1
|
Muñoz-Santa A, López-Causapé C, Bellés A, Gómez-Arbonés X, Cortés-Lara S, García-González M, Pifarré-Teixidó R, Oliver A. Pseudomonas aeruginosa chronic infections in patients with bronchiectasis: a silent reservoir of carbapenemase-producing epidemic high-risk clones. JAC Antimicrob Resist 2025; 7:dlaf053. [PMID: 40201539 PMCID: PMC11976719 DOI: 10.1093/jacamr/dlaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Objectives Pseudomonas aeruginosa is one of the major drivers of morbidity and mortality in patients with chronic underlying diseases. Whereas cystic fibrosis (CF) P. aeruginosa strains have been well studied, non-CF bronchiectasis isolates have received less scientific attention. Methods We determined the antibiotic susceptibility profiles of a collection of 100 P. aeruginosa isolates recovered from a total of 100 non-CF bronchiectasis patients attending a Catalonian hospital. All carbapenemase-producing isolates were characterized by WGS. Results Twelve isolates were classified as MDR (12%) and six were found to be carbapenemase (VIM-2) producers (6%). Of note, two of the VIM-2-producing isolates were carbapenem susceptible due to the presence of inactivating mutations in MexAB-OprM efflux pump components. These isolates exhibited properties of chronic P. aeruginosa isolates, such as mutator or mucoid phenotypes that are associated with persistent infections despite intensive antibiotic therapies. The phylogenetic analysis evidenced that all VIM-2 isolates belonged to the high-risk clone ST235. Core-genome MLST analysis revealed 7-260 allelic differences, arguing against recent transmission but a common source of infection or an ancient interpatient transmission event could not be ruled out. Conclusions Altogether, these findings suggest that P. aeruginosa chronic respiratory infections can be an important and silent reservoir of transferable resistance determinants and P. aeruginosa high-risk clones, thus contributing to their increased resistance and worldwide dissemination.
Collapse
Affiliation(s)
- Alba Muñoz-Santa
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Alba Bellés
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Xavier Gómez-Arbonés
- Departamento de Medicina y Cirugía, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | - Sara Cortés-Lara
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Mercè García-González
- Servicio de Análisis Clínicos, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRB Lleida), Universitat de Lleida, Lleida, Spain
| | | | - Antonio Oliver
- Servicio de Microbiología, Hospital Univeristario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Cai YM, Hong F, De Craemer A, Malone JG, Crabbé A, Coenye T. Echinacoside reduces intracellular c-di-GMP levels and potentiates tobramycin activity against Pseudomonas aeruginosa biofilm aggregates. NPJ Biofilms Microbiomes 2025; 11:40. [PMID: 40055321 PMCID: PMC11889090 DOI: 10.1038/s41522-025-00673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a central biofilm regulator in Pseudomonas aeruginosa, where increased intracellular levels promote biofilm formation and antibiotic tolerance. Targeting the c-di-GMP network may be a promising anti-biofilm approach, but most strategies studied so far aimed at eliminating surface-attached biofilms, while in vivo P. aeruginosa biofilms often occur as suspended aggregates. Here, the expression profile of c-di-GMP metabolism-related genes was analysed among 32 P. aeruginosa strains grown as aggregates in synthetic cystic fibrosis sputum. The diguanylate cyclase SiaD proved essential for auto-aggregation under in vivo-like conditions. Virtual screening predicted a high binding affinity of echinacoside towards the active site of SiaD. Echinacoside reduced c-di-GMP levels and aggregate sizes and potentiated tobramycin activity against aggregates in >80% of strains tested. This synergism was also observed in P. aeruginosa-infected 3-D alveolar epithelial cells and murine lungs, demonstrating echinacoside's potential as an adjunctive therapy for recalcitrant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK.
| | - Feng Hong
- Group of Microbiological Engineering and Biomedical Materials, College of Biological Science and Medical Engineering, Donghua University, North Ren Min Road 2999, 201620, Shanghai, China
- National Advanced Functional Fiber Innovation Centre, Wu Jiang, Su Zhou, China
| | - Amber De Craemer
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Meirelles LA, Persat A. Decoding host-microbe interactions with engineered human organoids. EMBO J 2025; 44:1569-1573. [PMID: 39984757 PMCID: PMC11914615 DOI: 10.1038/s44318-025-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Cruz RL, Freeman TS, Asfahl KL, Smalley NE, Dandekar AA. RhlR-mediated cooperation in cystic fibrosis-adapted isolates of Pseudomonas aeruginosa. J Bacteriol 2025; 207:e0034424. [PMID: 39670758 PMCID: PMC11784195 DOI: 10.1128/jb.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the expression of dozens of genes, many of which encode shared products, called "public goods." P. aeruginosa possesses two complete acyl-homoserine lactone (AHL) QS circuits: the LasR-I and RhlR-I systems. Canonically, these systems are hierarchically organized: RhlR-I activity depends on LasR-I activation. However, in contrast to laboratory strains, isolates from people with cystic fibrosis can engage in AHL QS using only the transcription factor RhlR. In these isolates, RhlR regulates AHL QS and the production of secreted public goods, such as the exoprotease elastase, which are accessible to both producing and non-producing cells. When P. aeruginosa strains that use LasR to regulate elastase production are grown on casein as the sole carbon and energy source, LasR-null mutant "cheaters" commonly arise in populations due to a selective growth advantage. We asked if these social dynamics might differ in "RhlR cooperators": populations that use RhlR, not LasR, to regulate public goods. We passaged RhlR cooperators from several genetic backgrounds in casein broth. We found that cheaters emerged among most RhlR cooperators. However, in one isolate background, E90, RhlR-null mutants were dramatically outcompeted by RhlR cooperators. In this background, the mechanism by which RhlR mutants are outcompeted by RhlR cooperators is AHL-dependent and occurs in stationary phase but is not the same as previously described "policing" mechanisms. Our data suggest that cheating, or the lack thereof, does not explain the lack of RhlR mutants observed in most infection environments.IMPORTANCEQuorum sensing (QS) mutants arise in a variety of populations of bacteria, but mutants of the gene encoding the transcription factor RhlR in Pseudomonas aeruginosa appear to be infrequent. Our work provides insight on the mechanisms through which RhlR-mediated cooperation is maintained in a LasR-null population of P. aeruginosa. Characterizing the selective pressure(s) that disfavor mutations from occurring in RhlR may enhance our understanding of P. aeruginosa evolution in chronic infections and potentially guide the development of therapeutics targeting the RhlR-I QS circuit.
Collapse
Affiliation(s)
- Renae L. Cruz
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Tiia S. Freeman
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kyle L. Asfahl
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Zhou N, Yu J, Liu X, Li C, Tang H, Lyu L, Wu C, Chen Y, Zhang J, Ni J, Wang D, Tao J, Wu W, Zhang Y, Feng Y, Chao Y, Lu J, He P, Yao YF. Within-host evolution of a transcriptional regulator contributes to the establishment of chronic Pseudomonas aeruginosa infection. Cell Rep 2025; 44:115214. [PMID: 39826124 DOI: 10.1016/j.celrep.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
As an opportunistic pathogen, Pseudomonas aeruginosa can cause both acute and chronic infections that are notoriously difficult to treat. However, the mechanism underlying acute or chronic P. aeruginosa infection remains unclear. Here, we identify a mutation in a transcriptional regulator PA5438 (named GavR). This mutation causes a 3-amino-acid absence in GavR and is strongly associated with chronic P. aeruginosa infection. Mechanistically, the deletion in GavR directly downregulates the transcription of the aceEF operon and leads to an accumulation of intracellular pyruvate, which can promote bacterial survival in neutrophils. Notably, P. aeruginosa with 9-bp-deleted or full-length gavR composes a mixed population in most patients with chronic or acute infections. Overall, the mutation in gavR attenuates P. aeruginosa virulence and enhances innate immune evasion by reprogramming pyruvate metabolism and the glyoxylate cycle. This work reveals a molecular mechanism of transition control from acute to chronic infection in P. aeruginosa.
