1
|
Karwur FF, Yocku MHSO, Enoch DA, Triandhini RLNKR, Agustina V, Lakukua MF, Rondonuwu FS, Langkun JF. Anthropometric and metabolic differences and distribution of ABCG2 rs2231142 variant between lowland and highland Papuans in West Papua, Indonesia. J Physiol Anthropol 2025; 44:14. [PMID: 40394645 PMCID: PMC12090604 DOI: 10.1186/s40101-025-00394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Papuan people inhabiting the island of New Guinea are the most ancient population living outside Africa, having resided in the region for at least 50,000 years. The arrival of Austronesian speakers and other group from mainland Asia around 3000 years or so created a peculiar genetic mixture, particularly in lowland/coastal areas. We investigated the anthropometric and blood chemical differences alongside the population structure of the ABCG2 rs2231142 genetic variant of West Papuans from lowland/coastal and highland areas to understand metabolic risk differences between these two populations. RESULTS We studied West Papuan students from lowland/coastal areas (n = 78, 45 males, 33 females) and from highland areas (n = 65, 40 males, 25 females). We found the following: (1) The lowland/coastal Papuans were taller, with lower BMI, central obesity, and triceps. Contrarily, highland Papuans have a more gynoid body shape, with higher WC, HC, WHR, and WHtR. The skinfolds were significantly thicker in women from the highlands. (2) There was actually a negative correlation between BMI and central adiposity with UA and FBG to those from the highlands. The lowland/coastal Papuans indicated an Asian-type metabolic traits, with higher fasting glucose levels at lower BMI and lower central adiposity. (3) UA concentration and DBP were strongly correlated with obesity of the Papuans from lowlands/coasts and not in the Papuans from highlands. (4) There was a striking difference in the ABCG2 rs2231142 > T allele frequency in those from the lowlands/coasts (22%) compared to those from the highlands of West Papua (7%). The T variant in the latter is all heterozygous. CONCLUSIONS The higher adiposity and thicker skinfolds observed in highland Papuans are thought to be adaptive responses to the high-altitude environment, enabling greater adipose tissue expandability and energy storage capacity while maintaining metabolic homeostasis. In contrast, the lowland/coastal Papuans exhibit an Asian metabolic phenotype, which is more prone to metabolic derangements at lower adiposity. Our findings on the population distribution of the ABCG2 rs2231142 > T variant support the idea that its presence in the Papuan highlands is through demic diffusion of the variant from ISEA, indicating that the two populations are separate entities displaying differences in metabolic risks.
Collapse
Affiliation(s)
- Ferry Fredy Karwur
- Faculty of Health Sciences, Satya Wacana Christian University, Salatiga, Central Java, 50711, Indonesia.
- Molecular Biology Laboratory-BSL3, Satya Wacana Christian University, Salatiga, Central Java, 50714, Indonesia.
| | | | - Debby Agustin Enoch
- Molecular Biology Laboratory-BSL3, Satya Wacana Christian University, Salatiga, Central Java, 50714, Indonesia
| | | | - Venti Agustina
- Faculty of Health Sciences, Satya Wacana Christian University, Salatiga, Central Java, 50711, Indonesia
| | - Meyga Feybbi Lakukua
- Molecular Biology Laboratory-BSL3, Satya Wacana Christian University, Salatiga, Central Java, 50714, Indonesia
| | - Ferdy Semuel Rondonuwu
- Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga, Central Java, 50711, Indonesia
| | - Jerry Ferry Langkun
- Faculty of Health Sciences, Satya Wacana Christian University, Salatiga, Central Java, 50711, Indonesia
- Molecular Biology Laboratory-BSL3, Satya Wacana Christian University, Salatiga, Central Java, 50714, Indonesia
| |
Collapse
|
2
|
Takase M, Nakaya N, Nakamura T, Kogure M, Hatanaka R, Nakaya K, Chiba I, Tokioka S, Kanno I, Nochioka K, Tsuchiya N, Hirata T, Narita A, Obara T, Ishikuro M, Ohseto H, Uruno A, Kobayashi T, Kodama EN, Hamanaka Y, Orui M, Ogishima S, Nagaie S, Fuse N, Sugawara J, Kuriyama S. Genetic risk, lifestyle adherence, and risk of developing hyperuricaemia in a Japanese population. Rheumatology (Oxford) 2025; 64:2591-2600. [PMID: 39271169 PMCID: PMC12048061 DOI: 10.1093/rheumatology/keae492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the inter-relationships among genetic risk, adherence to a healthy lifestyle, and susceptibility to hyperuricaemia. METHODS This prospective cohort study was conducted with 7241 hyperuricaemia-free individuals aged ≥20 years from the Tohoku Medical Megabank Community-based cohort study. A comprehensive lifestyle score included assessment of BMI, smoking, drinking, and physical activity, and a polygenic risk score (PRS) was constructed based on uric acid loci from a previous genome-wide association study meta-analysis. A multiple logistic regression model was used to estimate the association between genetic risk, adherence to a healthy lifestyle, and hyperuricaemia incidence and to calculate the area under the receiver operating characteristic curve (AUROC). Hyperuricaemia was defined as a uric acid level of ≥7.0 mg/dL or a self-reported history of hyperuricaemia. RESULTS Of the 7241 adults [80.7% females; mean (±s.d.) age: 57.7 (12.6) years], 217 (3.0%) developed hyperuricaemia during 3.5 years of follow-up period. Genetic risk was correlated with hyperuricaemia development (P for interaction = 0.287), and lifestyle risks were independently associated. Participants with a high genetic risk and poor lifestyle had the highest risk (odds ratio: 5.34; 95% CI: 2.61-12.10). Although not statistically significant, adding the PRS in the model with lifestyle information improved predictive ability (AUROC = 0.771, 95% CI: 0.736-0.806 for lifestyle; AUROC = 0.785, 95% CI: 0.751-0.819 for lifestyle and PRS; P= 0.07). CONCLUSION A healthy lifestyle to prevent hyperuricaemia, irrespective of genetic risk, may mitigate the genetic risk. Genetic risk may complement lifestyle factors in identifying individuals at a heightened hyperuricaemia risk.
Collapse
Affiliation(s)
- Masato Takase
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Naoki Nakaya
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Kyoto Women’s University, Kyoto, Japan
| | - Mana Kogure
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Rieko Hatanaka
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kumi Nakaya
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Ippei Chiba
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Sayuri Tokioka
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Ikumi Kanno
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Kotaro Nochioka
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Tohoku University Hospital, Tohoku University, Sendai, Miyagi, Japan
| | - Naho Tsuchiya
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Takumi Hirata
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Human Care Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Akira Narita
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Taku Obara
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Mami Ishikuro
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Ohseto
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoko Kobayashi
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Tohoku University Hospital, Tohoku University, Sendai, Miyagi, Japan
| | - Eiichi N Kodama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yohei Hamanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masatsugu Orui
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Soichi Ogishima
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Nagaie
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Fuse
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Junichi Sugawara
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Tohoku University Hospital, Tohoku University, Sendai, Miyagi, Japan
- Suzuki Memorial Hospital, Iwanumashi, Miyagi, Japan
| | - Shinichi Kuriyama
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Liu M, Kim DS, Park S. Gene-Lifestyle Interactions in Renal Dysfunction: Polygenic Risk Modulation via Plant-Based Diets, Coffee Intake, and Bioactive Compound Interactions. Nutrients 2025; 17:916. [PMID: 40077791 PMCID: PMC11901526 DOI: 10.3390/nu17050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background: This study aimed to investigate genetic variants associated with the estimated glomerular filtration rate (eGFR) and their interactions with lifestyle factors and bioactive compounds in large hospital-based cohorts, assessing their impact on renal dysfunction risk. Methods: Participants were categorized into two groups based on eGFR: High-GFR (control; n = 51,084) and Low-GFR (renal dysfunction; n = 7617), using an eGFR threshold of 60 mL/min/1.73 m2. Genetic variants were identified through a genome-wide association analysis, and their interactions with lifestyle factors were assessed a using generalized multifactor dimensionality reduction (GMDR) analysis. Additionally, interactions between polygenic risk scores (PRS) and nutrient intake were examined. Results: Low eGFR was associated with higher urinary protein levels (4.67-fold) and correlated with a Western-style diet and with saturated fat, arginine, and isoleucine intakes but not sodium intake. The genetic model for low eGFR included variants linked to energy production and amino acid metabolism, such as rs1047891_CPS1, rs3770636_LRP2, rs5020545_SHROOM3, rs3812036_SLC34A1, and rs4715517_HCRTR2. A high PRS was associated with a 1.78-fold increased risk of low eGFR after adjusting for sociodemographic and lifestyle factors. The PRS from the 6-SNP model interacted with plant-based diets (PBDs) and coffee intake, where individuals with higher PBD and coffee consumption had a lower risk of renal dysfunction. Additionally, CPS1 rs1047891 interacted with vitamin D intake (p = 0.0436), where the risk allele was linked to lower eGFR with low vitamin D intake but not with high intake. Molecular docking showed that vitamin D3 had a lower binding energy to the CPS1 mutant type (-9.9 kcal/mol) than the wild type (-7.5 kcal/mol), supporting a potential gene-nutrient interaction influencing renal function. Conclusions: Middle-aged and elderly individuals with a high genetic risk for renal dysfunction may benefit from a plant-based diet, moderate coffee consumption, and sufficient vitamin D intake.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, China;
| | - Da-Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bun-gil, BaeBang-Yup, Asan 41399, ChungNam-Do, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bun-gil, BaeBang-Yup, Asan 41399, ChungNam-Do, Republic of Korea;
| |
Collapse
|
4
|
Chiu IJ, Ajay AK, Chen CH, Jadhav S, Zhao L, Cao M, Ding Y, Shah KM, Shah SI, Hsiao LL. Suppression of aldehyde dehydrogenase 2 in kidney proximal tubules contributes to kidney fibrosis through Transforming Growth Factor-β signaling. Kidney Int 2025; 107:84-98. [PMID: 39393529 DOI: 10.1016/j.kint.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Chronic kidney disease (CKD) is an increasingly prevalent disorder that poses a significant global health and socioeconomic burden. East Asian countries such as China, Taiwan, Japan, and South Korea have a higher incidence and prevalence of kidney failure when compared to Western nations, and the reasons for this discrepancy remain unclear. Aldehyde dehydrogenase 2 (ALDH2) is an essential detoxifying enzyme for exogenous and endogenous aldehyde metabolism in mitochondria. Inactivating mutations at E504K and E487K are found in 35-45% of East Asian populations and has been linked to a higher risk of various disorders, including cardiovascular diseases and cancer. However, little is known about the role of ALDH2 in CKD. Here, we characterized the expression pattern of ALDH2 in normal and CKD human and mouse kidneys and demonstrated that ALDH2 expression was significantly reduced, and that the protein level was inversely correlated with the degree of CKD and fibrosis. Further, we treated ALDH2∗2 knock-in mice, a loss of ALDH2 function model, with aristolochic acid and found that these mice showed enhanced fibrosis. Moreover, ALDH2 deficiency was associated with kidney fibrosis involving epithelial cell differentiation process in vivo and in vitro. However, ALDH2 overexpression protected proximal tubule epithelial cells from transforming growth factor-β-induced dedifferentiation or partial epithelial-mesenchymal transdifferentiation in vitro. Thus, our findings yield important clinical information regarding the development and progression of CKD involving ALDH2, especially among East Asian populations.
