1
|
Tamashiro H, Ishikawa K, Sadotomo K, Ogasawara E, Nakada K. Mitochondrial Respiratory Dysfunction Is Not Correlated With Mitochondrial Genotype in Premature Aging Mice. Aging Cell 2025:e70085. [PMID: 40318128 DOI: 10.1111/acel.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025] Open
Abstract
mtDNA mutator mice (Polgmut/mut mice) have reinforced the mitochondrial theory of aging. These mice accumulate multiple mutations in mtDNA with age due to a homozygous proofreading-deficient mutation in mtDNA polymerase gamma (Polg), resulting in mitochondrial respiratory dysfunction and premature aging phenotypes. However, whether the accumulation of multiple mutations in Polgmut/mut mice induces mitochondrial respiratory dysfunction remains unclear. Here, we determined the accurate mtDNA genotype, including the frequency of total mutations and the number of non-synonymous substitutions and pathogenic mutations, using next-generation sequencing in the progeny of all three genotypes obtained from the mating of heterozygous mtDNA mutator mice (Polg+/mut mice) and examined their correlation with mitochondrial respiratory activity. Although Polg+/mut mice showed equivalent mtDNA genotype to Polg+/+ (wild-type) mice, the mitochondrial respiratory activity in the Polg+/mut mice was mildly reduced. To further investigate the causal relationship between mtDNA genotype and mitochondrial respiratory activity, we experimentally varied the mtDNA genotype in Polg mice. However, mitochondrial respiratory activity was mildly reduced in Polg+/mut mice and severely reduced in Polgmut/mut mice, regardless of the mtDNA genotype. Moreover, by varying the mtDNA genotype, some Polg+/+ mice showed mtDNA genotype equivalent to those of Polgmut/mut mice, but mitochondrial respiratory activity in Polg+/+ mice was normal. These results indicate that the mitochondrial respiratory dysfunction observed in mice with proofreading-deficient mutation in Polg is correlated with the nuclear genotype of Polg rather than the mtDNA genotype. Thus, the mitochondrial theory of aging in Polgmut/mut mice needs further re-examination.
Collapse
Affiliation(s)
- Hiroaki Tamashiro
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Koichi Sadotomo
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
3
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Palacios-González C. Genealogical obscurement: mitochondrial replacement techniques and genealogical research. JOURNAL OF MEDICAL ETHICS 2025; 51:219-224. [PMID: 37130754 DOI: 10.1136/jme-2022-108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Mitochondrial replacement techniques (MRTs) are a new group of biotechnologies that aim to aid women whose eggs have disease-causing deleteriously mutated mitochondria to have genetically related healthy children. These techniques have also been used to aid women with poor oocyte quality and poor embryonic development, to have genetically related children. Remarkably, MRTs create humans with DNA from three sources: nuclear DNA from the intending mother and father, and mitochondrial DNA from the egg donor. In a recent publication Françoise Baylis argued that MRTs are detrimental for genealogical research via mitochondrial DNA because they would obscure the lines of individual descent. In this paper, I argue that MRTs do not obscure genealogical research, but rather that MRT-conceived children can have two mitochondrial lineages. I argue for this position by showing that MRTs are reproductive in nature and, thus, they create genealogy.
