1
|
Jones T, Sigauke RF, Sanford L, Taatjes DJ, Allen MA, Dowell RD. TF Profiler: a transcription factor inference method that broadly measures transcription factor activity and identifies mechanistically distinct networks. Genome Biol 2025; 26:92. [PMID: 40205447 PMCID: PMC11983743 DOI: 10.1186/s13059-025-03545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
TF Profiler is a method of inferring transcription factor (TF) regulatory activity, i.e., when a TF is present and actively participating in the regulation of transcription, directly from nascent sequencing assays such as PRO-seq and GRO-seq. While ChIP assays have measured DNA localization, they fall short of identifying when and where the effector domain of a transcription factor is active. Our method uses RNA polymerase activity to infer TF effector domain activity across hundreds of data sets and transcription factors. TF Profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.
Collapse
Affiliation(s)
- Taylor Jones
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
- Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Rutendo F Sigauke
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Lynn Sanford
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Dylan J Taatjes
- Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA.
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA.
- Computer Science, University of Colorado Boulder, 1111 Engineering Drive, UCB 430, Boulder, CO, 80309, USA.
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, UCB 347, Boulder, CO, 80309, USA.
| |
Collapse
|
2
|
Yao L, Shah SR, Ozer A, Zhang J, Pan X, Xia T, Fangal VD, Leung AKY, Wei M, Lis JT, Yu H. High-resolution reconstruction of cell-type specific transcriptional regulatory processes from bulk sequencing samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646189. [PMID: 40291712 PMCID: PMC12026507 DOI: 10.1101/2025.04.02.646189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biological systems exhibit remarkable heterogeneity, characterized by intricate interplay among diverse cell types. Resolving the regulatory processes of specific cell types is crucial for delineating developmental mechanisms and disease etiologies. While single-cell sequencing methods such as scRNA-seq and scATAC-seq have revolutionized our understanding of individual cellular functions, adapting bulk genome-wide assays to achieve single-cell resolution of other genomic features remains a significant technical challenge. Here, we introduce Deep-learning-based DEconvolution of Tissue profiles with Accurate Interpretation of Locus-specific Signals (DeepDETAILS), a novel quasi-supervised framework to reconstruct cell-type-specific genomic signals with base-pair precision. DeepDETAILS' core innovation lies in its ability to perform cross-modality deconvolution using scATAC-seq reference libraries for other bulk datasets, benefiting from the affordability and availability of scATAC-seq data. DeepDETAILS enables high-resolution mapping of genomic signals across diverse cell types, with great versatility for various omics datasets, including nascent transcript sequencing (such as PRO-cap and PRO-seq) and ChIP-seq for chromatin modifications. Our results demonstrate that DeepDETAILS significantly outperformed traditional statistical deconvolution methods. Using DeepDETAILS, we developed a comprehensive compendium of high-resolution nascent transcription and histone modification signals across 39 diverse human tissues and 86 distinct cell types. Furthermore, we applied our compendium to fine-map risk variants associated with Primary Sclerosing Cholangitis (PSC), a progressive cholestatic liver disorder, and revealed a potential etiology of the disease. Our tool and compendium provide invaluable insights into cellular complexity, opening new avenues for studying biological processes in various contexts.
Collapse
|
3
|
Altendorfer E, Mundlos S, Mayer A. A transcription coupling model for how enhancers communicate with their target genes. Nat Struct Mol Biol 2025; 32:598-606. [PMID: 40217119 DOI: 10.1038/s41594-025-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
How enhancers communicate with their target genes to influence transcription is an unresolved question of fundamental importance. Current models of the mechanism of enhancer-target gene or enhancer-promoter (E-P) communication are transcription-factor-centric and underappreciate major findings, including that enhancers are themselves transcribed by RNA polymerase II, which correlates with enhancer activity. In this Perspective, we posit that enhancer transcription and its products, enhancer RNAs, are elementary components of enhancer-gene communication. Specifically, we discuss the possibility that transcription at enhancers and at their cognate genes are linked and that this coupling is at the basis of how enhancers communicate with their targets. This model of transcriptional coupling between enhancers and their target genes is supported by growing experimental evidence and represents a synthesis of recent key discoveries.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- Development and Disease group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
4
|
Bernardini A, Mantovani R. Q-rich activation domains: flexible 'rulers' for transcription start site selection? Trends Genet 2025; 41:275-285. [PMID: 39648061 DOI: 10.1016/j.tig.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
5
|
Xie B, Dean A. A Super Enhancer-Derived Enhancer RNA Acts Together with CTCF/Cohesin in Trans to Regulate Erythropoiesis. Genes (Basel) 2025; 16:389. [PMID: 40282349 PMCID: PMC12026470 DOI: 10.3390/genes16040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Enhancer RNAs (eRNAs) function in diverse modes and increasing studies have shown that they play important roles in normal development and disease. However, their role in erythropoiesis is not fully understood. Methods: We analyzed published RNA-seq and Promoter Capture Hi-C data from mouse E14.5 fetal liver cells to identify enhancer RNAs in erythroid cells with long-range interactions. Results: We discovered an erythroid-specific enhancer RNA (CpoxeRNA) transcribed from an enhancer region upstream of Cpox, an enzyme important for heme synthesis. CpoxeRNA is important for erythropoiesis, as the knockdown of CpoxeRNA by shRNA results in impaired enucleation and cell proliferation during terminal differentiation. CpoxeRNA interacts with cohesin and acts both in cis and trans to regulate erythroid genes. Conclusions: we have identified a trans-acting eRNA, CpoxeRNA, as a potential regulator of terminal erythropoiesis.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Chen YX, Zhang XP, Cooper DN, Wu DD, Bao WD. A combination of transcriptomics and epigenomics identifies genes and regulatory elements involved in embryonic tail development in the mouse. BMC Biol 2025; 23:88. [PMID: 40140914 PMCID: PMC11948857 DOI: 10.1186/s12915-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The post-anal tail is a common physical feature of vertebrates including mammals. Although it exhibits rich phenotypic diversity, its development has been evolutionarily conserved as early as the embryonic period. Genes participating in embryonic tail morphogenesis have hitherto been widely explored on the basis of experimental discovery, whereas the associated cis-regulatory elements (CREs) have not yet been systematically investigated for vertebrate/mammalian tail development. RESULTS Here, utilizing high-throughput sequencing schemes pioneered in mice, we profiled the dynamic transcriptome and CREs marked by active histone modifications during embryonic tail morphogenesis. Temporal and spatial disparity analyses revealed the genes specific to tail development and their putative CREs, which facilitated the identification of novel molecular expression features and potential regulatory influence of non-coding loci including long non-coding RNA (lncRNA) genes and CREs. Moreover, these identified sets of multi-omics data supply genetic clues for understanding the regulatory effects of relevant signaling pathways (such as Fgf, Wnt) dominating embryonic tail morphogenesis. CONCLUSIONS Our work brings new insights and provides exploitable fundamental datasets for the elucidation of the complex genetic mechanisms responsible for the formation of the vertebrate/mammalian tail.
