1
|
Li G, Wang J, Xiao L, Zhang C, Zhang D, Ai G, Yao M, Li C, Hong Z, Ye Z, Zhang J. Tomato DC1 domain protein SlCHP16 interacts with the 14-3-3 protein TFT12 to regulate flower development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112451. [PMID: 40086736 DOI: 10.1016/j.plantsci.2025.112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Flower development is of great significance for plant reproductive growth, but the molecular mechanisms underlying flower development remain to be fully understood. In this study, a tomato (Solanum lycopersicum L.) Divergent C1 (DC1) domain protein SlCHP16 was identified as a negative regulator of flower development. Overexpression of SlCHP16 led to the delay of flower bud development and failure of flowers to blossom and bear fruits. Conversely, down-regulation of SlCHP16 transcripts, via RNA interference (RNAi), led to formation of larger flowers in transgenic tomato plants. In SlCHP16-overexpressing plants, floral primordia and floral organs were initiated normally, but their subsequent growth and development were severely arrested. Transcriptome analysis showed that this arrest was associated with the changes in expression levels of a large number of genes involved in cell division and organ development. Tomato 14-3-3 protein 12 (TFT12) was identified as an interacting protein of SlCHP16 by tandem mass spectrometry, and its overexpression in tomato plants led to the formation of enlarged flowers. The presence of SlCHP16 disturbed the stability and homodimerization of TFT12 in plant cells. The results of this study demonstrate an inhibitory role of SlCHP16 in flower development in tomato by interaction with the 14-3-3 protein TFT12. This work provides new insights into the mechanisms that control development of floral organs.
Collapse
Affiliation(s)
- Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiafa Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Licheng Xiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunli Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dedi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minghua Yao
- Industrial Crops institute, Hubei Academy of Agricultural Sciences, China.
| | - Changxing Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
2
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
3
|
Han X, Wu X, Zhang Y, Tang Q, Zeng L, Liu Y, Xiang Y, Hou K, Fang S, Lei W, Li H, Tang S, Zhao H, Peng Y, Yao X, Guo T, Zhang YM, Guo L. Genetic and transcriptome analyses of the effect of genotype-by-environment interactions on Brassica napus seed oil content. THE PLANT CELL 2025; 37:koaf062. [PMID: 40138370 PMCID: PMC11979334 DOI: 10.1093/plcell/koaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yawen Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingju Zeng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Liu
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuyan Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Keqin Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixia Lei
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Haojie Li
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Peng
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
4
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
5
|
Lanctot A, Hendelman A, Udilovich P, Robitaille GM, Lippman ZB. Antagonizing cis-regulatory elements of a conserved flowering gene mediate developmental robustness. Proc Natl Acad Sci U S A 2025; 122:e2421990122. [PMID: 39964724 PMCID: PMC11874208 DOI: 10.1073/pnas.2421990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Developmental transitions require precise temporal and spatial control of gene expression. In plants, such regulation is critical for flower formation, which involves the progressive maturation of stem cell populations within shoot meristems to floral meristems, followed by rapid sequential differentiation into floral organs. Across plant taxa, these transitions are orchestrated by the F-box transcriptional cofactor gene UNUSUAL FLORAL ORGANS (UFO). The conserved and pleiotropic functions of UFO offer a useful framework for investigating how evolutionary processes have shaped the intricate cis-regulation of key developmental genes. By pinpointing a conserved promoter sequence in an accessible chromatin region of the tomato ortholog of UFO, we engineered in vivo a series of cis-regulatory alleles that caused both loss- and gain-of-function floral defects. These mutant phenotypes were linked to disruptions in predicted transcription factor binding sites for known transcriptional activators and repressors. Allelic combinations revealed dosage-dependent interactions between opposing alleles, influencing the penetrance and expressivity of gain-of-function phenotypes. These phenotypic differences support that robustness in tomato flower development requires precise temporal control of UFO expression dosage. Bridging our analysis to Arabidopsis, we found that although homologous sequences to the tomato regulatory region are dispersed within the UFO promoter, they maintain similar control over floral development. However, phenotypes from disrupting these sequences differ due to the differing expression patterns of UFO. Our study underscores the complex cis-regulatory control of dynamic developmental genes and demonstrates that critical short stretches of regulatory sequences that recruit both activating and repressing machinery are conserved to maintain developmental robustness.