Collapse
Affiliation(s)
- Ning Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xujiao Liu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengxi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Feng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanjie Chao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ping He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China.
| |
Collapse
|
6
|
Pleguezuelos-Manzano C, Beenker WAG, van Son GJF, Begthel H, Amatngalim GD, Beekman JM, Clevers H, den Hertog J. Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids. Sci Rep 2025; 15:2222. [PMID: 39824906 PMCID: PMC11742674 DOI: 10.1038/s41598-024-82500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required. Here, we set up a new P. aeruginosa infection model, using 2D upper airway nasal organoids that were derived from 3D organoids. Using dual RNA-sequencing, we dissected the interaction between organoid epithelial cells and WT or QS-mutant P. aeruginosa strains. Since only a single healthy individual and a single CF subject were used as donors for the organoids, conclusions about CF-specific effects could not be deduced. However, P. aeruginosa induced epithelial inflammation, whereas QS signaling did not affect the epithelial airway cells. Conversely, the epithelium influenced infection-related processes of P. aeruginosa, including QS-mediated regulation. Comparison of our model with samples from the airways of CF subjects indicated that our model recapitulates important aspects of infection in vivo. Hence, the 2D airway organoid infection model is relevant and may help to reduce the future burden of P. aeruginosa infections in CF.
Collapse
Affiliation(s)
- Cayetano Pleguezuelos-Manzano
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Wouter A G Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs J F van Son
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland.
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
7
|
Pourtois JD, Haddock NL, Gupta A, Khosravi A, Martinez H, Schmidt AK, Prakash PS, Jain R, Fleming P, Chang TH, Milla C, Secor PR, De Leo GA, Bollyky PL, Burgener EB. Pseudomonas superinfection drives Pf phage transmission within airway infections in patients with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632786. [PMID: 39868244 PMCID: PMC11761399 DOI: 10.1101/2025.01.14.632786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Pf bacteriophages, lysogenic viruses that infect Pseudomonas aeruginosa (Pa), are implicated in the pathogenesis of chronic Pa infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new Pseudomonas infections. Here, we have studied Pa genomic sequences from 3 patient cohorts totaling 663 clinical isolates from 105 pwCF. We identify Pf+ isolates and analyze transmission patterns of Pf within patients between genetically similar groups of bacteria called "clone types". We find that Pf is predominantly passed down vertically within Pa lineages and rarely via horizontal transfer between clone types within the airway. Conversely, we find extensive evidence of Pa superinfection by a new, genetically distinct Pa that is Pf+. Finally, we find that clinical isolates show reduced activity of the type IV pilus and reduced susceptibility to Pf in vitro. These results cast new light on the transmission of virulence-associated phages in the clinical setting.
Collapse
Affiliation(s)
- Julie D Pourtois
- Biology Department, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aditi Gupta
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Hunter Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Amelia K Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Prema S Prakash
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronit Jain
- Biology Department, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Piper Fleming
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Tony H Chang
- Biology Department, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Division of Pulmonary Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Patrick R Secor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Giulio A De Leo
- Oceans Department, Stanford University, Pacific Grove, California, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Division of Pulmonary Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Division of Pediatric Pulmonology & Sleep Medicine, Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine at University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Kyrkou I, Bartell J, Lechuga A, Lood C, Marvig RL, Lavigne R, Molin S, Krogh Johansen H. Pseudomonas aeruginosa maintains an inducible array of novel and diverse prophages over lengthy persistence in cystic fibrosis lungs. FEMS Microbiol Lett 2025; 372:fnaf017. [PMID: 39890605 PMCID: PMC11846083 DOI: 10.1093/femsle/fnaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/24/2024] [Accepted: 01/30/2025] [Indexed: 02/03/2025] Open
Abstract
Pseudomonas aeruginosa has increasing clinical relevance and commonly occupies the cystic fibrosis (CF) airways. Its ability to colonize and persist in diverse niches is attributed to its large accessory genome, where prophages represent a common feature and may contribute to its fitness and persistence. We focused on the CF airways niche and used 197 longitudinal isolates from 12 patients persistently infected by P. aeruginosa. We computationally predicted intact prophages for each longitudinal group and scored their long-term persistence. We then confirmed prophage inducibility and mapped their location in the host chromosome with lysate sequencing. Using comparative genomics, we evaluated prophage genomic diversity, long-term persistence, and level of genomic maintenance. Our findings support previous findings that most P. aeruginosa genomes harbour prophages some of which can self-induce, and that a common CF-treating antibiotic, ciprofloxacin, can induce prophages. Induced prophage genomes displayed high diversity and even genomic novelty. Finally, all induced prophages persisted long-term with their genomes avoiding gene loss and degradation over 4 years of host replication in the stressful CF airways niche. This and our detection of phage genes, which contribute to host competitiveness and adaptation, lends support to our hypothesis that the vast majority of prophages detected as intact and inducible in this study facilitated their host fitness and persistence.
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Department of Veterinary and Animal Sciences, Food Safety and Zoonosis, University of Copenhagen, 1870 Frederiksberg, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jennifer Bartell
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ana Lechuga
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
- Laboratory of Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Fuglsang-Madsen A, Haagensen JAJ, De Rudder C, Simões FB, Molin S, Johansen HK. Establishment of a 3D-Printed Tissue-on-a-Chip Model for Live Imaging of Bacterial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1476:69-85. [PMID: 39825043 DOI: 10.1007/5584_2024_829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies. In this communication, we briefly present existing in vivo models for cystic fibrosis and their limitations in replicating human respiratory infections. We then present a novel, 3D-printed, cytocompatible microfluidic lung-on-a-chip device, designed to simulate the human lung environment, and with possible use in recapitulating general infectious diseases.Our device enables the colonisation of fully differentiated lung epithelia at an air-liquid interface with Pseudomonas aeruginosa, a key pathogen in many severe infections. By incorporating dynamic flow, we replicate the clearance of bacterial toxins and planktonic cells, simulating both acute and chronic infections. This platform supports real-time monitoring of therapeutic interventions, mimics repeated drug administrations as in clinical settings, and facilitates the analysis of colony-forming units and cytokine secretion over time. Our findings indicate that this lung-on-a-chip device has significant potential for advancing infectious disease research, in optimizing treatment strategies against infections and in developing novel treatments.
Collapse
Affiliation(s)
- Albert Fuglsang-Madsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Janus Anders Juul Haagensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Charlotte De Rudder
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
- Present Address: University of Luxembourg, Centre for Systems Biomedicine, Luxembourg, Belgium
| | - Filipa Bica Simões
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Søren Molin
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Zhou Y, Zhang Y, Duan X, Zhou T, Ren A, Deng Y, Zhong L, Liu L, Huang Y, Zheng W, Liu D, Yang L. Choline metabolism modulates cyclic-di-GMP signaling and virulence of Pseudomonas aeruginosa in a macrophage infection model. BMC Infect Dis 2024; 24:1466. [PMID: 39731097 DOI: 10.1186/s12879-024-10375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored. METHODS Here, we employed an in vitro infection model to investigate the role of Cho in intracellular survival and virulence of Pseudomonas aeruginosa (P. aeruginosa). Additionally, a comprehensive RNA-seq based transcriptomic analysis and various phenotypic assays were performed to elucidate the impacts of Cho on P. aeruginosa. RESULTS We observed that the Cho metabolite glycine betaine (GB) effectively reduced intracellular levels of cyclic-di-GMP (c-di-GMP). Supplementation of Cho or GB in P. aeruginosa had thus affected c-di-GMP regulated phenotypes, such as pyoverdine production, biofilm formation, and mobility. Depletion of Cho metabolism through knockout of the betAB operon resulted in compromised intracellular survival of P. aeruginosa. Notably, the P. aeruginosa betAB mutant elicited a more robust protective inflammatory response compared to the wild-type strain. CONCLUSION Our study showed that P. aeruginosa Cho metabolism not only interferes host nutritional immunity, but also directly affect multiple virulence phenotypes through modulation of c-di-GMP signaling.
