1
|
Iizuka T, Zuberi A, Wei H, Coon V JS, Anton ML, Buyukcelebi K, Adli M, Bulun SE, Yin P. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. Cancer Gene Ther 2025; 32:393-402. [PMID: 40025195 DOI: 10.1038/s41417-025-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Melania Lidia Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Kadir Buyukcelebi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Rath P, Vasigh M, Soleimani T, Euhus DM. Trends, Outcomes, and Costs of Surgical Excisional Biopsy for Fibroadenoma of the Breast. World J Surg 2025; 49:797-803. [PMID: 40059293 DOI: 10.1002/wjs.12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND De-escalating the management of fibroadenoma of the breast has been encouraged, but it is not known whether this has been successful. A better understanding of the costs and benefits of surgical excisional biopsy is essential for managing individual patients and health systems. METHODS Prospectively maintained data sources from the Johns Hopkins regional health system were used to capture trends in the rate of diagnosis and excision of fibroadenoma of the breast. Reasons for excision and the outcomes of those excisions were assessed. These data, together with national population and breast imaging data, were used to estimate the number that are excised in the United States each year. Costs were estimated from commercial payor benchmarking of Medicare reimbursement schedules. RESULTS It is estimated that 81,548 excisional breast biopsies are performed in the United States each year for fibroadenoma. The cost for these excisions is conservatively estimated at $662 million. Though the number of image-guided core needle biopsies performed is increasing in the Johns Hopkins system, the number of surgical excisions for fibroadenoma is decreasing. Excisional biopsy of 201 fibroadenomas diagnosed on core biopsy returned one (0.5%) benign phyllodes and one (0.5%) borderline phyllodes. Neither of these was distinguishable from the fibroadenomas based on size or growth. The most common reason for excision was patient preference. CONCLUSIONS Neither size nor growth is sufficient to mandate excision of a fibroadenoma. Because the presence of a breast lump will continue to drive demand for excisions, development of less expensive office-based alternatives would be extremely valuable.
Collapse
Affiliation(s)
- Piyush Rath
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Mahtab Vasigh
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tahereh Soleimani
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
3
|
Odintsov I, Papke DJ, George S, Padera RF, Hornick JL, Siegmund SE. Genomic Profiling of Cardiac Angiosarcoma Reveals Novel Targetable KDR Variants, Recurrent MED12 Mutations, and a High Burden of Germline POT1 Alterations. Clin Cancer Res 2025; 31:1091-1102. [PMID: 39820259 DOI: 10.1158/1078-0432.ccr-24-3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Cardiac angiosarcoma is a rare, aggressive malignancy with limited treatment options. Both sporadic and familial cases occur, with recent links to germline POT1 mutations. The genomic landscape of this disease is poorly understood. EXPERIMENTAL DESIGN We conducted comprehensive genomic profiling of cardiac angiosarcoma to assess the burden of germline predisposition and identify other recurrent genomic alterations of clinical significance. RESULTS Six patients were female, and four were male. The median age at presentation was 40 years (range, 21-69 years). All cases with available follow-up exhibited an aggressive clinical course (6/8 patients died of disease). KDR alterations, including novel structural variants, were found in 9/11 cases at a rate significantly higher than that in noncardiac angiosarcomas. POT1 mutations were present in 45.5% of cardiac angiosarcoma cases. In three of five POT1-mutant cases, the germline status was confirmed through testing of normal tissue, and in one additional case, the germline status was inferred with high probability through allele frequency analysis. Additionally, we identified novel recurrent MED12 exon 2 mutations in POT1 wild-type cardiac angiosarcoma, suggesting an alternative path to cardiac angiosarcoma oncogenesis. CONCLUSIONS Cardiac angiosarcoma demonstrates a unique genetic profile, distinct from noncardiac angiosarcoma. This study highlights the role of germline POT1 burden on cardiac angiosarcoma development and demonstrates recurrent MED12 alterations for the first time. The reported KDR variants provide a potential avenue for the treatment of this aggressive disease. Given the prevalence of germline POT1 mutations reported in this study, germline genetic testing should be considered in patients diagnosed with cardiac angiosarcoma.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Chorti A, Achilla C, Siasiaridis A, Aristeidis I, Cheva A, Theodosios PT, Chatzikyriakidou A. A Pilot Study of ANXA2, MED12, CALM1 and MAPK1 Gene Variants in Primary Hyperparathyroidism. Balkan J Med Genet 2024; 27:33-39. [PMID: 40070855 PMCID: PMC11892936 DOI: 10.2478/bjmg-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine disorder characterized by the overactivity of the parathyroid glands. While a few genes have been linked to a predisposition for PHPT, the genetic foundation of the disease remains unclear, despite it being the third most prevalent endocrine disorder. This pilot study aimed to investigate, for the first time, the potential association between specific variants in Annexin A2 (ANXA2-rs7170178, rs17191344, rs11633032), Mediator Complex Subunit 12 (MED12-rs1057519912), Calmodulin 1 (CALM1-rs12885713), and Mitogen-Activated Protein Kinase 1 (MAPK1-rs1057519911) genes with PHPT. Previous expression analyses have indicated that the proteins related to these genes are involved in parathyroid adenomas or PTH signaling. Fifty unrelated PHPT patients and an equal number of healthy controls were enrolled in the study. Genotyping was conducted using the polymerase chain reaction - restriction fragment length polymorphism assay. Statistical analysis was performed to assess the connection between genetic variants and PHPT. Our results revealed no significant differences in genotypes' or alleles' distributions of any of the studied variants between PHPT patients and controls. These findings suggest that these variants may not be linked to PHPT in the studied population. This pilot study, focusing on a Caucasian group of PHPT patients, contributes to the existing genetic data for future meta-analyses, which will provide a more precise definition of the genetic factors associated with PHPT susceptibility worldwide.
Collapse
Affiliation(s)
- A Chorti
- First Propedeutic Department of Surgery, AHEPA University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - C Achilla
- Laboratory of Medical Biology - Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - A Siasiaridis
- Laboratory of Medical Biology - Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - I Aristeidis
- First Propedeutic Department of Surgery, AHEPA University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - A Cheva
- Laboratory of Pathology, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - Papavramidis T Theodosios
- First Propedeutic Department of Surgery, AHEPA University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| | - A Chatzikyriakidou
- Laboratory of Medical Biology - Genetics, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
- Genetics Unit, “Papageorgiou” General Hospital of Thessaloniki, Faculty of Medicine, School of Health Sciences, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
5
|
Chen J, Wang T, Mu W. A C->T Variation in 3'-Untranslated Region Elevates MED12 Protein Level in Breast Cancer That Relates to Better Prognosis. Genet Test Mol Biomarkers 2024; 28:343-350. [PMID: 39166292 DOI: 10.1089/gtmb.2023.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Objective: Mediator complex subunit 12 (MED12) is among the most frequently mutated genes in various types of human cancers. However, there is still a lack of understanding regarding the role of MED12 in breast cancer patient. Therefore, the aim of this study is to explore the roles of MED12 in breast cancer. Materials and Methods: We utilized the UALCAN platform (http://ualcan.path.uab.edu/) for analyzing the transcriptional expression, protein expression, and protein phosphorylation data of MED12. Our study involved 35 breast cancer patients. From these samples, we extracted proteins and RNA. To obtain the sequence of MED12 3'-UTR, we performed reverse transcription-polymerase chain reaction and sequencing. We then used TargetScan to predict the miRNA targets of MED12 3'-UTR and confirmed the interactions between miRNAs and MED12 3'-UTR through dual luciferase assay. Results: The protein level of MED12 was upregulated in breast cancer, while the mRNA level did not show significant changes. Interestingly, higher levels of MED12 mRNA were associated with better prognosis, whereas patients with increased MED12 protein levels tended to have a poorer prognosis. Furthermore, through our analysis of the MED12 3'-UTR sequence, we identified a specific C->T variation that was unique to breast tumors. We also identified four miRNAs (miR-204, -211, -450 b, and -518a) that directly target MED12 3'-UTR. Most important, this C->T variation disrupts the interaction between MED12 3'-UTR and miR-450b, ultimately leading to the upregulation of MED12 in breast cancer. Conclusion: Our study revealed a significant finding regarding a mutation site in the MED12 3'-UTR that contributes to the upregulation of MED12 in breast cancer. This mutation disrupts the interactions between specific miRNAs and MED12 mRNA, leading to increased expression of MED12. These findings have important implications for breast cancer diagnosis, as this mutation site can serve as a potent biomarker.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Surgical Oncology, Taizhou Municipal Hospital, Taizhou, PR China
| | - Tairen Wang
- Hangzhou Xihe Medical Aesthetic Clinic, Hangzhou, PR China
| | - Weina Mu
- Department of Integrated Chinese and Western Medicine, Taizhou Municipal Hospital, Taizhou, PR China
| |
Collapse
|
6
|
Li Y, Asif H, Feng Y, Kim JJ, Wei JJ. Somatic MED12 Mutations in Myometrial Cells. Cells 2024; 13:1432. [PMID: 39273004 PMCID: PMC11394142 DOI: 10.3390/cells13171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Over 70% of leiomyoma (LM) harbor MED12 mutations, primarily in exon 2 at c.130-131 (GG). Myometrial cells are the cell origin of leiomyoma, but the MED12 mutation status in non-neoplastic myometrial cells is unknown. In this study, we investigated the mutation burden of MED12 in myometrium. As traditional Sanger or even NGS sequencing may not be able to detect MED12 mutations that are lower than 0.1% in the testing sample, we used duplex deep sequencing analysis (DDS) to overcome this limitation. Tumor-free myometria (confirmed by pathology evaluation) were dissected, and genomic DNA from MED12 exon 2 (test) and TP53 exon 5 (control) were captured by customer-designed probe sets, followed by DDS. Notably, DDS demonstrated that myometrial cells harbored a high frequency of mutations in MED12 exon 2 and predominantly in code c.130-131. In contrast, the baseline mutations in other coding sequences of MED12 exon 2 as well as in the TP53 mutation hotspot, c.477-488 were comparably low in myometrial cells. This is the first report demonstrating a non-random accumulation of MED12 mutations at c.130-131 sites in non-neoplastic myometrial cells which provide molecular evidence of early somatic mutation events in myometrial cells. This early mutation may contribute to the cell origin for uterine LM development in women of reproductive age.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
| | - Huma Asif
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| | - Yue Feng
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
| | - Julie J. Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
7
|
Zeldin J, Sandler DP, Ogunsina K, O’Brien KM. Association of Fibroids, Endometriosis, and Gynecologic Surgeries with Breast Cancer Incidence and Hormone Receptor Subtypes. Cancer Epidemiol Biomarkers Prev 2024; 33:576-585. [PMID: 38260971 PMCID: PMC10990796 DOI: 10.1158/1055-9965.epi-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Fibroids and endometriosis are sex hormone-mediated and exhibit cancer-like behavior. Breast cancer may be more common in women who have had these conditions, but the literature is conflicting and does not always address factors like hysterectomy/oophorectomy status, race/ethnicity, menopause, and hormone receptor subtypes. METHODS Data are from the Sister Study, a cohort of 50,884 U.S. women enrolled in 2003 to 2009 and followed through 2020. Cox proportional hazards models with time-varying exposures and covariates assessed the relationship of fibroids or endometriosis with breast cancer. Logistic regression examined the association with estrogen receptor (ER) status among cases. RESULTS Fibroids (19,932 cases) were positively associated with breast cancer [fully adjusted HR: 1.07; 95% confidence interval (CI): 1.01-1.14], notably among Black participants (HR: 1.34; 95% CI: 1.07-1.69) and women who had a hysterectomy (HR: 1.18; 95% CI: 1.05-1.31). Endometriosis (3,970 cases) was not associated with breast cancer (HR: 0.99; 95% CI: 0.91-1.08). Among 4,419 breast cancer cases, fibroids were positively associated with ER+ subtypes (OR: 1.34; 95% CI: 1.10-1.65), while endometriosis was negatively associated with ER+ subtypes (OR: 0.78; 95% CI: 0.61-1.01). CONCLUSIONS We observed a modest positive association between fibroids and breast cancer, particularly ER+ breast cancer. No relationship with endometriosis and breast cancer incidence was found. IMPACT Fibroids, even in those with a family history of breast cancer, might modify breast cancer risk stratification tools. Future studies should further assess this link and interrogate shared risk factors.