Collapse
|
5
|
Zhang X, Zhang L, Xiang W. The impact of mitochondrial dysfunction on ovarian aging. J Transl Med 2025; 23:211. [PMID: 39980008 PMCID: PMC11844166 DOI: 10.1186/s12967-025-06223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
IMPORTANCE Ovarian aging has become a focal point in current research on female aging and refers to the gradual decline in ovarian function as women age. Numerous factors influence ovarian aging, among which mitochondrial function is one because it plays a crucial role by affecting oocytes and granulosa cells. Mitochondrial deterioration not only leads to a decrease in oocyte quality but also hinders follicle development, further impacting women's reproductive health and fertility. OBJECTIVE This review summarizes and integrates research on the impact of mitochondrial function on ovarian aging, outlining the mechanisms by which mitochondria regulate the functions of oocytes and granulosa cells. This study aims to provide potential therapeutic directions to mitigate mitochondrial decline and support female reproductive health. EVIDENCE REVIEW According to a 2023 study published in Cell, factors such as oxidative stress, mitochondrial dysfunction, chronic inflammation, and telomere shortening collectively drive ovarian aging, directly affecting female fertility. Among these factors, mitochondrial dysfunction plays a key role. This study reviewed literature from databases such as PubMed, Google Scholar, and CNKI, using keywords such as "mitochondrial dysfunction", "decline in oocyte quality and quantity", and "ovarian aging", aiming to summarize current research on the mechanisms of the impact of mitochondrial dysfunction on ovarian aging and provide theoretical support for future exploration of related therapeutic strategies. FINDINGS The main characteristics of ovarian aging include a decline in oocyte quantity and quality, fluctuations in hormone levels, and a reduction in granulosa cell function. Studies have shown that mitochondria affect fertility by regulating cellular energy metabolism, exacerbating oxidative stress, causing mitochondrial DNA (mtDNA) damage, and impacting the physiological function of granulosa cells within the ovary, gradually diminishing the ovarian reserve. CONCLUSION This review focuses on analyzing the effects of mitochondrial decline on energy production in oocytes and granulosa cells, the accumulation of reactive oxygen species (ROS), and the calcium ion (Ca2+) concentration, which all contribute to the ovarian aging process, and understanding them will provide new insights into the mechanisms of ovarian aging. RELEVANCE Therapeutic interventions targeting mitochondrial dysfunction may help delay ovarian aging and improve female reproductive health.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Balachandar Thendral S, Bacot S, Morton KS, Chi Q, Kenny-Ganzert IW, Meyer JN, Sherwood DR. Mitophagy at the oocyte-to-zygote transition promotes species immortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636045. [PMID: 39975396 PMCID: PMC11838424 DOI: 10.1101/2025.02.01.636045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The quality of inherited mitochondria determines embryonic viability 1 , metabolic health during adulthood and future generation endurance. The oocyte is the source of all zygotic mitochondria 2 , and mitochondrial health is under strict developmental regulation during early oogenesis 3-5 . Yet, fully developed oocytes exhibit the presence of deleterious mitochondrial DNA (mtDNA) 6,7 and mitochondrial dysfunction from high levels of endogenous reactive oxygen species 8 and exogenous toxicants 9 . How fully developed oocytes prevent transmission of damaged mitochondria to the zygotes is unknown. Here we discover that the onset of oocyte-to-zygote transition (OZT) developmentally triggers a robust and rapid mitophagy event that we term mitophagy at OZT (MOZT). We show that MOZT requires mitochondrial fragmentation, activation of the macroautophagy system and the mitophagy receptor FUNDC1, but not the prevalent mitophagy factors PINK1 and BNIP3. Oocytes upregulate expression of FUNDC1 in response to diverse mitochondrial insults, including mtDNA mutations and damage, uncoupling stress, and mitochondrial dysfunction, thereby promoting selection against damaged mitochondria. Loss of MOZT leads to increased inheritance of deleterious mtDNA and impaired bioenergetic health in the progeny, resulting in diminished embryonic viability and the extinction of descendent populations. Our findings reveal FUNDC1-mediated MOZT as a mechanism that preserves mitochondrial health during the mother-to-offspring transmission and promotes species continuity. These results may explain how mature oocytes from many species harboring mutant mtDNA give rise to healthy embryos with reduced deleterious mtDNA.
Collapse
|
7
|
Meulders B, Marei WFA, Loier L, Leroy JLMR. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. Annu Rev Anim Biosci 2025; 13:233-254. [PMID: 39565833 DOI: 10.1146/annurev-animal-111523-102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Metabolic stress conditions are often characterized by upregulated lipolysis and subsequently increased serum free fatty acid (FFA) concentrations, leading to the uptake of FFAs by non-adipose tissues and impairment of their function. This phenomenon is known as lipotoxicity. The increased serum FFA concentrations are reflected in the ovarian follicular fluid, which can have harmful effects on oocyte development. Several studies using in vitro and in vivo mammalian models showed that altered oocyte metabolism, increased oxidative stress, and mitochondrial dysfunction are crucial mechanisms underlying this detrimental impact. Ultimately, this can impair offspring health through the persistence of defective mitochondria in the embryo, hampering epigenetic reprogramming and early development. In vitro and in vivo treatments to enhance oocyte mitochondrial function are increasingly being developed. This can help to improve pregnancy rates and safeguard offspring health in metabolically compromised individuals.