Collapse
Affiliation(s)
- Amy Lanctot
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Anat Hendelman
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Peter Udilovich
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Gina M. Robitaille
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Zachary B. Lippman
- HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
6
|
Upadhyaya G, Sethi V, Modak A, Gangappa SN. ALOG/LSHs: a novel class of transcription factors that regulate plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:836-850. [PMID: 39361138 DOI: 10.1093/jxb/erae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
The ARABIDOPSIS LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and rice G1/LIGHT-DEPENDENT SHORT HYPOCOTYLS (ALOG/LSH) group proteins are highly conserved across plant lineages from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG/LSH proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis, and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG/LSH proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and as transcription factors. It also seeks to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Vishmita Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Annayasa Modak
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
7
|
Bhattarai K, Ogden AB, Pandey S, Sandoya GV, Shi A, Nankar AN, Jayakodi M, Huo H, Jiang T, Tripodi P, Dardick C. Improvement of crop production in controlled environment agriculture through breeding. FRONTIERS IN PLANT SCIENCE 2025; 15:1524601. [PMID: 39931334 PMCID: PMC11808156 DOI: 10.3389/fpls.2024.1524601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Controlled environment agriculture (CEA) represents one of the fastest-growing sectors of horticulture. Production in controlled environments ranges from highly controlled indoor environments with 100% artificial lighting (vertical farms or plant factories) to high-tech greenhouses with or without supplemental lighting, to simpler greenhouses and high tunnels. Although food production occurs in the soil inside high tunnels, most CEA operations use various hydroponic systems to meet crop irrigation and fertility needs. The expansion of CEA offers promise as a tool for increasing food production in and near urban systems as these systems do not rely on arable agricultural land. In addition, CEA offers resilience to climate instability by growing inside protective structures. Products harvested from CEA systems tend to be of high quality, both internal and external, and are sought after by consumers. Currently, CEA producers rely on cultivars bred for production in open-field agriculture. Because of high energy and other production costs in CEA, only a limited number of food crops have proven themselves to be profitable to produce. One factor contributing to this situation may be a lack of optimized cultivars. Indoor growing operations offer opportunities for breeding cultivars that are ideal for these systems. To facilitate breeding these specialized cultivars, a wide range of tools are available for plant breeders to help speed this process and increase its efficiency. This review aims to cover breeding opportunities and needs for a wide range of horticultural crops either already being produced in CEA systems or with potential for CEA production. It also reviews many of the tools available to breeders including genomics-informed breeding, marker-assisted selection, precision breeding, high-throughput phenotyping, and potential sources of germplasm suitable for CEA breeding. The availability of published genomes and trait-linked molecular markers should enable rapid progress in the breeding of CEA-specific food crops that will help drive the growth of this industry.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Horticultural Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Andrew B. Ogden
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Germán V. Sandoya
- Horticultural Sciences Department, University of Florida, Everglades Research and Education Center, University of Florida – Institute for Food and Agriculture Sciences, Belle Glade, FL, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Amol N. Nankar
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Murukarthick Jayakodi
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Tao Jiang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Pasquale Tripodi
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano-Faiano, SA, Italy
| | - Chris Dardick
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| |
Collapse
|
8
|
Huang X, Yang Y, Xu C. Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. THE NEW PHYTOLOGIST 2025; 245:88-94. [PMID: 39425452 DOI: 10.1111/nph.20204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
Collapse
Affiliation(s)
- Xiaozhen Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
9
|
Nolan CT, Campbell I, Farrell-Sherman A, Ortiz BAB, Naish KA, Stilio VD, Kaldy JE, Donoghue C, Ruesink JL, Imaizumi T. Florigen and antiflorigen gene expression correlates with reproductive state in a marine angiosperm, Zostera marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622789. [PMID: 39605329 PMCID: PMC11601257 DOI: 10.1101/2024.11.09.622789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
• Florigen and antiflorigen genes within the phosphatidylethanolamine-binding protein (PEBP) family regulate flowering in angiosperms. In eelgrass (Zostera marina), a marine foundation species threatened by climate change, flowering and seed production are crucial for population resilience. Yet, the molecular mechanism underpinning flowering remains unknown. • Using phylogenetic analysis and functional assays in Arabidopsis, we identified thirteen PEBP genes in Z. marina (ZmaPEBP) and showed that four genes altered flowering phenotypes when overexpressed. We used quantitative RT-PCR on Z. marina shoots from perennial and annual populations in Willapa Bay, USA to assess expression of these four genes in different tissue and expression changes throughout the growth season. • We demonstrated that ZmaFT2 and ZmaFT4 promote flowering, and ZmaFT9 and ZmaTFL1a repress flowering in Arabidopsis. Across five natural sites exhibiting different degrees of population genetic structure, ZmaFT2 and ZmaFT4 were expressed in leaves of vegetative and reproductive shoots and in stems and rhizomes of reproductive shoots. ZmaFT9 was distinctively expressed in leaves of vegetative and juvenile shoots, while ZmaTFL1a levels increased after flowering shoots emerged. • Our results suggest that ZmaFT2 and ZmaFT4 may promote flowering, while ZmaFT9 may inhibit a floral transition in eelgrass. We speculate that ZmaTFL1a may be involved in flowering shoot architecture.
Collapse
Affiliation(s)
| | - Ian Campbell
- Department of Biology, University of Washington, Seattle, WA USA 98195
| | - Anna Farrell-Sherman
- Department of Biology, University of Washington, Seattle, WA USA 98195
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA USA 98109
| | | | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA USA 98195
| | | | - James E. Kaldy
- Pacific Ecological Systems Division, US EPA, Newport, OR USA 97365
| | - Cinde Donoghue
- Washington Department of Natural Resources, Olympia, WA USA 98504
- Washington Department of Ecology, Lacey, WA USA 98503
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA USA 98195
| |
Collapse
|
10
|
Wu T, Su B, Zhang H, Li D, Zhang H, Xiao G, Sun A, Zhao T, Xu X. SlJMJ14, identified via QTL‑seq and fine mapping, controls flowering time in tomatoes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:228. [PMID: 39304588 DOI: 10.1007/s00122-024-04737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE A major QTL, qLF2.1, for flowering time in tomatoes, was fine mapped to chromosome 2 within a 51.37-kb interval, and the SlJMJ14 gene was verified as the causal gene by knockout. Tomato flowering time is an important agronomic trait that affects yield, fruit quality, and environmental adaptation. In this study, the high-generation inbred line 19108 with a late-flowering phenotype was selected for the mapping of the gene that causes late flowering. In the F2 population derived from 19108 (late flowering) × MM (early flowering), we identified a major late-flowering time quantitative trait locus (QTL) using QTL-seq, designated qLF2.1. This QTL was fine mapped to a 51.37-kb genomic interval using recombinant analysis. Through functional analysis of homologous genes, Solyc02g082400 (SlJMJ14), encoding a histone demethylase, was determined to be the most promising candidate gene. Knocking out SlJMJ14 in MM resulted in a flowering time approximately 5-6 days later than that in the wild-type plants. These results suggest that mutational SlJMJ14 is the major QTL for the late-flowering phenotype of the 19108 parental line.