Collapse
Affiliation(s)
- Jordan Zeldin
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Kemi Ogunsina
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
8
|
Huang W, Zhang T, Wang H, Liu Z, Zhai P, Wang X, Wang S. Intravenous metastasis of unexpected uterine sarcoma in the context of uterine fibroids: case report and literature review. Front Oncol 2024; 14:1354032. [PMID: 38425345 PMCID: PMC10902127 DOI: 10.3389/fonc.2024.1354032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Endometrial stromal tumors are rare and complex mesenchymal tumors that often present with clinical symptoms similar to uterine leiomyomas. Due to their atypical nature, they are prone to be misdiagnosed or overlooked by healthcare professionals. This study presents a case report of an incidentally discovered endometrial stromal sarcoma with venous metastasis, which was initially misdiagnosed as a uterine leiomyoma. In addition, this study reviews previously documented cases of similar tumors. Case report During a routine medical examination in 2016, a 50-year-old woman was diagnosed with uterine fibroids. In June 2020, she began experiencing moderate, irregular vaginal bleeding. Nevertheless, a histopathological examination indicated an endometrial stromal sarcoma with a striking amalgamation of both low-grade and high-grade features. Molecular analysis identified a rare MED12 gene mutation. The patient underwent total hysterectomy, bilateral salpingectomy, and resection of the metastatic lesions. Postoperative management included radiotherapy, chemotherapy, and hormone therapy. After completion of chemotherapy, the patient was followed up for 27 months with no evidence of tumor recurrence. Conclusion This case report highlights the importance of pathological, immunohistochemical, and molecular aspects of this rare tumor involving the inferior vena cava and showing the presence of atypical gene mutations. The successful treatment outcome further emphasizes the importance of advances in diagnostic modalities for managing rare tumors like this.
Collapse
Affiliation(s)
- Wenying Huang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Tianwei Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Hematology and Radiotherapy, Zibo 148 Hospital, Zibo, Shandong, China
| | - Hui Wang
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Peiling Zhai
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xinbo Wang
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Pandey V, Jain P, Chatterjee S, Rani A, Tripathi A, Dubey PK. Variants in exon 2 of MED12 gene causes uterine leiomyoma's through over-expression of MMP-9 of ECM pathway. Mutat Res 2024; 828:111839. [PMID: 38041927 DOI: 10.1016/j.mrfmmm.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/04/2023]
Abstract
AIMS To study the impact of Mediator complex subunit 12 (MED12) gene variants on the encoded protein's function and pathogenic relevance for genesis of uterine leiomyoma's (ULs). METHODS Mutational analysis in exon-2 of MED12 gene was performed by PCR amplification and DNA sequencing in 89 clinically diagnosed ULs tissues. Pathogenicity prediction of variation was performed by computational analysis. The functional effects of missense variation were done by quantity RT-PCR and western blot analysis. RESULT(S) Out of 89 samples, 40 (44.94%) had missense variation in 14 different CDS position of exon-2 of MED12 gene. Out of 40 missense variation, codon 44 had 25 (62.5%) looking as a hotspot region for mutation for ULs, because CDS position c130 and c131present at codon 44 that have necleotide change G>A, T, C at c130 and c131 have necleotide change G>A and C. We also find somenovel somatic mutations oncodon 36 (T > C), 38 (G>T) of exon-2 and 88 (G>C) of intron-2. No mutations were detected in uterine myometrium samples. Our computational analysis suggests that change in Med12c .131 G>A leads to single substitution of amino acid [Glycine (G) to Aspartate (D)] which has a pathogenic and lethal impact and may cause instability of MED12 protein. Further, analysis of extracellular matrix (ECM) component (MMP-2 & 9, COL4A2 and α-SMA) mRNA and protein expression levels in the set of ULs having MED12 mutation showed significantly higher expression of MMP-9 and α-SMA. CONCLUSION(S) The findings of present study suggest that missense variation in codon 44 of MED12 gene lead to the genesis of leiomyoma's through over-expression of MMP-9 of ECM pathway which could be therapeutically targeted for non-surgical management of ULs.
Collapse
Affiliation(s)
- Vivek Pandey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Jain
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida 201313, Uttar Pradesh, India
| | - Souradip Chatterjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anima Tripathi
- MMV, Zoology Section, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Waitzberg ÂFL, Ferreira ENE, Pinilla M, Pineda P, Malinverni ACDM, Soares FA, Carraro DM. Are both distinct epithelial and stromal cells molecular analysis from phyllodes tumors versus fibroadenoma components affected in breast fibroepithelial progression? Acta Cir Bras 2023; 38:e386823. [PMID: 38055384 DOI: 10.1590/acb386823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To determine molecular events involved in the tumorigenesis of phyllodes tumors (PT) and the role of each stromal (SC) and epithelial (EC) cell. METHODS Frozen breast samples enriched with epithelial and stromal cells from three fibroadenomas and 14 PT were retrieved and laser microdissected. Sanger and polymerase chain reaction-based sequencing of exon 2 MED12 and TERT promoter hotspot mutations were performed; 44K microarray platform was used to analyze gene expression. RESULTS All three fibroadenomas (FAs) presented mutations in MED12, but not in TERT, whose mutation was observed in five of the 14 PTs. EC and SC of each affected tumor displayed identical alterations. Of the total differentially expressed genes (DEG) (EC = 1,543 and SC = 850), 984 were EC-eDEGs and 291 were SC-eDEGs. We found a high similarity of diseases and functions enriched by both cell types, but dissimilarity in the number of enriched canonical pathways. Three signaling canonical pathways overlapping with EC and SC were predicted to be activated in one cell type and inactivated in the other, while no overlap in eDEGs was assigned to them. We also identified 13 EC-eDEGs and five SC-eDEGs enriched networks, in which the SC-eDEGs were able to segregate FA from PT samples. CONCLUSIONS Identical TERT mutations from both SC and ES origins might affect the PTs tumorigenesis. Gene expression differences suggest coordinated molecular processes between these components with determinant differences acquired by SC, able to fully distinguish PTs from FAs lesions.
Collapse
Affiliation(s)
| | - Elisa Napolitano E Ferreira
- Universidade Federal de São Paulo - Paulista School of Medicine - Department of Pathology - São Paulo (SP), Brazil
| | - Mabel Pinilla
- Universidad de Concepción - Facultad de Medicina - Department of Medical Technology - Concepción, Chile
| | - Paulo Pineda
- Hospital A C Camargo - Genomics and Molecular Biology Group - São Paulo (SP), Brazil
| | - Andréa Cristina de Moraes Malinverni
- Universidade Federal de São Paulo - Paulista School of Medicine - Department of Pathology - São Paulo (SP), Brazil
- Universidade Federal de São Paulo - Laboratory of Molecular and Experimental Pathology I - São Paulo (SP), Brazil
| | | | - Dirce Maria Carraro
- Hospital A C Camargo - Genomics and Molecular Biology Group - São Paulo (SP), Brazil
| |
Collapse
|
11
|
Anderson B, Marotti JD, Lefferts JA, Muller KE. Periductal Stromal Tumor of the Breast with a TERT Promoter Mutation: First Case Report with Comprehensive Molecular Analysis. Int J Surg Pathol 2023; 31:1626-1631. [PMID: 36823780 PMCID: PMC10942729 DOI: 10.1177/10668969231157306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The molecular pathogenesis of breast fibroepithelial tumors continues to be elucidated. Recently, highly recurrent MED12 mutations arising in exon 2 at codon 44 were discovered in fibroadenomas and phyllodes tumors. In addition, a high prevalence of TERT promoter mutations in two hotspots (124 and 126 bp upstream from the translation start site) was discovered in up to 65% of phyllodes tumors. Breast periductal stromal tumors are a potentially distinct category of fibroepithelial lesions that are exceptionally rare with controversial classification and pathogenesis. Herein, we report the first comprehensive molecular genetic workup of a breast periductal stromal tumor that harbored a TERT promoter -124C > T mutation, supporting a relation to phyllodes tumors.