Collapse
Affiliation(s)
- Ben Meulders
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Waleed F A Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Lien Loier
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium; , , ,
| |
Collapse
|
8
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
10
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Roussou R, Metzler D, Padovani F, Thoma F, Schwarz R, Shraiman B, Schmoller KM, Osman C. Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level. EMBO J 2024; 43:5340-5359. [PMID: 39103491 PMCID: PMC11574196 DOI: 10.1038/s44318-024-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within cells and is required for mitochondrial ATP generation. Even within individual cells, mtDNA copies can differ in their sequence, a state known as heteroplasmy. The principles underlying dynamic changes in the degree of heteroplasmy remain incompletely understood, due to the inability to monitor this phenomenon in real time. Here, we employ mtDNA-based fluorescent markers, microfluidics, and automated cell tracking, to follow mtDNA variants in live heteroplasmic yeast populations at the single-cell level. This approach, in combination with direct mtDNA tracking and data-driven mathematical modeling reveals asymmetric partitioning of mtDNA copies during cell division, as well as limited mitochondrial fusion and fission frequencies, as critical driving forces for mtDNA variant segregation. Given that our approach also facilitates assessment of segregation between intact and mutant mtDNA, we anticipate that it will be instrumental in elucidating the mechanisms underlying the purifying selection of mtDNA.
Collapse
Affiliation(s)
- Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Dirk Metzler
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Rebecca Schwarz
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, 93106, Santa Barbara, CA, USA
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y, Jiang M. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol 2024; 7:1229. [PMID: 39354016 PMCID: PMC11445474 DOI: 10.1038/s42003-024-06888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Oocytes play a crucial role in transmitting maternal mitochondrial DNA (mtDNA), essential for the continuation of species. However, the effects of mitochondrial reactive oxygen species (ROS) on mammalian oocyte maturation and mtDNA maintenance remain unclear. We investigated this by conditionally knocking out the Sod2 gene in primordial follicles, elevating mitochondrial matrix ROS levels from early oocyte stages. Our data indicates that reproductive aging in Sod2 conditional knockout females begins at 6 months, with oxidative stress impairing oocyte quality, particularly affecting OXPHOS complex II and mtDNA-encoded mRNA levels. Despite unchanged mtDNA mutation load, mtDNA copy numbers exhibited significant variations. Strikingly, reducing mtDNA copy numbers by reducing mtSSB protein, crucial for mtDNA replication, accelerated reproductive aging onset to three months, underscoring the critical role of mtDNA copy number maintenance under oxidative stress conditions. This research provides new insights into the relationship among mitochondrial ROS, mtDNA, and reproductive aging, offering potential strategies for delaying aging-related fertility decline.
Collapse
Affiliation(s)
- Shiyun Long
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yunchao Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jing Guo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| | - Yanmei Dou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, Long S, Huang Z, Kong M, Guo J, Jiang M. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. NATURE AGING 2024; 4:1211-1230. [PMID: 39075271 DOI: 10.1038/s43587-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial diseases, caused mainly by pathogenic mitochondrial DNA (mtDNA) mutations, pose major challenges due to the lack of effective treatments. Investigating the patterns of maternal transmission of mitochondrial diseases could pave the way for preventive approaches. In this study, we used DddA-derived cytosine base editors (DdCBEs) to generate two mouse models, each haboring a single pathogenic mutation in complex I genes (ND1 and ND5), replicating those found in human patients. Our findings revealed that both mutations are under strong purifying selection during maternal transmission and occur predominantly during postnatal oocyte maturation, with increased protein synthesis playing a vital role. Interestingly, we discovered that maternal age intensifies the purifying selection, suggesting that older maternal age may offer a protective effect against the transmission of deleterious mtDNA mutations, contradicting the conventional notion that maternal age correlates with increased transmitted mtDNA mutations. As collecting comprehensive clinical data is needed to understand the relationship between maternal age and transmission patterns in humans, our findings may have profound implications for reproductive counseling of mitochondrial diseases, especially those involving complex I gene mutations.
Collapse
Affiliation(s)
- Yanfei Ru
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Jiatong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Leping Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Qunyu Lv
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shiyun Long
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Minghua Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
16
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
18
|
Árnadóttir ER, Moore KHS, Guðmundsdóttir VB, Ebenesersdóttir SS, Guity K, Jónsson H, Stefánsson K, Helgason A. The rate and nature of mitochondrial DNA mutations in human pedigrees. Cell 2024; 187:3904-3918.e8. [PMID: 38851187 DOI: 10.1016/j.cell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Collapse
Affiliation(s)
| | | | - Valdís B Guðmundsdóttir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Kamran Guity
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
19
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
20
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
22
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
23
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
24
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
25
|
Flowers S, Kothari R, Torres Cleuren YN, Alcorn MR, Ewe CK, Alok G, Fiallo SL, Joshi PM, Rothman JH. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 2023; 12:e79725. [PMID: 37782016 PMCID: PMC10545429 DOI: 10.7554/elife.79725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). 'Purifying selection' mechanisms operate to remove such dysfunctional mtDNAs. We found that activators of programmed cell death (PCD), including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1-kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-dependent accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and the aging program are required for germline mtDNA quality control and its intergenerational transmission.