Collapse
Affiliation(s)
- I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California, USA
| | - Shreyas Jadhav
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Minghua Cao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Discovery Biology, Merck & Co, Inc., Rahway, New Jersey, USA
| | - Kavya M Shah
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; Department of Statistics, Harvard University, Cambridge, Massachusetts
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Strauss-Kruger M, Olinger E, Hofmann P, Wilson IJ, Mels C, Kruger R, Gafane-Matemane LF, Sayer JA, Ricci C, Schutte AE, Devuyst O. UMOD Genotype and Determinants of Urinary Uromodulin in African Populations. Kidney Int Rep 2024; 9:3477-3489. [PMID: 39698369 PMCID: PMC11652103 DOI: 10.1016/j.ekir.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Single-nucleotide polymorphisms (SNPs) in the UMOD -PDILT genetic locus are associated with chronic kidney disease (CKD) in European populations, through their effect on urinary uromodulin (uUMOD) levels. The genetic and nongenetic factors associated with uUMOD in African populations remain unknown. Methods Clinical parameters, 3 selected UMOD-PDILT SNPs and uUMOD levels were obtained in 1202 young Black and White adults from the African-PREDICT study and 1943 middle aged Black adults from the PURE-NWP-SA study, 2 cross-sectional, observational studies. Results Absolute uUMOD and uUMOD/creatinine levels were lower in Black participants compared to White participants. The prime CKD-risk allele at rs12917707 was more prevalent in Black individuals, with strikingly more risk allele homozygotes compared to White individuals. Haplotype analysis of the UMOD-PDILT locus predicted more recombination events and linkage disequilibrium (LD) fragmentation in Black individuals. Multivariate testing and sensitivity analysis showed that higher uUMOD/creatinine associated specifically with risk alleles at rs12917707 and rs12446492 in White participants and with higher serum renin and lower urine albumin-to-creatinine ratio in Black participants, with a significant interaction of ethnicity on the relationship between all 3 SNPs and uUMOD/creatinine. The multiple regression model explained a greater percentage of the variance of uUMOD/creatinine in White adults compared to Black adults (23% vs. 8%). Conclusion We evidenced ethnic differences in clinical and genetic determinants of uUMOD levels, in particular an interaction of ethnicity on the relationship between CKD-risk SNPs and uUMOD. These differences should be considered when analyzing the role of uromodulin in kidney function, interpreting genome-wide association studies (GWAS), and precision medicine recommendations.
Collapse
Affiliation(s)
- Michél Strauss-Kruger
- Hypertension in Africa Research Team, North-West University, Potchefstroom, North-West Province, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Patrick Hofmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ian J. Wilson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Carina Mels
- Hypertension in Africa Research Team, North-West University, Potchefstroom, North-West Province, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team, North-West University, Potchefstroom, North-West Province, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - Lebo F. Gafane-Matemane
- Hypertension in Africa Research Team, North-West University, Potchefstroom, North-West Province, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
| | - John A. Sayer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Cristian Ricci
- African Unit for Transdisciplinary Health Research, North-West University, Potchefstroom, North-West Province, South Africa
| | - Aletta E. Schutte
- Hypertension in Africa Research Team, North-West University, Potchefstroom, North-West Province, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West Province, South Africa
- DSI-NRF Centre of Excellence in Human Development and SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- The George Institute for Global Health, Sydney, New South Wales, Australia
- School of Population Health, University of New South Wales; Sydney, New South Wales, Australia
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute for Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
7
|
Hishida A, Nakatochi M, Sutoh Y, Nakano S, Momozawa Y, Narita A, Tanno K, Shimizu A, Hozawa A, Kinoshita K, Yamaji T, Goto A, Noda M, Sawada N, Ikezaki H, Nagayoshi M, Hara M, Suzuki S, Koyama T, Koriyama C, Katsuura-Kamano S, Kadota A, Kuriki K, Yamamoto M, Sasaki M, Iwasaki M, Matsuo K, Wakai K. GWAS Meta-analysis of Kidney Function Traits in Japanese Populations. J Epidemiol 2024; 34:526-534. [PMID: 38583947 PMCID: PMC11464852 DOI: 10.2188/jea.je20230281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Genetic epidemiological evidence for the kidney function traits in East Asian populations, including Japanese, remain still relatively unclarified. Especially, the number of genome-wide association studies (GWASs) for kidney traits reported still remains limited, and the sample size of each independent study is relatively small. Given the genetic variability between ancestries/ethnicities, implementation of GWAS with sufficiently large sample sizes in specific population of Japanese is considered meaningful. METHODS We conducted the GWAS meta-analyses of kidney traits by leveraging the GWAS summary data of the representative large genome cohort studies with about 200,000 Japanese participants (n = 202,406 for estimated glomerular filtration rate [eGFR] and n = 200,845 for serum creatinine [SCr]). RESULTS In the present GWAS meta-analysis, we identified 110 loci with 169 variants significantly associated with eGFR (on chromosomes 1-13 and 15-22; P < 5 × 10-8), whereas we also identified 112 loci with 176 variants significantly associated with SCr (on chromosomes 1-22; P < 5 × 10-8), of which one locus (more than 1 Mb distant from known loci) with one variant (CD36 rs146148222 on chromosome 7) for SCr was considered as the truly novel finding. CONCLUSION The present GWAS meta-analysis of the largest genome cohort studies in Japanese subjects provided some original genomic loci associated with kidney function, which may contribute to the possible development of personalized prevention of kidney diseases based on genomic information in the near future.
Collapse
Affiliation(s)
- Asahi Hishida
- Department of Public Health, Aichi Medical University School of Medicine, Aichi, Japan
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate, Japan
- Division of Biomedical Information Analysis, Iwate Medical University, Iwate, Japan
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Medical University, Iwate, Japan
- Department of Hygiene and Preventive Medicine, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate, Japan
- Division of Biomedical Information Analysis, Iwate Medical University, Iwate, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Atsushi Goto
- Department of Public Health, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, Japan
- Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Graduate School of Medical Sciences, Kyushu University, Kyushu University Hospital, Fukuoka, Japan
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Mako Nagayoshi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Kadota
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Aichi, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
8
|
Xiao H, Li L, Yang M, Zhang X, Zhou J, Zeng J, Zhou Y, Lan X, Liu J, Lin Y, Zhong Y, Zhang X, Wang L, Cao Z, Liu P, Mei H, Cai M, Cai X, Tao Y, Zhu Y, Yu C, Hu L, Wang Y, Huang Y, Su F, Gao Y, Zhou R, Xu X, Yang H, Wang J, Zhu H, Zhou A, Jin X. Genetic analyses of 104 phenotypes in 20,900 Chinese pregnant women reveal pregnancy-specific discoveries. CELL GENOMICS 2024; 4:100633. [PMID: 39389017 PMCID: PMC11602630 DOI: 10.1016/j.xgen.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 10/12/2024]
Abstract
Monitoring biochemical phenotypes during pregnancy is vital for maternal and fetal health, allowing early detection and management of pregnancy-related conditions to ensure safety for both. Here, we conducted a genetic analysis of 104 pregnancy phenotypes in 20,900 Chinese women. The genome-wide association study (GWAS) identified a total of 410 trait-locus associations, with 71.71% reported previously. Among the 116 novel hits for 45 phenotypes, 83 were successfully replicated. Among them, 31 were defined as potentially pregnancy-specific associations, including creatine and HELLPAR and neutrophils and ESR1, with subsequent analysis revealing enrichments in estrogen-related pathways and female reproductive tissues. The partitioning heritability underscored the significant roles of fetal blood, embryoid bodies, and female reproductive organs in pregnancy hematology and birth outcomes. Pathway analysis confirmed the intricate interplay of hormone and immune regulation, metabolism, and cell cycle during pregnancy. This study contributes to the understanding of genetic influences on pregnancy phenotypes and their implications for maternal health.
Collapse
Affiliation(s)
- Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xinyi Zhang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqiong Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Jingyu Zeng
- BGI Research, Shenzhen 518083, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Zhou
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xianmei Lan
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuying Liu
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ying Lin
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhong
- Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Xiaoqian Zhang
- BGI Research, Shenzhen 518083, China; College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lin Wang
- BGI Research, Shenzhen 518083, China
| | - Zhongqiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | | | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Ye Tao
- BGI Research, Shenzhen 518083, China
| | - Yunqing Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China; Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing 100191, China
| | - Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China
| | - Yu Wang
- BGI Research, Shenzhen 518083, China
| | - Yushan Huang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ya Gao
- BGI Research, Shenzhen 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI, Shenzhen 518120, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Huanhuan Zhu
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China; Department of Obstetrics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430010, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
9
|
Lee CK, Chen IC, Lin HJ, Lin CH, Chen YM. Association of the ABCG2 rs2231142 variant with the Framingham Cardiovascular Disease Risk score in the Taiwanese population. Heliyon 2024; 10:e37839. [PMID: 39315221 PMCID: PMC11417327 DOI: 10.1016/j.heliyon.2024.e37839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Background Serum uric acid (SUA) is an important predictor of cardiovascular events and mortality. The ABCG2 rs2231142 variant (TT genotype) is associated with hyperuricemia (HUA), but the relationship between ABCG2 gene polymorphisms and coronary artery disease (CAD) risk is poorly elucidated. We investigated the association between ABCG2 rs2231142 genetic variants and the Framingham Risk Score for Cardiovascular Disease (FRS-CVD) in a Taiwanese population. Methods This cross-sectional study enrolled 139,508 Taiwanese participants aged 30-70 years based on data from the Taiwan Biobank (TWB) database that was obtained from questionnaires, laboratory investigations, anthropometry, and Affymetrix TWB genome-wide single-nucleotide polymorphism (SNP) chip data analysis. The association between ABCG2 rs2231142 and FRS-CVD risk was evaluated using logistic regression analysis. Results Compared to those with the GG genotype, participants with the ABCG2 rs2231142 TT genotype had a significantly lower systolic blood pressure, smoking rate, body mass index, triglyceride level, waist circumference, waist-hip ratio, and body fat percentage, but had higher high-density lipoprotein cholesterol level. Despite the same FRS-CVD score, participants with TT genotypes had higher SUA. Even with the same SUA, TT carriers had a lower FRS-CVD than GT and GG carriers. Participants with the TT genotype had significantly lower CVD risk, particularly female participants with HUA and BMI <27 (OR: 0.760, 95 % CI: 0.587-0.985; p = 0.0381) group. Conclusion The ABCG2 rs2231142 TT genotype is associated with a lower FRS-CVD, particularly in non-obese hyperuricemic female individuals. The complicated interplay among genetic variations, metabolic profile, and CVD risk provides insights for precision health.
Collapse
Affiliation(s)
- Chun-Kang Lee
- Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsueh-Ju Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Kim Y, Jo J, Ji Y, Bae E, Lee K, Paek JH, Jin K, Han S, Lee JP, Kim DK, Lim CS, Won S, Lee J. Impact of hyperuricemia on CKD risk beyond genetic predisposition in a population-based cohort study. Sci Rep 2024; 14:18466. [PMID: 39122851 PMCID: PMC11316130 DOI: 10.1038/s41598-024-69420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The bidirectional effect of hyperuricemia on chronic kidney disease (CKD) underscores the importance of hyperuricemia as a risk factor for CKD. We evaluated the effect of hyperuricemia on the presence and development of CKD after considering genetic background by calculating polygenic risk scores (PRSs). We employed genome-wide association study summary statistics-excluding the United Kingdom Biobank (UKB) datasets among published CKD Gen Consortium papers-to calculate the PRSs for CKD in white background subjects. To validate PRS performance, we divided the UKB into two datasets to validate and test the data. We used logistic regression analysis to evaluate the association between hyperuricemia and CKD, and performed Kaplan-Meier survival analysis exclusively for subjects with available follow-up data. In total, 438,253 clinical data and 4,307,940 single nucleotide polymorphisms from 459,155 samples were included. We observed a significant positive association between PRS and CKD and the presence and development of CKD. Hyperuricemia significantly increased CKD risk (adjusted odds ratio 1.55, 95% confidence interval 1.48-1.61). The impact of hyperuricemia on CKD was maintained irrespective of PRS range. In addition, negative interaction between hyperuricemia and PRS for CKD was found. Survival analysis indicates that the presence of hyperuricemia significantly increased the risk of CKD development. The PRS for CKD thoroughly reflects the risk of CKD development. Hyperuricemia is a significant indicator of CKD risk, even after incorporating the genetic risk score for CKD. Irrespective of genetic risk, patients with a prospective risk of developing CKD require uric acid monitoring and management.