Collapse
Affiliation(s)
- Blaire Anderson
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jonathan D. Marotti
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Joel A. Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kristen E. Muller
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
12
|
Dadmanesh F, Li X, Leong M, Maluf H, Balzer B. The Genetic Landscape of Fibroepithelial Lesions of the Breast. Adv Anat Pathol 2023; 30:415-420. [PMID: 37539688 DOI: 10.1097/pap.0000000000000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Fibroepithelial lesions of the breast encompass a broad spectrum of lesions from fibroadenomas and their variants to phyllodes tumors, including their clinical range of benign, borderline, and malignant. Classification of this spectrum of neoplasms has historically and currently been based purely on morphology, although the nomenclature has shifted over the years largely due to the significant histologic overlap that exists primarily within the cellular fibroadenomas to borderline malignant phyllodes tumor categories. A review of the current diagnostic challenge, proposed ancillary studied and their value in prognostic significance, is provided. This article highlights the most recent molecular and genetic findings as well as the limitations of the studies, in the context of practical and available applications for the diagnostician and managerial implications for the clinician.
Collapse
Affiliation(s)
- Farnaz Dadmanesh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | | | | | |
Collapse
|
13
|
Zuberi A, Huang Y, Dotts AJ, Wei H, Coon JS, Liu S, Iizuka T, Wu O, Sotos O, Saini P, Chakravarti D, Boyer TG, Dai Y, Bulun SE, Yin P. MED12 mutation activates the tryptophan/kynurenine/AHR pathway to promote growth of uterine leiomyomas. JCI Insight 2023; 8:e171305. [PMID: 37607000 PMCID: PMC10561729 DOI: 10.1172/jci.insight.171305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.
Collapse
Affiliation(s)
- Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ariel J. Dotts
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shimeng Liu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Wu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Sotos
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Priyanka Saini
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Jorns JM, Farooq A, Puzyrenko A, Jarzembowski J, Thike AA, Nasir NDM, Ng CCY, Liu W, Lee JY, Lim AH, Guan P, Teh BT, Tan PH. Giant juvenile fibroadenomas with and without prominent pseudoangiomatous stromal hyperplasia (PASH)-like change: clinicopathological and molecular characteristics. Histopathology 2023; 83:357-365. [PMID: 37140543 DOI: 10.1111/his.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
AIMS Juvenile fibroadenomas (JFA) are biphasic fibroepithelial lesions (FEL) usually occurring in adolescent female patients. Giant (G) JFA, like other FEL, may exhibit prominent pseudoangiomatous stromal hyperplasia (PASH)-like change. We sought to determine clinicopathological and molecular characteristics of GJFA with and without PASH. METHODS AND RESULTS Archives were searched for cases of GJFA (1985-2020). All were stained for androgen receptor (AR), beta-catenin, CD34 and progesterone receptor (PR). Cases were sequenced using a custom 16-gene panel - MED12 (exons 1 and 2), TERT promoter (-124C>T and -146Ctable>T), SETD2, KMT2D, RARA (exons 5-9), FLNA, NF1, PIK3CA (exons 10, 11 and 21), EGFR, RB1, BCOR, TP53, PTEN, ERBB4, IGF1R and MAP3K1. Twenty-seven GJFA from 21 female patients aged 10.1-25.2 years were identified. Size ranged from 5.2 to 21 cm. Two patients had multiple, bilateral and later recurrent GJFA. Thirteen (48%) cases showed prominent PASH-like stroma. All were positive for stromal CD34, negative for AR and beta-catenin and one case showed focal PR expression. Sequencing showed MAP3K1 and SETD2 mutations in 17 samples, with KMT2D, TP53 and BCOR aberrations in 10 (45%), 10 (45%) and seven (32%) cases, respectively. Tumours with a PASH-like pattern had higher prevalence of SETD2 (P = 0.004) and TP53 (P = 0.029) mutations, while those without PASH had more RB1 mutations (P = 0.043). MED12 mutation was identified in one case. TERT promoter mutation was observed in four (18%), including two recurrences. CONCLUSIONS Gene mutations along more advanced phases of the proposed FEL pathogenetic pathway in GJFA are unusual, and suggest a mechanism for more aggressive growth in these tumours.
Collapse
Affiliation(s)
- Julie M Jorns
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ayesha Farooq
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrii Puzyrenko
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Jarzembowski
- Department of Pathology, Children's Hospital of Wisconsin, Madison, WI, USA
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | | | | | - Wei Liu
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Abner Herbert Lim
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Quantitative Biology and Medicine Programme, Duke-NUS Medical School, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Puay Hoon Tan
- Luma Medical Centre, Singapore
- KK Women's and Children's Hospital, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, University of Western Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Buyukcelebi K, Chen X, Abdula F, Elkafas H, Duval AJ, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Bulun SE, Wei JJ, Yue F, Adli M. Engineered MED12 mutations drive leiomyoma-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. Nat Commun 2023; 14:4057. [PMID: 37429859 DOI: 10.1038/s41467-023-39684-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander James Duval
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Harun Ozturk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Jian Jun Wei
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Chen Z, Zhang Y, Li W, Gao C, Huang F, Cheng L, Jin M, Xu X, Huang J. Single cell profiling of female breast fibroadenoma reveals distinct epithelial cell compositions and therapeutic targets. Nat Commun 2023; 14:3469. [PMID: 37328469 PMCID: PMC10275980 DOI: 10.1038/s41467-023-39059-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroadenomas (FAs) are the most common breast tumors in women. No pharmacological agents are currently approved for FA intervention owing to its unclear mechanisms and a shortage of reproducible human models. Here, using single-cell RNA sequencing of human FAs and normal breast tissues, we observe distinct cellular composition and epithelial structural changes in FAs. Interestingly, epithelial cells exhibit hormone-responsive functional signatures and synchronous activation of estrogen-sensitive and hormone-resistant mechanisms (ERBB2, BCL2 and CCND1 pathways). We develop a human expandable FA organoid system and observe that most organoids seem to be resistant to tamoxifen. Individualized combinations of tamoxifen with ERBB2, BCL2 or CCND1 inhibitors could significantly suppress the viability of tamoxifen-resistant organoids. Thus, our study presents an overview of human FA at single-cell resolution that outlines the structural and functional differences between FA and normal breast epithelium and, in particular, provides a potential therapeutic strategy for breast FAs.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
- Cancer Centre, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
- Cancer Centre, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Chenyi Gao
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
- Cancer Centre, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengbo Huang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Cheng
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
- Cancer Centre, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Huang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
- Cancer Centre, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li Y, McNally RP, Feng Y, Kim JJ, Wei JJ. Racial differences in transcriptomics and reactive oxygen species burden in myometrium and leiomyoma. Hum Reprod 2023; 38:609-620. [PMID: 36749068 PMCID: PMC10068273 DOI: 10.1093/humrep/dead020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Are there differences in Mediator Complex Subunit 12 mutations (MED12) mutation, transcriptomics, and protein expression in uterine myometrium and leiomyomas of Black and White women? SUMMARY ANSWER RNA sequencing, tissue microarray, and immunohistochemistry data revealed that Black and White women have significant differences in their myometrium and leiomyoma profiles. WHAT IS KNOWN ALREADY Black women develop uterine leiomyoma earlier than White women, and are more likely to be anemic, have multiple tumors, undergo hysterectomy at an earlier age, have a higher uterine weight, and report very severe pelvic pain. STUDY DESIGN, SIZE, DURATION Uterine tissues were collected from premenopausal women undergoing hysterectomy or myomectomy at Northwestern University Prentice Women's Hospital (Chicago, IL) from 2010 to 2021. Tissues were collected from a total of 309 women, including from 136 Black women, 135 White women, and 38 women from other racial groups. A total of 529 uterine leiomyomas (290 from Black women, 184 from White women, and 55 from women of other racial groups) were subjected to molecular analysis. Leiomyoma and matched myometrium from a total of 118 cases including 60 Black women and 58 White women, were used for tissue microarrays, along with 34 samples of myometrium without leiomyoma from White women. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissues from the above patient cohorts were analyzed by tissue microarray, immunohistochemistry, RNA sequencing, and mutation analysis. MAIN RESULTS AND THE ROLE OF CHANCE The results indicated that leiomyoma from Black women have a higher rate of MED12 mutations (79.0%) than those from White women (68.5%) (*P ≤ 0.05). RNA-sequencing analysis in myometrium revealed differentially expressed genes (270 upregulated, 374 downregulated) dependent on race, wherein reactive oxygen species, hypoxia, and oxidative phosphorylation pathways were positively correlated with samples derived from Black patients. The levels of proteins associated with oxidative DNA damage and repair, 8-hydroxyguanosine (8-OHdG), 8-oxoguanine glycosylase (OGG1), heme oxygenase-1 (HO-1), and kelch-like ECH-associated protein 1 (KEAP1), were higher in leiomyoma and matched myometrium, particularly those from Black patients, compared to the control myometrium (with leiomyoma) (***P ≤ 0.001). LARGE SCALE DATA The datasets are available in the NCBI (The BioProject number: PRJNA859428). LIMITATIONS, REASONS FOR CAUTION Myometrium without leiomyoma derived from White patients was used as a control in the tissue microarray analysis, as myometrium without leiomyoma from Black patients was not accessible in large numbers. The RNA sequencing was performed on myometrium tissue with leiomyoma present from 10 White and 10 Black women. However, one sample from a Black woman yielded low-quality RNA-sequencing data and was excluded from further analysis. WIDER IMPLICATIONS OF THE FINDINGS Women with symptomatic leiomyomas have a considerable loss in their quality of life. This study provides information on underlying genetic and molecular defects that may be necessary for future therapeutics targeted at leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from NCI (R01CA254367) and NICHD (P01HD057877). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Ross P McNally
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Tan PH. Refining the classification of breast phyllodes tumours. Pathology 2023; 55:437-448. [PMID: 37085395 DOI: 10.1016/j.pathol.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 04/23/2023]
Abstract
Phyllodes tumours of the breast are uncommon fibroepithelial neoplasms that pose recurrent classification challenges, in large part due to the multiple histological parameters of stromal hypercellularity and atypia, stromal mitotic count, stromal overgrowth and tumour borders, that are used for grading. While the World Health Organization (WHO) Classification of Breast Tumours provides recommendations on diagnostic features, defining criteria are not always applied in routine practice. Lack of concordance among pathologists in typing and grading further underscores the classification difficulties, especially in the borderline category. Although there has been significant molecular information on phyllodes tumours in recent years which has been diagnostically helpful, it has not been translated into daily clinical practice. In order to refine the classification of phyllodes tumours into one that is simple yet comprehensive, reproducible and prognostically precise, a multipronged approach is needed that leverages on global contributions of the International Fibroepithelial Consortium, support by the International Collaboration on Cancer Classification and Research (IC3 R) in amalgamating evidence translation, and guidance from the International Collaboration on Cancer Reporting (ICCR) for standardised reporting. It is hoped that the evidence generated can be used towards refining the classification of phyllodes tumours for the future.