Collapse
Affiliation(s)
- Yachun Zhou
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Yu Zhang
- Department of Pathogen Biology, International Cancer Centre, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Centre, Shenzhen University Health Science Centre, Shenzhen, 518055, China
| | - Xiangke Duan
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tian Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Anmin Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yingfeng Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518000, China
| | - Dongjing Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Liang Yang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Reslane I, Watson GF, Handke LD, Fey PD. Regulatory dynamics of arginine metabolism in Staphylococcus aureus. Biochem Soc Trans 2024; 52:2513-2523. [PMID: 39656074 DOI: 10.1042/bst20240710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Staphylococcus aureus is a highly significant pathogen with several well studied and defined virulence factors. However, the metabolic pathways that are required to facilitate infection are not well described. Previous data have documented that S. aureus requires glucose catabolism during initial stages of infection. Therefore, certain nutrients whose biosynthetic pathway is under carbon catabolite repression and CcpA, including arginine, must be acquired from the host. However, even though S. aureus encodes pathways to synthesize arginine, biosynthesis of arginine is repressed even in the absence of glucose. Why is S. aureus a functional arginine auxotroph? This review discusses recently described regulatory mechanisms that are linked to repression of arginine biosynthesis using either proline or glutamate as substrates. In addition, recent studies are discussed that shed insight into the ultimate mechanisms linking arginine auxotrophy and infection persistence.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Gabrielle F Watson
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Luke D Handke
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Paul D Fey
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
13
|
Taccetti G, Terlizzi V, Campana S, Dolce D, Ravenni N, Fevola C, Francalanci M, Galici V, Neri AS. Antibiotic treatment of bacterial lung infections in cystic fibrosis. Eur J Pediatr 2024; 184:82. [PMID: 39672981 PMCID: PMC11645307 DOI: 10.1007/s00431-024-05905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
Bacterial infections of the lower airways are the main cause of mortality and morbidity in cystic fibrosis. The most frequently isolated pathogens are S. aureus and P. aeruginosa; bacterial co-infections are frequently observed. The aim of this review is to provide, in the current context, the indications regarding the best antibiotic strategy to adopt in subjects affected by CF infected with the most common pathogens. We selected relevant publications (guidelines, systematic reviews and clinical studies published so far on these topics) and we analysed the sampling methods used and antibiotic strategies adopted. Oropharyngeal sampling methods are considered less sensitive for pathogen detection than sputum. In non-expectorating people, induced sputum is considered equivalent to two-lobe bronchoalveolar lavage, which is considered invasive. Antibiotic treatment against the main pathogens can consist in eradication treatment in the early stages of infection, chronic suppressive therapy and treatment of the pulmonary exacerbations. This scheme is valid for P. aeruginosa but remains to be demonstrated for the other pathogens. For S. aureus, no evidence-based therapeutic strategies on how to treat the different stages of bacterial infection have been established with certainty. With regard to the treatment of the other classic pathogens (B. cepacia complex, A. xylosoxidans and S. maltophilia), no evidence-based indications exist and decision is left to the clinician. The recent introduction of highly effective modulators on the CFTR protein, in addition to the favourable effects described in regulatory trials, has led to a reduction in bacterial isolations; the real effect of which in clinical practice has still to be assessed on the basis of scientific data. CONCLUSIONS: The reliability of culture examination depends on sampling methods, and expectorated sputum continues to be the best method as it is simple and non-invasive. P. aeruginosa is the pathogen for which antibiotic strategies for the various stages of infection appear best established, and the efficacy of early eradication treatment and chronic suppressive therapy have been underlined in clinical trials and systematic reviews. The recent introduction of modulators into clinical practice, despite their widely described efficacy, has not yet led to suggestions for changes in antibiotic strategies against the pathogens most frequently isolated.
Collapse
Affiliation(s)
- Giovanni Taccetti
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy.
| | - Vito Terlizzi
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Silvia Campana
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Daniela Dolce
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Novella Ravenni
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Cristina Fevola
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Michela Francalanci
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Valeria Galici
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| | - Anna Silvia Neri
- Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Centre, 50139, Florence, Italy
| |
Collapse
|
14
|
Deventer AT, Stevens CE, Stewart A, Hobbs JK. Antibiotic tolerance among clinical isolates: mechanisms, detection, prevalence, and significance. Clin Microbiol Rev 2024; 37:e0010624. [PMID: 39364999 PMCID: PMC11629620 DOI: 10.1128/cmr.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYAntibiotic treatment failures in the absence of resistance are not uncommon. Recently, attention has grown around the phenomenon of antibiotic tolerance, an underappreciated contributor to recalcitrant infections first detected in the 1970s. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting resistance. With advances in genomics, we are gaining a better understanding of the molecular mechanisms behind tolerance, and several studies have sought to examine the clinical prevalence of tolerance. Attempts have also been made to assess the clinical significance of tolerance through in vivo infection models and prospective/retrospective clinical studies. Here, we review the data available on the molecular mechanisms, detection, prevalence, and clinical significance of genotypic tolerance that span ~50 years. We discuss the need for standardized methodology and interpretation criteria for tolerance detection and the impact that methodological inconsistencies have on our ability to accurately assess the scale of the problem. In terms of the clinical significance of tolerance, studies suggest that tolerance contributes to worse outcomes for patients (e.g., higher mortality, prolonged hospitalization), but historical data from animal models are varied. Furthermore, we lack the necessary information to effectively treat tolerant infections. Overall, while the tolerance field is gaining much-needed traction, the underlying clinical significance of tolerance that underpins all tolerance research is still far from clear and requires attention.