Collapse
Affiliation(s)
- Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jinyeon Jo
- Department of Public Health Sciences, Institute of Health & Environment, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunmi Ji
- College of Natural Sciences, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Kwangbae Lee
- Korea Medical Institute, Seoul, Republic of Korea
| | - Jin Hyuk Paek
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Boramae Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Boramae Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Institute of Health & Environment, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
- RexSoft Corps, Seoul, Republic of Korea.
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Boramae Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
11
|
Siew ED, Hellwege JN, Hung AM, Birkelo BC, Vincz AJ, Parr SK, Denton J, Greevy RA, Robinson-Cohen C, Liu H, Susztak K, Matheny ME, Velez Edwards DR. Genome-wide association study of hospitalized patients and acute kidney injury. Kidney Int 2024; 106:291-301. [PMID: 38797326 PMCID: PMC11260539 DOI: 10.1016/j.kint.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is a common and devastating complication of hospitalization. Here, we identified genetic loci associated with AKI in patients hospitalized between 2002-2019 in the Million Veteran Program and data from Vanderbilt University Medical Center's BioVU. AKI was defined as meeting a modified KDIGO Stage 1 or more for two or more consecutive days or kidney replacement therapy. Control individuals were required to have one or more qualifying hospitalizations without AKI and no evidence of AKI during any other observed hospitalizations. Genome-wide association studies (GWAS), stratified by race, adjusting for sex, age, baseline estimated glomerular filtration rate (eGFR), and the top ten principal components of ancestry were conducted. Results were meta-analyzed using fixed effects models. In total, there were 54,488 patients with AKI and 138,051 non-AKI individuals included in the study. Two novel loci reached genome-wide significance in the meta-analysis: rs11642015 near the FTO locus on chromosome 16 (obesity traits) (odds ratio 1.07 (95% confidence interval, 1.05-1.09)) and rs4859682 near the SHROOM3 locus on chromosome 4 (glomerular filtration barrier integrity) (odds ratio 0.95 (95% confidence interval, 0.93-0.96)). These loci colocalized with previous studies of kidney function, and genetic correlation indicated significant shared genetic architecture between AKI and eGFR. Notably, the association at the FTO locus was attenuated after adjustment for BMI and diabetes, suggesting that this association may be partially driven by obesity. Both FTO and the SHROOM3 loci showed nominal evidence of replication from diagnostic-code-based summary statistics from UK Biobank, FinnGen, and Biobank Japan. Thus, our large GWA meta-analysis found two loci significantly associated with AKI suggesting genetics may explain some risk for AKI.
Collapse
Affiliation(s)
- Edward D Siew
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA.
| | - Jacklyn N Hellwege
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adriana M Hung
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Bethany C Birkelo
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Andrew J Vincz
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Sharidan K Parr
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Jason Denton
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Hongbo Liu
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael E Matheny
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Meloche M, Pilon MO, Provost S, Leclair G, Oussaïd E, St-Jean I, Jutras M, Gaulin MJ, Lemieux Perreault LP, Valois D, Mongrain I, Busseuil D, Rouleau JL, Tardif JC, Dubé MP, de Denus S. A Genome-Wide Association Study of Oxypurinol Concentrations in Patients Treated with Allopurinol. J Pers Med 2024; 14:649. [PMID: 38929870 PMCID: PMC11204675 DOI: 10.3390/jpm14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cohort studies have identified several genetic determinants that could predict the clinical response to allopurinol. However, they have not been commonly used for genome-wide investigations to identify genetic determinants on allopurinol metabolism and concentrations. We conducted a genome-wide association study of a prior cross-sectional investigation of patients from the Montreal Heart Institute Biobank undergoing allopurinol therapy. Four endpoints were investigated, namely plasma concentrations of oxypurinol, the active metabolite of allopurinol, allopurinol, and allopurinol-riboside, as well as allopurinol daily dosing. A total of 439 participants (mean age 69.4 years; 86.4% male) taking allopurinol (mean daily dose 194.5 mg) and who had quantifiable oxypurinol concentrations were included in the genome-wide analyses. Participants presented with multiple comorbidities and received concomitant cardiovascular medications. No association achieved the predefined genome-wide threshold values for any of the endpoints (all p > 5 × 10-8). Our results are consistent with prior findings regarding the difficulty in identifying genetic determinants of drug concentrations or pharmacokinetics of allopurinol and its metabolites, as well as allopurinol daily dosing. Given the size of this genome-wide study, collaborative investigations involving larger and diverse cohorts may be required to further identify pharmacogenomic determinants of allopurinol and measure their clinical relevance to personalize allopurinol therapy.
Collapse
Affiliation(s)
- Maxime Meloche
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Marc-Olivier Pilon
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Sylvie Provost
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Essaïd Oussaïd
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marie-Josée Gaulin
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Louis-Philippe Lemieux Perreault
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Diane Valois
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - David Busseuil
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Jean-Lucien Rouleau
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
13
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
14
|
Osborne AJ, Bierzynska A, Colby E, Andag U, Kalra PA, Radresa O, Skroblin P, Taal MW, Welsh GI, Saleem MA, Campbell C. Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease. NPJ Syst Biol Appl 2024; 10:28. [PMID: 38459044 PMCID: PMC10924093 DOI: 10.1038/s41540-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.
Collapse
Affiliation(s)
- Amy J Osborne
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| | - Agnieszka Bierzynska
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Elizabeth Colby
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Uwe Andag
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Olivier Radresa
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philipp Skroblin
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, Derby, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Colin Campbell
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| |
Collapse
|
15
|
Sawanobori E, Shinohara R, Kobayashi A, Kanai H, Goto M, Otawa S, Horiuchi S, Kushima M, Yamagata Z, Inukai T. Mother-child correlation of kidney function: data from the Yamanashi Adjunct Study of Japan Environment and Children's Study (JECS). Pediatr Nephrol 2024; 39:789-797. [PMID: 37695441 DOI: 10.1007/s00467-023-06131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Individual variation in kidney function can be affected by both congenital and acquired factors, and kidney function in children is possibly correlated with that in their mothers. However, the mother-child correlation in kidney function remains directly unconfirmed. METHODS We conducted a cross-sectional study of 655 healthy pairs of 7- or 8-year-old children and their mothers as an adjunct study of a nationwide epidemiological study (Japan Environment and Children's Study). RESULTS Both serum creatinine level (all children, r = 0.324, p < 0.001; girls, r = 0.365, p < 0.001; boys, r = 0.278, p < 0.001) and estimated glomerular filtration rate (eGFR) (r = 0.274, p < 0.001; r = 0.352, p < 0.001; r = 0.195, p < 0.001, respectively) in children were weakly associated with their maternal values. In the single linear regression analyses, maternal values of serum creatinine and eGFR were significantly associated with the children's values. Moreover, several body composition values in children, such as weight-SDS, fat (%), and predicted muscle weight, were also significantly associated with kidney function values in children. In the multiple linear regression analysis for serum creatinine levels in children, in which weight-SDS and predicted muscle weight in children were selected as adjustment factors, maternal serum creatinine level showed a significant positive association (B = 0.214, p < 0.001 in the adjusted model). Moreover, in the multiple linear regression analysis for eGFR value in children, in which fat (%) and predicted muscle weight in children were selected as adjustment factors, maternal eGFR values showed a significant positive association (B = 0.319, p < 0.001). CONCLUSIONS We directly confirmed mother-child correlations in both serum creatinine levels and eGFR values, particularly in girls. Graphical abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Emi Sawanobori
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan.
- Department of Pediatrics, National Hospital Organization Kofu National Hospital, 11-35 Tenjincho, Kofu, Yamanashi, Japan.
| | - Ryoji Shinohara
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Anna Kobayashi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Hiroaki Kanai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
| | - Miwa Goto
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
| | - Sanae Otawa
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Sayaka Horiuchi
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Megumi Kushima
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Zentaro Yamagata
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
- Department of Health Sciences, School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, Japan
| |
Collapse
|
16
|
Kim MJ, Jin HS, Eom YB. Coffee consumption affects kidney function based on GCKR polymorphism in a Korean population. Nutr Res 2024; 122:92-100. [PMID: 38215572 DOI: 10.1016/j.nutres.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Kidney function can be preserved through pharmacological interventions and nonpharmacological strategies, such as lifestyle and dietary adjustments. Among these, coffee has been linked to protective effects on kidney function. However, few studies have investigated the effect of coffee consumption on kidney function according to specific genes. We hypothesized that the impact of coffee consumption on kidney function might vary depending on GCKR polymorphism. GCKR rs1260326 polymorphism was examined using the Korean genome and epidemiology data from 656 chronic kidney disease (CKD) cases and 38,540 individuals without CKD (non-CKD). GCKR polymorphism has been previously associated with both coffee consumption and kidney function in Europeans. We replicated the associations between GCKR rs1260326 and coffee consumption and kidney function in Korean individuals. We also explored the effect of coffee consumption on kidney function by multivariate logistic regression analysis. Individuals with the rs1260326 (TC/CC) genotype did not experience significant changes in CKD risk based on their coffee consumption habits. In contrast, individuals with the TT genotype exhibited a significantly lower risk of CKD based on coffee consumption. Interestingly, in the non-CKD group, a beneficial effect on estimated glomerular filtration rate was observed in individuals with the T allele as coffee consumption increased. Our findings supported the hypothesis and revealed that the impact of coffee consumption habits on kidney function may vary based on the GCKR rs1260326 genotype of Korean individuals.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
17
|
Takata T, Isomoto H. The Versatile Role of Uromodulin in Renal Homeostasis and Its Relevance in Chronic Kidney Disease. Intern Med 2024; 63:17-23. [PMID: 36642527 PMCID: PMC10824655 DOI: 10.2169/internalmedicine.1342-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Uromodulin, also known as the Tamm-Horsfall protein, is predominantly expressed in epithelial cells of the kidney. It is secreted mainly in the urine, although small amounts are also found in serum. Uromodulin plays an important role in maintaining renal homeostasis, particularly in salt/water transport mechanisms and is associated with salt-sensitive hypertension. It also regulates urinary tract infections, kidney stones, and the immune response in the kidneys or extrarenal organs. Uromodulin has been shown to be associated with the renal function, age, nephron volume, and metabolic abnormalities and has been proposed as a novel biomarker for the tubular function or injury. These findings suggest that uromodulin is a key molecule underlying the mechanisms or therapeutic approaches of chronic kidney disease, particularly nephrosclerosis and diabetic nephropathy, which are causes of end-stage renal disease. This review focuses on the current understanding of the role of uromodulin from a biological, physiological, and pathological standpoint.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| |
Collapse
|
18
|
Feng W, Guan Z, Ying WZ, Xing D, Ying KE, Sanders PW. Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease. Kidney Int 2023; 104:740-753. [PMID: 37423509 PMCID: PMC10854403 DOI: 10.1016/j.kint.2023.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
This study tested if matrix metalloproteinase (MMP)-9 promoted microvascular pathology that initiates hypertensive (HT) kidney disease in salt-sensitive (SS) Dahl rats. SS rats lacking Mmp9 (Mmp9-/-) and littermate control SS rats were studied after one week on a normotensive 0.3% sodium chloride (Pre-HT SS and Pre-HT Mmp9-/-) or a hypertension-inducing diet containing 4.0% sodium chloride (HT SS and HT Mmp9-/-). Telemetry-monitored blood pressure of both the HT SS and HT Mmp9-/- rats increased and did not differ. Kidney microvessel transforming growth factor-beta 1 (Tgfb1) mRNA did not differ between Pre-HT SS and Pre-HT Mmp9-/- rats, but with hypertension and expression of Mmp9 and Tgfb1 increased in HT SS rats, along with phospho-Smad2 labeling of nuclei of vascular smooth muscle cells, and with peri-arteriolar fibronectin deposition. Loss of MMP-9 prevented hypertension-induced phenotypic transformation of microvascular smooth muscle cells and the expected increased microvascular expression of pro-inflammatory molecules. Loss of MMP-9 in vascular smooth muscle cells in vitro prevented cyclic strain-induced production of active TGF-β1 and phospho-Smad2/3 stimulation. Afferent arteriolar autoregulation was impaired in HT SS rats but not in HT Mmp9-/- rats or the HT SS rats treated with doxycycline, an MMP inhibitor. HT SS but not HT Mmp9-/- rats showed decreased glomerular Wilms Tumor 1 protein-positive cells (a marker of podocytes) along with increased urinary podocin and nephrin mRNA excretion, all indicative of glomerular damage. Thus, our findings support an active role for MMP-9 in a hypertension-induced kidney microvascular remodeling process that promotes glomerular epithelial cell injury in SS rats.