Collapse
Affiliation(s)
- Tairu Wu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Baohang Su
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dalong Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqiao Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guanglong Xiao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ao Sun
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Hata Y, Ohtsuka J, Hiwatashi Y, Naramoto S, Kyozuka J. Cytokinin and ALOG proteins regulate pluripotent stem cell identity in the moss Physcomitrium patens. SCIENCE ADVANCES 2024; 10:eadq6082. [PMID: 39196946 PMCID: PMC11352904 DOI: 10.1126/sciadv.adq6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The shoot apical meristem (SAM) contains pluripotent stem cells that produce all the aerial parts of the plant. Stem cells undergo asymmetric cell divisions to self-renew and to produce differentiating cells. Our research focused on unraveling the mechanisms governing the specification of these two distinct cell fates following the stem cell division. For this purpose, we used the model organism Physcomitrium patens, which features a singular pluripotent stem cell known as the gametophore apical cell. We show that the activity of cytokinins, critical stem cell regulators, is restricted to the gametophore apical cell due to the specific localization of PpLOG, the enzyme responsible for cytokinin activation. In turn, PpTAW, which promotes differentiating cell identity of the merophyte, is excluded from the gametophore apical cell by the action of cytokinins. We propose a cytokinin-based model for the establishment of asymmetry in the pluripotent stem cell division.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Juri Ohtsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
12
|
Paraiso F, Lin H, Li C, Woods DP, Lan T, Tumelty C, Debernardi JM, Joe A, Dubcovsky J. LEAFY and WAPO1 jointly regulate spikelet number per spike and floret development in wheat. Development 2024; 151:dev202803. [PMID: 39082949 PMCID: PMC11317094 DOI: 10.1242/dev.202803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.
Collapse
Affiliation(s)
- Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tianyu Lan
- Institute for Plant Genetics, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Connor Tumelty
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
13
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
14
|
LaFountain AM, Lin Q, McMahon HE, Min Y, Ding B, Gurung V, Seemann JR, Yuan YW. A distinct foliar pigmentation pattern formed by activator-repressor gradients upstream of an anthocyanin-activating R2R3-MYB. Cell Rep 2024; 43:114444. [PMID: 38990723 PMCID: PMC11317970 DOI: 10.1016/j.celrep.2024.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.
Collapse
Affiliation(s)
- Amy M LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA.
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Hayley E McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Ya Min
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Jeffrey R Seemann
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA; Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Li M, Jiao Y. Cereal genetics: Novel modulators of spikelet number and flowering time. Curr Biol 2024; 34:R528-R530. [PMID: 38834023 DOI: 10.1016/j.cub.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The spikelet is the unit component of the spike and the site of grain production in Triticeae crops. Two new studies revealed that plant-specific transcription factors ALOG1 and PDB1 participate in modulating spikelet number and flowering time in barley and wheat.
Collapse
Affiliation(s)
- Mingjiu Li
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong, China.
| | - Yuling Jiao
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Shandong, China; School of Life Sciences, State Key Laboratory for Protein and Plant Gene Research, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
16
|
Jiang G, Koppolu R, Rutten T, Hensel G, Lundqvist U, Tandron Moya YA, Huang Y, Rajaraman J, Poursarebani N, von Wirén N, Kumlehn J, Mascher M, Schnurbusch T. Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy. Curr Biol 2024; 34:2344-2358.e5. [PMID: 38781954 DOI: 10.1016/j.cub.2024.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.
Collapse
Affiliation(s)
- Guojing Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | | | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
17
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
18
|
Liu Z, Fan Z, Wang L, Zhang S, Xu W, Zhao S, Fang S, Liu M, Kofi SM, Zhang S, Kang N, Ai H, Li R, Feng T, Wei S, Zhao H. Expression profiling of ALOG family genes during inflorescence development and abiotic stress responses in rice ( Oryza sativa L.). Front Genet 2024; 15:1381690. [PMID: 38650857 PMCID: PMC11033443 DOI: 10.3389/fgene.2024.1381690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The ALOG (Arabidopsis LSH1 and Oryza G1) family proteins, namely, DUF640 domain-containing proteins, have been reported to function as transcription factors in various plants. However, the understanding of the response and function of ALOG family genes during reproductive development and under abiotic stress is still largely limited. In this study, we comprehensively analyzed the structural characteristics of ALOG family proteins and their expression profiles during inflorescence development and under abiotic stress in rice. The results showed that OsG1/OsG1L1/2/3/4/5/6/7/8/9 all had four conserved helical structures and an inserted Zinc-Ribbon (ZnR), the other four proteins OsG1L10/11/12/13 lacked complete Helix-1 and Helix-2. In the ALOG gene promoters, there were abundant cis-acting elements, including ABA, MeJA, and drought-responsive elements. Most ALOG genes show a decrease in expression levels within 24 h under ABA and drought treatments, while OsG1L2 expression levels show an upregulated trend under ABA and drought treatments. The expression analysis at different stages of inflorescence development indicated that OsG1L1/2/3/8/11 were mainly expressed in the P1 stage; in the P4 stage, OsG1/OsG1L4/5/9/12 had a higher expression level. These results lay a good foundation for further studying the expression of rice ALOG family genes under abiotic stresses, and provide important experimental support for their functional research.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Zhenjiang Fan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Lei Wang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Siyue Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Weichen Xu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sijie Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sijia Fang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Mei Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Sackitey Mark Kofi
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuangxi Zhang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ningning Kang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ruining Li
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Tingting Feng
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuya Wei
- College of Bioengineering, Wuhan Polytechnic University, Wuhan, China
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
19
|
Rieu P, Beretta VM, Caselli F, Thévénon E, Lucas J, Rizk M, Franchini E, Caporali E, Paleni C, Nanao MH, Kater MM, Dumas R, Zubieta C, Parcy F, Gregis V. The ALOG domain defines a family of plant-specific transcription factors acting during Arabidopsis flower development. Proc Natl Acad Sci U S A 2024; 121:e2310464121. [PMID: 38412122 PMCID: PMC10927535 DOI: 10.1073/pnas.2310464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024] Open