Collapse
Affiliation(s)
- Ashley T. Deventer
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Claire E. Stevens
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Amy Stewart
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Joanne K. Hobbs
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
15
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024; 9:3284-3303. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Met CM, Hofstaedter CE, O'Keefe IP, Yang H, Moustafa DA, Sherman ME, Doi Y, Rasko DA, Sweet CR, Goldberg JB, Ernst RK. Characterization of Pseudomonas aeruginosa from subjects with diffuse panbronchiolitis. Microbiol Spectr 2024; 12:e0053024. [PMID: 39377602 PMCID: PMC11537112 DOI: 10.1128/spectrum.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Diffuse panbronchiolitis (DPB) is a rare, idiopathic inflammatory disease primarily diagnosed in East Asian populations. DPB is characterized by diffuse pulmonary lesions, inflammation of the respiratory bronchioles, and bacterial infections of the airway. Historically, sputum cultures reveal Pseudomonas aeruginosa in 22% of DPB patients, increasing to 60% after 4 years from disease onset. Although DPB patients have a known susceptibility to respiratory P. aeruginosa infections, as is observed in other chronic lung diseases such as cystic fibrosis (CF), the characterization of DPB P. aeruginosa strains is limited. In this study, we characterized 24 strains obtained from a cohort of DPB patients for traits previously associated with virulence, including growth, motility, antibiotic susceptibility, lipopolysaccharide structure, and genomic diversity. Our cohort of DPB P. aeruginosa strains exhibits considerable genomic variability when compared with isolates from people with cystic fibrosis chronically colonized with P. aeruginosa and acute P. aeruginosa infection isolates. Similar to CF, DPB P. aeruginosa strains produce a diverse array of modified lipid A structures. Antibiotic susceptibility testing revealed increased resistance to erythromycin, a representative agent of the macrolide antibiotics used to manage DPB patients. Differences in the O-antigen type among P. aeruginosa strains collected from these different backgrounds were also observed. Ultimately, the characterization of DPB P. aeruginosa strains highlights several unique qualities of P. aeruginosa strains collected from chronically diseased airways, underscoring the challenges in treating DPB, CF, and other obstructive respiratory disease patients with P. aeruginosa infections. IMPORTANCE Diffuse panbronchiolitis (DPB), a chronic lung disease characterized by persistent P. aeruginosa infection, serves as an informative comparator to more common chronic lung diseases, such as cystic fibrosis (CF). This study aimed to better address the interplay between P. aeruginosa and chronically compromised airway environments through the examination of DPB P. aeruginosa strains, as existing literature regarding DPB is limited to case reports, case series, and clinical treatment guidelines. The evaluation of these features in the context of DPB, in tandem with prevailing knowledge of P. aeruginosa strains collected from more common chronic lung diseases (e.g., CF), can aid in the development of more effective strategies to combat respiratory P. aeruginosa infections in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Charles M. Met
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Ian P. O'Keefe
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew E. Sherman
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| | - Yohei Doi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David A. Rasko
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland - Baltimore, Baltimore, Maryland, USA
| | - Charles R. Sweet
- Chemistry Department, USA Naval Academy, Annapolis, Maryland, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Fischer AJ, Thornton CS. Decoding genetic susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J 2024; 64:2401224. [PMID: 39510593 DOI: 10.1183/13993003.01224-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Anthony J Fischer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Christina S Thornton
- Departments of Medicine and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Hibbert TM, Whiteley M, Renshaw SA, Neill DR, Fothergill JL. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit Rev Microbiol 2024; 50:1037-1052. [PMID: 37999716 DOI: 10.1080/1040841x.2023.2285995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is responsible for infections in people living with chronic respiratory conditions, such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Traditionally, in people with chronic respiratory disorders, P. aeruginosa infection has been managed with a combination of inhaled and intravenous antibiotic therapies. However, due in part to the prolonged use of antibiotics in these people, the emergence of multi-drug resistant P. aeruginosa strains is a growing concern. The development of anti-virulence therapeutics may provide a new means of treating P. aeruginosa lung infections whilst also combatting the AMR crisis, as these agents are presumed to exert reduced pressure for the emergence of drug resistance as compared to antibiotics. However, the pipeline for developing anti-virulence therapeutics is poorly defined, and it is currently unclear as to whether in vivo and in vitro models effectively replicate the complex pulmonary environment sufficiently to enable development and testing of such therapies for future clinical use. Here, we discuss potential targets for P. aeruginosa anti-virulence therapeutics and the effectiveness of the current models used to study them. Focus is given to the difficulty of replicating the virulence gene expression patterns of P. aeruginosa in the CF and NCFB lung under laboratory conditions and to the challenges this poses for anti-virulence therapeutic development.
Collapse
Affiliation(s)
- Tegan M Hibbert
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Centre for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A Renshaw
- The Bateson Centre and Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Daniel R Neill
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
20
|
Goltermann L, Laborda P, Irazoqui O, Pogrebnyakov I, Bendixen MP, Molin S, Johansen HK, La Rosa R. Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa. Nat Commun 2024; 15:8906. [PMID: 39414850 PMCID: PMC11484784 DOI: 10.1038/s41467-024-53329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Macrolides are widely used antibiotics for the treatment of bacterial airway infections. Due to its elevated minimum inhibitory concentration in standardized culture media, Pseudomonas aeruginosa is considered intrinsically resistant and, therefore, antibiotic susceptibility testing against macrolides is not performed. Nevertheless, due to macrolides' immunomodulatory effect and suppression of virulence factors, they are used for the treatment of persistent P. aeruginosa infections. Here, we demonstrate that macrolides are, instead, effective antibiotics against P. aeruginosa airway infections in an Air-Liquid Interface (ALI) infection model system resembling the human airways. Importantly, macrolide treatment in both people with cystic fibrosis and primary ciliary dyskinesia patients leads to the accumulation of uL4 and uL22 ribosomal protein mutations in P. aeruginosa which causes antibiotic resistance. Consequently, higher concentrations of antibiotics are needed to modulate the macrolide-dependent suppression of virulence. Surprisingly, even in the absence of antibiotics, these mutations also lead to a collateral reduction in growth rate, virulence and pathogenicity in airway ALI infections which are pivotal for the establishment of a persistent infection. Altogether, these results lend further support to the consideration of macrolides as de facto antibiotics against P. aeruginosa and the need for resistance monitoring upon prolonged macrolide treatment.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Oihane Irazoqui
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Maria Pals Bendixen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Cortes-Lara S, Medina-Reatiga P, Barrio-Tofiño ED, Gomis-Font MA, Cabot G, Gómez-Romano F, Ayestarán I, Colomar A, Palou-Rotger A, Oteo-Iglesias J, Campo RD, Cantón R, Horcajada JP, López-Causapé C, Oliver A. Monitoring of Pseudomonas aeruginosa mutational resistome dynamics using an enrichment panel for direct sequencing of clinical samples. EBioMedicine 2024; 108:105367. [PMID: 39332391 PMCID: PMC11467565 DOI: 10.1016/j.ebiom.2024.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major cause of hospital-acquired and chronic infections, characterised by an extraordinary capacity to develop antimicrobial resistance through the selection of chromosomal mutations, leading to treatment failure. Here, we designed and tested a hybridisation-based capture system for the enrichment of genes of interest before sequencing to monitor resistant populations genomics directly from clinical samples. METHODS A panel for enrichment before sequencing of close to 200 genes related to P. aeruginosa antimicrobial resistance, multilocus sequence typing, mutability or virulence was designed, synthesised (KAPA HyperCap, Roche) and initially validated in vitro using a multidrug-resistant ST175 isolate and representative isolates from major P. aeruginosa clades. In vivo testing included ventilator associated pneumonia by MDR P. aeruginosa in ICU (3-10 sequential samples from 3 patients) and chronic respiratory infection by hypermutable P. aeruginosa in cystic fibrosis (8 sequential samples from a single patient covering a 4-year period). Results from direct sequencing with the enrichment panel were compared with those of whole genome sequencing (WGS) and phenotypic profiling of 10 isolated colonies per sample. FINDINGS In vitro assays confirmed the selectivity of the enrichment panel and the correct identification of the vast mutational resistome of ST175, including specific mutations even when introduced in a 1:100 proportion. In vivo performance was at least equivalent to sequencing 10 colonies per sample, including the accurate identification of the sequence types and the basal and acquired mutational resistome. To note, specific resistance mutations, such as those in ampC leading to resistance to novel β-lactams, could be traced even at frequencies of 1%. Moreover, the coselection of mutator populations and antibiotic resistance mutations, predicted in theoretical and in vitro studies, was evidenced in vivo. INTERPRETATION This proof-of-concept study demonstrates that resistance genomics of P. aeruginosa can be analysed directly from clinical samples, determining not only a considerable reduction in turnaround time and cost from a diagnostics perspective, but also an unprecedented potency for accurate monitoring of in vivo population dynamics in bacterial infections. FUNDING Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea-NextGenerationEU.