Collapse
Affiliation(s)
- Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengrong Guan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei-Zhong Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Er Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, USA.
| |
Collapse
|
19
|
Wen YF, Brundage RC, Roman YM, Culhane-Pera KA, Straka RJ. Population pharmacokinetics, pharmacodynamics and pharmacogenetics modelling of oxypurinol in Hmong adults with gout and/or hyperuricemia. Br J Clin Pharmacol 2023; 89:2964-2976. [PMID: 37202871 PMCID: PMC10527451 DOI: 10.1111/bcp.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
AIMS The aim of this study was to quantify identifiable sources of variability, including key pharmacogenetic variants in oxypurinol pharmacokinetics and their pharmacodynamic effect on serum urate (SU). METHODS Hmong participants (n = 34) received 100 mg allopurinol twice daily for 7 days followed by 150 mg allopurinol twice daily for 7 days. A sequential population pharmacokinetic pharmacodynamics (PKPD) analysis with non-linear mixed effects modelling was performed. Allopurinol maintenance dose to achieve target SU was simulated based on the final PKPD model. RESULTS A one-compartment model with first-order absorption and elimination best described the oxypurinol concentration-time data. Inhibition of SU by oxypurinol was described with a direct inhibitory Emax model using steady-state oxypurinol concentrations. Fat-free body mass, estimated creatinine clearance and SLC22A12 rs505802 genotype (0.32 per T allele, 95% CI 0.13, 0.55) were found to predict differences in oxypurinol clearance. Oxypurinol concentration required to inhibit 50% of xanthine dehydrogenase activity was affected by PDZK1 rs12129861 genotype (-0.27 per A allele, 95% CI -0.38, -0.13). Most individuals with both PDZK1 rs12129861 AA and SLC22A12 rs505802 CC genotypes achieve target SU (with at least 75% success rate) with allopurinol below the maximum dose, regardless of renal function and body mass. In contrast, individuals with both PDZK1 rs12129861 GG and SLC22A12 rs505802 TT genotypes would require more than the maximum dose, thus requiring selection of alternative medications. CONCLUSIONS The proposed allopurinol dosing guide uses individuals' fat-free mass, renal function and SLC22A12 rs505802 and PDZK1 rs12129861 genotypes to achieve target SU.
Collapse
Affiliation(s)
- Ya-Feng Wen
- Department of Experimental and Clinical Pharmacology,
College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard C. Brundage
- Department of Experimental and Clinical Pharmacology,
College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Youssef M. Roman
- Department of Pharmacotherapy & Outcomes Science,
School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology,
College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Thielemans R, Speeckaert R, Delrue C, De Bruyne S, Oyaert M, Speeckaert MM. Unveiling the Hidden Power of Uromodulin: A Promising Potential Biomarker for Kidney Diseases. Diagnostics (Basel) 2023; 13:3077. [PMID: 37835820 PMCID: PMC10572911 DOI: 10.3390/diagnostics13193077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Uromodulin, also known as Tamm-Horsfall protein, represents the predominant urinary protein in healthy individuals. Over the years, studies have revealed compelling associations between urinary and serum concentrations of uromodulin and various parameters, encompassing kidney function, graft survival, cardiovascular disease, glucose metabolism, and overall mortality. Consequently, there has been a growing interest in uromodulin as a novel and effective biomarker with potential applications in diverse clinical settings. Reduced urinary uromodulin levels have been linked to an elevated risk of acute kidney injury (AKI) following cardiac surgery. In the context of chronic kidney disease (CKD) of different etiologies, urinary uromodulin levels tend to decrease significantly and are strongly correlated with variations in estimated glomerular filtration rate. The presence of uromodulin in the serum, attributable to basolateral epithelial cell leakage in the thick ascending limb, has been observed. This serum uromodulin level is closely associated with kidney function and histological severity, suggesting its potential as a biomarker capable of reflecting disease severity across a spectrum of kidney disorders. The UMOD gene has emerged as a prominent locus linked to kidney function parameters and CKD risk within the general population. Extensive research in multiple disciplines has underscored the biological significance of the top UMOD gene variants, which have also been associated with hypertension and kidney stones, thus highlighting the diverse and significant impact of uromodulin on kidney-related conditions. UMOD gene mutations are implicated in uromodulin-associated kidney disease, while polymorphisms in the UMOD gene show a significant association with CKD. In conclusion, uromodulin holds great promise as an informative biomarker, providing valuable insights into kidney function and disease progression in various clinical scenarios. The identification of UMOD gene variants further strengthens its relevance as a potential target for better understanding kidney-related pathologies and devising novel therapeutic strategies. Future investigations into the roles of uromodulin and regulatory mechanisms are likely to yield even more profound implications for kidney disease diagnosis, risk assessment, and management.
Collapse
Affiliation(s)
- Raïsa Thielemans
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | | | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Matthijs Oyaert
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium; (R.T.); (C.D.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| |
Collapse
|
21
|
Naas S, Krüger R, Knaup KX, Naas J, Grampp S, Schiffer M, Wiesener M, Schödel J. Hypoxia controls expression of kidney-pathogenic MUC1 variants. Life Sci Alliance 2023; 6:e202302078. [PMID: 37316299 PMCID: PMC10267510 DOI: 10.26508/lsa.202302078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
The interplay between genetic and environmental factors influences the course of chronic kidney disease (CKD). In this context, genetic alterations in the kidney disease gene MUC1 (Mucin1) predispose to the development of CKD. These variations comprise the polymorphism rs4072037, which alters splicing of MUC1 mRNA, the length of a region with variable number of tandem repeats (VNTR), and rare autosomal-dominant inherited dominant-negative mutations in or 5' to the VNTR that causes autosomal dominant tubulointerstitial kidney disease (ADTKD-MUC1). As hypoxia plays a pivotal role in states of acute and chronic kidney injury, we explored the effects of hypoxia-inducible transcription factors (HIF) on the expression of MUC1 and its pathogenic variants in isolated primary human renal tubular cells. We defined a HIF-binding DNA regulatory element in the promoter-proximal region of MUC1 from which hypoxia or treatment with HIF stabilizers, which were recently approved for an anti-anemic therapy in CKD patients, increased levels of wild-type MUC1 and the disease-associated variants. Thus, application of these compounds might exert unfavorable effects in patients carrying MUC1 risk variants.
Collapse
Affiliation(s)
- Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Xaver Knaup
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Naas
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Wien, Austria
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wiesener
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Yang WS, Chuang GT, Che TPH, Chueh LY, Li WY, Hsu CN, Hsiung CN, Ku HC, Lin YC, Chen YS, Hee SW, Chang TJ, Chen SM, Hsieh ML, Lee HL, Liao KCW, Shen CY, Chang YC. Genome-Wide Association Studies for Albuminuria of Nondiabetic Taiwanese Population. Am J Nephrol 2023; 54:359-369. [PMID: 37437553 DOI: 10.1159/000531783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Chronic kidney disease, which is defined by a reduced estimated glomerular filtration rate and albuminuria, imposes a large health burden worldwide. Ethnicity-specific associations are frequently observed in genome-wide association studies (GWAS). This study conducts a GWAS of albuminuria in the nondiabetic population of Taiwan. METHODS Nondiabetic individuals aged 30-70 years without a history of cancer were enrolled from the Taiwan Biobank. A total of 6,768 subjects were subjected to a spot urine examination. After quality control using PLINK and imputation using SHAPEIT and IMPUTE2, a total of 3,638,350 single-nucleotide polymorphisms (SNPs) remained for testing. SNPs with a minor allele frequency of less than 0.1% were excluded. Linear regression was used to determine the relationship between SNPs and log urine albumin-to-creatinine ratio. RESULTS Six suggestive loci are identified in or near the FCRL3 (p = 2.56 × 10-6), TMEM161 (p = 4.43 × 10-6), EFCAB1 (p = 2.03 × 10-6), ELMOD1 (p = 2.97 × 10-6), RYR3 (p = 1.34 × 10-6), and PIEZO2 (p = 2.19 × 10-7). Genetic variants in the FCRL3 gene that encode a secretory IgA receptor are found to be associated with IgA nephropathy, which can manifest as proteinuria. The PIEZO2 gene encodes a sensor for mechanical forces in mesangial cells and renin-producing cells. Five SNPs with a p-value between 5 × 10-6 and 5 × 10-5 are also identified in five genes that may have a biological role in the development of albuminuria. CONCLUSION Five new loci and one known suggestive locus for albuminuria are identified in the nondiabetic Taiwanese population.
Collapse
Affiliation(s)
- Wei-Shun Yang
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan,
| | - Gwo-Tsann Chuang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Tony Pan-Hou Che
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Li
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Neng Hsu
- Cardiovascular Center, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Chia-Ni Hsiung
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Chia Ku
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Shun Chen
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Tomioka Y, Sugimoto S, Yamamoto H, Tomida S, Shiotani T, Tanaka S, Shien K, Suzawa K, Miyoshi K, Otani S, Yamamoto H, Okazaki M, Yamane M, Toyooka S. Identification of genetic loci associated with renal dysfunction after lung transplantation using an ethnic-specific single-nucleotide polymorphism array. Sci Rep 2023; 13:8912. [PMID: 37264212 PMCID: PMC10235026 DOI: 10.1038/s41598-023-36143-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
Renal dysfunction is a long-term complication associated with an increased mortality after lung transplantation (LT). We investigated the association of single-nucleotide polymorphisms (SNPs) with the development of renal dysfunction after LT using a Japanese-specific SNP array. First, eligible samples of 34 LT recipients were genotyped using the SNP array and divided into two groups, according to the presence of homozygous and heterozygous combinations of mutant alleles of the 162 renal-related SNPs. To identify candidate SNPs, the renal function tests were compared between the two groups for each SNP. Next, we investigated the association between the candidate SNPs and the time course of changes of the estimated glomerular filtration rate (eGFR) in the 99 recipients until 10 years after the LT. ΔeGFR was defined as the difference between the postoperative and preoperative eGFR values. Eight SNPs were identified as the candidate SNPs in the 34 recipients. Validation analysis of these 8 candidate SNPs in all the 99 recipients showed that three SNPs, namely, rs10277115, rs4690095, and rs792064, were associated with significant changes of the ΔeGFR. Pre-transplant identification of high-risk patients for the development of renal dysfunction after LT based on the presence of these SNPs might contribute to providing personalized medicine.