Collapse
Affiliation(s)
- Yong-Xuan Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiu-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Wan-Dong Bao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
7
|
Auxillos J, Stigliani A, Vaagensø C, Garland W, Niazi A, Valen E, Jensen T, Sandelin A. True length of diverse capped RNA sequencing (TLDR-seq): 5'-3'-end sequencing of capped RNAs regardless of 3'-end status. Nucleic Acids Res 2025; 53:gkaf240. [PMID: 40183637 PMCID: PMC11969664 DOI: 10.1093/nar/gkaf240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Analysis of transcript function is greatly aided by knowledge of the full-length RNA sequence. New long-read sequencing enabled by Oxford Nanopore and PacBio devices have the potential to provide full-length transcript information; however, standard methods still lack the ability to capture true RNA 5' ends and select for polyadenylated (pA+) transcripts only. Here, we present a method that, by utilizing cap trapping and 3'-end adapter ligation, sequences transcripts between their exact 5' and 3' ends regardless of polyadenylation status and without the need for ribosomal RNA depletion, with the ability to characterize polyadenylation length of RNAs, if any. The method shows high reproducibility, can faithfully detect 5' ends, 3' ends and splice junctions, and produces gene-expression estimates that are highly correlated to those of short-read sequencing techniques. We also demonstrate that the method can detect and sequence full-length nonadenylated (pA-) RNAs, including long noncoding RNAs, promoter upstream transcripts, and enhancer RNAs, and present cases where pA+ and pA- RNAs show preferences for different but closely located transcription start sites. Our method is therefore useful for the characterization of diverse capped RNA species and analysis of relationships between transcription initiation, termination, and RNA processing.
Collapse
Affiliation(s)
- Jamie Auxillos
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Christian Skov Vaagensø
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Adnan Muhammed Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008 Bergen, Norway
- Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, DK8000 Aarhus, Denmark
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Paramo MI, Leung AKY, Shah SR, Zhang J, Tippens ND, Liang J, Yao L, Jin Y, Pan X, Ozer A, Lis JT, Yu H. Simultaneous measurement of intrinsic promoter and enhancer potential reveals principles of functional duality and regulatory reciprocity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643265. [PMID: 40161809 PMCID: PMC11952525 DOI: 10.1101/2025.03.14.643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Growing evidence indicates that transcriptional regulatory elements can exert both promoter and enhancer activity; however, the relationship and determinants of this dual functionality remain poorly understood. We developed a massively parallel dual reporter assay that enables simultaneous assessment of the intrinsic promoter and enhancer potential exerted by the same sequence. Parallel quantification for thousands of elements reveals that canonical human promoters and enhancers can act as both promoters and enhancers under the same contexts, and that promoter activity may be necessary but not sufficient for enhancer function. We find that regulatory potential is intrinsic to element sequences, irrespective of downstream features typically associated with distinct element classes. Perturbations to element transcription factor binding motifs lead to disruptions in both activities, implicating a shared syntax for the two regulatory functions. Combinations of elements with different minimal promoters reveal reciprocal activity modulation between associated elements and a strong positive correlation between promoter and enhancer functions imply a bidirectional feedback loop used to maintain environments of high transcriptional activity. Finally, our results indicate that the magnitude and balance between promoter and enhancer functions are shaped by both intrinsic sequence properties and contextual regulatory influences, suggesting a degree of plasticity in regulatory action. Our approach provides a new lens for understanding fundamental principles of regulatory element biology.
Collapse
|
9
|
Agrawal S, Kanamaru E, Saito Y, Ishikawa F, de Hoon M. Cell type-dependent directional transcription at enhancers. NAR Genom Bioinform 2025; 7:lqaf007. [PMID: 40060372 PMCID: PMC11886823 DOI: 10.1093/nargab/lqaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/02/2024] [Accepted: 02/05/2025] [Indexed: 04/16/2025] Open
Abstract
Enhancers are noncoding regulatory regions in the genome that play essential roles in modulating gene expression. Previous work showed that enhancers are not transcriptionally silent but are characterized by bidirectional expression of short capped noncoding RNAs. Balanced bidirectional expression has therefore been used as a key feature for the detection of enhancers from transcriptome data. Instead, by analyzing FANTOM5 and other deep cap analysis gene expression transcriptome datasets, we find enhancer transcription preferentially in one direction in individual cell types. As the preferred direction of transcription of an enhancer can switch between cell types, balanced bidirectional enhancer expression may appear if transcriptome data are aggregated over cell types. 5' single-cell RNA sequencing data showed that enhancers were almost exclusively expressed unidirectionally in a single cell. Reporter assay data demonstrated that the regulatory function of an enhancer does not depend on its preference for unidirectional or bidirectional expression. We conclude that requiring balanced bidirectional transcription for enhancer detection may discard most valid enhancers when applied to transcriptome data of a single cell type.