Collapse
Affiliation(s)
- Sara Cortes-Lara
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Paola Medina-Reatiga
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - María A Gomis-Font
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Fernando Gómez-Romano
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Ignacio Ayestarán
- Servicio de Medicina Intensiva, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Asunción Colomar
- Servicio de Medicina Intensiva, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain
| | - Alexandre Palou-Rotger
- Servicio de Neumología, Hospital Universitario Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERINFEC, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERINFEC, Madrid, Spain
| | - Juan P Horcajada
- Servicio de Enfermedades Infecciosas, Hospital del Mar, Hospital del Mar Research Institute, Universitat Pompeu Fabra (UPF) Barcelona, Spain. CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, IdISBa, CIBERINFEC, Palma de Mallorca, Spain.
| |
Collapse
|
23
|
Crow JC, Geng H, Sullivan TJ, Soucy SM, Schultz D. Dynamics of drug delivery determines course of evolution of antibiotic responses in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569327. [PMID: 38076825 PMCID: PMC10705423 DOI: 10.1101/2023.11.29.569327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
To adjust to sudden shifts in conditions, microbes possess regulated genetic mechanisms that sense environmental challenges and induce the appropriate responses. The initial evolution of microbes in new environments is thought to be driven by regulatory mutations, but it is not clear how this evolution is affected by how quickly conditions change (i.e. dynamics). Here, we perform experimental evolution on continuous cultures of tetracycline resistant E. coli in different dynamical regimens of drug administration. We find that cultures evolved under gradually increasing drug concentrations acquire fine-tuning mutations adapting an alternative efflux pump to tetracycline. However, cultures that are instead periodically exposed to large drug doses evolve transposon insertions resulting in loss of regulation of the main mechanism of tetracycline resistance. A mathematical model shows that sudden drug exposures overwhelm regulated responses, which cannot induce resistance fast enough. These results help explain the frequent loss of regulation of resistance in clinical pathogens.
Collapse
Affiliation(s)
- John C. Crow
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Hao Geng
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Shannon M. Soucy
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| |
Collapse
|
24
|
Ledger EL, Smith DJ, Teh JJ, Wood ME, Whibley PE, Morrison M, Goldberg JB, Reid DW, Wells TJ. Impact of CFTR Modulation on Pseudomonas aeruginosa Infection in People With Cystic Fibrosis. J Infect Dis 2024; 230:e536-e547. [PMID: 38442240 PMCID: PMC11420785 DOI: 10.1093/infdis/jiae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a multidrug-resistant pathogen causing recalcitrant pulmonary infections in people with cystic fibrosis (pwCF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been developed that partially correct the defective chloride channel driving disease. Despite the many clinical benefits, studies in adults have demonstrated that while P. aeruginosa sputum load decreases, chronic infection persists. Here, we investigate how P. aeruginosa in pwCF may change in the altered lung environment after CFTR modulation. METHODS P. aeruginosa strains (n = 105) were isolated from the sputum of 11 chronically colonized pwCF at baseline and up to 21 months posttreatment with elexacaftor-tezacaftor-ivacaftor or tezacaftor-ivacaftor. Phenotypic characterization and comparative genomics were performed. RESULTS Clonal lineages of P. aeruginosa persisted after therapy, with no evidence of displacement by alternative strains. We identified commonly mutated genes among patient isolates that may be positively selected for in the CFTR-modulated lung. However, classic chronic P. aeruginosa phenotypes such as mucoid morphology were sustained, and isolates remained just as resistant to clinically relevant antibiotics. CONCLUSIONS Despite the clinical benefits of CFTR modulators, clonal lineages of P. aeruginosa persist that may prove just as difficult to manage in the future, especially in pwCF with advanced lung disease.
Collapse
Affiliation(s)
- Emma L Ledger
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Daniel J Smith
- Northside Clinical Unit, The University of Queensland, Brisbane, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Jing Jie Teh
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michelle E Wood
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Page E Whibley
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David W Reid
- Northside Clinical Unit, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
| |
Collapse
|
25
|
Ritz D, Deng Y, Schultz D. Common regulatory mutation increases single-cell survival to antibiotic exposures in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614194. [PMID: 39345531 PMCID: PMC11430049 DOI: 10.1101/2024.09.20.614194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Typical antibiotic susceptibility testing (AST) of microbial samples is performed in homogeneous cultures in steady environments, which does not account for the highly heterogeneous and dynamic nature of antibiotic responses. The most common mutation found in P. aeruginosa lineages evolved in the human lung, a loss of function of repressor MexZ, increases basal levels of multidrug efflux MexXY, but does not increase resistance by traditional MIC measures. Here, we use single cell microfluidics to show that P. aeruginosa response to aminoglycosides is highly heterogeneous, with only a subpopulation of cells surviving exposure. mexZ mutations then bypass the lengthy process of MexXY activation, increasing survival to sudden drug exposures and conferring a fitness advantage in fluctuating environments. We propose a simple "Response Dynamics" assay to quantify the speed of population-level recovery to drug exposures. This assay can be used alongside MIC for resistance profiling to better predict clinical outcomes.
Collapse
Affiliation(s)
- David Ritz
- Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Yijie Deng
- Thayer School of Engineering – Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Suttenfield LC, Rapti Z, Chandrashekhar JH, Steinlein AC, Vera JC, Kim T, Whitaker RJ. Phage-mediated resolution of genetic conflict alters the evolutionary trajectory of Pseudomonas aeruginosa lysogens. mSystems 2024; 9:e0080124. [PMID: 39166874 PMCID: PMC11406979 DOI: 10.1128/msystems.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.
Collapse
Affiliation(s)
- Laura C Suttenfield
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jayadevi H Chandrashekhar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amelia C Steinlein
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juan Cristobal Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ted Kim
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J Whitaker
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. eLife 2024; 13:e93146. [PMID: 39240756 PMCID: PMC11379459 DOI: 10.7554/elife.93146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.
Collapse
Affiliation(s)
- Paul A Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
28
|
Glen KA, Lamont IL. Penicillin-binding protein 3 sequence variations reduce susceptibility of Pseudomonas aeruginosa to β-lactams but inhibit cell division. J Antimicrob Chemother 2024; 79:2170-2178. [PMID: 39001778 PMCID: PMC11368433 DOI: 10.1093/jac/dkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND β-lactam antibiotics, which inhibit penicillin-binding protein 3 (PBP3) that is required for cell division, play a key role in treating P. aeruginosa infections. Some sequence variations in PBP3 have been associated with β-lactam resistance but the effects of variations on antibiotic susceptibility and on cell division have not been quantified. Antibiotic efflux can also reduce susceptibility. OBJECTIVES To quantify the effects of PBP3 variations on β-lactam susceptibility and cell morphology in P. aeruginosa. METHODS Nineteen PBP3 variants were expressed from a plasmid in the reference strain P. aeruginosa PAO1 and genome engineering was used to construct five mutants expressing PBP3 variants from the chromosome. The effects of the variations on β-lactam minimum inhibitory concentration (MIC) and cell morphology were measured. RESULTS Some PBP3 variations reduced susceptibility to a variety of β-lactam antibiotics including meropenem, ceftazidime, cefepime and ticarcillin with different variations affecting different antibiotics. None of the tested variations reduced susceptibility to imipenem or piperacillin. Antibiotic susceptibility was further reduced when PBP3 variants were expressed in mutant bacteria overexpressing the MexAB-OprM efflux pump, with some variations conferring clinical levels of resistance. Some PBP3 variations, and sub-MIC levels of β-lactams, reduced bacterial growth rates and inhibited cell division, causing elongated cells. CONCLUSIONS PBP3 variations in P. aeruginosa can increase the MIC of multiple β-lactam antibiotics, although not imipenem or piperacillin. PBP3 variations, or the presence of sub-lethal levels of β-lactams, result in elongated cells indicating that variations reduce the activity of PBP3 and may reduce bacterial fitness.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Grun CN, Jain R, Schniederberend M, Shoemaker CB, Nelson B, Kazmierczak BI. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nat Commun 2024; 15:7502. [PMID: 39209859 PMCID: PMC11362561 DOI: 10.1038/s41467-024-51912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P. aeruginosa cell surface but methods to identify these are limited. Here we combine phage display with high-throughput DNA sequencing to create a high throughput, multiplexed technology for surveying bacterial cell surfaces, Phage-seq. By applying phage display panning to hundreds of bacterial genotypes and analyzing the dynamics of the phage display selection process, we capture important biological information about cell surfaces. This approach also yields camelid single-domain antibodies that recognize key P. aeruginosa virulence factors on live cells. These antibodies have numerous potential applications in diagnostics and therapeutics. We propose that Phage-seq establishes a powerful paradigm for studying the bacterial cell surface by identifying and profiling many surface features in parallel.