Collapse
Affiliation(s)
- Puay Hoon Tan
- Luma Medical Centre, Singapore; KK Women's and Children's Hospital, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pathology, University of Western Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Buyukcelebi K, Chen X, Abdula F, Duval A, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Wei JJ, Bulun S, Yue F, Adli M. Engineered MED12 mutations drive uterine fibroid-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. RESEARCH SQUARE 2023:rs.3.rs-2537075. [PMID: 36798375 PMCID: PMC9934745 DOI: 10.21203/rs.3.rs-2537075/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Uterine fibroid (UF) tumors originate from a mutated smooth muscle cell (SMC). Nearly 70% of these tumors are driven by hotspot recurrent somatic mutations in the MED12 gene; however, there are no tractable genetic models to study the biology of UF tumors because, under culture conditions, the non-mutant fibroblasts outgrow the mutant SMC cells, resulting in the conversion of the population to WT phenotype. The lack of faithful cellular models hampered our ability to delineate the molecular pathways downstream of MED12 mutations and identify therapeutics that may selectively target the mutant cells. To overcome this challenge, we employed CRISPR knock-in with a sensitive PCR-based screening strategy to precisely engineer cells with mutant MED12 Gly44, which constitutes 50% of MED12 exon two mutations. Critically, the engineered myometrial SMC cells recapitulate several UF-like cellular, transcriptional and metabolic alterations, including enhanced proliferation rates in 3D spheres and altered Tryptophan/kynurenine metabolism. Our transcriptomic analysis supported by DNA synthesis tracking reveals that MED12 mutant cells, like UF tumors, have heightened expression of DNA repair genes but reduced DNA synthesis rates. Consequently, these cells accumulate significantly higher rates of DNA damage and are selectively more sensitive to common DNA-damaging chemotherapy, indicating mutation-specific and therapeutically relevant vulnerabilities. Our high-resolution 3D chromatin interaction analysis demonstrates that the engineered MED12 mutations drive aberrant genomic activity due to a genome-wide chromatin compartmentalization switch. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a novel platform for the broader scientific community to characterize genomics of recurrent MED12 mutations and discover potential therapeutic targets.
Collapse
|
20
|
Yun J, Heo W, Lee ES, Na D, Kang W, Kang J, Chae J, Lee D, Lee W, Hwang J, Yoo TK, Hong BS, Son HY, Noh DY, Lee C, Moon HG, Kim JI. An integrative approach for exploring the nature of fibroepithelial neoplasms. Br J Cancer 2023; 128:626-637. [PMID: 36522480 PMCID: PMC9938154 DOI: 10.1038/s41416-022-02064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malignant phyllodes tumour (MPT) is a rare breast malignancy with epithelial and mesenchymal features. Currently, there are no appropriate research models or effective targeted therapeutic approaches for MPT. METHODS We collected fresh frozen tissues from nine patients with MPT and performed whole-exome and RNA sequencing. Additionally, we established patient-derived xenograft (PDX) models from patients with MPT and tested the efficacy of targeting dysregulated pathways in MPT using the PDX model from one MPT. RESULTS MPT has unique molecular characteristics when compared to breast cancers of epithelial origin and can be classified into two groups. The PDX model derived from one patient with MPT showed that the mouse epithelial component increased during tumour growth. Moreover, targeted inhibition of platelet-derived growth factor receptor (PDGFR) and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) by imatinib mesylate and PKI-587 showed in vivo tumour suppression effects. CONCLUSIONS This study revealed the molecular profiles of MPT that can lead to molecular classification and potential targeted therapy, and suggested that the MPT PDX model can be a useful tool for studying the pathogenesis of fibroepithelial neoplasms and for preclinical drug screening to find new therapeutic strategies for MPT.
Collapse
Affiliation(s)
- Jihui Yun
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woohang Heo
- Interdisciplinary Program on Tumor Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Shin Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Deukchae Na
- Ewha Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Wonyoung Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jinjoo Kang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeesoo Chae
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dakyung Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinha Hwang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae-Kyung Yoo
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bok Sil Hong
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye-Youn Son
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hyeong-Gon Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Ni Y, Tse GM. Spindle Cell Lesions of the Breast: A Diagnostic Algorithm. Arch Pathol Lab Med 2023; 147:30-37. [PMID: 35976671 DOI: 10.5858/arpa.2022-0048-ra] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/31/2022]
Abstract
CONTEXT.— Spindle cell lesions of the breast represent a broad spectrum of entities, ranging from nonneoplastic reactive conditions to high-grade malignant tumors. The wide range makes breast spindle cell lesions a diagnostic pitfall. OBJECTIVE.— To review the classification of spindle cell lesions of the breast, including clinical features, morphologic characteristics, and the role of immunohistochemistry as well as molecular tools in assisting the differential diagnosis. A diagnostic algorithm will be proposed. DATA SOURCES.— Literature and personal experience are the sources for this study. CONCLUSIONS.— Spindle cell lesions of the breast can be classified as biphasic or monophasic, with the former including both spindle cell and epithelial components, and the latter including only spindle cell elements. Each category is further subclassified as low or high grade. In the biphasic low-grade group, fibroadenoma and benign phyllodes tumor are the most common lesions. Other uncommon lesions include hamartoma, adenomyoepithelioma, and pseudoangiomatous stromal hyperplasia. In the biphasic high-grade group, borderline/malignant phyllodes tumor and biphasic metaplastic carcinoma are the main lesions to consider. In the monophasic low-grade group, reactive spindle cell nodule, nodular fasciitis, myofibroblastoma, fibromatosis, and fibromatosis-like metaplastic carcinoma have to be considered. In the monophasic high-grade group, the possible lesions are monophasic spindle cell metaplastic carcinoma, primary breast sarcoma, and metastases. Awareness of the clinical history and careful evaluation of any epithelial differentiation (with a large immunohistochemical panel) are crucial in the distinction.
Collapse
Affiliation(s)
- Yunbi Ni
- From the Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gary M Tse
- From the Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
22
|
Mon KS, Tang P. Fibroepithelial Lesions of the Breast: Update on Molecular Profile With Focus on Pediatric Population. Arch Pathol Lab Med 2023; 147:38-45. [PMID: 35776911 DOI: 10.5858/arpa.2022-0011-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
Abstract
CONTEXT.— This review article derives from the breast pathology lecture at the Eighth Princeton Integrated Pathology Symposium (PIPS VIII). OBJECTIVE.— To provide a literature review and update on fibroepithelial lesions of the breast with molecular findings and findings regarding the pediatric population. DATA SOURCES.— The sources include extensive literature review, personal research, and experience. CONCLUSIONS.— Given significant differences in prognosis and management of fibroepithelial lesions, we aim to provide readers with pertinent definitions, pathomorphology, molecular findings, and management for each diagnosis, with insights on the pediatric population.
Collapse
Affiliation(s)
- Khin Su Mon
- From the Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Ping Tang
- From the Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|
23
|
Tan BY, Fox SB, Lakhani SR, Tan PH. Survey of recurrent diagnostic challenges in breast phyllodes tumours. Histopathology 2023; 82:95-105. [PMID: 36468287 DOI: 10.1111/his.14730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Breast phyllodes tumours (PTs) are graded as benign, borderline, or malignant by analysis of multiple histological features. PT grading is often inconsistent, likely due to variation in the weighting of grading criteria by pathologists. DESIGN The hierarchy of use of diagnostic criteria was identified using a 20-question survey. RESULTS In all, 213 pathologists from 29 countries responded. 54% reported 10-50 PT cases per year. Criteria considered key to PT diagnosis were: increased stromal cellularity (84.3%), stromal overgrowth (76.6%), increased stromal mitoses (67.8%), stromal atypia (61.5%), stromal fronding (59.0%), periductal stromal condensation (58.0%), irregular tumour borders (46.3%), and/or lesional heterogeneity (33.7%). The importance of grading parameters were: mitotic activity (55.5%), stromal overgrowth (54.0%), stromal atypia (51.9%), increased stromal cellularity (41.7%), and nature of the tumour border (38.9%). 49% would diagnose malignant PT without a full array of adverse features. 89% used the term "cellular fibroepithelial lesion (FEL)" for difficult cases; 45% would diagnose an FEL with stromal fronding (but lacking other PT features) as fibroadenoma (FA), 35% FEL, and 17% PT. 59% deemed clinico-radiological findings diagnostically significant; 68% considered age (≥40 years) important in determining if an FEL was a FA or PT. In FELs from young patients, increased stromal cellularity (83%), fronding (52%), and mitoses (41%) were more common. 34% regarded differentiating cellular FA from PT as a specific challenge; 54% had issues assigning a borderline PT grade. CONCLUSION Criteria for grading PT lie on a spectrum, leading to interpretive variability. The survey highlights the criteria most used by pathologists, which do not completely align with WHO recommendations.
Collapse
Affiliation(s)
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and University of Melbourne, Australia
| | - Sunil R Lakhani
- The University of Queensland and Pathology Queensland, Australia
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
24
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Takao T, Ono M, Yoshimasa Y, Masuda H, Maruyama T. A mediator complex subunit 12 gain-of-function mutation induces partial leiomyoma cell properties in human uterine smooth muscle cells. F&S SCIENCE 2022; 3:288-298. [PMID: 35643626 DOI: 10.1016/j.xfss.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To clarify whether a mediator complex subunit 12 (MED12) gain-of-function mutation induces leiomyoma cell properties in human uterine smooth muscle cells (USMCs). DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S) Women undergoing hysterectomy for leiomyoma. INTERVENTION(S) CRISPR/Cas9-mediated genome editing to introduce an MED12 gain-of-function mutation (G44D) into human USMCs. MAIN OUTCOME MEASURE(S) Cell proliferation, collagen production, and in vivo tumorigenicity of USMCs with vs. without the MED12 mutation. RESULT(S) Uterine smooth muscle cells isolated from the uterine myometrium of a 44-year-old patient were subjected to lentiviral vector-mediated gene transduction of the fluorescent protein Venus, followed by long-term passage. Uterine smooth muscle cells with a normal female karyotype, high cell proliferative activity, and Venus expression, but without stem/progenitor cell populations, were obtained and designated as USMC44. Using CRISPR/Cas9-mediated genome editing, mtUSMC44 (MED12, 131G>A, p.G44D) and mock USMC44 without MED12 mutation (wtUSMC44) were established from USMC44. wtUSMC44 and mtUSMC44 showed similar cell proliferation activity, even in the presence of estradiol and progesterone (EP) together with transforming growth factor-beta 3 (TGFB3). In addition, wtUSMC44 and mtUSMC44 generated similar tiny smooth muscle-like tissue constructs when xenotransplanted beneath the kidney capsule in immunodeficient mice treated with EP alone or TGFB3. In contrast, mtUSMC44 produced more collagen type I than wtUSMC in vitro, and this production was likely enhanced by EP and TGFB3. CONCLUSION(S) The results suggest that the MED12 gain-of-function mutation is involved in collagen production. Although approximately 70% of leiomyomas have MED12 mutations, additional factors and/or events other than MED12 and/or myometrial stem/progenitor cells may be required for fully inducing leiomyoma cell properties, including transformation, in USMCs.