Collapse
Affiliation(s)
- Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Emi Kanamaru
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| |
Collapse
|
10
|
Munn PR, Chia J, Danko CG. Accurate de novo transcription unit annotation from run-on and sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637853. [PMID: 40027686 PMCID: PMC11870431 DOI: 10.1101/2025.02.12.637853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Functional element annotations are critical tools used to provide insight into the molecular processes governing cell development, differentiation, and disease. Run-on and sequencing assays measure the production of nascent RNAs and can provide an effective data source for discovering functional elements. However, the accurate inference of functional elements from run-on sequencing data remains an open problem because the signal is noisy and challenging to model. Here we investigated computational approaches that convert run-on and sequencing data into annotations representing transcription units, including genes and non-coding RNAs. We developed a convolutional neural network, called c onvolutional discovery of g ene a natomy using P RO-seq (CGAP), trained to identify different anatomical features of a transcription unit, which were then stitched together into transcript annotations using a hidden Markov model (HMM). Comparison with existing methods showed a significant performance improvement using our novel CGAP-HMM approach. We developed a voting system that ensembles the top three annotation strategies, resulting in large and significant improvements in transcription unit annotation accuracy over the best performing individual method. Finally, we also report a conditional generative adversarial network (cGAN) as a generative approach to transcription unit annotation that shows promise for further development. Collectively our work provides novel tools for de novo transcription unit annotation from run-on and sequencing data that are accurate enough to be useful in many applications.
Collapse
Affiliation(s)
- Paul R. Munn
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca NY 14850
| | - Jay Chia
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca NY 14850
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca NY 14850
| |
Collapse
|
11
|
He AY, Palamuttam NP, Danko CG. Training deep learning models on personalized genomic sequences improves variant effect prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618510. [PMID: 39463940 PMCID: PMC11507713 DOI: 10.1101/2024.10.15.618510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sequence-to-function models have broad applications in interpreting the molecular impact of genetic variation, yet have been criticized for poor performance in this task. Here we show that training models on functional genomic data with matched personal genomes improves their performance at variant effect prediction. Variant effect representations are retained even when fine tuning models to unseen cellular contexts and experimental readouts. Our results have implications for interpreting trait-associated genetic variation.
Collapse
|
12
|
Liu L, Zhao Y, Hassett R, Toneyan S, Koo P, Siepel A. Probabilistic and machine-learning methods for predicting local rates of transcription elongation from nascent RNA sequencing data. Nucleic Acids Res 2025; 53:gkaf092. [PMID: 39964478 PMCID: PMC11833694 DOI: 10.1093/nar/gkaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Rates of transcription elongation vary within and across eukaryotic gene bodies. Here, we introduce new methods for predicting elongation rates from nascent RNA sequencing data. First, we devise a probabilistic model that predicts nucleotide-specific elongation rates as a generalized linear function of nearby genomic and epigenomic features. We validate this model with simulations and apply it to public PRO-seq (Precision Run-On Sequencing) and epigenomic data for four cell types, finding that reductions in local elongation rate are associated with cytosine nucleotides, DNA methylation, splice sites, RNA stem-loops, CTCF (CCCTC-binding factor) binding sites, and several histone marks, including H3K36me3 and H4K20me1. By contrast, increases in local elongation rate are associated with thymines, A+T-rich and low-complexity sequences, and H3K79me2 marks. We then introduce a convolutional neural network that improves our local rate predictions. Our analysis is the first to permit genome-wide predictions of relative nucleotide-specific elongation rates.
Collapse
Affiliation(s)
- Lingjie Liu
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Rebecca Hassett
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Shushan Toneyan
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Peter K Koo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
13
|
Wan J, van Ouwerkerk A, Mouren JC, Heredia C, Pradel L, Ballester B, Andrau JC, Spicuglia S. Comprehensive mapping of genetic variation at Epromoters reveals pleiotropic association with multiple disease traits. Nucleic Acids Res 2025; 53:gkae1270. [PMID: 39727170 PMCID: PMC11879118 DOI: 10.1093/nar/gkae1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
There is growing evidence that a wide range of human diseases and physiological traits are influenced by genetic variation of cis-regulatory elements. We and others have shown that a subset of promoter elements, termed Epromoters, also function as enhancer regulators of distal genes. This opens a paradigm in the study of regulatory variants, as single nucleotide polymorphisms (SNPs) within Epromoters might influence the expression of several (distal) genes at the same time, which could disentangle the identification of disease-associated genes. Here, we built a comprehensive resource of human Epromoters using newly generated and publicly available high-throughput reporter assays. We showed that Epromoters display intrinsic and epigenetic features that distinguish them from typical promoters. By integrating Genome-Wide Association Studies (GWAS), expression Quantitative Trait Loci (eQTLs) and 3D chromatin interactions, we found that regulatory variants at Epromoters are concurrently associated with more disease and physiological traits, as compared with typical promoters. To dissect the regulatory impact of Epromoter variants, we evaluated their impact on regulatory activity by analyzing allelic-specific high-throughput reporter assays and provided reliable examples of pleiotropic Epromoters. In summary, our study represents a comprehensive resource of regulatory variants supporting the pleiotropic role of Epromoters.
Collapse
Affiliation(s)
- Jing Wan
- Aix-Marseille University, INSERM, TAGC, UMR 1090 Marseille, France
- Equipe Labellisée LIGUE, 2023 Marseille, France
| | - Antoinette van Ouwerkerk
- Aix-Marseille University, INSERM, TAGC, UMR 1090 Marseille, France
- Equipe Labellisée LIGUE, 2023 Marseille, France
| | | | - Carla Heredia
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, UMR 5535, Montpellier, France
| | - Lydie Pradel
- Aix-Marseille University, INSERM, TAGC, UMR 1090 Marseille, France
- Equipe Labellisée LIGUE, 2023 Marseille, France
| | - Benoit Ballester
- Aix-Marseille University, INSERM, TAGC, UMR 1090 Marseille, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, UMR 5535, Montpellier, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090 Marseille, France
- Equipe Labellisée LIGUE, 2023 Marseille, France
| |
Collapse
|
14
|
Kim SH, Marinov GK, Greenleaf WJ. KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome. Genome Res 2025; 35:124-134. [PMID: 39572230 PMCID: PMC11789636 DOI: 10.1101/gr.279621.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
Gene regulation in most eukaryotes involves two fundamental processes: alterations in genome packaging by nucleosomes, with active cis-regulatory elements (CREs) generally characterized by open-chromatin configuration, and transcriptional activation. Mapping these physical properties and biochemical activities, through profiling chromatin accessibility and active transcription, is a key tool for understanding the logic and mechanisms of transcription and its regulation. However, the relationship between these two states has not been accessible to simultaneous measurement. To this end, we developed KAS-ATAC, a combination of the kethoxal-assisted ssDNA sequencing (KAS-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) methods for mapping single-stranded DNA (and thus active transcription) and chromatin accessibility, respectively, enabling the genome-wide identification of DNA fragments that are simultaneously accessible and contain ssDNA. We use KAS-ATAC to evaluate levels of active transcription over different CRE classes, to estimate absolute levels of transcribed accessible DNA over CREs, to map nucleosomal configurations associated with RNA polymerase activities, and to assess transcription factor association with transcribed DNA through transcription factor binding site (TFBS) footprinting. We observe lower levels of transcription over distal enhancers compared with promoters and distinct nucleosomal configurations around transcription initiation sites associated with active transcription. We find that most TFs associate equally with transcribed and nontranscribed DNA, but a few factors specifically do not exhibit footprints over ssDNA-containing fragments. We anticipate KAS-ATAC to continue to derive useful insights into chromatin organization and transcriptional regulation in other contexts in the future.