Collapse
Affiliation(s)
- Casey N Grun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchi Jain
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Piton Therapeutics, Watertown, MA, USA
| | - Maren Schniederberend
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Orion Corporation, Turku, Finland
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Pedersen BH, Simões FB, Pogrebnyakov I, Welch M, Johansen HK, Molin S, La Rosa R. Metabolic specialization drives reduced pathogenicity in Pseudomonas aeruginosa isolates from cystic fibrosis patients. PLoS Biol 2024; 22:e3002781. [PMID: 39178315 PMCID: PMC11376529 DOI: 10.1371/journal.pbio.3002781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/05/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear. Here, we characterize a convergent shift in metabolic function(s) linked with the persistence phenotype during Pseudomonas aeruginosa colonization in the airways of people with cystic fibrosis. We show that clinically relevant mutations in the key metabolic enzyme, pyruvate dehydrogenase, lead to a host-specialized metabolism together with a lower virulence and immune response recruitment. These changes in infection phenotype are mediated by impaired type III secretion system activity and by secretion of the antioxidant metabolite, pyruvate, respectively. Our results show how metabolic adaptations directly impinge on persistence and pathogenicity in this organism.
Collapse
Affiliation(s)
- Bjarke Haldrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Filipa Bica Simões
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
31
|
Weimann A, Dinan AM, Ruis C, Bernut A, Pont S, Brown K, Ryan J, Santos L, Ellison L, Ukor E, Pandurangan AP, Krokowski S, Blundell TL, Welch M, Blane B, Judge K, Bousfield R, Brown N, Bryant JM, Kukavica-Ibrulj I, Rampioni G, Leoni L, Harrison PT, Peacock SJ, Thomson NR, Gauthier J, Fothergill JL, Levesque RC, Parkhill J, Floto RA. Evolution and host-specific adaptation of Pseudomonas aeruginosa. Science 2024; 385:eadi0908. [PMID: 38963857 DOI: 10.1126/science.adi0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
The major human bacterial pathogen Pseudomonas aeruginosa causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups. Our findings thus explain the pathogenic evolution of P. aeruginosa and highlight the importance of global surveillance and cross-infection prevention in averting the emergence of future epidemic clones.
Collapse
Affiliation(s)
- Aaron Weimann
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Adam M Dinan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Ruis
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Audrey Bernut
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), UMR5235, CNRS/Université de Montpellier, Montpellier, France
| | - Karen Brown
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Judy Ryan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lúcia Santos
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Louise Ellison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Emem Ukor
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Arun P Pandurangan
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sina Krokowski
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tom L Blundell
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kim Judge
- Wellcome Sanger Institute, Hinxton, UK
| | - Rachel Bousfield
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | | | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Patrick T Harrison
- Department of Physiology, Bioscience Institute, University College Cork, Cork, Ireland
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Jo L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals Trust, Cambridge, UK
| |
Collapse
|
32
|
Laborda P, Gil‐Gil T, Martínez JL, Hernando‐Amado S. Preserving the efficacy of antibiotics to tackle antibiotic resistance. Microb Biotechnol 2024; 17:e14528. [PMID: 39016996 PMCID: PMC11253305 DOI: 10.1111/1751-7915.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Different international agencies recognize that antibiotic resistance is one of the most severe human health problems that humankind is facing. Traditionally, the introduction of new antibiotics solved this problem but various scientific and economic reasons have led to a shortage of novel antibiotics at the pipeline. This situation makes mandatory the implementation of approaches to preserve the efficacy of current antibiotics. The concept is not novel, but the only action taken for such preservation had been the 'prudent' use of antibiotics, trying to reduce the selection pressure by reducing the amount of antibiotics. However, even if antibiotics are used only when needed, this will be insufficient because resistance is the inescapable outcome of antibiotics' use. A deeper understanding of the alterations in the bacterial physiology upon acquisition of resistance and during infection will help to design improved strategies to treat bacterial infections. In this article, we discuss the interconnection between antibiotic resistance (and antibiotic activity) and bacterial metabolism, particularly in vivo, when bacteria are causing infection. We discuss as well how understanding evolutionary trade-offs, as collateral sensitivity, associated with the acquisition of resistance may help to define evolution-based therapeutic strategies to fight antibiotic resistance and to preserve currently used antibiotics.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | | | | | | |
Collapse
|
33
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557751. [PMID: 37745437 PMCID: PMC10515931 DOI: 10.1101/2023.09.14.557751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
When examining bacterial genomes for evidence of past selection, the results obtained depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed byd N / d S , the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale-dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with exactly opposite implications for dynamical intuition and applications ofd N / d S . Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain thed N / d S decay given only dozens of locally-fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values ofd N / d S obtained from long-time scales with caution, as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short time scales.
Collapse
Affiliation(s)
- Paul A. Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Eklöf J, Alispahic IA, Armbruster K, Lapperre TS, Browatzki A, Overgaard RH, Harboe ZB, Janner J, Moberg M, Ulrik CS, Andreassen HF, Weinreich UM, Kjærgaard JL, Villadsen J, Fenlev CS, Jensen TT, Christensen CW, Bangsborg J, Ostergaard C, Ghathian KSA, Jordan A, Klausen TW, Nielsen TL, Wilcke T, Seersholm N, Sivapalan P, Jensen JUS. Systemic antibiotics for Pseudomonas aeruginosa infection in outpatients with non-hospitalised exacerbations of pre-existing lung diseases: a randomised clinical trial. Respir Res 2024; 25:236. [PMID: 38844921 PMCID: PMC11157704 DOI: 10.1186/s12931-024-02860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The effect of dual systemic antibiotic therapy against Pseudomonas aeruginosa in patients with pre-existing lung disease is unknown. To assess whether dual systemic antibiotics against P. aeruginosa in outpatients with COPD, non-cystic fibrosis (non-CF) bronchiectasis, or asthma can improve outcomes. METHODS Multicenter, randomised, open-label trial conducted at seven respiratory outpatient clinics in Denmark. Outpatients with COPD, non-CF bronchiectasis, or asthma with a current P. aeruginosa-positive lower respiratory tract culture (clinical routine samples obtained based on symptoms of exacerbation not requiring hospitalisation), regardless of prior P. aeruginosa-status, no current need for hospitalisation, and at least two moderate or one hospitalisation-requiring exacerbation within the last year were eligible. Patients were assigned 1:1 to 14 days of dual systemic anti-pseudomonal antibiotics or no antibiotic treatment. Primary outcome was time to prednisolone or antibiotic-requiring exacerbation or death from day 20 to day 365. RESULTS The trial was stopped prematurely based in lack of recruitment during the COVID-19 pandemic, this decision was endorsed by the Data and Safety Monitoring Board. Forty-nine outpatients were included in the study. There was a reduction in risk of the primary outcome in the antibiotic group compared to the control group (HR 0.51 (95%CI 0.27-0.96), p = 0.037). The incidence of admissions with exacerbation within one year was 1.1 (95%CI 0.6-1.7) in the dual antibiotic group vs. 2.9 (95%CI 1.3-4.5) in the control group, p = 0.037. CONCLUSIONS Use of dual systemic antibiotics for 14 days against P. aeruginosa in outpatients with chronic lung diseases and no judged need for hospitalisation, improved clinical outcomes markedly. The main limitation was the premature closure of the trial. TRIAL REGISTRATION ClinicalTrials.gov, NCT03262142, registration date 2017-08-25.