Abstract
The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized. Moreover, how these transcriptional regulators work at the molecular level is unknown. Here, we study the redundant function of the ALOG proteins LSH1,3,4 from Arabidopsis. We uncover their role in the repression of bract development and position them within a gene regulatory network controlling this process and involving the floral regulators LEAFY, BLADE-ON-PETIOLE, and PUCHI. Next, using in vitro genome-wide studies, we identified the conserved DNA motif bound by ALOG proteins from evolutionarily distant species (the liverwort Marchantia polymorpha and the flowering plants Arabidopsis, tomato, and rice). Resolution of the crystallographic structure of the ALOG DNA-binding domain in complex with DNA revealed the domain is a four-helix bundle with a disordered NLS and a zinc ribbon insertion between helices 2 and 3. The majority of DNA interactions are mediated by specific contacts made by the third alpha helix and the NLS. Taken together, this work provides the biochemical and structural basis for DNA-binding specificity of an evolutionarily conserved TF family and reveals its role as a key player in Arabidopsis flower development.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | | | - Francesca Caselli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Emmanuel Thévénon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Mahmoud Rizk
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Emanuela Franchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Chiara Paleni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Max H. Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Martin M. Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| |
Collapse
|
20
|
Shang L, Tao J, Song J, Wang Y, Zhang X, Ge P, Li F, Dong H, Gai W, Grierson D, Ye Z, Zhang Y. CRISPR/Cas9-mediated mutations of FANTASTIC FOUR gene family for creating early flowering mutants in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:774-784. [PMID: 37942846 PMCID: PMC10893942 DOI: 10.1111/pbi.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Flowering time is of great agricultural importance and the timing and extent of flowering usually determines yield and availability of flowers, fruits and seeds. Identification of genes determining flowering has important practical applications for tomato breeding. Here we demonstrate the roles of the FANTASTIC FOUR (FAF) gene family in regulating tomato flowering time. In this plant-specific gene family, SlFAF1/2a shows a constitutive expression pattern during the transition of the shoot apical meristem (SAM) from vegetative to reproductive growth and significantly influences flowering time. Overexpressing SlFAF1/2a causes earlier flowering compared with the transformations of other genes in the FAF family. SlFAF1/2c also positively regulates tomato flowering, although to a lesser extent. The other members of the SlFAF gene family, SlFAF1/2b, SlFAF3/4a and SlFAF3/4b, are negative regulators of tomato flowering and faf1/2b, faf3/4a and faf3/4b single mutants all display early flowering. We generated a series of early flowering mutants using the CRISPR/Cas9 editing system, and the faf1/2b faf3/4a faf3/4b triple mutant flowering earliest compared with other mutants. More importantly, these mutants show no adverse effect on yield. Our results have uncovered the role of the FAF gene family in regulating tomato flowering time and generated early flowering germplasms for molecular breeding.
Collapse
Affiliation(s)
- Lele Shang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Jinbao Tao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Jianwen Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Yaru Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Xingyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Pingfei Ge
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Fangman Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Haiqiang Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Wenxian Gai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
| | - Donald Grierson
- Plant Sciences Division, School of BiosciencesUniversity of NottinghamLoughboroughLE12 5RDUK
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yuyang Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
21
|
Zhang D, Ai G, Ji K, Huang R, Chen C, Yang Z, Wang J, Cui L, Li G, Tahira M, Wang X, Wang T, Ye J, Hong Z, Ye Z, Zhang J. EARLY FLOWERING is a dominant gain-of-function allele of FANTASTIC FOUR 1/2c that promotes early flowering in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:698-711. [PMID: 37929693 PMCID: PMC10893951 DOI: 10.1111/pbi.14217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Flowering time, an important factor in plant adaptability and genetic improvement, is regulated by various genes in tomato (Solanum lycopersicum). In this study, we characterized a tomato mutant, EARLY FLOWERING (EF), that developed flowers much earlier than its parental control. EF is a dominant gain-of-function allele with a T-DNA inserted 139 bp downstream of the stop codon of FANTASTIC FOUR 1/2c (FAF1/2c). The transcript of SlFAF1/2c was at elevated levels in the EF mutant. Overexpressing SlFAF1/2c in tomato plants phenocopied the early flowering trait of the EF mutant. Knocking out SlFAF1/2c in the EF mutant reverted the early flowering phenotype of the mutant to the normal flowering time of the wild-type tomato plants. SlFAF1/2c promoted the floral transition by shortening the vegetative phase rather than by reducing the number of leaves produced before the emergence of the first inflorescence. The COP9 signalosome subunit 5B (CSN5B) was shown to interact with FAF1/2c, and knocking out CSN5B led to an early flowering phenotype in tomato. Interestingly, FAF1/2c was found to reduce the accumulation of the CSN5B protein by reducing its protein stability. These findings imply that FAF1/2c regulates flowering time in tomato by reducing the accumulation and stability of CSN5B, which influences the expression of SINGLE FLOWER TRUSS (SFT), JOINTLESS (J) and UNIFLORA (UF). Thus, a new allele of SlFAF1/2c was discovered and found to regulate flowering time in tomato.
Collapse
Affiliation(s)
- Dedi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guo Ai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Kangna Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Chunrui Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zixuan Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Jiafa Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Long Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guobin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Maryam Tahira
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Jie Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zonglie Hong
- Department of Plant SciencesUniversity of IdahoMoscowIdahoUSA
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
22
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
23
|
Lee T, Orvosova M, Batzenschlager M, Bueno Batista M, Bailey PC, Mohd-Radzman NA, Gurzadyan A, Stuer N, Mysore KS, Wen J, Ott T, Oldroyd GED, Schiessl K. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Curr Biol 2024; 34:825-840.e7. [PMID: 38301650 DOI: 10.1016/j.cub.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.