Collapse
Affiliation(s)
- Samuel H Kim
- Cancer Biology Programs, School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Georgi K Marinov
- Department of Genetics, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - William J Greenleaf
- Department of Genetics, School of Medicine, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
15
|
Ji Y, Li B, Lin R, Yuan J, Han Y, Du Y, Zhao Y. Super-enhancers in tumors: unraveling recent advances in their role in Oncogenesis and the emergence of targeted therapies. J Transl Med 2025; 23:98. [PMID: 39838405 PMCID: PMC11753147 DOI: 10.1186/s12967-025-06098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Super enhancers are a unique class of enhancers that possess a distinct structure and mechanism, which enable them to exhibit stronger gene transcription regulatory function than classical enhancers, thereby regulating cellular activities. In tumor samples, super enhancers have been identified as crucial players in the development and progression of tumor cells, opening up new avenues for cancer research and treatment. This review provides a concise overview of various models regarding super enhancer assembly and activation, examining the mechanisms through which tumor cells acquire or activate these enhancers and regulate carcinogenic transcription programs. Furthermore, we discuss the current landscape and challenges in developing cancer therapeutic drugs that target super enhancers.
Collapse
Affiliation(s)
- Yumeng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baixue Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongjin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
16
|
Dong J, Sathyan K, Scott T, Mukherjee R, Guertin M. ZNF143 binds DNA and stimulates transcription initiation to activate and repress direct target genes. Nucleic Acids Res 2025; 53:gkae1182. [PMID: 39676670 PMCID: PMC11754675 DOI: 10.1093/nar/gkae1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and pervasively expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase transcription upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| |
Collapse
|
17
|
Mimoso CA, Vlaming H, de Wagenaar NP, Adelman K. Restrictor slows early transcription elongation to render RNA polymerase II susceptible to termination at non-coding RNA loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631787. [PMID: 39829856 PMCID: PMC11741429 DOI: 10.1101/2025.01.08.631787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The eukaryotic genome is broadly transcribed by RNA polymerase II (RNAPII) to produce protein-coding messenger RNAs (mRNAs) and a repertoire of non-coding RNAs (ncRNAs). Whereas RNAPII is very processive during mRNA transcription, it terminates rapidly during synthesis of many ncRNAs, particularly those that arise opportunistically from accessible chromatin at gene promoters or enhancers. The divergent fates of mRNA versus ncRNA species raise many questions about how RNAPII and associated machineries discriminate functional from spurious transcription. The Restrictor complex, comprised of the RNA binding protein ZC3H4 and RNAPII-interacting protein WDR82, has been implicated in restraining the expression of ncRNAs. However, the determinants of Restrictor targeting and the mechanism of transcription suppression remain unclear. Here, we investigate Restrictor using unbiased sequence screens, and rapid protein degradation followed by nascent RNA sequencing. We find that Restrictor promiscuously suppresses early elongation by RNAPII, but this activity is blocked at most mRNAs by the presence of a 5' splice site. Consequently, Restrictor is a critical determinant of transcription directionality at divergent promoters and prevents transcriptional interference. Finally, our data indicate that rather than directly terminating RNAPII, Restrictor acts by reducing the rate of transcription elongation, rendering RNAPII susceptible to early termination by other machineries.
Collapse
Affiliation(s)
- Claudia A. Mimoso
- Co-first authors
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Hanneke Vlaming
- Co-first authors
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Division of Genome Biology & Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Nathalie P. de Wagenaar
- Division of Genome Biology & Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
19
|
Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M. Gene regulation by convergent promoters. Nat Genet 2025; 57:206-217. [PMID: 39779959 PMCID: PMC11735407 DOI: 10.1038/s41588-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5'-overlapping antisense RNAs-an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept.
Collapse
Affiliation(s)
- Elina Wiechens
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Flavia Vigliotti
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Kanstantsin Siniuk
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Robert Schwarz
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katjana Schwab
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ivonne Görlich
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Arne Sahm
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Computational Phenomics Group, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Computational Phenomics Group, Ruhr University Bochum, Bochum, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Morgan A Sammons
- Department of Biological Sciences, The RNA Institute, The State University of New York at Albany, Albany, NY, USA
| | - Alexander Loewer
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
20
|
Hölzenspies JJ, Sengupta D, Bickmore WA, Brickman JM, Illingworth RS. PRC2 promotes canalisation during endodermal differentiation. PLoS Genet 2025; 21:e1011584. [PMID: 39883738 PMCID: PMC11813121 DOI: 10.1371/journal.pgen.1011584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models. Embryonic stem cells have provided key insights into the molecular function of polycomb proteins, but it is impossible to fully appreciate the role of these epigenetic factors in development, or how development is perturbed due to their deficiency, in the steady-state. To address this, we have employed a tractable embryonic stem cell differentiation system to model primitive streak formation and early gastrulation. Using this approach, we find that loss of the repressive polycomb mark H3K27me3 is delayed relative to transcriptional activation, indicating a subordinate rather than instructive role in gene repression. Despite this, chemical inhibition of polycomb enhanced endodermal differentiation efficiency, but did so at the cost of lineage fidelity. These findings highlight the importance of the polycomb system in stabilising the developmental transcriptional response and, in so doing, in shoring up cellular specification.
Collapse
Affiliation(s)
- Jurriaan Jochem Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Anne Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine—reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Scott Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Fosseprez O, Cuvier O. Uncovering the functions and mechanisms of regulatory elements-associated non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195059. [PMID: 39226990 DOI: 10.1016/j.bbagrm.2024.195059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.