Collapse
Affiliation(s)
- Tomoka Takao
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan; Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Yushi Yoshimasa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Li Y, Xu X, Asif H, Feng Y, Kohrn BF, Kennedy SR, Kim JJ, Wei JJ. Myometrial oxidative stress drives MED12 mutations in leiomyoma. Cell Biosci 2022; 12:111. [PMID: 35869560 PMCID: PMC9308324 DOI: 10.1186/s13578-022-00852-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 70% of leiomyomas (LM) harbor MED12 mutations, primarily in exon 2 at c.130-131(GG). The cause of MED12 mutations in myometrial cells remains largely unknown. We hypothesized that increased ROS promotes MED12 mutations in myometrial cells through the oxidation of guanine nucleotides followed by misrepair. METHODS Genomic oxidative burden (8-OHdG) was evaluated in vitro and in vivo by immunohistochemistry. MED12 mutations were examined by Sanger sequencing and deep sequencing. Transcriptome examined by RNA-seq was performed in myometrium with and without LM, in primary myometrial cells treated with ROS. 8-OHdG mediated misrepair was analyzed by CRISPR/Cas9. RESULTS Uteri with high LM burden had a significantly higher rate of MED12 mutations than uteri with low LM burden. Compelling data suggest that the uterus normally produces reactive oxidative species (ROS) in response to stress, and ROS levels in LM are elevated due to metabolic defects. We demonstrated that genomic oxidized guanine (8-OHdG) was found at a significantly higher level in the myometrium of uteri that had multiple LM compared to myometrium without LM. Transcriptome and pathway analyses detected ROS stress in myometrium with LM. Targeted replacement of guanine with 8-OHdG at MED12 c.130 by CRISPR/Cas9 significantly increased the misrepair of G>T. Exposure of primary myometrial cells to oxidative stress in vitro increased misrepair/mutations as detected by duplex sequencing. CONCLUSIONS Together, our data identified a clear connection between increased myometrial oxidative stress and a high rate of MED12 mutations that may underlie the risk of LM development and severity in women of reproductive age.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 251 East Huron Street, Feinberg 7-334, Chicago, IL, 60611, USA
| | - Xiuhua Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 251 East Huron Street, Feinberg 7-334, Chicago, IL, 60611, USA
| | - Huma Asif
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, 4-117, Chicago, IL, 60611, USA
| | - Yue Feng
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 251 East Huron Street, Feinberg 7-334, Chicago, IL, 60611, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, USA
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, 4-117, Chicago, IL, 60611, USA.
- Lurie Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Reproductive Science, Northwestern University, Chicago, IL, USA.
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 251 East Huron Street, Feinberg 7-334, Chicago, IL, 60611, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, 4-117, Chicago, IL, 60611, USA.
- Lurie Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Reproductive Science, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
27
|
Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr Rev 2022; 43:678-719. [PMID: 34741454 PMCID: PMC9277653 DOI: 10.1210/endrev/bnab039] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.
Collapse
Affiliation(s)
- Qiwei Yang
- Qiwei Yang, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, M167, Billings, Chicago, IL 60637, USA.
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809, Warsaw, Poland
| | | | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hoda Elkafas
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, Egyptian Drug Authority, formerly National Organization for Drug Control and Research, Cairo 35521, Egypt
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Ayman Al-Hendy
- Correspondence: Ayman Al-Hendy, MD, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, N112, Peck Pavilion, Chicago, IL 60637. USA.
| |
Collapse
|
28
|
Tsang JY, Shao Y, Poon IK, Ni YB, Kwan JS, Chow C, Shea KH, Tse GM. Analysis of recurrent molecular alterations in phyllodes tumour of breast: insights into prognosis and pathogenesis. Pathology 2022; 54:678-685. [PMID: 35691725 DOI: 10.1016/j.pathol.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
Phyllodes tumour (PT) of breast is a rare biphasic neoplasm. Recent next generation sequencing analyses had revealed novel genetic alterations in PT but lacked a further characterisation of their relationship to different PT features and outcome. Here, using targeted sequencing, we examined a panel of 90 recurrently altered or cancer related genes in 88 PT samples (including 49 benign, 25 borderline and 14 malignant PT). Twenty-three genes showed alterations in at least 8.0% of cases. Alterations were significantly higher with an increasing grade of PT (p=0.033), particularly for copy number alterations. The top ten alterations were TERT promoter (58.0%), MED12 (53.4%), RARA (22.8%), FLNA (19.3%), SETD2 (15.9%), SYNE1 (18.2%), PCLO (15.9%), KMT2D (14.3%), CDKN2A (15.9%) and DNAH11 (14.8%). Alterations in CDKN2A/B, EGFR, TP53, PIK3CA, PTEN and ARID1B (p≤0.039) were associated with a higher grade. Analysing alterations based on common pathways indicated a significant correlation of cell cycle pathway and epigenetic alterations with a higher PT grade (p=0.036 and 0.075 respectively). Interestingly, recurrences were not correlated with tumour grade, but related to the presence of RARA mutation (p=0.011) and the absence of alterations in epigenetic pathway (p=0.031). Analysis of synchronous pair of PT showed more differences in gene mutations with divergent MED12 mutation. By contrast, the recurrent samples showed similar genetic alterations as the primary tumours. In summary, we characterised genetic alterations in PTs of different grades and confirmed the recurrent alterations observed in earlier studies. In addition, current data implicated the roles of cell cycle, epigenetic and RARA changes in PT recurrence and tumourogenesis.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yan Shao
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ivan K Poon
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Johnny S Kwan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ka-Ho Shea
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, NT, Hong Kong, China
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
29
|
Zhou Y, Zha L, Wu J, Wang M, Zhou M, Wu G, Cheng X, Huang Z, Xie Q, Tu X. MED12 Regulates Smooth Muscle Cell Functions and Participates in the Development of Aortic Dissection. Genes (Basel) 2022; 13:genes13040692. [PMID: 35456498 PMCID: PMC9027749 DOI: 10.3390/genes13040692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening disease with high morbidity and mortality, and effective pharmacotherapeutic remedies for it are lacking. Therefore, AD’s molecular pathogenesis and etiology must be elucidated. The aim of this study was to investigate the possible mechanism of mediator complex subunit 12 (human: MED12, mouse: Med12)involvement in AD. Firstly, we examined the expression of MED12 protein (human: MED12, mouse: Med12) in the aortic tissues of AD patients and AD mice. Subsequently, Med12 gene silencing was accomplished with RNA interference (siRNA). The effects of Med12 on AD and the possible biological mechanisms were investigated based on the proliferation, senescence, phenotypic transformation, and its involved signal pathway of mouse aortic smooth muscle cells (MOVAS), s. The results show that the expression of MED12 in the aortae of AD patients and AD mice was decreased. Moreover, the downregulation of Med12 inhibited the proliferation of MOVAS and promoted senescence. Further research found that Med12, as an inhibitor of the TGFβ1 signaling pathway, reduced the expression of Med12 and enhanced the activity of the TGFβ1 nonclassical signaling pathway, while TGFβ1 inhibited the phenotype transformation and proliferation of MOVAS by inhibiting Med12 synthesis. In conclusion, Med12 affected the phenotype, proliferation, and senescence of MOVAS through the TGFβ signaling pathway. This study provides a potential new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao 266034, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
| | - Mengchen Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Z.); (M.Z.); (X.C.)
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China;
- Correspondence: (Q.X.); (X.T.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.W.); (M.W.)
- Correspondence: (Q.X.); (X.T.)
| |
Collapse
|
30
|
Han Y, Dong Q, Liu T, Chen X, Yu C, Zhang Y. The novel mechanism of Med12-mediated drug resistance in a TGFBR2-independent manner. Biochem Biophys Res Commun 2022; 610:1-7. [PMID: 35461070 DOI: 10.1016/j.bbrc.2022.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Inevitable emergence of drug resistance is the biggest hurdle to both chemotherapies and targeted therapies. Understanding the resistance mechanisms will contribute to identification of biomarkers for predicting response to therapy and design new therapeutic strategies to overcome drug resistance in human cancers. The type II transforming growth factor (TGF)-β receptor gene (TGFBR2) is frequently frameshift mutated in several cancer types, especially in colorectal, endometrium and gastric cancers cells. Here, we found that Med12, a component of the transcriptional mediator complex, plays a role in modulating chemosensitivity in TGFBR2 deficient cancer cells. Loss of Med12 leads to chemoresistance in multiple TGFBR2 deficient cancer cells. Interestingly, RNA sequencing data revealed that interferon IFN-related DNA damage resistance signature (IRDS) is upregulated in Med12 knockdown cancer cells. And the expression of IRDS pattern is negatively correlated with chemosensitivity. Therefore, our study identifies a novel mechanism of Med12-mediated drug resistance, which is a TGFBR-independent manner.