Collapse
Affiliation(s)
- Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Martina Orvosova
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul C Bailey
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Nadia A Mohd-Radzman
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aram Gurzadyan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Naomi Stuer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Schänzlestrasse, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse, 79104 Freiburg, Germany
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
24
|
Huang H, Lin M, Sun L, Wang R, Li Y, Qi X. Screening and identification of photoresponse factors in kiwifruit (Actinidia arguta) development. Mol Biol Rep 2024; 51:112. [PMID: 38227080 DOI: 10.1007/s11033-023-09073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Light is essential for kiwifruit development, in which photoresponse factors contributes greatly to the quality formation. 'Light sensitive hypocotyls, also known as light-dependent short hypocotyls' (LSH) gene family can participate in fruit development as photoresponse factor. However, the key LSH gene that determine kiwifruit development remains unclear. This study aim to screen and identify the key gene AaLSH9 in A. arguta. MATERIALS AND METHODS Genome-wide identification of the LSH gene family was used to analyse LSH genes in kiwifruit. Homologous cloning was used to confirm the sequence of candidate LSH genes. qRT-PCR and cluster analysis of expression pattern were used to screen the key AaLSH9 gene. Subcellular localization of AaLSH9 in tobacco leaves and overexpression of AaLSH9 in Arabidopsis thaliana hy5 mutant plants were used to define the acting place in cell and identify molecular function, respectively. RESULTS We identified 15 LSH genes, which were divided into two sub-families namely A and B. Domain analysis of A and B showed that they contained different domain organizations, which possibly played key roles in the evolution process. Three LSH genes, AaLSH2, AaLSH9, and AaLSH11, were successfully isolated from Actinidia arguta. The expression pattern and cluster analysis of these three AaLSH genes suggested AaLSH9 might be a key photoresponse gene participating in fruit development in A. arguta. Subcellular localization showed AaLSH9 protein was located in the nucleus. The overexpression of AaLSH9 gene in Arabidopsis thaliana hy5 mutant plants partially complemented the long hypocotyls of hy5 mutant, implying AaLSH9 played a key role as photoresponse factor in cells. In addition, the seed coat color of A. thaliana over-expressing AaLSH9 became lighter than the wide type A.thaliana. Finally, AaCOP1 was confirmed as photoresponse factor to participate in developmental process by stable transgenic A. thaliana. CONCLUSIONS AaLSH9 can be involved in kiwifruit (A. arguta) development as key photoresponse factor. Our results not only identified the photoresponse factors AaLSH9 and AaCOP1 but also provided insights into their key role in fruit quality improvement in the process of light response.
Collapse
Affiliation(s)
- Hailei Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
- Shiyan Economic crops Research Institute, Shiyan, Hubei, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
25
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Turchetto C, Silvério ADC, Waschburger EL, Lacerda MEG, Quintana IV, Turchetto-Zolet AC. Genome-wide identification and evolutionary view of ALOG gene family in Solanaceae. Genet Mol Biol 2023; 46:e20230142. [PMID: 38048778 PMCID: PMC10695626 DOI: 10.1590/1415-4757-gmb-2023-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.
Collapse
Affiliation(s)
- Caroline Turchetto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Ariadne de Castro Silvério
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Botânica (PPGBOT), Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Edgar Luis Waschburger
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Maria Eduarda Gonçalves Lacerda
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Isadora Vieira Quintana
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
28
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
29
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
30
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
31
|
McQuinn RP, Leroux J, Sierra J, Escobar-Tovar L, Frusciante S, Finnegan EJ, Diretto G, Giuliano G, Giovannoni JJ, León P, Pogson BJ. Deregulation of ζ-carotene desaturase in Arabidopsis and tomato exposes a unique carotenoid-derived redundant regulation of floral meristem identity and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:783-804. [PMID: 36861314 DOI: 10.1111/tpj.16168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).
Collapse
Affiliation(s)
- Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julie Leroux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | | | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - James J Giovannoni
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
32
|
Zhou H, Huang J, Willems P, Van Breusegem F, Xie Y. Cysteine thiol-based post-translational modification: What do we know about transcription factors? TRENDS IN PLANT SCIENCE 2023; 28:415-428. [PMID: 36494303 DOI: 10.1016/j.tplants.2022.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Reactive electrophilic species are ubiquitous in plant cells, where they contribute to specific redox-regulated signaling events. Redox signaling is known to modulate gene expression during diverse biological processes, including plant growth, development, and environmental stress responses. Emerging data demonstrates that transcription factors (TFs) are a main target of cysteine thiol-based oxidative post-translational modifications (OxiPTMs), which can alter their transcriptional activity and thereby convey redox information to the nucleus. Here, we review the significant progress that has been made in characterizing cysteine thiol-based OxiPTMs, their biochemical properties, and their functional effects on plant TFs. We discuss the underlying mechanism of redox regulation and its contribution to various physiological processes as well as still outstanding challenges in redox regulation of plant gene expression.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
33
|
Comparative Analysis of Environment-Responsive Alternative Splicing in the Inflorescences of Cultivated and Wild Tomato Species. Int J Mol Sci 2022; 23:ijms231911585. [PMID: 36232886 PMCID: PMC9569760 DOI: 10.3390/ijms231911585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cultivated tomato (Solanum lycopersicum) is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change. To determine a possible association between AS events and phenotypic plasticity, we investigated environment-responsive AS events in the inflorescences of cultivated tomato and its ancestral relatives S. pimpinellifolium. Despite that similar AS frequencies were detected in the cultivated tomato variety Moneymaker and two S. pimpinellifolium accessions under the same growth conditions, 528 genes including splicing factors showed differential splicing in the inflorescences of plants grown in open fields and plastic greenhouses in the Moneymaker variety. In contrast, the two S. pimpinellifolium accessions, LA1589 and LA1781, had 298 and 268 genes showing differential splicing, respectively. Moreover, seven heat responsive genes showed opposite expression patterns in response to changing growth conditions between Moneymaker and its ancestral relatives. Accordingly, there were eight differentially expressed splice variants from genes involved in heat response in Moneymaker. Our results reveal distinctive features of AS events in the inflorescences between cultivated tomato and its ancestral relatives, and show that AS regulation in response to environmental changes is genotype dependent.