Collapse
Affiliation(s)
- Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| |
Collapse
|
22
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Shah SR, Yu H, Lis JT, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. We trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers and a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of steady-state RAMPAGE profiles distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Sagar R Shah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Zhang J, Wang Q, Liu J, Duan Y, Liu Z, Zhang Z, Li C. Active enhancers: recent research advances and insights into disease. Biol Direct 2024; 19:112. [PMID: 39533395 PMCID: PMC11556110 DOI: 10.1186/s13062-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Precise regulation of gene expression is crucial to development. Enhancers, the core of gene regulation, determine the spatiotemporal pattern of gene transcription. Since many disease-associated mutations are characterized in enhancers, the research on enhancer will provide clues to precise medicine. Rapid advances in high-throughput sequencing technology facilitate the characterization of enhancers at genome wide, but understanding the functional mechanisms of enhancers remains challenging. Herein, we provide a panorama of enhancer characteristics, including epigenetic modifications, enhancer transcripts, and enhancer-promoter interaction patterns. Furthermore, we outline the applications of high-throughput sequencing technology and functional genomics methods in enhancer research. Finally, we discuss the role of enhancers in human disease and their potential as targets for disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
24
|
Razavi R, Fathi A, Yellan I, Brechalov A, Laverty KU, Jolma A, Hernandez-Corchado A, Zheng H, Yang AW, Albu M, Barazandeh M, Hu C, Vorontsov IE, Patel ZM, Kulakovskiy IV, Bucher P, Morris Q, Najafabadi HS, Hughes TR. Extensive binding of uncharacterized human transcription factors to genomic dark matter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622123. [PMID: 39605320 PMCID: PMC11601254 DOI: 10.1101/2024.11.11.622123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Most of the human genome is thought to be non-functional, and includes large segments often referred to as "dark matter" DNA. The genome also encodes hundreds of putative and poorly characterized transcription factors (TFs). We determined genomic binding locations of 166 uncharacterized human TFs in living cells. Nearly half of them associated strongly with known regulatory regions such as promoters and enhancers, often at conserved motif matches and co-localizing with each other. Surprisingly, the other half often associated with genomic dark matter, at largely unique sites, via intrinsic sequence recognition. Dozens of these, which we term "Dark TFs", mainly bind within regions of closed chromatin. Dark TF binding sites are enriched for transposable elements, and are rarely under purifying selection. Some Dark TFs are KZNFs, which contain the repressive KRAB domain, but many are not: the Dark TFs also include known or potential pioneer TFs. Compiled literature information supports that the Dark TFs exert diverse functions ranging from early development to tumor suppression. Thus, our results sheds light on a large fraction of previously uncharacterized human TFs and their unappreciated activities within the dark matter genome.
Collapse
Affiliation(s)
- Rozita Razavi
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ali Fathi
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Isaac Yellan
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Alexander Brechalov
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kaitlin U. Laverty
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
- Memorial Sloan Kettering Cancer Center, Rockefeller Research Laboratories, New York, NY 10065, USA
| | - Arttu Jolma
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Aldo Hernandez-Corchado
- Victor P. Dahdaleh Institute of Genomic Medicine, 740 Dr. Penfield Avenue, Room 7202, Montréal, Québec, H3A 0G1, Canada
| | - Hong Zheng
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ally W.H. Yang
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Mihai Albu
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Marjan Barazandeh
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Chun Hu
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ilya E. Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Zain M. Patel
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Ivan V. Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Philipp Bucher
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Quaid Morris
- Memorial Sloan Kettering Cancer Center, Rockefeller Research Laboratories, New York, NY 10065, USA
| | - Hamed S. Najafabadi
- Victor P. Dahdaleh Institute of Genomic Medicine, 740 Dr. Penfield Avenue, Room 7202, Montréal, Québec, H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0C7, Canada
| | - Timothy R. Hughes
- Donnelly Centre and Department of Molecular Genetics, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
25
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
26
|
Chovatiya G, Wang AB, Versluis P, Bai CK, Huang SY, DeBerardine M, Ray J, Ozer A, Lis JT, Tumbar T. A lineage-specific nascent RNA assay unveils principles of gene regulation in tissue biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618417. [PMID: 39464031 PMCID: PMC11507779 DOI: 10.1101/2024.10.15.618417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gene regulatory mechanisms that modulate RNA Polymerase II activity are difficult to access in mammalian tissues composed of multiple cell lineages. Here, we develop a nascent RNA assay (PReCIS-seq) that measures lineage-specific transcriptionally-engaged Pol II on genes and DNA enhancer elements in intact mouse tissue. By employing keratinocytes as a prototype lineage, we unearth Pol II promoter-recruitment versus pause-release mechanisms operating in adult skin homeostasis. Moreover, we relate active enhancer proximity and transcription factor binding motifs on promoters to Pol II activity and promoter-proximal pausing level. Finally, we find Pol II firing rapidly into elongation on lineage identity genes and highly paused on cellular safeguarding genes in a context-dependent manner. Our work provides a basic platform to investigate mechanistic principles of gene regulation in individual lineages of complex mammalian tissues.
Collapse
Affiliation(s)
- Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Philip Versluis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Chris K Bai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sean Y Huang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael DeBerardine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Judhajeet Ray
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Chivu AG, Basso BA, Abuhashem A, Leger MM, Barshad G, Rice EJ, Vill AC, Wong W, Chou SP, Chovatiya G, Brady R, Smith JJ, Wikramanayake AH, Arenas-Mena C, Brito IL, Ruiz-Trillo I, Hadjantonakis AK, Lis JT, Lewis JJ, Danko CG. Evolution of promoter-proximal pausing enabled a new layer of transcription control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.19.529146. [PMID: 39416036 PMCID: PMC11482795 DOI: 10.1101/2023.02.19.529146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. Unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites that transitioned to a longer-lived, focused pause in metazoans. This event coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF in mammals shifted the promoter-proximal buildup of Pol II from the pause site into the early gene body and compromised transcriptional activation for a set of heat shock genes. Our work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.