Collapse
Affiliation(s)
- Sagen Flowers
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Rushali Kothari
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yamila N Torres Cleuren
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
- Computational Biology Unit, Institute for Informatics, University of BergenBergenNorway
| | - Melissa R Alcorn
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Samantha L Fiallo
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
26
|
Alexeyev M. TFAM in mtDNA Homeostasis: Open Questions. DNA 2023; 3:134-136. [PMID: 37771599 PMCID: PMC10538575 DOI: 10.3390/dna3030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Transcription factor A, mitochondrial (TFAM) is a key player in mitochondrial DNA (mtDNA) transcription and replication [...]
Collapse
Affiliation(s)
- Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
27
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
29
|
Kozhukhar N, Alexeyev MF. 35 Years of TFAM Research: Old Protein, New Puzzles. BIOLOGY 2023; 12:823. [PMID: 37372108 DOI: 10.3390/biology12060823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Transcription Factor A Mitochondrial (TFAM), through its contributions to mtDNA maintenance and expression, is essential for cellular bioenergetics and, therefore, for the very survival of cells. Thirty-five years of research on TFAM structure and function generated a considerable body of experimental evidence, some of which remains to be fully reconciled. Recent advancements allowed an unprecedented glimpse into the structure of TFAM complexed with promoter DNA and TFAM within the open promoter complexes. These novel insights, however, raise new questions about the function of this remarkable protein. In our review, we compile the available literature on TFAM structure and function and provide some critical analysis of the available data.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
30
|
Kozhukhar N, Alexeyev MF. The C-Terminal Tail of Mitochondrial Transcription Factor A Is Dispensable for Mitochondrial DNA Replication and Transcription In Situ. Int J Mol Sci 2023; 24:9430. [PMID: 37298383 PMCID: PMC10253692 DOI: 10.3390/ijms24119430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial transcription factor A (TFAM) is one of the widely studied but still incompletely understood mitochondrial protein, which plays a crucial role in the maintenance and transcription of mitochondrial DNA (mtDNA). The available experimental evidence is often contradictory in assigning the same function to various TFAM domains, partly owing to the limitations of those experimental systems. Recently, we developed the GeneSwap approach, which enables in situ reverse genetic analysis of mtDNA replication and transcription and is devoid of many of the limitations of the previously used techniques. Here, we utilized this approach to analyze the contributions of the TFAM C-terminal (tail) domain to mtDNA transcription and replication. We determined, at a single amino acid (aa) resolution, the TFAM tail requirements for in situ mtDNA replication in murine cells and established that tail-less TFAM supports both mtDNA replication and transcription. Unexpectedly, in cells expressing either C-terminally truncated murine TFAM or DNA-bending human TFAM mutant L6, HSP1 transcription was impaired to a greater extent than LSP transcription. Our findings are incompatible with the prevailing model of mtDNA transcription and thus suggest the need for further refinement.