Collapse
Affiliation(s)
- Josefin Eklöf
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark.
| | - Imane Achir Alispahic
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Karin Armbruster
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Therese Sophie Lapperre
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, Bispebjerg Frederiksberg, Denmark
- Department of Respiratory Medicine, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Andrea Browatzki
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Rikke Holmen Overgaard
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Zitta Barrella Harboe
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Julie Janner
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mia Moberg
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Helle Frost Andreassen
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, Bispebjerg Frederiksberg, Denmark
| | - Ulla Møller Weinreich
- Department of Respiratory Medicine, Aalborg University Hospital and Department of Clinical Medicine, Aalborg, Denmark
| | - Jakob Lyngby Kjærgaard
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Jenny Villadsen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Camilla Sund Fenlev
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | - Jette Bangsborg
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev, Denmark
| | - Christian Ostergaard
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alexander Jordan
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Tobias Wirenfeldt Klausen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Thyge Lynghøj Nielsen
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital, North Zealand, Denmark
| | - Torgny Wilcke
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Niels Seersholm
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
| | - Pradeesh Sivapalan
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Ulrik Stæhr Jensen
- Department of Internal Medicine, Herlev Gentofte University Hospital, Section of Respiratory Medicine, Copenhagen University Hospital, Herlev Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
36
|
Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W. Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa. Nucleic Acids Res 2024; 52:3856-3869. [PMID: 38477346 DOI: 10.1093/nar/gkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Collapse
Affiliation(s)
- Bo Jiang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chenghui Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqi Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
37
|
García-Villada L, Degtyareva NP, Brooks AM, Goldberg JB, Doetsch PW. A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:8598. [PMID: 38615146 PMCID: PMC11016087 DOI: 10.1038/s41598-024-59188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ashley M Brooks
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul W Doetsch
- Genomic Integrity and Structural Biology Laboratory, NIEHS, Durham, NC, USA.
| |
Collapse
|
38
|
Caruso L, Mellini M, Catalano Gonzaga O, Astegno A, Forte E, Di Matteo A, Giuffrè A, Visca P, Imperi F, Leoni L, Rampioni G. Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0007524. [PMID: 38445869 PMCID: PMC10989007 DOI: 10.1128/aac.00075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.
Collapse
Affiliation(s)
| | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
39
|
Laborda P, Lolle S, Hernando-Amado S, Alcalde-Rico M, Aanæs K, Martínez JL, Molin S, Johansen HK. Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Nat Commun 2024; 15:2584. [PMID: 38519499 PMCID: PMC10959964 DOI: 10.1038/s41467-024-46938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Signe Lolle
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | | | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kasper Aanæs
- Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
41
|
Hofstaedter CE, Chandler CE, Met CM, Gillespie JJ, Harro JM, Goodlett DR, Rasko DA, Ernst RK. Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation. mBio 2024; 15:e0282323. [PMID: 38131669 PMCID: PMC10865791 DOI: 10.1128/mbio.02823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.
Collapse
Affiliation(s)
- Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Charles M. Met
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Janette M. Harro
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - David R. Goodlett
- Departments of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Mould DL, Finger CE, Conaway A, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding by Pseudomonas aeruginosa supports lasR mutant fitness. mBio 2024; 15:e0127823. [PMID: 38259061 PMCID: PMC10865840 DOI: 10.1128/mbio.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.
Collapse
Affiliation(s)
- Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Carson E. Finger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico Botelho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stacie E. Stuut
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
43
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Yang X, Zeng Q, Gou S, Wu Y, Ma X, Zou H, Zhao K. Phenotypic heterogeneity unveils a negative correlation between antibiotic resistance and quorum sensing in Pseudomonas aeruginosa clinical isolates. Front Microbiol 2024; 15:1327675. [PMID: 38410387 PMCID: PMC10895058 DOI: 10.3389/fmicb.2024.1327675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Colonization of Pseudomonas aeruginosa in the lung environments frequently leads to the enrichment of strains displaying enhanced antibiotic resistance and reduced production of quorum-sensing (QS) controlled products. However, the relationship between the emergence of QS deficient variants and antibiotic resistance remains less understood. In this study, 67 P. aeruginosa strains were isolated from the lungs of 14 patients with chronic obstructive pulmonary disease, followed by determining their genetic relationship, QS-related phenotypes and resistance to commonly used antibiotics. The integrity of P. aeruginosa QS system was checked by DNA sequencing. The relationship between the QS system and antibiotic resistance was then assessed by correlation analyses. The function of the LasR protein and bacterial virulence were evaluated through homology modeling and nematode-infection assay. The influence of antibiotic on the development of extracellular protease production ability of P. aeruginosa was tested by an evolutionary experiment. The results showed that P. aeruginosa clinical strains displayed abundant diversity in phenotype and genotype. The production of extracellular proteases was significantly negatively correlated with antibiotic resistance. The strains with enhanced antibiotic resistance also showed a notable overlap with the mutation of lasR gene, which is the core regulatory gene of P. aeruginosa QS system. Molecular docking and Caenorhabditis elegans infection assays further suggested that P. aeruginosa with impaired LasR protein could also have varying pathogenicity. Moreover, in vitro evolution experiments demonstrated that antibiotic-mediated selective pressure, particularly from Levofloxacin contributed to the emergence of extracellular protease-negative strains. Therefore, this study provides evidence for the connection of P. aeruginosa QS system and antibiotic resistance, and holds significance for developing targeted strategies to address antibiotic resistance and improving the management of antibiotic-resistant infections in chronic respiratory diseases.
Collapse
Affiliation(s)
- Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qianglin Zeng
- Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xiaoling Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Hang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Deery J, Carmody M, Flavin R, Tomanek M, O'Keeffe M, McGlacken GP, Reen FJ. Comparative genomics reveals distinct diversification patterns among LysR-type transcriptional regulators in the ESKAPE pathogen Pseudomonas aeruginosa. Microb Genom 2024; 10:001205. [PMID: 38421269 PMCID: PMC10926688 DOI: 10.1099/mgen.0.001205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Pseudomonas aeruginosa, a harmful nosocomial pathogen associated with cystic fibrosis and burn wounds, encodes for a large number of LysR-type transcriptional regulator proteins. To understand how and why LTTR proteins evolved with such frequency and to establish whether any relationships exist within the distribution we set out to identify the patterns underpinning LTTR distribution in P. aeruginosa and to uncover cluster-based relationships within the pangenome. Comparative genomic studies revealed that in the JGI IMG database alone ~86 000 LTTRs are present across the sequenced genomes (n=699). They are widely distributed across the species, with core LTTRs present in >93 % of the genomes and accessory LTTRs present in <7 %. Analysis showed that subsets of core LTTRs can be classified as either variable (typically specific to P. aeruginosa) or conserved (and found to be distributed in other Pseudomonas species). Extending the analysis to the more extensive Pseudomonas database, PA14 rooted analysis confirmed the diversification patterns and revealed PqsR, the receptor for the Pseudomonas quinolone signal (PQS) and 2-heptyl-4-quinolone (HHQ) quorum-sensing signals, to be amongst the most variable in the dataset. Successful complementation of the PAO1 pqsR - mutant using representative variant pqsR sequences suggests a degree of structural promiscuity within the most variable of LTTRs, several of which play a prominent role in signalling and communication. These findings provide a new insight into the diversification of LTTR proteins within the P. aeruginosa species and suggests a functional significance to the cluster, conservation and distribution patterns identified.