Collapse
Affiliation(s)
- Alexandra G. Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brent A. Basso
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - Michelle M. Leger
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Gilad Barshad
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward J. Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Albert C. Vill
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Shao-Pei Chou
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gopal Chovatiya
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Brady
- Department of Biology, Ithaca College, Ithaca NY 14850, USA
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | | | - César Arenas-Mena
- Department of Biology at the College of Staten Island and PhD Programs in Biology and Biochemistry at The Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain., Barcelona, 08003, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, NY 10065, USA
| | - John T. Lis
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - James J. Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Genetics and Biochemistry, Clemson University, 105 Collings St, Clemson, SC 29634
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Uvarova AN, Zheremyan EA, Ustiugova AS, Murashko MM, Bogomolova EA, Demin DE, Stasevich EM, Kuprash DV, Korneev KV. Autoimmunity-Associated SNP rs3024505 Disrupts STAT3 Binding in B Cells, Leading to IL10 Dysregulation. Int J Mol Sci 2024; 25:10196. [PMID: 39337678 PMCID: PMC11432243 DOI: 10.3390/ijms251810196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Interleukin 10 (IL10) is a major anti-inflammatory cytokine that acts as a master regulator of the immune response. A single nucleotide polymorphism rs3024505(C/T), located downstream of the IL10 gene, is associated with several aggressive inflammatory diseases, including systemic lupus erythematosus, Sjögren's syndrome, Crohn's disease, and ulcerative colitis. In such autoimmune pathologies, IL10-producing B cells play a protective role by decreasing the level of inflammation and restoring immune homeostasis. This study demonstrates that rs3024505 is located within an enhancer that augments the activity of the IL10 promoter in a reporter system based on a human B cell line. The common rs3024505(C) variant creates a functional binding site for the transcription factor STAT3, whereas the risk allele rs3024505(T) disrupts STAT3 binding, thereby reducing the IL10 promoter activity. Our findings indicate that B cells from individuals carrying the minor rs3024505(T) allele may produce less IL10 due to the disrupted STAT3 binding site, contributing to the progression of inflammatory pathologies.
Collapse
Affiliation(s)
- Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Matvey M. Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elvina A. Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Denis E. Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
30
|
He AY, Danko CG. Dissection of core promoter syntax through single nucleotide resolution modeling of transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583868. [PMID: 38559255 PMCID: PMC10979970 DOI: 10.1101/2024.03.13.583868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How the DNA sequence of cis-regulatory elements encode transcription initiation patterns remains poorly understood. Here we introduce CLIPNET, a deep learning model trained on population-scale PRO-cap data that predicts the position and quantity of transcription initiation with single nucleotide resolution from DNA sequence more accurately than existing approaches. Interpretation of CLIPNET revealed a complex regulatory syntax consisting of DNA-protein interactions in five major positions between -200 and +50 bp relative to the transcription start site, as well as more subtle positional preferences among transcriptional activators. Transcriptional activator and core promoter motifs work non-additively to encode distinct aspects of initiation, with the former driving initiation quantity and the latter initiation position. We identified core promoter motifs that explain initiation patterns in the majority of promoters and enhancers, including DPR motifs and AT-rich TBP binding sequences in TATA-less promoters. Our results provide insights into the sequence architecture governing transcription initiation.
Collapse
Affiliation(s)
- Adam Y. He
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Graduate Field of Computational Biology, Cornell University
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| |
Collapse
|
31
|
Stasevich EM, Simonova AV, Bogomolova EA, Murashko MM, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Cut from the same cloth: RNAs transcribed from regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195049. [PMID: 38964653 DOI: 10.1016/j.bbagrm.2024.195049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
Collapse
Affiliation(s)
- E M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - A N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - K V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A M Schwartz
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - D V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D E Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
32
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Lyu R, Gao Y, Wu T, Ye C, Wang P, He C. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq. Nat Commun 2024; 15:6852. [PMID: 39127768 PMCID: PMC11316786 DOI: 10.1038/s41467-024-50680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
34
|
Yang J, Li J, Miao L, Gao X, Sun W, Linghu S, Ren G, Peng B, Chen S, Liu Z, Wang B, Dong A, Huang D, Yuan J, Dang Y, Lai F. Transcription directionality is licensed by Integrator at active human promoters. Nat Struct Mol Biol 2024; 31:1208-1221. [PMID: 38649617 DOI: 10.1038/s41594-024-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
A universal characteristic of eukaryotic transcription is that the promoter recruits RNA polymerase II (RNAPII) to produce both precursor mRNAs (pre-mRNAs) and short unstable promoter upstream transcripts (PROMPTs) toward the opposite direction. However, how the transcription machinery selects the correct direction to produce pre-mRNAs is largely unknown. Here, through multiple acute auxin-inducible degradation systems, we show that rapid depletion of an RNAPII-binding protein complex, Integrator, results in robust PROMPT accumulation throughout the genome. Interestingly, the accumulation of PROMPTs is compensated by the reduction of pre-mRNA transcripts in actively transcribed genes. Consistently, Integrator depletion alters the distribution of polymerase between the sense and antisense directions, which is marked by increased RNAPII-carboxy-terminal domain Tyr1 phosphorylation at PROMPT regions and a reduced Ser2 phosphorylation level at transcription start sites. Mechanistically, the endonuclease activity of Integrator is critical to suppress PROMPT production. Furthermore, our data indicate that the presence of U1 binding sites on nascent transcripts could counteract the cleavage activity of Integrator. In this process, the absence of robust U1 signal at most PROMPTs allows Integrator to suppress the antisense transcription and shift the transcriptional balance in favor of the sense direction.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Jingyang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Langxi Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenhao Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shuo Linghu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Guiping Ren
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bangya Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Shunkai Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhongqi Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Bo Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Ao Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Duo Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinrong Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
35
|
McDonald BR, Picard CL, Brabb IM, Savenkova MI, Schmitz RJ, Jacobsen SE, Duttke SH. Enhancers associated with unstable RNAs are rare in plants. NATURE PLANTS 2024; 10:1246-1257. [PMID: 39080503 PMCID: PMC11335568 DOI: 10.1038/s41477-024-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/13/2024] [Indexed: 08/07/2024]
Abstract
Unstable transcripts have emerged as markers of active enhancers in vertebrates and shown to be involved in many cellular processes and medical disorders. However, their prevalence and role in plants is largely unexplored. Here, we comprehensively captured all actively initiating (nascent) transcripts across diverse crops and other plants using capped small (cs)RNA sequencing. We discovered that unstable transcripts are rare in plants, unlike in vertebrates, and when present, often originate from promoters. In addition, many 'distal' elements in plants initiate tissue-specific stable transcripts and are likely bona fide promoters of as-yet-unannotated genes or non-coding RNAs, cautioning against using reference genome annotations to infer putative enhancer sites. To investigate enhancer function, we integrated data from self-transcribing active regulatory region (STARR) sequencing. We found that annotated promoters and other regions that initiate stable transcripts, but not those marked by unstable or bidirectional unstable transcripts, showed stronger enhancer activity in this assay. Our findings underscore the blurred line between promoters and enhancers and suggest that cis-regulatory elements can encompass diverse structures and mechanisms in eukaryotes, including humans.