Collapse
Affiliation(s)
- Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Haruchika Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Liu YJ, Li FR, Chen CL, Wan ZX, Chen JS, Yang J, Liu R, Xu JY, Zheng Y, Qin LQ, Chen GC. Glomerular filtration rate estimated by differing measures and risk of all-cause mortality among Chinese individuals without or with diabetes: A nationwide prospective study. J Diabetes 2023. [PMID: 37128173 DOI: 10.1111/1753-0407.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Whether estimated glomerular filtration rates (eGFRs) by differing biomarkers are differentially associated with mortality or whether the associations differ by diabetes status remains unclear, especially in Chinese population. METHODS We included 6995 participants without diabetes (mean age: 60.4 years) and 1543 with diabetes (mean age: 61.8 years). Each eGFR measure was divided into normal (≥90 mL/min/1.73 m2 ), modestly declined (60 to <90 mL/min/1.73 m2 ), and chronic kidney disease (CKD) (<60 mL/min/1.73 m2 ) groups. Cox proportional hazards models were used to estimate hazard ratio (HR) of all-cause mortality associated with each eGFR. RESULTS Over a follow-up of 7 years, 677 and 215 deaths occurred among individuals without or with diabetes, respectively. Among those without diabetes, all measures of modestly declined eGFR were not associated with mortality, whereas CKD defined by eGFR cystatin C (eGFRcys) and eGFR creatinine (eGFRcr)-cys (HRs were 1.71 and 1.55, respectively) but not by eGFRcr were associated with higher risk of mortality. Among diabetes, all measures of modestly declined eGFR (HRs: 1.53, 1.56, and 2.09 for eGFRcr, eGFRcys, and eGFRcr-cys, respectively) and CKD (HRs: 2.57, 2.99, and 3.92 for eGFRcr, eGFRcys, and eGFRcr-cys, respectively) were associated with higher risk of mortality. Regardless of diabetes status, an addition of eGFRcys or eGFRcr-cys to traditional risk factors lead to a larger improvement in the prediction of all-cause mortality risk than adding eGFRcr. CONCLUSIONS The association of eGFR with mortality risk appeared to be varied by its measures and by diabetes status among middle-aged and older Chinese, which needs to be considered in clinical practice.
Collapse
Affiliation(s)
- Yu-Jie Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Cai-Long Chen
- Children Health Management Center, Children's Hospital of Soochow University, Suzhou, China
| | - Zhong-Xiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jin-Si Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jing Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Liu
- Department of Endocrine, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Endocrine, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Zhang P, Hou Y, Tu W, Campbell N, Pieper AA, Leverenz JB, Gao S, Cummings J, Cheng F. Population-based discovery and Mendelian randomization analysis identify telmisartan as a candidate medicine for Alzheimer's disease in African Americans. Alzheimers Dement 2023; 19:1876-1887. [PMID: 36331056 PMCID: PMC10156891 DOI: 10.1002/alz.12819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION African Americans (AAs) and European Americans (EAs) differ in Alzheimer's disease (AD) prevalence, risk factors, and symptomatic presentation and AAs are less likely to enroll in AD clinical trials. METHODS We conducted race-conscious pharmacoepidemiologic studies of 5.62 million older individuals (age ≥60) to investigate the association of telmisartan exposure and AD outcome using Cox analysis, Kaplan-Meier analysis, and log-rank test. We performed Mendelian randomization (MR) analysis of large ethnically diverse genetic data to test likely causal relationships between telmisartan's target and AD. RESULTS We identified that moderate/high telmisartan exposure was significantly associated with a reduced incidence of AD in the AAs compared to low/no telmisartan exposure (hazard ratio [HR] = 0.77, 95% CI: 0.65-0.91, p-value = 0.0022), but not in the non-Hispanic EAs (HR = 0.97, 95% CI: 0.89-1.05, p-value = 0.4110). Sensitivity and sex-/age-stratified patient subgroup analyses identified that telmisartan's medication possession ratio (MPR) and average hypertension daily dosage were significantly associated with a stronger reduction in the incidence of both AD and dementia in AAs. Using MR analysis from large genome-wide association studies (GWAS) (over 2 million individuals) across AD, hypertension, and diabetes, we further identified AA-specific beneficial effects of telmisartan for AD. DISCUSSION Randomized controlled trials with ethnically diverse patient cohorts are warranted to establish causality and therapeutic outcomes of telmisartan and AD. HIGHLIGHTS Telmisartan is associated with lower risk of Alzheimer's disease (AD) in African Americans (AAs). Telmisartan is the only angiotensin II receptor blockers having PPAR-γ agonistic properties with beneficial anti-diabetic and renal function effects, which mitigate AD risk in AAs. Mendelian randomization (MR) analysis demonstrates the specificity of telmisartan's protective mechanism to AAs.
Collapse
Affiliation(s)
- Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wanzhu Tu
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Noll Campbell
- Department of Pharmacy Practice, Purdue University, West Lafayette, Indiana, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sujuan Gao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Gelemanović A, Ćatipović Ardalić T, Pribisalić A, Hayward C, Kolčić I, Polašek O. Genome-Wide Meta-Analysis Identifies Multiple Novel Rare Variants to Predict Common Human Infectious Diseases Risk. Int J Mol Sci 2023; 24:7006. [PMID: 37108169 PMCID: PMC10138356 DOI: 10.3390/ijms24087006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Ajka Pribisalić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Wuttke M, König E, Katsara MA, Kirsten H, Farahani SK, Teumer A, Li Y, Lang M, Göcmen B, Pattaro C, Günzel D, Köttgen A, Fuchsberger C. Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank. Nat Commun 2023; 14:1287. [PMID: 36890159 PMCID: PMC9995463 DOI: 10.1038/s41467-023-36864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.
Collapse
Affiliation(s)
- Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Eva König
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Maria-Alexandra Katsara
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | | | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Lang
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Burulca Göcmen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy.
| |
Collapse
|
28
|
Tsao HM, Lai TS, Chang YC, Hsiung CN, Chou YH, Wu VC, Lin SL, Chen YM. Serum Urate and Risk of Chronic Kidney Disease: A Mendelian Randomization Study Using Taiwan Biobank. Mayo Clin Proc 2023; 98:513-521. [PMID: 36870858 DOI: 10.1016/j.mayocp.2023.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE To evaluate the association between serum urate and risk of incident chronic kidney disease (CKD) and to assess whether serum urate plays a causal role in CKD. PATIENTS AND METHODS We conducted a prospective cohort study and Mendelian randomization analysis that analyzed longitudinal data from the Taiwan Biobank between January 1, 2012, and December 31, 2021. RESULTS A total of 34,831 individuals met the inclusion criteria, of which 4697 (13.5%) had hyperuricemia. After a median (interquartile range) follow-up of 4.1 (3.1-4.9) years, 429 participants developed CKD. After adjustment for age, sex, and comorbid conditions, each mg/dL increase in serum urate was associated with a 15% higher risk of incident CKD (HR, 1.15; 95% CI, 1.08 to 1.24; P<.001). The genetic risk score and seven Mendelian randomization methods revealed no significant association between serum urate levels and the risk of incident CKD (HR, 1.03; 95% CI, 0.72 to 1.46; P=0.89; all P>.05 for 7 Mendelian randomization methods). CONCLUSION This prospective, population-based cohort study showed that elevated serum urate is a significant risk factor for incident CKD; however, Mendelian randomization analyses failed to provide evidence that serum urate had a causal effect on CKD in the East Asian population.
Collapse
Affiliation(s)
- Hsiao-Mei Tsao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Shuan Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital-Bei-Hu Branch, Taipei, Taiwan
| |
Collapse
|
29
|
Zhong Y, Wu Y, Yang Y, Chen Y, Hui R, Zhang M, Zhang W. Association of MPPED2 gene variant rs10767873 with kidney function and risk of cardiovascular disease in patients with hypertension. J Hum Genet 2023; 68:393-398. [PMID: 36797372 DOI: 10.1038/s10038-022-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 02/18/2023]
Abstract
Changes in kidney function and the progression of chronic kidney disease (CKD) are associated with the risk of cardiovascular disease (CVD) and influenced by genetic factors. However, the association between genetic variants and kidney function in patients treated with antihypertensive drugs remains uncertain. This study aimed to examine the association between 30 variants locating at the 22 genes and the risk of kidney function evaluated by the estimated glomerular filtration rate (eGFR) in 1911 patients with hypertension from a Chinese community-based longitudinal cohort (including 1220 participants with CKD and 691 without CKD at baseline). By using multivariate linear regression analysis after adjustment for age, sex, traditional cardiovascular risk factors, and the use of antihypertensive drugs, as well as after correction for multiple comparison, patients with rs10767873T allele of the metallophosphoesterase domain containing 2 (MPPED2) gene were associated with higher level of eGFR (β = 0.041, p = 0.01) and lower levels of serum creatinine (β = -0.068, p = 0.001) and serum uric acid (β = -0.047, p = 0.02). But variant rs10767873 was not found to be associated with the risk of CKD, regardless of the types of antihypertensive drugs used. During a median 2.25-year follow-up, 152 CVD events were documented. Interestingly, patients with the rs10767873TT genotype had an increased risk of CVD events (hazard ratio, 1.74, 95% confidence interval, 1.11 to 2.73; p = 0.02) compared with patients carrying the wild-type genotype of rs10767873CC. In conclusion, our findings suggest variant rs10767873 of the MPPED2 gene is associated with kidney function and risk of CVD in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Yixuan Zhong
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Yiyi Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China.,The First Affiliated Hospital of Anhui University of Science and Technology (The First People's Hospital of Huainan City), Huainan, 232000, Anhui, China
| | - Yunyun Yang
- The First Affiliated Hospital of Xiamen University; Clinical laboratory; Xiamen Key Laboratory of Genetic Testing, Xiamen, 361000, Fujian, China
| | - Yu Chen
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Rutai Hui
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Mei Zhang
- The First Affiliated Hospital of Anhui University of Science and Technology (The First People's Hospital of Huainan City), Huainan, 232000, Anhui, China.
| | - Weili Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China. .,Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Zhengzhou, 450046, China.
| |
Collapse
|
30
|
Sugawara Y, Hirakawa Y, Nagasu H, Narita A, Katayama A, Wada J, Shimizu M, Wada T, Kitamura H, Nakano T, Yokoi H, Yanagita M, Goto S, Narita I, Koshiba S, Tamiya G, Nangaku M, Yamamoto M, Kashihara N. Genome-wide association study of the risk of chronic kidney disease and kidney-related traits in the Japanese population: J-Kidney-Biobank. J Hum Genet 2023; 68:55-64. [PMID: 36404353 DOI: 10.1038/s10038-022-01094-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is a syndrome characterized by a gradual loss of kidney function with decreased estimated glomerular filtration rate (eGFR), which may be accompanied by an increase in the urine albumin-to-creatinine ratio (UACR). Although trans-ethnic genome-wide association studies (GWASs) have been conducted for kidney-related traits, there have been few analyses in the Japanese population, especially for the UACR trait. In this study, we conducted a GWAS to identify loci related to multiple kidney-related traits in Japanese individuals. First, to detect loci associated with CKD, eGFR, and UACR, we performed separate GWASs with the following two datasets: 475 cases of CKD diagnosed at seven university hospitals and 3471 healthy subjects (dataset 1) and 3664 cases of CKD-suspected individuals with eGFR <60 ml/min/1.73 m2 or urinary protein ≥ 1+ and 5952 healthy subjects (dataset 2). Second, we performed a meta-analysis between these two datasets and detected the following associated loci: 10 loci for CKD, 9 loci for eGFR, and 22 loci for UACR. Among the loci detected, 22 have never been reported previously. Half of the significant loci for CKD were shared with those for eGFR, whereas most of the loci associated with UACR were different from those associated with CKD or eGFR. The GWAS of the Japanese population identified novel genetic components that were not previously detected. The results also suggest that the group primarily characterized by increased UACR possessed genetically different features from the group characterized by decreased eGFR.