Collapse
|
34
|
Brassinosteroid Signaling Downstream Suppressor BIN2 Interacts with SLFRIGIDA-LIKE to Induce Early Flowering in Tomato. Int J Mol Sci 2022; 23:ijms231911264. [PMID: 36232562 PMCID: PMC9570299 DOI: 10.3390/ijms231911264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroid (BR) signaling is very important in plant developmental processes. Its various components interact to form a signaling cascade. These components are widely studied in Arabidopsis; however, very little information is available on tomatoes. Brassinosteroid Insensitive 2 (BIN2), the downstream suppressor of BR signaling, plays a critical role in BR signal pathway, while FRIGIDA as a key suppressor of Flowering Locus C with overexpression could cause early flowering; however, how the BR signaling regulates FRIGIDA homologous protein to adjust flowering time is still unknown. This study identified 12 FRIGIDA-LIKE proteins with a conserved FRIGIDA domain in tomatoes. Yeast two-hybrid and BiFC confirmed that SlBIN2 interacts with 4 SlFRLs, which are sub-cellularly localized in the nucleus. Tissue-specific expression of SlFRLs was observed highly in young roots and flowers. Biological results revealed that SlFRLs interact with SlBIN2 to regulate early flowering. Further, the mRNA level of SlBIN2 also increased in SlFRL-overexpressed lines. The relative expression of SlCPD increased upon SlFRL silencing, while SlDWF and SlBIN2 were decreased, both of which are important for BR signaling. Our research firstly provides molecular evidence that BRs regulate tomato flowering through the interaction between SlFRLs and SlBIN2. This study will promote the understanding of the specific pathway essential for floral regulation.
Collapse
|
35
|
Li Z, Wang J, Zhang X, Zhu G, Fu Y, Jing Y, Huang B, Wang X, Meng C, Yang Q, Xu L. The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering. Commun Biol 2022; 5:920. [PMID: 36071139 PMCID: PMC9452560 DOI: 10.1038/s42003-022-03918-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Aechmea fasciata is one of the most popular bromeliads and bears a water-impounding tank with a vase-like rosette. The tank habit is a key innovation that has promoted diversity among bromeliads. To reveal the genomic basis of tank habit formation and ethylene-induced flowering, we sequenced the genome of A. fasciata and assembled 352 Mb of sequences into 24 chromosomes. Comparative genomic analysis showed that the chromosomes experienced at least two fissions and two fusions from the ancestral genome of A. fasciata and Ananas comosus. The gibberellin receptor gene GID1C-like was duplicated by a segmental duplication event. This duplication may affect GA signalling and promote rosette expansion, which may permit water-impounding tank formation. During ethylene-induced flowering, AfFTL2 expression is induced and targets the EIN3 binding site 'ATGTAC' by AfEIL1-like. The data provided here will serve as an important resource for studying the evolution and mechanisms underlying flowering time regulation in bromeliads.
Collapse
Affiliation(s)
- Zhiying Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Jiabin Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Xuanbing Zhang
- College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228, China
| | - GuoPeng Zhu
- College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228, China
| | - Yunliu Fu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Yonglin Jing
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Bilan Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Chunyang Meng
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Qingquan Yang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Li Xu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China.
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China.
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China.
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China.
| |
Collapse
|
36
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
37
|
Transcriptome Analysis to Identify Genes Related to Flowering Reversion in Tomato. Int J Mol Sci 2022; 23:ijms23168992. [PMID: 36012256 PMCID: PMC9409316 DOI: 10.3390/ijms23168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Flowering reversion is a common phenomenon in plant development in which differentiated floral organs switch from reproductive growth to vegetative growth and ultimately form abnormal floral organs or vegetative organs. This greatly reduces tomato yield and quality. Research on this phenomenon has recently increased, but there is a lack of research at the molecular and gene expression levels. Here, transcriptomic analyses of the inflorescence meristem were performed in two kinds of materials at different developmental stages, and a total of 3223 differentially expressed genes (DEGs) were screened according to the different developmental stages and trajectories of the two materials. The analysis of database annotations showed that these DEGs were closely related to starch and sucrose metabolism, DNA replication and modification, plant hormone synthesis and signal transduction. It was further speculated that tomato flowering reversion may be related to various biological processes, such as cell signal transduction, energy metabolism and protein post-transcriptional regulation. Combined with the results of previous studies, our work showed that the gene expression levels of CLE9, FA, PUCHI, UF, CLV3, LOB30, SFT, S-WOX9 and SVP were significantly different in the two materials. Endogenous hormone analysis and exogenous hormone treatment revealed a variety of plant hormones involved in flowering reversion in tomato. Thus, tomato flowering reversion was studied comprehensively by transcriptome analysis for the first time, providing new insights for the study of flower development regulation in tomato and other plants.