Collapse
Affiliation(s)
- Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Colette L Picard
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ian M Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Steven E Jacobsen
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
36
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Kose C, Lindsey-Boltz LA, Sancar A, Jiang Y. Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans. PLoS Genet 2024; 20:e1011365. [PMID: 39028758 PMCID: PMC11290646 DOI: 10.1371/journal.pgen.1011365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/31/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps in a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), and a strain that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yuchao Jiang
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, College of Arts and Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
38
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing unveils coordinated global transcription. Nature 2024; 631:216-223. [PMID: 38839954 PMCID: PMC11222150 DOI: 10.1038/s41586-024-07517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1,2. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations3. However, fundamental questions about the temporal regulation of transcription and enhancer-gene coordination remain unanswered, primarily because of the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq-a new single-cell nascent RNA sequencing assay that uses click chemistry-and unveil coordinated transcription throughout the genome. We demonstrate the episodic nature of transcription and the co-transcription of functionally related genes. scGRO-seq can estimate burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells and can leverage replication-dependent non-polyadenylated histone gene transcription to elucidate cell cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq enables the identification of networks of enhancers and genes. Our results suggest that the bursting of transcription at super-enhancers precedes bursting from associated genes. By imparting insights into the dynamic nature of global transcription and the origin and propagation of transcription signals, we demonstrate the ability of scGRO-seq to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathaniel D Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sean K Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Sarah E Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Exact Sciences, Madison, WI, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, Carlin AF, Heinz S, Benner C. Position-dependent function of human sequence-specific transcription factors. Nature 2024; 631:891-898. [PMID: 39020164 PMCID: PMC11269187 DOI: 10.1038/s41586-024-07662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Patterns of transcriptional activity are encoded in our genome through regulatory elements such as promoters or enhancers that, paradoxically, contain similar assortments of sequence-specific transcription factor (TF) binding sites1-3. Knowledge of how these sequence motifs encode multiple, often overlapping, gene expression programs is central to understanding gene regulation and how mutations in non-coding DNA manifest in disease4,5. Here, by studying gene regulation from the perspective of individual transcription start sites (TSSs), using natural genetic variation, perturbation of endogenous TF protein levels and massively parallel analysis of natural and synthetic regulatory elements, we show that the effect of TF binding on transcription initiation is position dependent. Analysing TF-binding-site occurrences relative to the TSS, we identified several motifs with highly preferential positioning. We show that these patterns are a combination of a TF's distinct functional profiles-many TFs, including canonical activators such as NRF1, NFY and Sp1, activate or repress transcription initiation depending on their precise position relative to the TSS. As such, TFs and their spacing collectively guide the site and frequency of transcription initiation. More broadly, these findings reveal how similar assortments of TF binding sites can generate distinct gene regulatory outcomes depending on their spatial configuration and how DNA sequence polymorphisms may contribute to transcription variation and disease and underscore a critical role for TSS data in decoding the regulatory information of our genome.
Collapse
Affiliation(s)
- Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Max Chang
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jialei Xie
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
40
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Rosales Larios MF, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biol 2024; 25:156. [PMID: 38872220 PMCID: PMC11170920 DOI: 10.1186/s13059-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Division of Molecular Genetics and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Zoetis, Inc, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Kristina M Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
41
|
Wong EWP, Sahin M, Yang R, Lee U, Zhan YA, Misra R, Tomas F, Alomran N, Polyzos A, Lee CJ, Trieu T, Fundichely AM, Wiesner T, Rosowicz A, Cheng S, Liu C, Lallo M, Merghoub T, Hamard PJ, Koche R, Khurana E, Apostolou E, Zheng D, Chen Y, Leslie CS, Chi P. TAD hierarchy restricts poised LTR activation and loss of TAD hierarchy promotes LTR co-option in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596845. [PMID: 38895201 PMCID: PMC11185511 DOI: 10.1101/2024.05.31.596845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.
Collapse
|
42
|
Struhl K. Non-canonical functions of enhancers: regulation of RNA polymerase III transcription, DNA replication, and V(D)J recombination. Trends Genet 2024; 40:471-479. [PMID: 38643034 PMCID: PMC11152991 DOI: 10.1016/j.tig.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.
Collapse
Affiliation(s)
- Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Dong J, Scott TG, Mukherjee R, Guertin MJ. ZNF143 binds DNA and stimulates transcripstion initiation to activate and repress direct target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594008. [PMID: 38798607 PMCID: PMC11118474 DOI: 10.1101/2024.05.13.594008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and ubiquitously expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA Polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase expression upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA Polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
44
|
McShane A, Narayanan IV, Paulsen MT, Ashaka M, Blinkiewicz H, Yang NT, Magnuson B, Bedi K, Wilson TE, Ljungman M. Characterizing nascent transcription patterns of PROMPTs, eRNAs, and readthrough transcripts in the ENCODE4 deeply profiled cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588612. [PMID: 38645116 PMCID: PMC11030308 DOI: 10.1101/2024.04.09.588612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Arising as co-products of canonical gene expression, transcription-associated lincRNAs, such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and readthrough (RT) transcripts, are often regarded as byproducts of transcription, although they may be important for the expression of nearby genes. We identified regions of nascent expression of these lincRNA in 16 human cell lines using Bru-seq techniques, and found distinctly regulated patterns of PROMPT, eRNA, and RT transcription using the diverse biochemical approaches in the ENCODE4 deeply profiled cell lines collection. Transcription of these lincRNAs was influenced by sequence-specific features and the local or 3D chromatin landscape. However, these sequence and chromatin features do not describe the full spectrum of lincRNA expression variability we identify, highlighting the complexity of their regulation. This may suggest that transcription-associated lincRNAs are not merely byproducts, but rather that the transcript itself, or the act of its transcription, is important for genomic function.