Collapse
Affiliation(s)
- Yumin Han
- The CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine & Chinese Academy of Sciences, Shanghai, 200031, China; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Qian Dong
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518000, China
| | - Tingting Liu
- The CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine & Chinese Academy of Sciences, Shanghai, 200031, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, 201203, China
| | - Xiaomin Chen
- The CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine & Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunhong Yu
- The CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine & Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yongfeng Zhang
- The CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine & Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
31
|
Seow DY, Tay TK, Tan PH. FIBROEPITHELIAL LESIONS OF THE BREAST: A REVIEW OF RECURRING DIAGNOSTIC ISSUES. Semin Diagn Pathol 2022; 39:333-343. [DOI: 10.1053/j.semdp.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
|
32
|
Yoon E, Ding Q, Hunt K, Sahin A. High-Grade Spindle Cell Lesions of the Breast: Key Pathologic and Clinical Updates. Surg Pathol Clin 2022; 15:77-93. [PMID: 35236635 DOI: 10.1016/j.path.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most of the high-grade spindle cell lesions of the breast are malignant phyllodes tumors (MPTs), spindle cell carcinomas (SpCCs), and matrix-producing metaplastic breast carcinomas (MP-MBCs). MPTs have neoplastic spindle stromal cells and a classic leaf-like architecture with subepithelial stromal condensation. MPTs are often positive for CD34, CD117, and bcl-2 and are associated with MED12, TERT, and RARA mutations. SpCCs and MP-MBCs are high-grade metaplastic carcinomas, whereas neoplastic epithelial cells become spindled or show heterologous mesenchymal differentiation, respectively. The expression of epithelial markers must be evaluated to make a diagnosis. SAS, or rare metastatic spindle cell tumors, are seen in the breast, and clinical history is the best supporting evidence. Surgical resection is the standard of care.
Collapse
Affiliation(s)
- Esther Yoon
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030-4009, USA.
| | - Qingqing Ding
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030-4009, USA
| | - Kelly Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 85, Room G1.3565C, Houston, TX 77030-4009, USA
| | - Aysegul Sahin
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston TX 77030-4009, USA
| |
Collapse
|
33
|
Zhao W, Zhao Y, Chen L, Sun Y, Fan S. Effects of miRNA-199a-5p on cell proliferation and apoptosis of uterine leiomyoma by targeting MED12. Open Med (Wars) 2022; 17:151-159. [PMID: 35071776 PMCID: PMC8749127 DOI: 10.1515/med-2021-0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background/aims
Uterine leiomyoma (ULM) is a kind of gene-involved benign tumor, which is located in the front of female reproductive tract. It is one of the most common reproductive tract tumors in women, which leads to abnormal menstruation, repeated pregnancy loss, and other serious gynecological diseases. Recently, microRNAs (miRNAs) have attracted much more attention in the process of exploring the molecular mechanisms of tumorigenesis. Furthermore, the deregulated miRNAs had been reported to play important roles in ULM pathology.
Methods
In this study, we assessed the expression level of microRNA-199a-5p (miR-199a-5p) in human ULM by quantitative polymerase chain reaction. After that cell counting kit 8, colony formation, 5-ethynyl-20-deoxyuridine, flow cytometry, and Western blot analyses were performed to investigate the effects of miR-199a-5p on ULM cell proliferation and apoptosis.
Results
We confirmed that miR-199a-5p was significantly downregulated in human ULM. The results of function analyses showed that miR-199a-5p inhibited cell proliferation and induced cell apoptosis in vitro. Bioinformatics tool showed oncogene MED12 was one of the target genes of miR-199a-5p, which mediated the effect of miR-199a-5p on the ULM.
Conclusion
Our results showed that miR-199a-5p functioned as an antitumor factor in human ULM cells. These findings broaden the current findings on the function of miR-199a-5p into the ULM pathogenesis, and miR-199a-5p may serve as a prognosis and therapeutic target for the ULM and its related diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital , Nanjing , Jiangsu 210004 , China
| | - Yingyan Zhao
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital of Traditional Chinese Medicine and Affiliated Zhangjiagang Hospital of Nanjing University of Chinese Medicine , Zhangjiagang 215600 , China
| | - Ling Chen
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital of Traditional Chinese Medicine and Affiliated Zhangjiagang Hospital of Nanjing University of Chinese Medicine , Zhangjiagang 215600 , China
| | - Yan Sun
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital of Traditional Chinese Medicine and Affiliated Zhangjiagang Hospital of Nanjing University of Chinese Medicine , Zhangjiagang 215600 , China
| | - Sumei Fan
- Department of Geriatrics, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an , No. 62, Huaihai Road (S.) , Huaian , Jiangsu 223002 , China
| |
Collapse
|
34
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
35
|
Gomes CC. Recurrent driver mutations in benign tumors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108412. [PMID: 35690415 DOI: 10.1016/j.mrrev.2022.108412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The understanding of the molecular pathogenesis of benign tumors may bring essential information to clarify the process of tumorigenesis, and ultimately improve the understanding of events such as malignant transformation. The definition of benign neoplasia is not always straightforward and herein the issues surrounding this concept are discussed. Benign neoplasms share all cancer hallmarks with malignancies, except for metastatic potential. Recently, next-generation sequencing has provided unprecedented opportunities to unravel the genetic basis of benign neoplasms and, so far, we have learned that benign neoplasms are indeed characterized by the presence of genetic mutations, including genes rearrangements. Driver mutations in advanced cancer are those that confer growth advantage, and which have been positively selected during cancer evolution. Herein, some discussion will be brought about this concept in the context of cancer prevention, involving precursor lesions and benign neoplasms. When considering early detection and cancer prevention, a driver mutation should not only be advantageous (i.e., confer survival advantage), but predisposing (i.e., promoting a cancer phenotype). By including the benign counterparts of malignant neoplasms in tumor biology studies, it is possible to evaluate the risk posed by a given mutation and to differentiate advantageous from predisposing mutations, further refining the concept of driver mutations. Therefore, the study of benign neoplasms should be encouraged because it provides valuable information on tumorigenesis central for understanding the progression from initiation to malignant transformation.
Collapse
Affiliation(s)
- Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
36
|
Firdaus R, Agrawal P, Anagani M, Vijayalakshmi K, Hasan Q. Multiple Mutations in Exon-2 of Med-12 Identified in Uterine Leiomyomata. J Reprod Infertil 2021; 22:201-209. [PMID: 34900640 PMCID: PMC8607871 DOI: 10.18502/jri.v22i3.6720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Uterine leiomyomata (UL), commonly known as uterine fibroids, are benign smooth muscle tumors of the myometrium. They cause pelvic pain, abnormal uterine bleeding, and infertility in women of reproductive age. The ovarian hormone estrogen is the main stimulator for the fibroid growth. The etiology is not yet clearly understood; however, UL are believed to be monoclonal tumors arising from a common progenitor cell. Chromosomal cytogenetic abnormalities have been demonstrated in 40–50% of the fibroids. The most frequent tumor specific genetic alterations in UL were identified in exon-2 of Mediator Complex Subunit 12 (MED-12). Methods: In the present study, twenty-two multiple fibroids were evaluated both from the same uterus and from different uteri, of four women, for somatic mutations in hotspot region of MED-12. The tissue DNA of the UL’s was isolated, amplified by PCR visualized on gel and sent for Sanger sequencing. Results: The results indicate several variants in exon-2 and flanking intronic regions, seven exonic variants and five intronic variants which provide evidence that multiple UL in the same uterus may not be clonal in origin. Conclusion: This study indicates genetic heterogeneity. UL may not have a clonal origin, these exon-2 variants of MED-12 gene could be involved in UL progression.
Collapse
Affiliation(s)
- Ruqia Firdaus
- Department of Genetics and Molecular Medicine, Vasavi Medical and Research Center, Lakdi-ka-pool, Hyderabad, India.,Department of Biotechnology, Hyderabad Science Society, Hyderabad, India.,Department of Genetics, Osmania University, Hyderabad, India
| | - Prabha Agrawal
- Department of Gynaecology and Obstetrics, Medicover Hospitals, Hi-Tech City, Hyderabad, India
| | - Manjula Anagani
- Department of Gynaecology and Obstetrics, Medicover Hospitals, Hi-Tech City, Hyderabad, India
| | - Kodati Vijayalakshmi
- Department of Genetics and Molecular Medicine, Vasavi Medical and Research Center, Lakdi-ka-pool, Hyderabad, India.,Department of Genetics, Osmania University, Hyderabad, India
| | - Qurratulain Hasan
- Department of Biotechnology, Hyderabad Science Society, Hyderabad, India.,Department of Genetics, Osmania University, Hyderabad, India.,Department of Genetics and Molecular Medicine, Kamineni Hospital, LB Nagar, Hyderabad, India
| |
Collapse
|
37
|
Hu Y, Li G, Wang L, Zhang L, Guan J, Wang J. MED12 exon 2 and TERT promoter mutations in primary and recurrent breast fibroepithelial lesions. Pathol Int 2021; 71:814-822. [PMID: 34597441 DOI: 10.1111/pin.13172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
The genetic alterations in the recurrent breast fibroepithelial tumors are poorly understood. In the present study, we aimed to investigate mediator protein complex subunit 12 (MED12) exon 2 and telomerase reverse transcriptase (TERT) promoter mutations in a series of primary and recurrent fibroepithelial tumors. Sanger sequencing for MED12 exon 2 and TERT promoter was performed in 26 pairs of primary and recurrent fibroepithelial tumors (19 pairs of phyllodes tumors and seven pairs of fibroadenomas). The relationship between the genotypes and clinicopathological variables was also analyzed. MED12 mutation was identified in 19 primary tumors (12 phyllodes tumors and 7 fibroadenomas) and 17 recurrences (14 phyllodes tumors and three fibroadenomas). Most recurrent phyllodes tumors retained the original MED12 variants (17/19). Six recurrent fibroadenomas showed different MED12 variants from their paired primary tumors (6/7). TERT promoter mutation was identified in 13 primary phyllodes tumors (13/19) and 15 recurrent phyllodes tumors (15/19). However, it was only identified in one primary fibroadenoma (1/7). Recurrent phyllodes tumors often retained the original MED12 and TERT promoter mutations, while recurrent fibroadenomas often acquired new MED12 mutations. Our findings suggest that recurrent phyllodes tumors may be "true recurrence," and TERT mutant "benign fibroepithelial tumors" should be treated as phyllodes tumors.