Collapse
Affiliation(s)
- Yuka Sugawara
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Hiromasa Kitamura
- Department of Nephrology, Hypertension & Strokology, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Nephrology, Hypertension & Strokology, Kyushu University, Fukuoka, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University, Kyoto, Japan
| | | | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan.,Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
31
|
Hu Y, Li J, Yin C, Xu L, Li S, Chen Y, Wang Y, Cheng Z, Bai Y. Mediating effect of metabolic diseases on the relationship between hyperuricemia and coronary heart disease. Nutr Metab Cardiovasc Dis 2023; 33:315-322. [PMID: 36599782 DOI: 10.1016/j.numecd.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Studies have shown that elevated serum uric acid (SUA) may increase the risk of coronary heart disease (CHD). However, it is still disputable how mediate effects between metabolic diseases and hyperuricemia affect the incidence of CHD. This study aimed to explore whether metabolic diseases may mediate the connection from hyperuricemia at baseline to the elevated incidence risk of CHD during follow-ups. METHODS AND RESULTS Based on the Jinchang cohort, 48 001 subjects were followed for 9 years between June 2011 and December 2019. Multivariate-adjusted Cox regression models were applied to estimate hazard ratios (HRs) of CHD with 95% confidence intervals (CIs). Significantly increased risks of CHD were observed in hyperuricemia (HR:1.46, 95%CI:1.28, 1.67) when compared with normouricemia population. The mediating effect model further demonstrated that metabolic diseases could mediate the association between hyperuricemia and CHD pathogenesis, partially for the combined metabolic diseases with mediation effects of 45.12%, 25.24% for hypertension, 28.58% for overweight or obese status, 29.05% for hypertriglyceridemia, 6.70% for hypercholesterolemia, 3.52% for low high density lipoprotein cholesterol (HDL-C), and 6.51% for high low density lipoprotein cholesterol (LDL-C), respectively. CONCLUSIONS Hyperuricemia significantly increased the risk of incident CHD, and this association was partly mediated by metabolic diseases.
Collapse
Affiliation(s)
- Yujia Hu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China
| | - Jing Li
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, China
| | - Lulu Xu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China
| | - Siyu Li
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China
| | - Yarong Chen
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China
| | - Yufeng Wang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, Gansu, China
| | - Zhiyuan Cheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, 1088 Xueyuan Street, Shenzhen, 518055, China
| | - Yana Bai
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, 199 Donggang West Street, Lanzhou, Gansu 730000, China.
| |
Collapse
|
32
|
Lee S, Han M, Moon S, Kim K, An WJ, Ryu H, Oh KH, Park SK. Identifying Genetic Variants and Metabolites Associated with Rapid Estimated Glomerular Filtration Rate Decline in Korea Based on Genome-Metabolomic Integrative Analysis. Metabolites 2022; 12:1139. [PMID: 36422279 PMCID: PMC9695695 DOI: 10.3390/metabo12111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Identifying the predisposing factors to chronic or end-stage kidney disease is essential to preventing or slowing kidney function decline. Therefore, here, we investigated the genetic variants related to a rapid decline in the estimated glomerular filtration rate (eGFR) (i.e., a loss of >5 mL/min/1.73 m2 per year) and verified the relationships between variant-related diseases and metabolic pathway signaling in patients with chronic kidney disease. We conducted a genome-wide association study that included participants with diabetes, hypertension, and rapid eGFR decline from two Korean data sources (N = 115 and 69 for the discovery and the validation cohorts, respectively). We identified a novel susceptibility locus: 4q32.3 (rs10009742 in the MARCHF1 gene, beta = −3.540, P = 4.11 × 10−8). Fine-mapping revealed 19 credible, causal single-nucleotide polymorphisms, including rs10009742. The pimelylcarnitine and octadecenoyl carnitine serum concentrations were associated with rs10009742 (beta = 0.030, P = 7.10 × 10−5, false discovery rate (FDR) = 0.01; beta = 0.167, P = 8.11 × 10−4, FDR = 0.08). Our results suggest that MARCHF1 is associated with a rapid eGFR decline in patients with hypertension and diabetes. Furthermore, MARCHF1 affects the pimelylcarnitine metabolite concentration, which may mediate chronic kidney disease progression by inducing oxidative stress in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Miyeun Han
- Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Kyungsik Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Woo Ju An
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
33
|
Wang K, Shi M, Yang A, Fan B, Tam CHT, Lau E, Luk AOY, Kong APS, Ma RCW, Chan JCN, Chow E. GCKR and GCK polymorphisms are associated with increased risk of end-stage kidney disease in Chinese patients with type 2 diabetes: The Hong Kong Diabetes Register (1995-2019). Diabetes Res Clin Pract 2022; 193:110118. [PMID: 36243233 DOI: 10.1016/j.diabres.2022.110118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
AIMS Glucokinase (GCK) and glucokinase regulatory protein (GKRP) regulate glucose and lipid metabolism. We investigated the associations of GCKR and GCK polymorphisms with kidney outcomes. METHODS Analyses were performed in a prospective cohort who were enrolled in the Hong Kong Diabetes Register between 1995 and 2017. The associations of GCKR rs1260326 and GCK rs1799884 polymorphisms with incident end-stage kidney disease (ESKD), albuminuria and rapid eGFR decline were analysed by Cox regression or logistic regression with adjustment. RESULTS 6072 patients (baseline mean age 57.4 years; median diabetes duration 6.0 years; 54.5 % female) were included, with a median follow-up of 15.5 years. The GCKR rs1260326 [HR (95 %CI) 1.23 (1.05-1.44) for CT; HR 1.23 (1.02-1.48) for TT] and GCK rs1799884 T alleles [HR 1.73 (1.24-2.40) for TT] were independently associated with increased risk of ESKD versus their respective CC genotypes. GCKR rs1260326 T allele was also associated with albuminuria [OR 1.18 (1.05-1.33) for CT; OR 1.34 (1.16-1.55) for TT] and rapid eGFR decline. CONCLUSIONS In Chinese patients with type 2 diabetes, T allele carriers of GCKR rs1260326 and GCK rs1799884 were at high risk for ESKD. These genetic markers may be used to identify high risk patients for early intensive management for renoprotection.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Eric Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
34
|
Chen YC, Wong HSC, Wu MY, Chou WH, Kao CC, Chao CH, Chang WC, Wu MS. Genome-Wide Association Study for eGFR in a Taiwanese Population. Clin J Am Soc Nephrol 2022; 17:1598-1608. [PMID: 36223920 PMCID: PMC9718044 DOI: 10.2215/cjn.02180222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Chronic kidney disease (CKD) is a global public health issue associated with large economic burdens. CKD contributes to higher risks of cardiovascular complications, kidney failure, and mortality. The incidence and prevalence rates of kidney failure in Taiwan have remained the highest in the world. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Assessing genetic factors that influence kidney function in specific populations has substantial clinical relevance. We investigated associations of genetic variants with eGFR. The quality control filtering and genotype imputation resulted in 10,008 Taiwan Biobank participants and 6,553,511 variants for final analyses. We examined these loci with in silico replication in individuals of European and African ancestry. RESULTS Our results revealed one significant locus (4q21.1) and three suggestive significant loci (17q23.2, 22q13.2, and 3q29) for eGFR in the Taiwanese population. In total, four conditional-independent single nucleotide polymorphisms were identified as the most important variants within these regions, including rs55948430 (Coiled-Coil Domain Containing 158), rs1010269 (BCAS3), rs56108505 (MKL1), and rs34796810 (upstream of DLG1). By performing a meta-analysis, we found that the 4q21.1 and 17q23.2 loci were successfully replicated in the European population, whereas only the 17q23.2 locus was replicated in African ancestry. Therefore, these two loci are suggested to be transethnic loci, and the other two eGFR-associated loci (22q13.2 and 3q29) are likely population specific. CONCLUSIONS We identified four susceptibility loci on 4q21.1, 17q23.2, 22q13.2, and 3q29 that associated with kidney-related traits in a Taiwanese population. The 22q13.2 (MKL1) and 3q29 (DLG1) were prioritized as critical candidates. Functional analyses delineated novel pathways related to kidney physiology in Taiwanese and East Asian ancestries.
Collapse
Affiliation(s)
- Ying-Chun Chen
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Wu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Hsuan Chao
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University–Wan Fang Hospital, Taipei, Taiwan
- Integrative Research Center for Critical Care, Department of Pharmacy, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Chang YS, Lin CY, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res Ther 2022; 24:229. [PMID: 36221101 PMCID: PMC9552457 DOI: 10.1186/s13075-022-02917-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gout is a highly hereditary disease, but not all those carrying well-known risk variants have developing gout attack even in hyperuricemia status. We performed a genome-wide association study (GWAS) and polygenic risk score (PRS) analysis to illustrate the new genetic architectures of gout and asymptomatic hyperuricemia (AH). Methods GWAS was performed to identify variants associated with gout/AH compared with normouricemia. The participants were males, enrolled from the Taiwan Biobank and China Medical University, and divided into discovery (n=39,594) and replication (n=891) cohorts for GWAS. For PRS analysis, the discovery cohort was grouped as base (n=21,814) and target (n=17,780) cohorts, and the score was estimated by grouping the polymorphisms into protective or not for the phenotypes in the base cohort. Results The genes ABCG2 and SLC2A9 were found as the major genetic factors governing gouty and AH, and even in those carrying the rs2231142 (ABCG2) wild-genotype. Surprisingly, variants on chromosome 1, such as rs7546668 (DNAJC16), rs10927807 (AGMAT), rs9286836 (NUDT17), rs4971100 (TRIM46), rs4072037 (MUC1), and rs2974935 (MTX1), showed significant associations with gout in both discovery and replication cohorts (all p-values < 1e−8). Concerning the PRS, the rates of gout and AH increased with increased quartile PRS in those SNPs having risk effects on the phenotypes; on the contrary, gout/AH rates decreased with increased quartile PRS in those protective SNPs. Conclusions We found new variants on chromosome 1 significantly relating to gout, and PRS predicts the risk of developing gout/AH more robustly based on the SNPs’ effect types on the trait. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02917-4.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Yu Lin
- Graduate Institute of Clinical Medical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chung-Ming Huang
- Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jan-Gowth Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Shun-Jen Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, 81148, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol 2022; 18:448-463. [PMID: 35729334 PMCID: PMC9210802 DOI: 10.1038/s41584-022-00797-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Over 20 years ago, it was first proposed that autoinflammation underpins a handful of rare monogenic disorders characterized by recurrent fever and systemic inflammation. The subsequent identification of novel, causative genes directly led to a better understanding of how the innate immune system is regulated under normal conditions, as well as its dysregulation associated with pathogenic mutations. Early on, IL-1 emerged as a central mediator for these diseases, based on data derived from patient cells, mutant mouse models and definitive clinical responses to IL-1 targeted therapy. Since that time, our understanding of the mechanisms of autoinflammation has expanded beyond IL-1 to additional innate immune processes. However, the number and complexity of IL-1-mediated autoinflammatory diseases has also multiplied to include additional monogenic syndromes with expanded genotypes and phenotypes, as well as more common polygenic disorders seen frequently by the practising clinician. In order to increase physician awareness and update rheumatologists who are likely to encounter these patients, this review discusses the general pathophysiological concepts of IL-1-mediated autoinflammation, the epidemiological and clinical features of specific diseases, diagnostic challenges and approaches, and current and future perspectives for therapy.