Collapse
|
45
|
Paterson AH, Queitsch C. Genome organization and botanical diversity. THE PLANT CELL 2024; 36:1186-1204. [PMID: 38382084 PMCID: PMC11062460 DOI: 10.1093/plcell/koae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Dudnyk K, Cai D, Shi C, Xu J, Zhou J. Sequence basis of transcription initiation in the human genome. Science 2024; 384:eadj0116. [PMID: 38662817 PMCID: PMC11223672 DOI: 10.1126/science.adj0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/28/2024] [Indexed: 05/03/2024]
Abstract
Transcription initiation is a process that is essential to ensuring the proper function of any gene, yet we still lack a unified understanding of sequence patterns and rules that explain most transcription start sites in the human genome. By predicting transcription initiation at base-pair resolution from sequences with a deep learning-inspired explainable model called Puffin, we show that a small set of simple rules can explain transcription initiation at most human promoters. We identify key sequence patterns that contribute to human promoter activity, each activating transcription with distinct position-specific effects. Furthermore, we explain the sequence basis of bidirectional transcription at promoters, identify the links between promoter sequence and gene expression variation across cell types, and explore the conservation of sequence determinants of transcription initiation across mammalian species.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Donghong Cai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Xu
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
47
|
Peralta-Alvarez CA, Núñez-Martínez HN, Cerecedo-Castillo ÁJ, Poot-Hernández AC, Tapia-Urzúa G, Garza-Manero S, Guerrero G, Recillas-Targa F. A Bidirectional Non-Coding RNA Promoter Mediates Long-Range Gene Expression Regulation. Genes (Basel) 2024; 15:549. [PMID: 38790178 PMCID: PMC11120797 DOI: 10.3390/genes15050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.
Collapse
Affiliation(s)
- Carlos Alberto Peralta-Alvarez
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
- Instituto de Fisiología Celular, Unidad de Bioinformática y Manejo de la Información, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Hober Nelson Núñez-Martínez
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| | - Ángel Josué Cerecedo-Castillo
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| | - Augusto César Poot-Hernández
- Instituto de Fisiología Celular, Unidad de Bioinformática y Manejo de la Información, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gustavo Tapia-Urzúa
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| | - Sylvia Garza-Manero
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| | - Georgina Guerrero
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| | - Félix Recillas-Targa
- Instituto de Fisiología Celular, Departaménto de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (C.A.P.-A.); (H.N.N.-M.)
| |
Collapse
|
48
|
Jones T, Sigauke RF, Sanford L, Taatjes DJ, Allen MA, Dowell RD. A transcription factor (TF) inference method that broadly measures TF activity and identifies mechanistically distinct TF networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585303. [PMID: 38559193 PMCID: PMC10980006 DOI: 10.1101/2024.03.15.585303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
TF profiler is a method of inferring transcription factor regulatory activity, i.e. when a TF is present and actively regulating transcription, directly directly from nascent sequencing assays such as PRO-seq and GRO-seq. Transcription factors orchestrate transcription and play a critical role in cellular maintenance, identity and response to external stimuli. While ChIP assays have measured DNA localization, they fall short of identifying when and where transcription factors are actively regulating transcription. Our method, on the other hand, uses RNA polymerase activity to infer TF activity across hundreds of data sets and transcription factors. Based on these classifications we identify three distinct classes of transcription factors: ubiquitous factors that play roles in cellular homeostasis, driving basal gene programs across tissues and cell types, tissue specific factors that act almost exclusively at enhancers and are themselves regulated at transcription, and stimulus responsive TFs which are regulated post-transcriptionally but act predominantly at enhancers. TF profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.
Collapse
|
49
|
Adato O, Sloutskin A, Komemi H, Brabb I, Duttke S, Bucher P, Unger R, Juven-Gershon T. ElemeNT 2023: an enhanced tool for detection and curation of core promoter elements. Bioinformatics 2024; 40:btae110. [PMID: 38407414 PMCID: PMC10950481 DOI: 10.1093/bioinformatics/btae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
MOTIVATION Prediction and identification of core promoter elements and transcription factor binding sites is essential for understanding the mechanism of transcription initiation and deciphering the biological activity of a specific locus. Thus, there is a need for an up-to-date tool to detect and curate core promoter elements/motifs in any provided nucleotide sequences. RESULTS Here, we introduce ElemeNT 2023-a new and enhanced version of the Elements Navigation Tool, which provides novel capabilities for assessing evolutionary conservation and for readily evaluating the quality of high-throughput transcription start site (TSS) datasets, leveraging preferential motif positioning. ElemeNT 2023 is accessible both as a fast web-based tool and via command line (no coding skills are required to run the tool). While this tool is focused on core promoter elements, it can also be used for searching any user-defined motif, including sequence-specific DNA binding sites. Furthermore, ElemeNT's CORE database, which contains predicted core promoter elements around annotated TSSs, is now expanded to cover 10 species, ranging from worms to human. In this applications note, we describe the new workflow and demonstrate a case study using ElemeNT 2023 for core promoter composition analysis of diverse species, revealing motif prevalence and highlighting evolutionary insights. We discuss how this tool facilitates the exploration of uncharted transcriptomic data, appraises TSS quality, and aids in designing synthetic promoters for gene expression optimization. Taken together, ElemeNT 2023 empowers researchers with comprehensive tools for meticulous analysis of sequence elements and gene expression strategies. AVAILABILITY AND IMPLEMENTATION ElemeNT 2023 is freely available at https://www.juven-gershonlab.org/resources/element-v2023/. The source code and command line version of ElemeNT 2023 are available at https://github.com/OritAdato/ElemeNT. No coding skills are required to run the tool.
Collapse
Affiliation(s)
- Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hodaya Komemi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ian Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Sascha Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
50
|
Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, Su D, Du Q, Zhang J, Wang H, Zhong Z, Zhang J, Li P, Jiang A, Long K, Li M, Ge L. An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif 2024; 57:e13552. [PMID: 37905345 PMCID: PMC10905358 DOI: 10.1111/cpr.13552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.
Collapse
Affiliation(s)
- Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Biwei Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Duo Su
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jinwei Zhang
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Liangpeng Ge
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| |
Collapse
|