Collapse
|
38
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Yang Y, Zhao T, Xu X, Jiang J, Li J. Transcriptome Analysis to Explore the Cause of the Formation of Different Inflorescences in Tomato. Int J Mol Sci 2022; 23:ijms23158216. [PMID: 35897806 PMCID: PMC9368726 DOI: 10.3390/ijms23158216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
The number of inflorescence branches is an important agronomic character of tomato. The meristem differentiation and development pattern of tomato inflorescence is complex and its regulation mechanism is very different from those of other model plants. Therefore, in order to explore the cause of tomato inflorescence branching, transcriptome analysis was conducted on two kinds of tomato inflorescences (single racemes and compound inflorescences). According to the transcriptome data analysis, there were many DEGs of tomato inflorescences at early, middle, and late stages. Then, GO and KEGG enrichments of DEGs were performed. DEGs are mainly enriched in metabolic pathways, biohormone signaling, and cell cycle pathways. According to previous studies, DEGs were mainly enriched in metabolic pathways, and FALSIFLORA (FA) and ANANTHA (AN) genes were the most notable of 41 DEGs related to inflorescence branching. This study not only provides a theoretical basis for understanding inflorescence branching, but also provides a new idea for the follow-up study of inflorescence.
Collapse
|
40
|
Hu G, Wang K, Huang B, Mila I, Frasse P, Maza E, Djari A, Hernould M, Zouine M, Li Z, Bouzayen M. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. NATURE PLANTS 2022; 8:419-433. [PMID: 35422080 DOI: 10.1038/s41477-022-01121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/03/2022] [Indexed: 05/04/2023]
Abstract
Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN. Tomato dof9-KO lines have more flowers in both determinate and indeterminate cultivars and produce more fruit upon vibration-assisted fertilization. SlDOF9 regulates inflorescence development through an auxin-dependent ARF5-DOF9 module that seems to operate, at least in part, differently in Arabidopsis and tomato. Our findings add a new actor to the complex mechanisms underlying reproductive organ differentiation in flowering plants and provide leads towards addressing the diversity of factors controlling the transition to reproductive organs.
Collapse
Affiliation(s)
- Guojian Hu
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Keke Wang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Baowen Huang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Isabelle Mila
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
| | - Pierre Frasse
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Elie Maza
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Anis Djari
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Michel Hernould
- Biologie du Fruit et Pathologie-UMR 1332, Université Bordeaux, INRAE, Villenave d'Ornon, France
| | - Mohamed Zouine
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France.
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
41
|
Huang X, Xiao N, Zou Y, Xie Y, Tang L, Zhang Y, Yu Y, Li Y, Xu C. Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biol 2022; 23:78. [PMID: 35287709 PMCID: PMC8919559 DOI: 10.1186/s13059-022-02646-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paralogs that arise from gene duplications during genome evolution enable genetic redundancy and phenotypic robustness. Variation in the coding or regulatory sequence of paralogous transcriptional regulators diversifies their functions and relationships, which provides developmental robustness against genetic or environmental perturbation. The fate transition of plant shoot stem cells for flowering and reproductive success requires a robust transcriptional control. However, how paralogs function and interact to achieve such robustness is unknown. RESULTS Here, we explore the genetic relationship and protein behavior of ALOG family transcriptional factors with diverse transcriptional abundance in shoot meristems. A mutant spectrum covers single and higher-order mutant combinations of five ALOG paralogs and creates a continuum of flowering transition defects, showing gradually enhanced precocious flowering, along with inflorescence simplification from wild-type-like to progressively fewer flowers until solitary flower with sterile floral organs. Therefore, these paralogs play unequal roles and act together to achieve a robust genetic canalization. All five proteins contain prion-like intrinsically disordered regions (IDRs) and undergo phase separation. Accumulated mutations following gene duplications lead to IDR variations among ALOG paralogs, resulting in divergent phase separation and transcriptional regulation capabilities. Remarkably, they retain the ancestral abilities to assemble into a heterotypic condensate that prevents precocious activation of the floral identity gene ANANTHA. CONCLUSIONS Our study reveals a novel genetic canalization mechanism enabled by heterotypic transcriptional condensates formed by paralogous protein interactions and phase separation, uncovering the molecular link between gene duplication caused IDR variation and robust transcriptional control of stem cell fate transition.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences Guangdong Ocean University, Zhanjiang, China
| | - Yuan Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
43
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
44
|
Wang X, Liu Z, Sun S, Wu J, Li R, Wang H, Cui X. SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. HORTICULTURE RESEARCH 2021; 8:251. [PMID: 34848688 PMCID: PMC8633288 DOI: 10.1038/s41438-021-00677-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 05/19/2023]
Abstract
Selection for favorable inflorescence architecture to improve yield is one of the crucial targets in crop breeding. Different tomato varieties require distinct inflorescence-branching structures to enhance productivity. While a few important genes for tomato inflorescence-branching development have been identified, the regulatory mechanism underlying inflorescence branching is still unclear. Here, we confirmed that SISTER OF TM3 (STM3), a homolog of Arabidopsis SOC1, is a major positive regulatory factor of tomato inflorescence architecture by map-based cloning. High expression levels of STM3 underlie the highly inflorescence-branching phenotype in ST024. STM3 is expressed in both vegetative and reproductive meristematic tissues and in leaf primordia and leaves, indicative of its function in flowering time and inflorescence-branching development. Transcriptome analysis shows that several floral development-related genes are affected by STM3 mutation. Among them, FRUITFULL1 (FUL1) is downregulated in stm3cr mutants, and its promoter is bound by STM3 by ChIP-qPCR analysis. EMSA and dual-luciferase reporter assays further confirmed that STM3 could directly bind the promoter region to activate FUL1 expression. Mutation of FUL1 could partially restore inflorescence-branching phenotypes caused by high STM3 expression in ST024. Our findings provide insights into the molecular and genetic mechanisms underlying inflorescence development in tomato.