Collapse
Affiliation(s)
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
31
|
Xiong Z, Liu X, Wang Q, Ji B, Jia J. Effects of high-altitude hypoxia on embryonic developmental potential in women undergoing IVF/ICSI procedures. Arch Gynecol Obstet 2023; 307:1983-1989. [PMID: 37039891 DOI: 10.1007/s00404-023-07014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE In this study we examined the effects of long-term adaptation to hypoxia on embryonic developmental potential of oocytes collected from women who underwent IVF/ICSI procedures. METHODS We selected young infertile women who lived in a low-altitude normoxic environment (n = 80, altitude < 500 m) or high-altitude hypoxic environment (n = 100, altitude > 2500 m) for a lengthy period of time and who planned to undergo IVF/ICSI procedures. We then determined the baseline reproductive hormone levels, gonadotropin (Gn) dose and Gn treatment duration during controlled ovarian hyperstimulation (COH), number of oocytes retrieved, number of mature oocytes, oocyte maturation rate, fertilization rate, normal fertilization rate, day (D3) embryo-formation rate, blastocyst formation rate, good-quality formation rate, D5 blastocyst formation rate, and D6 blastocyst formation rate between the two groups. RESULTS Compared with the low-altitude normoxic group, the various reproductive hormone markers of women in the high-altitude hypoxia group were lower, with LH and T levels significantly reduced (P < 0.05) at 72.29 and 72.44% of the normoxic group, respectively (normoxic group vs. hypoxic group, 5.24 ± 1.61 vs. 3.79 ± 1.21; 0.61 ± 0.18 vs. 0.42 ± 0.15; P < 0.05). During ovarian hyperstimulation, a greater Gn dose and longer Gn treatment duration were required for the hypoxic group to complete COH (normoxic group vs. hypoxic group, 2152.08 IU ± 52.76 vs. 2622.09 IU ± 123.28; 9.96 days ± 1.27 vs. 11.54 days ± 1.34, respectively; P < 0.05). The fertilization, cleavage, and D3 embryo-formation rates tended to be higher in the normoxic group than in the hypoxic group (P > 0.05); while the normal fertilization rate tended to lower than in the hypoxic group (P > 0.05). When we conducted an analysis of blastocyst formation rates at different timepoints, we ascertained that the blastocyst formation rate, usable blastocyst rate, and good-quality blastocyst rate of the hypoxic group were all lower than in the normoxic group, with the difference in usable blastocyst rate the most highly significant (normoxic group vs. hypoxic group, 75.31 ± 5.53 vs. 56.04 ± 6.10%, respectively; P < 0.05). In addition, the D5 and D6 blastocyst-formation rates in the normoxic group were slightly higher than in the hypoxic group, revealing that not only were fewer blastocysts formed in the hypoxic group but that there was also a delay in blastocyst formation. CONCLUSION In young women undergoing IVF/ICSI treatment, long-term hypoxic adaptation required augmented Gn dose and Gn treatment duration during COH, and blastocyst developmental potential was also attenuated.
Collapse
Affiliation(s)
- Zhengfang Xiong
- Reproductive Center, Qinghai Provincial People's Hospital, No. 2, Gonghe Road, Chengdong District, Xining, 810007, Qinghai, China.
| | - Xiaolei Liu
- Graduate School of Qinghai University, Xining, 810007, China
| | - Qingdi Wang
- Graduate School of Qinghai University, Xining, 810007, China
| | - Bing Ji
- Reproductive Center, Qinghai Provincial People's Hospital, No. 2, Gonghe Road, Chengdong District, Xining, 810007, Qinghai, China
| | - Jingrong Jia
- Reproductive Center, Qinghai Provincial People's Hospital, No. 2, Gonghe Road, Chengdong District, Xining, 810007, Qinghai, China
| |
Collapse
|
32
|
Glastad RC, Johnston IG. Mitochondrial network structure controls cell-to-cell mtDNA variability generated by cell divisions. PLoS Comput Biol 2023; 19:e1010953. [PMID: 36952562 PMCID: PMC10072490 DOI: 10.1371/journal.pcbi.1010953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in different cells, from cell-wide reticulated networks to fragmented individual organelles. These physical structures are known to influence the genetic makeup of mtDNA populations between cell divisions, but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use statistical and computational models of mtDNA content inside and outside the reticulated network to quantify how mitochondrial network structure can control the variances of inherited mtDNA copy number and mutant load. We assess the use of moment-based approximations to describe heteroplasmy variance and identify several cases where such an approach has shortcomings. We show that biased inclusion of one mtDNA type in the network can substantially increase heteroplasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Network structure also allows the generation of heteroplasmy variance while controlling copy number inheritance to sub-binomial levels, reconciling several observations from the experimental literature. Overall, different network structures and mtDNA arrangements within them can control the variances of key variables to suit a palette of different inheritance priorities.
Collapse
Affiliation(s)
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Gruhn WH, Tang WW, Dietmann S, Alves-Lopes JP, Penfold CA, Wong FC, Ramakrishna NB, Surani MA. Epigenetic resetting in the human germ line entails histone modification remodeling. SCIENCE ADVANCES 2023; 9:eade1257. [PMID: 36652508 PMCID: PMC9848478 DOI: 10.1126/sciadv.ade1257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation. Efficient maintenance of a heterochromatic state is limited to a subset of genomic loci, such as evolutionarily young TEs and some developmental genes, which require H3K9me3 and H3K27me3, respectively, for efficient transcriptional repression. Accordingly, transcriptional repression in hPGCs presents an exemplary balanced system relying on local maintenance of heterochromatic features and a lack of inductive cues.