Collapse
Affiliation(s)
- Lori Broderick
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| | - Hal M Hoffman
- Division of Allergy, Immunology & Rheumatology, Department of Paediatrics, University of California, San Diego, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
37
|
Wang L, Zhou Z, Yang Y, Gao P, Lin X, Wu Z. A Genetic Polymorphism in the WDR72 Gene is Associated With Calcium Nephrolithiasis in the Chinese Han Population. Front Genet 2022; 13:897051. [PMID: 35910217 PMCID: PMC9333346 DOI: 10.3389/fgene.2022.897051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
A previous genome-wide association study (GWAS) reported several novel loci for nephrolithiasis in British and Japanese population, some of which were predicted to influence CaSR signaling. In this study, we aimed to evaluate the association of these loci with calcium nephrolithiasis in Chinese Han population. We performed a case-control association analysis involving 691 patients with calcium nephrolithiasis and 1008 control subjects. We were able to genotype a total of 17 single-nucleotide polymorphisms (SNPs), which were previously reported to be significantly associated with nephrolithiasis in GWAS. rs578595 at WDR72 was significantly associated with calcium nephrolithiasis in Chinese Han population (p < 0.001, OR = 0.617). Moreover, rs12654812 at SLC34A1 (p = 0.0427, OR = 1.170), rs12539707 at HIBADH (p = 0.0179, OR = 0.734), rs1037271 at DGKH (p = 0.0096, OR = 0.828) and rs12626330 at CLDN14 (p = 0.0080, OR = 1.213) indicated suggestive associations with calcium nephrolithiasis. Our results elucidated the significance of genetic variation at WDR72, DGKH, CLDN14, SLC34A1, and HIBADH in Chinese patients with nephrolithiasis. Since polymorphisms of WDR72, DGKH, and CLDN14 are predicted to influence in CaSR signaling, our results emphasized the role of abnormal calcium homeostasis in calcium nephrolithiasis.
Collapse
Affiliation(s)
- Lujia Wang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zijian Zhou
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Gao
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoling Lin
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| | - Zhong Wu
- Department of Urology, Huashan Hospital & Institute of Urology, Fudan University, Shanghai, China
- Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaoling Lin, ; Zhong Wu,
| |
Collapse
|
38
|
Zhao J, Guo S, Schrodi SJ, He D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front Cell Dev Biol 2022; 10:937855. [PMID: 35813212 PMCID: PMC9259951 DOI: 10.3389/fcell.2022.937855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Park JS, Kim Y, Kang J. Genome-wide meta-analysis revealed several genetic loci associated with serum uric acid levels in Korean population: an analysis of Korea Biobank data. J Hum Genet 2022; 67:231-237. [PMID: 34719683 DOI: 10.1038/s10038-021-00991-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The serum uric acid (SUA) level is an important determinant of gout, hypertension, metabolic syndrome, and cardiovascular disease. Although previous genome-wide studies have identified multiple genetic variants associated with SUA, most genetic analyses have focused on individuals with European ancestry; thus, understanding of the genetic architecture of SUA is currently limited for Asian populations. We conducted a genome-wide meta-analysis based on Korea Biobank data consistent with three cohorts; namely, the Korean Genome and Epidemiology Study (KoGES) Ansan and Ansung, KoGES Health Examinee, and KoGES Cardiovascular Disease Association studies. In total, 60,585 participants aged ≥40 years were included in the analysis of the three cohorts. We used logistic regression analyses to perform genome-wide association study (GWAS) adjustments for confounding variables. Subsequently, a meta-analysis was conducted by combining the analyses of the three GWASs. We identified 8,105 variants at 22 genetic loci with a P value < 5 × 10-8. Among these, six novel genetic loci associated with SUA in the Korean population were identified (rs4715517 in HCRTR2, rs145099458 in 3.2 kb 3' of MLXIPL, rs1137642 in B4GALT1, rs659107 in LOC105378410, rs7919329 in LOC107984274, and rs2240751 in MFSD12). Our meta-analysis provides insights into the genetic architecture of SUA in the Korean population. Further studies are warranted to replicate the study results and elucidate the specific role of these variants in SUA homeostasis.
Collapse
Affiliation(s)
- Jin Sung Park
- Department of Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Based on the high incidence of chronic kidney disease (CKD) in recent years, a better early prediction model for identifying high-risk individuals before end-stage renal failure (ESRD) occurs is needed. We conducted a nested case–control study in 348 subjects (116 cases and 232 controls) from the “Tianjin Medical University Chronic Diseases Cohort”. All subjects did not have CKD at baseline, and they were followed up for 5 years until August 2018. Using multivariate Cox regression analysis, we found five nongenetic risk factors associated with CKD risks. Logistic regression was performed to select single nucleotide polymorphisms (SNPs) from which we obtained from GWAS analysis of the UK Biobank and other databases. We used a logistic regression model and natural logarithm OR value weighting to establish CKD genetic/nongenetic risk prediction models. In addition, the final comprehensive prediction model is the arithmetic sum of the two optimal models. The AUC of the prediction model reached 0.894, while the sensitivity was 0.827, and the specificity was 0.801. We found that age, diabetes, and normal high values of urea nitrogen, TGF-β, and ADMA were independent risk factors for CKD. A comprehensive prediction model was also established, which may help identify individuals who are most likely to develop CKD early.
Collapse
|
41
|
Research Priorities for Kidney-Related Research-An Agenda to Advance Kidney Care: A Position Statement From the National Kidney Foundation. Am J Kidney Dis 2022; 79:141-152. [PMID: 34627932 DOI: 10.1053/j.ajkd.2021.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023]
Abstract
Despite the high prevalence and economic burden of chronic kidney disease (CKD) in the United States, federal funding for kidney-related research, prevention, and education activities under the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) remains substantially lower compared to other chronic diseases. More federal support is needed to promote critical research that will expand knowledge of kidney health and disease, develop new and effective therapies, and reduce health disparities. In 2021, the National Kidney Foundation (NKF) convened 2 Research Roundtables (preclinical and clinical research), comprising nephrology leaders from prominent US academic institutions and the pharmaceutical industry, key bodies with expertise in research, and including individuals with CKD and their caregivers and kidney donors. The goal of these roundtables was to identify priorities for preclinical and clinical kidney-related research. The research priorities identified by the Research Roundtables and presented in this position statement outline attainable opportunities for groundbreaking and critically needed innovations that will benefit patients with kidney disease in the next 5-10 years. Research priorities fall within 4 preclinical science themes (expand data science capability, define kidney disease mechanisms and utilize genetic tools to identify new therapeutic targets, develop better models of human disease, and test cell-specific drug delivery systems and utilize gene editing) and 3 clinical science themes (expand number and inclusivity of clinical trials, develop and test interventions to reduce health disparities, and support implementation science). These priorities in kidney-related research, if supported by additional funding by federal agencies, will increase our understanding of the development and progression of kidney disease among diverse populations, attract additional industry investment, and lead to new and more personalized treatments.
Collapse
|
42
|
Chen Y, Yang Y, Zhong Y, Li J, Kong T, Zhang S, Yang S, Wu C, Cui B, Fu L, Hui R, Zhang W. Genetic risk of hyperuricemia in hypertensive patients associated with antihypertensive drug therapy: a longitudinal study. Clin Genet 2022; 101:411-420. [PMID: 35023146 PMCID: PMC9306909 DOI: 10.1111/cge.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Elevated serum uric acid (UA) level has been shown to be influenced by multiple genetic variants, but it remains uncertain how UA‐associated variants differ in their influence on hyperuricemia risk in people taking antihypertensive drugs. We examined a total of 43 UA‐related variants at 29 genes in 1840 patients with hypertension from a community‐based longitudinal cohort during a median 2.25‐year follow‐up (including 1031 participants with normal UA, 440 prevalent hyperuricemia at baseline, and 369 new‐onset hyperuricemia). Compared with the wild‐type genotypes, patients carrying the SLC2A9 rs3775948G allele or the rs13129697G allele had decreased risk of hyperuricemia, while patients carrying the SLC2A9 rs11722228T allele had increased risk of hyperuricemia, after adjustment for cardiovascular risk factors and correction for multiple comparisons; moreover, these associations were modified by the use of diuretics, β‐blockers, or angiotensin converting enzyme inhibitors. The rs10821905A allele of A1CF gene was associated with increased risk of hyperuricemia, and this risk was enhanced by diuretics use. The studied variants were not observed to confer risk for incident cardiovascular events during the follow‐up. In conclusion, the genes SLC2A9 and A1CF may serve as potential genetic markers for hyperuricemia risk in relation to antihypertensive drugs therapy in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yunyun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yixuan Zhong
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Kong
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shuyuan Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Cunjin Wu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Li Fu
- Benxi Railway Hospital, Benxi, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Olinger E, Wilson I, Devuyst O, Sayer JA. Translational Science Kidney traits on repeat - the role of MUC1 VNTR. Kidney Int 2022; 101:863-866. [PMID: 35031326 DOI: 10.1016/j.kint.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Ian Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology, University of Zurich, Zürich, Switzerland
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, UK; Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK.