Collapse
Affiliation(s)
- Xiaotian Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
45
|
Yang Y, Yang H, Tan Y, Zhao T, Xu X, Li J, Jiang J. Comparative Genome Analysis of Genes Regulating Compound Inflorescences in Tomato. Int J Mol Sci 2021; 22:ijms222212548. [PMID: 34830429 PMCID: PMC8623504 DOI: 10.3390/ijms222212548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Inflorescences are the main factor affecting fruit yield. The quantity and quality of inflorescences are closely related to fruit quality and yield. The presence of compound inflorescences in cherry tomatoes is well established, and it has been discovered by chance that compound racemes also exist in tomatoes. To explore the formation of compound inflorescences in tomato, transcriptome sequencing was performed on Moneymaker (MM) and Compound Inflorescence (CI) plants. In-florescences were collected in three periods (early, middle and late) in three replicates, for a total of 18 samples. Data analysis showed that the DEGs were most enriched in metabolic pathways and plant hormone signal transduction pathways. The DEGs were also enriched in the cell cycle pathway, photosynthesis pathway, carbon metabolism pathway and circadian rhythm pathway. We found that the FALSIFLORA (FA), COMPOUND INFLORESCENCE (S) and ANANTHA (AN) genes were involved in compound inflorescence development, not only revealing novel genes but also providing a rich theoretical basis for compound inflorescence development.
Collapse
|
46
|
Gaarslev N, Swinnen G, Soyk S. Meristem transitions and plant architecture-learning from domestication for crop breeding. PLANT PHYSIOLOGY 2021; 187:1045-1056. [PMID: 34734278 PMCID: PMC8566237 DOI: 10.1093/plphys/kiab388] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 05/20/2023]
Abstract
Genetic networks that regulate meristem transitions were recurrent targets of selection during crop domestication and allow fine-tuning of plant architecture for improved crop productivity.
Collapse
Affiliation(s)
- Natalia Gaarslev
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwen Swinnen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Hata Y, Kyozuka J. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 107:213-225. [PMID: 33609252 PMCID: PMC8648652 DOI: 10.1007/s11103-021-01126-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 05/02/2023]
Abstract
This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution of plant stem cells. The establishment and maintenance of pluripotent stem cells in the shoot apical meristem (SAM) are key developmental processes in land plants including the most basal, bryophytes. Bryophytes, such as Physcomitrium (Physcomitrella) patens and Marchantia polymorpha, are emerging as attractive model species to study the conserved features and evolutionary processes in the mechanisms controlling stem cells. Recent studies using these model bryophyte species have started to uncover the similarities and differences in stem cell regulation between bryophytes and angiosperms. In this review, we summarize findings on stem cell function and its regulation focusing on different aspects including hormonal, genetic, and epigenetic control. Stem cell regulation through auxin, cytokinin, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling and chromatin modification by Polycomb Repressive Complex 2 (PRC2) and PRC1 is well conserved. Several transcription factors crucial for SAM regulation in angiosperms are not involved in the regulation of the SAM in mosses, but similarities also exist. These findings provide insights into the evolutionary trajectory of the SAM and the fundamental mechanisms involved in stem cell regulation that are conserved across land plants.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
48
|
Yuan X, Fang R, Zhou K, Huang Y, Lei G, Wang X, Chen X. The APETALA2 homolog CaFFN regulates flowering time in pepper. HORTICULTURE RESEARCH 2021; 8:208. [PMID: 34719686 PMCID: PMC8558333 DOI: 10.1038/s41438-021-00643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Flowering time is an important agronomic trait that contributes to fitness in plants. However, the genetic basis of flowering time has not been extensively studied in pepper. To understand the genetics underlying flowering time, we constructed an F2 population by crossing a spontaneous early flowering mutant and a late-flowering pepper line. Using bulked segregant RNA-seq, a major locus controlling flowering time in this population was mapped to the end of chromosome 2. An APETALA2 (AP2) homolog (CaFFN) cosegregated with flowering time in 297 individuals of the F2 population. A comparison between the parents revealed a naturally occurring rare SNP (SNP2T > C) that resulted in the loss of a start codon in CaFFN in the early flowering mutant. Transgenic Nicotiana benthamiana plants with high CaFFN expression exhibited a delay in flowering time and floral patterning defects. On the other hand, pepper plants with CaFFN silencing flowered early. Therefore, the CaFFN gene acts as a flowering repressor in pepper. CaFFN may function as a transcriptional activator to activate the expression of CaAGL15 and miR156e and as a transcriptional repressor to repress the expression of CaAG, CaAP1, CaSEP3, CaSOC1, and miR172b based on a qRT-PCR assay. Direct activation of CaAGL15 by CaFFN was detected using yeast one-hybrid and dual-luciferase reporter assays, consistent with the hypothesis that CaFFN regulates flowering time. Moreover, the CaFFN gene association analysis revealed a significant association with flowering time in a natural pepper population, indicating that the CaFFN gene has a broad effect on flowering time in pepper. Finally, the phylogeny, evolutionary expansion and expression patterns of CaFFN/AP2 homologs were analyzed to provide valuable insight into CaFFN. This study increases our understanding of the involvement of CaFFN in controlling flowering time in pepper, thus making CaFFN a target gene for breeding early maturing pepper.
Collapse
Affiliation(s)
- Xinjie Yuan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Rong Fang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Kunhua Zhou
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Yueqin Huang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Gang Lei
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xuejun Chen
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China.
| |
Collapse
|
49
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
50
|
Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni JJ, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. PLANT PHYSIOLOGY 2021; 186:2078-2092. [PMID: 34618111 PMCID: PMC8331143 DOI: 10.1093/plphys/kiab230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/03/2021] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a highly valuable fruit crop, and yield is one of the most important agronomic traits. However, the genetic architecture underlying tomato yield-related traits has not been fully addressed. Based on ∼4.4 million single nucleotide polymorphisms obtained from 605 diverse accessions, we performed a comprehensive genome-wide association study for 27 agronomic traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many previously reported and additional genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection during tomato domestication and improvement. Furthermore, a candidate gene, Sl-ACTIVATED MALATE TRANSPORTER15, that encodes an aluminum-activated malate transporter was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation, thereby affecting photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | - Wenqian Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengya Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianyu Wang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|