Collapse
Affiliation(s)
- Wolfram H. Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Walfred W.C. Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Sabine Dietmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - João P. Alves-Lopes
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Christopher A. Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Frederick C. K. Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
| | - Navin B. Ramakrishna
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore 138672, Singapore
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge CB2 3EL, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
34
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
35
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
36
|
Nagamatsu G. Oocyte aging in comparison to stem cells in mice. FRONTIERS IN AGING 2023; 4:1158510. [PMID: 37114094 PMCID: PMC10126682 DOI: 10.3389/fragi.2023.1158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
To maintain homeostasis, many tissues contain stem cells that can self-renew and differentiate. Based on these functions, stem cells can reconstitute the tissue even after injury. In reproductive organs, testes have spermatogonial stem cells that generate sperm in men throughout their lifetime. However, in the ovary, oocytes enter meiosis at the embryonic stage and maintain sustainable oogenesis in the absence of stem cells. After birth, oocytes are maintained in a dormant state in the primordial follicle, which is the most premature follicle in the ovary, and some are activated to form mature oocytes. Thus, regulation of dormancy and activation of primordial follicles is critical for a sustainable ovulatory cycle and is directly related to the female reproductive cycle. However, oocyte storage is insufficient to maintain a lifelong ovulation cycle. Therefore, the ovary is one of the earliest organs to be involved in aging. Although stem cells are capable of proliferation, they typically exhibit slow cycling or dormancy. Therefore, there are some supposed similarities with oocytes in primordial follicles, not only in their steady state but also during aging. This review aims to summarise the sustainability of oogenesis and aging phenotypes compared to tissue stem cells. Finally, it focuses on the recent breakthroughs in vitro culture and discusses future prospects.
Collapse
Affiliation(s)
- Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Yamanashi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- *Correspondence: Go Nagamatsu,
| |
Collapse
|
37
|
Chinnery PF. Precision mitochondrial medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2022; 1:e6. [PMID: 38550943 PMCID: PMC10953752 DOI: 10.1017/pcm.2022.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2024]
Abstract
Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1,100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here, we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.
Collapse
Affiliation(s)
- Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
38
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
39
|
Schwartz AZA, Tsyba N, Abdu Y, Patel MR, Nance J. Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. eLife 2022; 11:e80396. [PMID: 36200990 PMCID: PMC9536838 DOI: 10.7554/elife.80396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.
Collapse
Affiliation(s)
- Aaron ZA Schwartz
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Nikita Tsyba
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Yusuff Abdu
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
40
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
41
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
42
|
Rodríguez-Nuevo A, Torres-Sanchez A, Duran JM, De Guirior C, Martínez-Zamora MA, Böke E. Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I. Nature 2022; 607:756-761. [PMID: 35859172 PMCID: PMC9329100 DOI: 10.1038/s41586-022-04979-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2022] [Indexed: 12/23/2022]
Abstract
Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.
Collapse
Affiliation(s)
- Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan M Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristian De Guirior
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Angeles Martínez-Zamora
- Gynaecology Department, Institute Clinic of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Barcelona, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
43
|
Role of Mitochondria Transfer in Infertility: A Commentary. Cells 2022; 11:cells11121867. [PMID: 35740996 PMCID: PMC9221194 DOI: 10.3390/cells11121867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria transfer techniques were first designed to prevent the transmission of diseases due to mutations in mtDNA, as these organelles are exclusively transmitted to the offspring by the oocyte. Despite this, given the crucial role of mitochondria in oocyte maturation, fertilization and subsequent embryo development, these approaches have been proposed as new potential strategies to overcome poor oocyte quality in infertile patients. This condition is a very common cause of infertility in patients of advanced maternal age, and patients with previous in vitro fertilization (IVF) attempt failures of oocyte origin. In this context, the enrichment or the replacement of the whole set of the oocyte mitochondria may improve its quality and increase these patients’ chances of success after an IVF treatment. In this short review, we will provide a brief overview of the main human studies using heterologous and autologous mitochondria transfer techniques in the reproductive field, focusing on the etiology of the treated patients and the final outcome. Although there is no current clearly superior mitochondria transfer technique, efforts must be made in order to optimize them and bring them into regular clinical practice, giving these patients a chance to achieve a pregnancy with their own oocytes.