Collapse
Affiliation(s)
- Yanjiao Hu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangqi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Guan
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Rakha EA, Brogi E, Castellano I, Quinn C. Spindle cell lesions of the breast: a diagnostic approach. Virchows Arch 2021; 480:127-145. [PMID: 34322734 PMCID: PMC8983634 DOI: 10.1007/s00428-021-03162-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Spindle cell lesions of the breast comprise a heterogeneous group of lesions, ranging from reactive and benign processes to aggressive malignant tumours. Despite their rarity, they attract the attention of breast pathologists due to their overlapping morphological features and diagnostic challenges, particularly on core needle biopsy (CNB) specimens. Pathologists should recognise the wide range of differential diagnoses and be familiar with the diverse morphological appearances of these lesions to make an accurate diagnosis and to suggest proper management of the patients. Clinical history, immunohistochemistry, and molecular assays are helpful in making a correct diagnosis in morphologically challenging cases. In this review, we present our approach for the diagnosis of breast spindle cell lesions, highlighting the main features of each entity and the potential pitfalls, particularly on CNB. Breast spindle cell lesions are generally classified into two main categories: bland-appearing and malignant-appearing lesions. Each category includes a distinct list of differential diagnoses and a panel of immunohistochemical markers. In bland-appearing lesions, it is important to distinguish fibromatosis-like spindle cell metaplastic breast carcinoma from other benign entities and to distinguish fibromatosis from scar tissue. The malignant-appearing category includes spindle cell metaplastic carcinoma, stroma rich malignant phyllodes tumour, other primary and metastatic malignant spindle cell tumours of the breast, including angiosarcoma and melanoma, and benign mimics such as florid granulation tissue and nodular fasciitis.
Collapse
Affiliation(s)
- Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| | - Edi Brogi
- Department of Pathology At Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Cecily Quinn
- Histopathology, BreastCheck, Irish National Breast Screening Programme and St. Vincent's University Hospital, Dublin, Ireland.,University College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Ng CCY, Md Nasir ND, Loke BN, Tay TKY, Thike AA, Rajasegaran V, Liu W, Lee JY, Guan P, Lim AH, Chang KTE, Gudi MA, Madhukumar P, Tan BKT, Tan VKM, Wong CY, Yong WS, Ho GH, Ong KW, Yip GWC, Bay BH, Tan P, Teh BT, Tan PH. Genetic differences between benign phyllodes tumors and fibroadenomas revealed through targeted next generation sequencing. Mod Pathol 2021; 34:1320-1332. [PMID: 33727697 DOI: 10.1038/s41379-021-00787-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Breast fibroepithelial lesions are biphasic tumors which comprise the common benign fibroadenomas (FAs) and the rarer phyllodes tumors (PTs). This study analyzed 262 (42%) conventional FAs, 45 (7%) cellular FAs, and 321 (51%) benign PTs contributed by the International Fibroepithelial Consortium, using a previously curated 16 gene panel. Benign PTs were found to possess a higher number of mutations, and higher rates of cancer driver gene alterations than both groups of FAs, in particular MED12, TERT promoter, RARA, FLNA, SETD2, RB1, and EGFR. Cases with MED12 mutations were also more likely to have TERT promoter, RARA, SETD2, and EGFR. There were no significant differences detected between conventional FAs and cellular FAs, except for PIK3CA and MAP3K1. TERT promoter alterations were most optimal in discriminating between FAs and benign PTs. Our study affirms the role of sequencing and key mutations that may assist in refining diagnoses of these lesions.
Collapse
Affiliation(s)
- Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Nur Diyana Md Nasir
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Benjamin Nathanael Loke
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | - Wei Liu
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Peiyong Guan
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore.,Quantitative Biology and Medicine Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Abner Herbert Lim
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mihir Ananta Gudi
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Preetha Madhukumar
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore.,Department of Surgery, Sengkang General Hospital, Singapore, Singapore
| | - Veronique Kiak Mien Tan
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chow Yin Wong
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
| | - Wei Sean Yong
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore.,Department of Breast Surgery, Singapore General Hospital, Singapore, Singapore
| | - Gay Hui Ho
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Kong Wee Ong
- Division of Surgery and Surgical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | | | - George Wai Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Pathology, Singapore General Hospital, Singapore, Singapore.
| |
Collapse
|
40
|
Yin Lee JP, Thomas AJ, Lum SK, Shamsudin NH, Hii LW, Mai CW, Wong SF, Leong CO. Gene expression profiling of giant fibroadenomas of the breast. Surg Oncol 2021; 37:101536. [PMID: 33677364 DOI: 10.1016/j.suronc.2021.101536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Fibroadenomas of the breast present as two phenotypic variants. The usual variety is 5 cm or less in diameter and there is another large variant called giant fibroadenoma which is greater than 5 cm in diameter. Despite of its large size, it is not malignant. The aim of our study is to determine whether this large variant is different from the usual fibroadenoma in terms of its biological pathways and biomarkers. METHODS mRNA was extracted from 44 fibroadenomas and 36 giant fibroadenomas, and transcriptomic profiling was performed to identify up- and down-regulated genes in the giant fibroadenomas as compared to the fibroadenomas. RESULTS A total of 40 genes were significantly up-regulated and 18 genes were significantly down-regulated in the giant fibroadenomas as compared to the fibroadenomas of the breast. The top 5 up-regulated genes were FN1, IL3, CDC6, FGF8 and BMP8A. The top 5 down-regulated genes were TNR, CDKN2A, COL5A1, THBS4 and BMPR1B. The differentially expressed genes (DEGs) were found to be associated with 5 major canonical pathways involved in cell growth (PI3K-AKT, cell cycle regulation, WNT, and RAS signalling) and immune response (JAK-STAT signalling). Further analyses using 3 supervised learning algorithms identified an 8-gene signature (FN1, CDC6, IL23A, CCNA1, MCM4, FLT1, FGF22 and COL5A1) that could distinguish giant fibroadenomas from fibroadenomas with high predictive accuracy. CONCLUSION Our findings demonstrated that the giant fibroadenomas are biologically distinct to fibroadenomas of the breast with overexpression of genes involved in the regulation of cell growth and immune response.
Collapse
Affiliation(s)
- June Pui Yin Lee
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | | | - Siew Kheong Lum
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia; Center for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia; School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Le MK, Omori M, Oishi N, Oi M, Fukasawa H, Hirata S, Kondo T. High-grade uterine sarcoma with osteosarcomatous differentiation arising from a MED12-mutated leiomyoma, a case report. Pathol Int 2021; 71:199-203. [PMID: 33444473 DOI: 10.1111/pin.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
Uterine osteosarcoma has been reported, but it is an extremely rare tumor with highly aggressive behavior and poor prognosis. The pathogenesis of uterine osteosarcoma is not fully understood. Herein, we report on a high-grade uterine sarcoma with focal osteosarcomatous differentiation that developed from a long-standing MED12-mutated leiomyoma. A 47-year-old nulligravida woman, with known uterine leiomyoma presented with abdominal pain and distention. Imaging analyses revealed a tumor with a large cystic area in the uterine corpus and multiple metastases in intrapelvic and paraaortic lymph nodes, left ovary and left lung. With a clinical diagnosis of uterine sarcoma the patient underwent abdominal total hysterectomy, bilateral salpingo-oophorectomy, partial omentectomy and removal of the left obturator lymph node. Despite postoperative chemotherapy and radiation therapy, the tumor progressed rapidly. She died 18 weeks after the surgery. Histopathologic examination identified a high-grade pleomorphic sarcoma in which focal osteoid production was observed. This high-grade sarcoma with focal osteosarcomatous differentiation was located within the uterine leiomyoma, and Sanger sequencing showed the identical MED12 L36R mutation in both the osteosarcomatous and leiomyomatous components supporting the shared origin of these two components. We, therefore, concluded that the high-grade sarcoma with osteosarcomatous differentiation arose from the transformation of the precedent leiomyoma.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| | - Makiko Omori
- Department of Obstetrics and Gynecology, University of Yamanashi, Yamanashi, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| | - Megumi Oi
- Department of Obstetrics and Gynecology, University of Yamanashi, Yamanashi, Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology, University of Yamanashi, Yamanashi, Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology, University of Yamanashi, Yamanashi, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
42
|
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, Garcia BA, Boyer TG, Tsai KL. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. SCIENCE ADVANCES 2021; 7:eabd4484. [PMID: 33523904 PMCID: PMC7810384 DOI: 10.1126/sciadv.abd4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
The Cdk8 kinase module (CKM) in Mediator, comprising Med13, Med12, CycC, and Cdk8, regulates RNA polymerase II transcription through kinase-dependent and -independent functions. Numerous pathogenic mutations causative for neurodevelopmental disorders and cancer congregate in CKM subunits. However, the structure of the intact CKM and the mechanism by which Cdk8 is non-canonically activated and functionally affected by oncogenic CKM alterations are poorly understood. Here, we report a cryo-electron microscopy structure of Saccharomyces cerevisiae CKM that redefines prior CKM structural models and explains the mechanism of Med12-dependent Cdk8 activation. Med12 interacts extensively with CycC and activates Cdk8 by stabilizing its activation (T-)loop through conserved Med12 residues recurrently mutated in human tumors. Unexpectedly, Med13 has a characteristic Argonaute-like bi-lobal architecture. These findings not only provide a structural basis for understanding CKM function and pathological dysfunction, but also further impute a previously unknown regulatory mechanism of Mediator in transcriptional modulation through its Med13 Argonaute-like features.
Collapse
Affiliation(s)
- Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guojie Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chia-En Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
43
|
Tan PH. Fibroepithelial lesions revisited: implications for diagnosis and management. Mod Pathol 2021; 34:15-37. [PMID: 32461622 DOI: 10.1038/s41379-020-0583-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Fibroepithelial lesions of the breast, comprising the fibroadenoma and phyllodes tumour, are a unique group of neoplasms that share histological characteristics but possess different clinical behaviour. The fibroadenoma is the commonest benign breast tumour in women, while the phyllodes tumour is rare and may be associated with recurrences, grade progression and even metastasis. The diagnosis of fibroadenoma is usually straightforward, with recognised histological variants such as the cellular, complex, juvenile and myxoid forms. The phyllodes tumour comprises benign, borderline and malignant varieties, graded using a constellation of histological parameters based on stromal characteristics of hypercellularity, atypia, mitoses, overgrowth and the nature of tumour borders. While phyllodes tumour grade correlates with clinical behaviour, interobserver variability in assessing multiple parameters that are potentially of different biological weightage leads to significant challenges in accurate grade determination and consequently therapy. Differential diagnostic considerations along the spectrum of fibroepithelial tumours can be problematic in routine practice. Recent discoveries of the molecular underpinnings of these tumours may have diagnostic, prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Academia, Diagnostics Tower Level 7, 20 College Road, Singapore, 169856, Singapore.
| |
Collapse
|
44
|
da Silva EM, Beca F, Sebastiao APM, Murray MP, Silveira C, Da Cruz Paula A, Pareja F, Wen HY, D'Alfonso TM, Edelweiss M, Weigelt B, Brogi E, Reis-Filho JS, Zhang H. Stromal MED12 exon 2 mutations in complex fibroadenomas of the breast. J Clin Pathol 2020; 75:133-136. [PMID: 33376197 PMCID: PMC8260148 DOI: 10.1136/jclinpath-2020-207062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022]
Abstract
Aims Here we explore the presence of mediator complex subunit 12 (MED12) exon 2 and telomerase reverse transcriptase (TERT) promoter hotspot mutations in complex fibroadenomas (CFAs) of the breast. Methods The stromal components from 18 CFAs were subjected to Sanger sequencing of MED12 exon 2 and the TERT promoter hotspot loci. The epithelial and stromal components of two MED12 mutated CFAs were subjected to laser capture microdissection, and Sanger sequencing of MED12 exon 2, TERT promoter and PIK3CA exons 9 and 20, separately. Results MED12 exon 2 mutations were identified in the stroma of 17% of CFAs. The analyses of epithelial and stromal components, microdissected separately, revealed that MED12 mutations were restricted to the stroma. No TERT promoter or PIK3CA mutations in exons 9 and 20 were detected in analysed CFAs. Conclusions Like conventional fibroadenomas, MED12 exon 2 mutations appear to be restricted to the stromal component of CFAs, supporting the notion that CFAs are stromal neoplasms.
