 12489 Berlin, Germany
| | - D A R Dalvit
- Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - K Busch
- Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, 12489 Berlin, Germany
- Max-Born-Institut, 12489 Berlin, Germany
| |
Collapse
|
48
|
Krauss E, Razinskas G, Köck D, Grossmann S, Hecht B. Reversible Mapping and Sorting the Spin of Photons on the Nanoscale: A Spin-Optical Nanodevice. NANO LETTERS 2019; 19:3364-3369. [PMID: 31013109 DOI: 10.1021/acs.nanolett.9b01162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photon spin is an important resource for quantum information processing as is the electron spin in spintronics. However, for subwavelength confined optical excitations, polarization as a global property of a mode cannot be defined. Here, we show that any polarization state of a plane-wave photon can reversibly be mapped to a pseudospin embodied by the two fundamental modes of a subwavelength plasmonic two-wire transmission line. We design a device in which this pseudospin evolves in a well-defined fashion throughout the device reminiscent of the evolution of photon polarization in a birefringent medium and the behavior of electron spins in the channel of a spin field-effect transistor. The significance of this pseudospin is enriched by the fact that it is subject to spin-orbit locking. Combined with optically active materials to exert external control over the pseudospin precession, our findings could enable spin-optical transistors, that is, the routing and processing of quantum information with light on a subwavelength scale.
Collapse
Affiliation(s)
- Enno Krauss
- NanoOptics and Biophotonics Group, Experimental Physics 5 , University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Gary Razinskas
- NanoOptics and Biophotonics Group, Experimental Physics 5 , University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Dominik Köck
- NanoOptics and Biophotonics Group, Experimental Physics 5 , University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Swen Grossmann
- NanoOptics and Biophotonics Group, Experimental Physics 5 , University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Bert Hecht
- NanoOptics and Biophotonics Group, Experimental Physics 5 , University of Würzburg , Am Hubland, 97074 Würzburg , Germany
| |
Collapse
|
49
|
Li X, Chen J, Lin Z, Ng J. Optical pulling at macroscopic distances. SCIENCE ADVANCES 2019; 5:eaau7814. [PMID: 30944852 PMCID: PMC6440754 DOI: 10.1126/sciadv.aau7814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 05/15/2023]
Abstract
Optical tractor beams, proposed in 2011 and experimentally demonstrated soon after, offer the ability to pull particles against light propagation. It has attracted much research and public interest. Yet, its limited microscopic-scale range severely restricts its applicability. The dilemma is that a long-range Bessel beam, the most accessible beam for optical traction, has a small half-cone angle, θ0, making pulling difficult. Here, by simultaneously using several novel and compatible mechanisms, including transverse isotropy, Snell's law, antireflection coatings (or impedance-matched metamaterials), and light interference, we overcome this dilemma and achieve long-range optical pulling at θ0 ≈ 1°. The range is estimated to be 14 cm when using ~1 W of laser power. Thus, macroscopic optical pulling can be realized in a medium or in a vacuum, with good tolerance of the half-cone angle and the frequency of the light.
Collapse
Affiliation(s)
- Xiao Li
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| | - Jun Chen
- Institute of Theoretical Physics and Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi, China
| | - Zhifang Lin
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, and Department of Physics, Fudan University, Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jack Ng
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
50
|
Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat Commun 2019; 10:832. [PMID: 30783112 PMCID: PMC6381179 DOI: 10.1038/s41467-019-08826-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/30/2019] [Indexed: 12/01/2022] Open
Abstract
Many novel properties of non-Hermitian systems are found at or near the exceptional points—branch points of complex energy surfaces at which eigenvalues and eigenvectors coalesce. In particular, higher-order exceptional points can result in optical structures that are ultrasensitive to external perturbations. Here we show that an arbitrary order exceptional point can be achieved in a simple system consisting of identical resonators placed near a waveguide. Unidirectional coupling between any two chiral dipolar states of the resonators mediated by the waveguide mode leads to the exceptional point, which is protected by the transverse spin–momentum locking of the guided wave and is independent of the positions of the resonators. Various analytic response functions of the resonators at the exceptional points are experimentally manifested in the microwave regime. The enhancement of sensitivity to external perturbations near the exceptional point is also numerically and analytically demonstrated. Exceptional points in non-Hermitian systems can enhance the performance of optical sensors. Here, Wang et al. demonstrate theoretically and experimentally that higher-order exceptional points, which would allow for yet higher sensitivities, can be realized in simple photonic resonator chains.
Collapse
|