Collapse
|
44
|
Fan XY, Guo L, Chen LN, Yin S, Wen J, Li S, Ma JY, Jing T, Jiang MX, Sun XH, Chen M, Wang F, Wang ZB, Zhang CF, Wang XH, Ge ZJ, Hu C, Zeng L, Shen W, Sun QY, Ou XH, Luo SM. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng 2022; 6:339-350. [PMID: 35437313 DOI: 10.1038/s41551-022-00881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Mitochondrial replacement therapy (MRT) has been used to prevent maternal transmission of disease-causing mutations in mitochondrial DNA (mtDNA). However, because MRT requires nuclear transfer, it carries the risk of mtDNA carryover and hence of the reversion of mtDNA to pathogenic levels owing to selective replication and genetic drift. Here we show in HeLa cells, mouse embryos and human embryos that mtDNA heteroplasmy can be reduced by pre-labelling the mitochondrial outer membrane of a donor zygote via microinjection with an mRNA coding for a transmembrane peptide fused to an autophagy receptor, to induce the degradation of the labelled mitochondria via forced mitophagy. Forced mitophagy reduced mtDNA carryover in newly reconstructed embryos after MRT, and had negligible effects on the growth curve, reproduction, exercise capacity and other behavioural characteristics of the offspring mice. The induction of forced mitophagy to degrade undesired donor mtDNA may increase the clinical feasibility of MRT and could be extended to other nuclear transfer techniques.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Lei Guo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ning Chen
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Jiarong Wen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Sen Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tao Jing
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Man-Xi Jiang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-Hong Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meilan Chen
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Wang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Fa Zhang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xing-Hua Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Chun Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lizhang Zeng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
45
|
Urbisz AZ, Chajec Ł, Małota K, Student S, Sawadro MK, Śliwińska MA, Świątek P. All for one - changes in mitochondrial morphology and activity during syncytial oogenesis. Biol Reprod 2022; 106:1232-1253. [PMID: 35156116 DOI: 10.1093/biolre/ioac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
The syncytial groups of germ cells (germ-line cysts) forming in ovaries of clitellate annelids are an attractive model to study mitochondrial stage-specific changes. Using transmission electron microscopy, serial block-face scanning electron microscopy, and fluorescent microscopy, we analyzed the mitochondria distribution and morphology and the state of membrane potential in female cysts in Enchytraeus albidus. We visualized in 3D at the ultrastructural level mitochondria in cysts at successive stages: 2-celled, 4-celled, 16-celled cysts, and cyst in advanced oogenesis. We found that mitochondria form extensive aggregates - they are fused and connected into large and branched mitochondrial networks. The most extensive networks are formed with up to 10,000 fused mitochondria, whereas individual organelles represent up to 2% of the total mitochondrial volume. We classify such morphology of mitochondria as a dynamic hyperfusion state, and suggest that it can maintain their high activity and intensifies the process of cellular respiration within the syncytial cysts. We found some individual mitochondria undergoing degradation, which implies that damaged mitochondria are removed from networks for their final elimination. As it was shown that growing oocytes possess less active mitochondria than the nurse cells, it suggests that the high activity of mitochondria in the nurse cells and their dynamic hyperfusion state serve the needs of the growing oocyte. Additionally, we measured by calorimetry the total antioxidant capacity of germ-line cysts in comparison to somatic tissue, and it suggests that antioxidative defense systems, together with mitochondrial networks, can effectively protect germ-line mitochondria from damage.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Marta K Sawadro
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
46
|
Liu C, Fetterman JL, Sun X, Yan K, Liu P, Luo Y, Ding J, Zhu J, Levy D. Comparison of mitochondrial DNA sequences from whole blood and lymphoblastoid cell lines. Sci Rep 2022; 12:1801. [PMID: 35110616 PMCID: PMC8810874 DOI: 10.1038/s41598-022-05814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2022] [Indexed: 01/19/2023] Open
Abstract
Lymphoblastoid cell lines (LCLs) provide an unlimited source of genomic DNA for genetic studies. Here, we compared mtDNA sequence variants, heteroplasmic or homplasmic, between LCL (sequenced by mitoRCA-seq method) and whole blood samples (sequenced through whole genome sequencing approach) of the same 130 participants in the Framingham Heart Study. We applied harmonization of sequence coverages and consistent quality control to mtDNA sequences. We identified 866 variation sites in the 130 LCL samples and 666 sites in the 130 blood samples. More than 94% of the identified homoplasmies were present in both LCL and blood samples while more than 70% of heteroplasmic sites were uniquely present either in LCL or in blood samples. The LCL and whole blood samples carried a similar number of homoplasmic variants (p = 0.45) per sample while the LCL carried a greater number of heteroplasmic variants than whole blood per sample (p < 2.2e-16). Furthermore, the LCL samples tended to accumulate low level heteroplasmies (heteroplasmy level in 3-25%) than their paired blood samples (p = 0.001). These results suggest that cautions should be taken in the interpretation and comparison of findings when different tissues/cell types or different sequencing technologies are applied to obtain mtDNA sequences.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA.
| | | | - Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Kaiyu Yan
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Jun Zhu
- System Biology Center, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI/NIH, Bethesda, MD, 20892, USA.