Collapse
Affiliation(s)
- Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco Beca
- Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Paula Martins Sebastiao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medical Pathology, Universidade Federal do Parana Setor de Ciencias da Saude, Curitiba, Brazil
| | - Melissa P Murray
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catarina Silveira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,GenoMed SA, Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | | | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy M D'Alfonso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
45
|
Abstract
<br><b>Introduction:</b> Fibroadenomas are one of the most common benign tumors of the breast in the adolescent females accounting for about 2/3<sup>rd</sup> of all the breast lumps and more than half of all the biopsied breast lesions. They come into being due to overgrowth of glandular tissue under the influence of hormonal changes that the girls undergo at the time of puberty. Due to the wide prevalence of fibroadenomas and the psychosocial morbidity associated with the finding of a breast mass, it is imperative for physicians treating adolescent patients to be thoroughly familiar and updated with this disease. <br><b>Aim:</b> The article aims at providing a brief review of the classification, presentation, diagnosis, and update on the management of breast fibroadenomas on the basis of recent literature.
Collapse
|
46
|
Straub J, Venigalla S, Newman JJ. Mediator's Kinase Module: A Modular Regulator of Cell Fate. Stem Cells Dev 2020; 29:1535-1551. [PMID: 33161841 DOI: 10.1089/scd.2020.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective gene expression is crucial in maintaining the self-renewing and multipotent properties of stem cells. Mediator is a large, evolutionarily conserved, multi-subunit protein complex that modulates gene expression by relaying signals from cell type-specific transcription factors to RNA polymerase II. In humans, this complex consists of 30 subunits arranged in four modules. One critical module of the Mediator complex is the kinase module consisting of four subunits: MED12, MED13, CDK8, and CCNC. The kinase module exists in variable association with the 26-subunit Mediator core and affects transcription through phosphorylation of transcription factors and by controlling Mediator structure and function. Many studies have shown the kinase module to be a key player in the maintenance of stem cells that is distinct from a general role in transcription. Genetic studies have revealed that dysregulation of this kinase subunit contributes to the development of many human diseases. In this review, we discuss the importance of the Mediator kinase module by examining how this module functions with the more recently identified transcriptional super-enhancers, how changes in the kinase module and its activity can lead to the development of human disease, and the role of this unique module in directing and maintaining cell state. As we look to use stem cells to understand human development and treat human disease through both cell-based therapies and tissue engineering, we need to remain aware of the on-going research and address critical gaps in knowledge related to the molecular mechanisms that control cell fate.
Collapse
Affiliation(s)
- Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| |
Collapse
|
47
|
Kito M, Maeda D, Kudo-Asabe Y, Tamura D, Makino K, Sageshima M, Nanjo H, Terada Y, Goto A. Detection of MED12 mutations in mesenchymal components of uterine adenomyomas. Hum Pathol 2020; 109:31-36. [PMID: 33259844 DOI: 10.1016/j.humpath.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Adenomyoma of the uterus is a biphasic nodular lesion composed of a mesenchymal component with smooth muscle differentiation and a glandular epithelium. The neoplastic nature of uterine adenomyomas has been controversial because some are considered to be nodular adenomyosis. MED12 mutations are involved in the pathogenesis of uterine smooth muscle tumors (leiomyomas and leiomyosarcomas) and biphasic tumors of the breast (fibroadenomas and phyllodes tumor). To investigate the histogenesis of uterine adenomyomas, we performed pathological and genetic analyses, including Sanger sequencing of MED12. In total, 15 cases of uterine adenomyomas were retrieved and assessed for clinicopathological factors. Immunohistochemistry for smooth muscle actin, desmin, and CD10 was performed. Exon 2 of MED12 was Sanger sequenced using DNA obtained by macrodissection of the adenomyomas. For cases that were positive for somatic MED12 mutations, we next performed microdissection of the mesenchymal and epithelial components. The DNA extracted from each component was further analyzed for MED12 mutations. MED12 mutations were detected in two adenomyomas (2/15, 13%), all in a known hot spot (codon 44). In both lesions, MED12 mutations were detected in multiple spots of the mesenchymal component. The epithelial component did not harbor MED12 mutations. The relatively low frequency of MED12 mutations suggests that not all adenomyomas are leiomyomas with entrapped glands. However, the results of our study suggest that a subset of uterine adenomyomas are true mesenchymal neoplasms.
Collapse
Affiliation(s)
- Masahiko Kito
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan; Department of Clinical Genomics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Daisuke Tamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Kenichi Makino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Masato Sageshima
- Department of Pathology, Akita City Hospital, 4-30 Kawamotomatsuokamachi, Akita, Akita, 010-0933, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| |
Collapse
|
48
|
Srivastava S, Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 2020; 236:3163-3177. [PMID: 33174211 DOI: 10.1002/jcp.30099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional dysregulation is central to many diseases including cancer. Mutation or deregulated expression of proteins involved in transcriptional machinery leads to aberrant gene expression that disturbs intricate cellular processes of division and differentiation. The subunits of the mediator complex are master regulators of stimuli-derived transcription and are essential for transcription by RNA polymerase II. MED12 is a part of the CDK8 kinase module of the mediator complex and is essential for kinase assembly and function. Other than its function in activation of the kinase activity of CDK8 mediator, it also brings about transcription repression or activation, in response to several signalling pathways, a function that is independent of its role as a part of kinase assembly. Accumulating evidence suggests that MED12 controls complex transcription programs that are defining in cell fate determination, differentiation, and carcinogenesis. Mutations or differential expression of MED12 manifest in several human disorders and diseases. For instance, MED12 mutations are the gold standard for the diagnosis of several X-linked intellectual disability syndromes. Further, certain MED12 mutations are categorised as driver mutations in carcinogenesis as well. This is a timely review that provides for the first time a wholesome view on the critical roles and pathways regulated by MED12, its interactions along with the implications of MED12 alterations/mutations in various cancers and nonneoplastic disorders. Based on the preclinical studies, MED12 indeed emerges as an attractive novel therapeutic target for various diseases and intellectual disorders.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
49
|
Vorotnikov IK, Vysotskaya IV, Denchik DA, Letyagin VP, Davydov MM, Kirsanov VY, Kim EA, Buseva VS. Prognostic Molecular and Biological Characteristics of Phyllodes Tumors of the Breast. Bull Exp Biol Med 2020; 169:806-810. [PMID: 33098518 DOI: 10.1007/s10517-020-04985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 11/30/2022]
Abstract
Prognosis for some histological variants of a rare breast disease, phyllodes tumors, is evaluated. The prognostic potential of some molecular biological factors significantly correlating with breast cancer prognosis is evaluated on a unique clinical material (244 cases with benign, intermediate, and malignant phyllodes tumors). The development of benign phyllodes tumor relapse directly correlated with the number of G0/1-phase cells and inversely correlated with the number of cells in the G2+M and S phases. The level of steroid hormone receptors in phyllodes tumors cannot serve as a prognostic marker predicting the disease course. The presence of somatic mutations of TP53 gene and loss of heterozygosity of specific intragenic loci in the tumor correlate with the development of disease relapse (p<0.05).
Collapse
Affiliation(s)
- I K Vorotnikov
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, Moscow, Russia
| | - I V Vysotskaya
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - D A Denchik
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V P Letyagin
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, Moscow, Russia
| | - M M Davydov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V Yu Kirsanov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E A Kim
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| | - V S Buseva
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
50
|
Otsuji K, Sasaki T, Tanabe M, Seto Y. Droplet-digital PCR reveals frequent mutations in TERT promoter region in breast fibroadenomas and phyllodes tumours, irrespective of the presence of MED12 mutations. Br J Cancer 2020; 124:466-473. [PMID: 33046803 PMCID: PMC7852881 DOI: 10.1038/s41416-020-01109-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Breast fibroadenoma (FA) and phyllodes tumour (PT) often have variations of gene mediator complex subunit 12 (MED12) and mutations in the telomerase reverse transcriptase promoter region (TERTp). TERTp mutation is usually tested by Sanger sequencing. In this study, we compared Sanger sequencing and droplet-digital PCR (ddPCR) to measure TERTp mutations in FA and PT samples. METHODS FA and PT samples were collected from 82 patients who underwent surgery at our institution from 2005 to 2016. MED12 mutations for all cases and TERTp mutations for 17 tumours were detected by Sanger sequencing. ddPCR was performed to analyse TERTp mutation in all cases. RESULTS A total of 75 samples were eligible for analysis. Sanger sequencing detected MED12 mutations in 19/44 FA (42%) and 21/31 PT (68%). Among 17 Sanger sequencing-tested samples, 2/17 (12%) were TERTp mutation-positive. In ddPCR analyses, a significantly greater percentage of PT (19/31, 61%) was TERTp mutation-positive than was FA (13/44, 30%; P = 0.0046). The mutation positivity of TERTp and MED12 did not correlate, in either FA or PT. CONCLUSIONS ddPCR was more sensitive for detecting TERTp mutation than Sanger sequencing, being able to elucidate tumorigenesis in FA and PT.
Collapse
Affiliation(s)
- Kazutaka Otsuji
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Sasaki
- Department of Next-Generation Pathology Information and Networking, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masahiko Tanabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|