| |
Collapse
|
44
|
Alghubayshi A, Edelman A, Alrajeh K, Roman Y. Genetic assessment of hyperuricemia and gout in Asian, Native Hawaiian, and Pacific Islander subgroups of pregnant women: biospecimens repository cross-sectional study. BMC Rheumatol 2022; 6:1. [PMID: 34986901 PMCID: PMC8734301 DOI: 10.1186/s41927-021-00239-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gout, an inflammatory condition, is characterized by the precipitation of monosodium urate crystals (MSU) in or around distal joints. The latter is caused by chronic hyperuricemia (HU)—high urate levels in the blood. Genetic variations in urate transporters play a significant role in determining urate levels within the human body, rendering some racial and ethnic groups more or less susceptible to developing either HU or gout. This study aims to estimate the frequencies of HU and gout risk alleles in Asian, Native Hawaiian, and Pacific Islander subgroups, using biorepository DNA samples. Methods The biospecimens repository at the University of Hawai’i provided DNA samples of consented post-partum women of Japanese, Filipino, Korean, Native Hawaiian, Samoan, and Marshallese descent. The DNA was previously extracted from maternal blood and genotyped at the Genomics and Bioinformatics Shared Resource, Cancer Center (Honolulu, HI). Nine urate genes: ABCG2, SLC2A9, SLC16A9, GCKR, SLC22A11, SLC22A12, LRR16A, PDZK1, and SLC17A1, were selected due to their significant association with HU and gout risk. Hardy–Weinberg Equilibrium (HWE) for genotype frequencies was assessed, using the Chi-Square test with p < 0.006 for statistical significance. Allele frequencies in our study were then compared to EUR from the 1000 Genomes Project Database Phase III, using Chi-square or Fisher's exact test, when appropriate. Bonferroni correction for multiple comparisons was used, with p < 0.006 for statistical significance. Results Our study involved 1059 post-partum women 18-year-old or older who self-reported their respective race and ethnicity, including Asian, Native Hawaiian, and Pacific Islander ancestry. The Asian subgroups included Japanese, Filipino, and Korean. The Pacific Islander subgroups included Marshallese and Samoan. None of the study participants had a history of gout. We excluded the PDZK1 gene from the final analysis due to its deviation from HWE (p < 0.006) across all the population subgroups, with eight loci remaining for cross-subgroup comparisons. Compared to EUR, the genetic polymorphism frequencies were significantly different-8/8 in Japanese, 6/8 in Korean, 6/8 in Filipino, 8/8 in Samoan, 6/8 in Native Hawaiian, and 6/8 in Marshallese. HU and gout risk alleles indices were 8, 6, 5, 5, 4, and 4 in Japanese, Filipino, Korean, Samoan, Marshallese, and Native Hawaiian, respectively. The percentage of cumulative risk alleles was 100% in both Japanese and Filipino, followed by 83.5% in Korean. Conclusions Compared to EUR, Asian subgroups, particularly Japanese, Filipino, and Korean, had the highest percentage of the cumulative uric acid risk alleles. These results could partly explain the increased risk of developing gout among some Asian ancestral subgroups compared to EUR.
Collapse
Affiliation(s)
- Ali Alghubayshi
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA
| | - Alison Edelman
- Department of Obstetrics and Gynecology, School of Medicine, Oregon Health Science University, Portland, OR, 97239, USA
| | - Khalifa Alrajeh
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA
| | - Youssef Roman
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0533, USA.
| |
Collapse
|
45
|
Ghasemi S, Becker T, Grabe HJ, Teumer A. Discovery of novel eGFR-associated multiple independent signals using a quasi-adaptive method. Front Genet 2022; 13:997302. [PMID: 36386835 PMCID: PMC9660290 DOI: 10.3389/fgene.2022.997302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
A decreased estimated glomerular filtration rate (eGFR) leading to chronic kidney disease is a significant public health problem. Kidney function is a heritable trait, and recent application of genome-wide association studies (GWAS) successfully identified multiple eGFR-associated genetic loci. To increase statistical power for detecting independent associations in GWAS loci, we improved our recently developed quasi-adaptive method estimating SNP-specific alpha levels for the conditional analysis, and applied it to the GWAS meta-analysis results of eGFR among 783,978 European-ancestry individuals. Among known eGFR loci, we revealed 19 new independent association signals that were subsequently replicated in the United Kingdom Biobank (n = 408,608). These associations have remained undetected by conditional analysis using the established conservative genome-wide significance level of 5 × 10-8. Functional characterization of known index SNPs and novel independent signals using colocalization of conditional eGFR association results and gene expression in cis across 51 human tissues identified two potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and three candidate genes across other tissues: SLC22A2, LRP2, and CDKN1C. These colocalizations were not identified in the original GWAS. By applying our improved quasi-adaptive method, we successfully identified additional genetic variants associated with eGFR. Considering these signals in colocalization analyses can increase the precision of revealing potentially functional genes of GWAS loci.
Collapse
Affiliation(s)
- Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Tim Becker
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
46
|
Mei Y, Dong B, Geng Z, Xu L. Excess Uric Acid Induces Gouty Nephropathy Through Crystal Formation: A Review of Recent Insights. Front Endocrinol (Lausanne) 2022; 13:911968. [PMID: 35909538 PMCID: PMC9329685 DOI: 10.3389/fendo.2022.911968] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
Uric acid (UA) is the final product of purine metabolism in the human body, and impaired purine metabolism can increase the uric acid in serum, finally resulting in hyperuricemia (HUA). Current evidences suggest that urates might have antioxidant properties under certain circumstances, but most evidences suggest that urates promote inflammation. Hyperuricemia leads to the formation of urate crystals, which might be recognized as a red flag by the immune system. Such a response stimulates macrophage activation, leads to the activation of NOD-like receptor protein 3 (NLRP3) inflammasome vesicles, and ultimately the production and liberation of interleukin-1b (IL-1b) and interleukin-18 (IL-18), which can mediate inflammation, apoptosis and necroinflammation and cause an inflammatory cascade response. The kidney is one of the most commonly affected organs in HUA, which promotes the development of chronic kidney disease (CKD) by damaging endothelial cells, activating the renin-angiotensin system (RAS), and promoting inflammatory responses. Pharmacological interventions and lifestyle modifications are the primary means for controlling gout and lowering UA. The febuxostat is safe for CKD patients in the UA lowering therapy. Although dialysis can reduce UA levels, the application of drug is also necessary for dialysis patients. This article reviews the synthesis and metabolism of UA, etiology of HUA, the relationship between HUA and kidney disease, the treatment of gout and gouty nephropathy (GN).
Collapse
|
47
|
Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, Rocha PP, Burns KH. Alu insertion variants alter gene transcript levels. Genome Res 2021; 31:2236-2248. [PMID: 34799402 PMCID: PMC8647820 DOI: 10.1101/gr.261305.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4340, USA
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
48
|
A Genome-Wide Association Study of a Korean Population Identifies Genetic Susceptibility to Hypertension Based on Sex-Specific Differences. Genes (Basel) 2021; 12:genes12111804. [PMID: 34828409 PMCID: PMC8622776 DOI: 10.3390/genes12111804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies have expanded our understanding of the genetic variation of hypertension. Hypertension and blood pressure are influenced by sex-specific differences; therefore, genetic variants may have sex-specific effects on phenotype. To identify the genetic factors influencing the sex-specific differences concerning hypertension, we conducted a heterogeneity analysis of a genome-wide association study (GWAS) on 13,926 samples from a Korean population. Using the Illumina exome chip data of the population, we performed GWASs of the male and female population independently and applied a statistical test that identified heterogeneous effects of the variants between the two groups. To gain information about the biological implication of the genetic heterogeneity, we used gene set enrichment analysis with GWAS catalog and pathway gene sets. The heterogeneity analysis revealed that the rs11066015 of ACAD10 was a significant locus that had sex-specific genetic effects on the development of hypertension. The rs2074356 of HECTD4 also showed significant genetic heterogeneity in systolic blood pressure. The enrichment analysis showed significant results that are consistent with the pathophysiology of hypertension. These results indicate a sex-specific genetic susceptibility to hypertension that should be considered in future genetic studies of hypertension.
Collapse
|
49
|
Interaction of Alcohol Consumption and ABCG2 rs2231142 Variant Contributes to Hyperuricemia in a Taiwanese Population. J Pers Med 2021; 11:jpm11111158. [PMID: 34834509 PMCID: PMC8618280 DOI: 10.3390/jpm11111158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: ABCG2 rs2231142 is an important genetic factor that contributes to the development of gout and hyperuricemia (HUA). Epidemiologic studies have demonstrated that lifestyle risk factors of HUA (e.g., alcohol consumption) and genetic predisposition (e.g., ABCG2 gene) together, contribute to enhanced serum uric acid levels. However, the interaction between ABCG2 rs2231142, alcohol consumption, and HUA in the Taiwanese population is still unclear. Therefore, this study investigated whether the risk of HUA is associated with ABCG2 rs2231142 variants and how this is affected by alcohol consumption. Method: study subjects were selected from the participants of the Taiwan Biobank database. Overall, 114,540 participants aged 30 to 70 years were enrolled in this study. The interaction between ABCG2 rs2231142, alcohol consumption, and serum uric acid (sUA) levels was analyzed by multiple logistic regression models. Results: the prevalence of HUA was 32.7% and 4.4 % in the male and female populations, respectively. In the whole study population, the minor T allele of ABCG2 rs2231142 was significantly associated with HUA risk, and the occurrence of HUA was high in TT genotype and TG genotype. The risk of HUA was significantly increased by the combined association of ABCG2 rs2231142 and alcohol consumption for TG/TT genotype compared to the GG genotype (wild-type genotype), especially among women. Conclusion: the ABCG2 rs2231142 is a crucial genetic locus for sUA levels in the Taiwanese population and our findings revealed that alcohol consumption combined with the ABCG2 rs2231142 risk allele contributes to increased HUA risk.
Collapse
|
50
|
Ji A, Shaukat A, Takei R, Bixley M, Cadzow M, Topless RK, Major TJ, Phipps-Green A, Merriman ME, Hindmarsh JH, Stamp LK, Dalbeth N, Li C, Merriman TR. Aotearoa New Zealand Māori and Pacific Population-amplified Gout Risk Variants: CLNK Is a Separate Risk Gene at the SLC2A9 Locus. J Rheumatol 2021; 48:1736-1744. [PMID: 34210831 DOI: 10.3899/jrheum.201684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Māori and Pacific (Polynesian) population of Aotearoa New Zealand has a high prevalence of gout. Our aim was to identify potentially functional missense genetic variants in candidate inflammatory genes amplified in frequency that may underlie the increased prevalence of gout in Polynesian populations. METHODS A list of 712 inflammatory disease-related genes was generated. An in silico targeted exome set was extracted from whole genome sequencing data in people with gout of various ancestral groups (Polynesian, European, East Asian; n = 55, 780, 135, respectively) to identify Polynesian-amplified common missense variants (minor allele frequency > 0.05). Candidate functional variants were tested for association with gout by multivariable-adjusted regression analysis in 2528 individuals of Polynesian ancestry. RESULTS We identified 26 variants common in the Polynesian population and uncommon in the European and East Asian populations. Three of the 26 population-amplified variants were nominally associated with the risk of gout (rs1635712 [KIAA0319], ORmeta = 1.28, Pmeta = 0.03; rs16869924 [CLNK], ORmeta = 1.37, Pmeta = 0.002; rs2070025 [fibrinogen A alpha chain (FGA)], ORmeta = 1.34, Pmeta = 0.02). The CLNK variant, within the established SLC2A9 gout locus, was genetically independent of the association signal at SLC2A9. CONCLUSION We provide nominal evidence for the existence of population-amplified genetic variants conferring risk of gout in Polynesian populations. Polymorphisms in CLNK have previously been associated with gout in other populations, supporting our evidence for the association of this gene with gout.
Collapse
Affiliation(s)
- Aichang Ji
- A. Ji, PhD, Research Fellow, C. Li, PhD, Professor, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Amara Shaukat
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Riku Takei
- R. Takei, MSc, Scientist, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Matthew Bixley
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray Cadzow
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ruth K Topless
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Amanda Phipps-Green
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marilyn E Merriman
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jennie Harré Hindmarsh
- J. Harré Hindmarsh, PhD, Research Coordinator, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti East Coast, New Zealand
| | - Lisa K Stamp
- L.K. Stamp, PhD, Professor, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicola Dalbeth
- N. Dalbeth, MD, Professor, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Changgui Li
- A. Ji, PhD, Research Fellow, C. Li, PhD, Professor, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tony R Merriman
- T.R. Merriman, BSc, Research Assistant, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China, Department of Biochemistry, University of Otago, Dunedin, New Zealand, and Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA. A. Ji and A. Shaukat contributed equally to this work.
| |
Collapse
|