- Framingham Heart Study, Framingham, MA, 01702, USA.
| |
Collapse
|
47
|
Jun YW, Albarran E, Wilson DL, Ding J, Kool ET. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses. Angew Chem Int Ed Engl 2022; 61:e202111829. [PMID: 34851014 PMCID: PMC8792287 DOI: 10.1002/anie.202111829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial function in cells declines with aging and with neurodegeneration, due in large part to accumulated mutations in mitochondrial DNA (mtDNA) that arise from deficient DNA repair. However, measuring this repair activity is challenging. We employ a molecular approach for visualizing mitochondrial base excision repair (BER) activity in situ by use of a fluorescent probe (UBER) that reacts rapidly with AP sites resulting from BER activity. Administering the probe to cultured cells revealed signals that were localized to mitochondria, enabling selective observation of mtDNA BER intermediates. The probe showed elevated DNA repair activity under oxidative stress, and responded to suppression of glycosylase activity. Furthermore, the probe illuminated the time lag between the initiation of oxidative stress and the initial step of BER. Absence of MTH1 in cells resulted in elevated demand for BER activity upon extended oxidative stress, while the absence of OGG1 activity limited glycosylation capacity.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| | - Eddy Albarran
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, California, 94305, United States
| | - David L. Wilson
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| | - Jun Ding
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute, Stanford University School of Medicine, Stanford, California, 94305, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute, Stanford University, Stanford, California, 94305, United States
| |
Collapse
|
48
|
Yang Q, Liu P, Anderson NS, Shpilka T, Du Y, Naresh NU, Li R, Zhu LJ, Luk K, Lavelle J, Zeinert RD, Chien P, Wolfe SA, Haynes CM. LONP-1 and ATFS-1 sustain deleterious heteroplasmy by promoting mtDNA replication in dysfunctional mitochondria. Nat Cell Biol 2022; 24:181-193. [PMID: 35165413 PMCID: PMC8868506 DOI: 10.1038/s41556-021-00840-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.
Collapse
Affiliation(s)
- Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nadine S Anderson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tomer Shpilka
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - YunGuang Du
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nandhitha Uma Naresh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Josh Lavelle
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rilee D Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Jun YW, Albarran E, Wilson DL, Ding J, Kool ET. Fluorescence Imaging of Mitochondrial DNA Base Excision Repair Reveals Dynamics of Oxidative Stress Responses. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| | - Eddy Albarran
- Department of Neurosurgery Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute Stanford University School of Medicine Stanford CA 94305 USA
| | - David L. Wilson
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| | - Jun Ding
- Department of Neurosurgery Department of Neurology and Neurological Sciences, and Wu Tsai Neuroscience institute Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute, and Stanford Cancer Institute Stanford University Stanford CA 94305 USA
| |
Collapse
|
50
|
Adhikari D, Lee IW, Yuen WS, Carroll J. Oocyte mitochondria – Key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod 2022; 106:366-377. [DOI: 10.1093/biolre/ioac024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The development of oocytes and early embryos is dependent on mitochondrial ATP production. This reliance on mitochondrial activity, together with the exclusively maternal inheritance of mitochondria in development, places mitochondria as central regulators of both fertility and transgenerational inheritance mechanisms. Mitochondrial mass and mtDNA content massively increase during oocyte growth. They are highly dynamic organelles and oocyte maturation is accompanied by mitochondrial trafficking around subcellular compartments. Due to their key roles in generation of ATP and reactive oxygen species, oocyte mitochondrial defects have largely been linked with energy deficiency and oxidative stress. Pharmacological treatments and mitochondrial supplementation have been proposed to improve oocyte quality and fertility by enhancing ATP generation and reducing reactive oxygen species levels. More recently, the role of mitochondria-derived metabolites in controlling epigenetic modifiers has provided a mechanistic basis for mitochondria-nuclear crosstalk, allowing adaptation of gene expression to specific metabolic states. Here, we discuss the multi-faceted mechanisms by which mitochondrial function influence oocyte quality, as well as longer-term developmental events within and across generations.
Collapse
Affiliation(s)
| | - In-won Lee
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|