Collapse
Affiliation(s)
- Jamie Deery
- School of Microbiology, University College Cork, Cork, Ireland
| | - Muireann Carmody
- School of Microbiology, University College Cork, Cork, Ireland
- School of Chemistry, University College Cork, Cork, Ireland
| | - Rhiannon Flavin
- School of Microbiology, University College Cork, Cork, Ireland
| | - Malwina Tomanek
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria O'Keeffe
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P. McGlacken
- School of Chemistry, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F. Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Espaillat A, Colque CA, Rago D, La Rosa R, Molin S, Johansen HK. Adaptive Evolution of Pseudomonas aeruginosa in Human Airways Shows Phenotypic Convergence Despite Diverse Patterns of Genomic Changes. Mol Biol Evol 2024; 41:msae022. [PMID: 38366124 PMCID: PMC10883414 DOI: 10.1093/molbev/msae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.
Collapse
Affiliation(s)
- Akbar Espaillat
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
| | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen Ø 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
47
|
Jensen PØ, Olsen P, Dungu AM, Egelund GB, Jensen AV, Ravn P, Lindegaard B, Hertz FB, Bjarnsholt T, Faurholt-Jepsen D, Kolpen M. Bacterial aerobic respiration is a major consumer of oxygen in sputum from patients with acute lower respiratory tract infection. APMIS 2024. [PMID: 38284501 DOI: 10.1111/apm.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Bacterial aerobic respiration may determine the outcome of antibiotic treatment in experimental settings, but the clinical relevance of bacterial aerobic respiration for the outcome of antibiotic treatment has not been tested. Therefore, we hypothesized that bacterial aerobic respiration is higher in sputum from patients with acute lower respiratory tract infections (aLRTI), than in sputum from patients with chronic LRTI (cLRTI), where the bacteria persist despite antibiotic treatment. The bacterial aerobic respiration was determined according to the dynamics of the oxygen (O2 ) concentration in sputum from aLRTI patients (n = 52). This result was evaluated by comparison to previously published data from patients with cLRTI. O2 consumption resulting in anoxic zones was more frequent in sputum with detected bacterial pathogens. The bacterial aerobic respiration in aLRTI sputum approximated 55% of the total O2 consumption, which was significantly higher than previously published for cLRTI. The bacterial aerobic respiration in sputum was higher in aLRTI patients than previously seen in cLRTI patients, indicating the presence of bacteria with a sensitive physiology in aLRTI. These variations in bacterial physiology between aLRTI patients and cLRTI patients may contribute the huge difference in treatment success between the two patient groups.
Collapse
Affiliation(s)
- Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernille Olsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Matovu Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Gertrud Baunbaek Egelund
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Andreas Vestergaard Jensen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | - Pernille Ravn
- Department of Medicine Section for Infectious Diseases, Herlev- Gentofte University Hospital, Hellerup, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
48
|
Abstract
Bacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.
Collapse
Affiliation(s)
- John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Nozick SH, Ozer EA, Medernach R, Kochan TJ, Kumar R, Mills JO, Wunderlink RG, Qi C, Hauser AR. Phenotypes of a Pseudomonas aeruginosa hypermutator lineage that emerged during prolonged mechanical ventilation in a patient without cystic fibrosis. mSystems 2024; 9:e0048423. [PMID: 38132670 PMCID: PMC10804958 DOI: 10.1128/msystems.00484-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Hypermutator lineages of Pseudomonas aeruginosa arise frequently during the years of airway infection experienced by patients with cystic fibrosis and bronchiectasis but are rare in the absence of chronic infection and structural lung disease. Since the onset of the COVID-19 pandemic, large numbers of patients have remained mechanically ventilated for extended periods of time. These patients are prone to acquire bacterial pathogens that persist for many weeks and have the opportunity to evolve within the pulmonary environment. However, little is known about what types of adaptations occur in these bacteria and whether these adaptations mimic those observed in chronic infections. We describe a COVID-19 patient with a secondary P. aeruginosa lung infection in whom the causative bacterium persisted for >50 days. Over the course of this infection, a hypermutator lineage of P. aeruginosa emerged and co-existed with a non-hypermutator lineage. Compared to the parental lineage, the hypermutator lineage evolved to be less cytotoxic and less virulent. Genomic analyses of the hypermutator lineage identified numerous mutations, including in the mismatch repair gene mutL and other genes frequently mutated in individuals with cystic fibrosis. Together, these findings demonstrate that hypermutator lineages can emerge when P. aeruginosa persists following acute infections such as ventilator-associated pneumonia and that these lineages have the potential to affect patient outcomes.IMPORTANCEPseudomonas aeruginosa may evolve to accumulate large numbers of mutations in the context of chronic infections such as those that occur in individuals with cystic fibrosis. However, these "hypermutator" lineages are rare following acute infections. Here, we describe a non-cystic fibrosis patient with COVID-19 pneumonia who remained mechanically ventilated for months. The patient became infected with a strain of P. aeruginosa that evolved to become a hypermutator. We demonstrate that hypermutation led to changes in cytotoxicity and virulence. These findings are important because they demonstrate that P. aeruginosa hypermutators can emerge following acute infections and that they have the potential to affect patient outcomes in this setting.
Collapse
Affiliation(s)
- Sophia H. Nozick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel Medernach
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Travis J. Kochan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca Kumar
- />Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington, DC, USA
| | - Jori O. Mills
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard G. Wunderlink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
50
|
Grote A, Piscon B, Manson AL, Adani B, Cohen H, Livny J, Earl AM, Gal-Mor O. Persistent Salmonella infections in humans are associated with mutations in the BarA/SirA regulatory pathway. Cell Host Microbe 2024; 32:79-92.e7. [PMID: 38211565 PMCID: PMC11410052 DOI: 10.1016/j.chom.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Several bacterial pathogens, including Salmonella enterica, can cause persistent infections in humans by mechanisms that are poorly understood. By comparing genomes of isolates longitudinally collected from 256 prolonged salmonellosis patients, we identified repeated mutations in global regulators, including the barA/sirA two-component regulatory system, across multiple patients and Salmonella serovars. Comparative RNA-seq analysis revealed that distinct mutations in barA/sirA led to diminished expression of Salmonella pathogenicity islands 1 and 4 genes, which are required for Salmonella invasion and enteritis. Moreover, barA/sirA mutants were attenuated in an acute salmonellosis mouse model and induced weaker transcription of host immune responses. In contrast, in a persistent infection mouse model, these mutants exhibited long-term colonization and prolonged shedding. Taken together, these findings suggest that selection of mutations in global virulence regulators facilitates persistent Salmonella infection in humans, by attenuating Salmonella virulence and inducing a weaker host inflammatory response.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bar Piscon
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boaz Adani
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Helit Cohen
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|