1
|
Lu J, Zhou C, Pan F, Liu H, Jiang H, Zhong H, Han B. Role of silent mutations in KRAS -mutant tumors. Chin Med J (Engl) 2025; 138:278-288. [PMID: 39654099 PMCID: PMC11771717 DOI: 10.1097/cm9.0000000000003405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Silent mutations within the RAS gene have garnered increasing attention for their potential roles in tumorigenesis and therapeutic strategies. Kirsten-RAS ( KRAS ) mutations, predominantly oncogenic, are pivotal drivers in various cancers. While extensive research has elucidated the molecular mechanisms and biological consequences of active KRAS mutations, the functional significance of silent mutations remains relatively understudied. This review synthesizes current knowledge on KRAS silent mutations, highlighting their impact on cancer development. Silent mutations, which do not alter protein sequences but can affect RNA stability and translational efficiency, pose intriguing questions regarding their contribution to tumor biology. Understanding these mutations is crucial for comprehensively unraveling KRAS -driven oncogenesis and exploring novel therapeutic avenues. Moreover, investigations into the clinical implications of silent mutations in KRAS -mutant tumors suggest potential diagnostic and therapeutic strategies. Despite being in early stages, research on KRAS silent mutations holds promise for uncovering novel insights that could inform personalized cancer treatments. In conclusion, this review underscores the evolving landscape of KRAS silent mutations, advocating for further exploration to bridge fundamental biology with clinical applications in oncology.
Collapse
Affiliation(s)
- Jun Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Feng Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haohua Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
Bishop M, Vedi A, Bowdin S, Armstrong R, Bartram J, Bentley D, Ross M, Hook CE, Yin Chung BH, Moss P, Rowitch DH, Tarpey P, Behjati S, Murray MJ. Identifying barriers and opportunities to facilitate the uptake of whole genome sequencing in paediatric haematology and oncology practice. BMC MEDICAL EDUCATION 2024; 24:1273. [PMID: 39506754 PMCID: PMC11542304 DOI: 10.1186/s12909-024-06219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The clinical utility of whole genome sequencing (WGS) in paediatric cancer has been demonstrated in recent years. WGS has been routinely available in the National Health Service (NHS) England for all children with cancer in England since 2021, but its uptake has been variable geographically. To explore the underlying barriers to routine use of WGS in this population across England and more widely in the United Kingdom (UK) and the Republic of Ireland (ROI), a one-day workshop was held in Cambridge, United Kingdom in October 2022. METHODS Following a series of talks, delegates participated in open, round-table discussions to outline local and broader challenges limiting routine WGS for diagnostic work-up for children with cancer in their Principal Treatment Centres (PTCs) and Genomic Laboratory Hubs (GLHs). Within smaller groups, delegates answered structured questions regarding clinical capability, education and training needs, and workforce competence and requirements. Data was recorded, centrally collated, and analysed following the event using thematic analysis. RESULTS Sixty participants attended the workshop with broad representation from the 20 PTCs across the UK and ROI and the seven GLHs in England. All healthcare professionals involved in the WGS pathway were represented, including paediatric oncologists, clinical geneticists, clinical scientists, and histopathologists. The main themes highlighted by the group in ensuring equitable access to WGS identified were: lack of knowledge equity between NHS trusts, with a perception of WGS being for research only; and perception of lack of financial support for the clinical process surrounding WGS, including lack of time to take informed consent from patients. The latter also included limited trained staff available for data interpretation, affecting the turnaround time for reporting. Finally, the need for an integrated digital pathway to order, track, and return data to clinicians was highlighted. CONCLUSION At the workshop, the general motivation for including WGS in the diagnostic work up for children with cancer was high throughout the UK, however a perceived lack of resources and education opportunities limit the widespread use of this commissioned assay. This workshop has led to some recommendations to increase access to WGS in this population in England and more widely in the devolved national of the UK and the ROI.
Collapse
Affiliation(s)
- Michelle Bishop
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, UK.
| | - Aditi Vedi
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Sarah Bowdin
- NHS East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ruth Armstrong
- Department of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jack Bartram
- Department of Paediatric Haematology and Oncology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | - Mark Ross
- Illumina, Cambridge Ltd, Cambridge, UK
| | - C Elizabeth Hook
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Hong Kong Genome Institute, Hong Kong, Hong Kong SAR, China
| | | | - David H Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Patrick Tarpey
- NHS East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sam Behjati
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Matthew J Murray
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Pudjihartono M, Pudjihartono N, O'Sullivan JM, Schierding W. Melanoma-specific mutation hotspots in distal, non-coding, promoter-interacting regions implicate novel candidate driver genes. Br J Cancer 2024; 131:1644-1655. [PMID: 39367275 PMCID: PMC11555344 DOI: 10.1038/s41416-024-02870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND To develop targeted treatments, it is crucial to identify the full spectrum of genetic drivers in melanoma, including those in non-coding regions. However, recent efforts to explore non-coding regions have primarily focused on gene-adjacent elements such as promoters and non-coding RNAs, leaving intergenic distal regulatory elements largely unexplored. METHODS We used Hi-C chromatin contact data from melanoma cells to map distal, non-coding, promoter-interacting regulatory elements genome-wide in melanoma. Using this "promoter-interaction network", alongside whole-genome sequence and gene expression data from the Pan Cancer Analysis of Whole Genomes, we developed multivariate linear regression models to identify distal somatic mutation hotspots that affect promoter activity. RESULTS We identified eight recurrently mutated hotspots that are novel, melanoma-specific, located in promoter-interacting distal regulatory elements, alter transcription factor binding motifs, and affect the expression of genes (e.g., HSPB7, CLDN1, ADCY9 and FDXR) previously implicated as tumour suppressors/oncogenes in various cancers. CONCLUSIONS Our study suggests additional non-coding drivers beyond the well-characterised TERT promoter in melanoma, offering new insights into the disruption of complex regulatory networks by non-coding mutations that may contribute to melanoma development. Furthermore, our study provides a framework for integrating multiple levels of biological data to uncover cancer-specific non-coding drivers.
Collapse
Affiliation(s)
- Michael Pudjihartono
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | | | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Hodder A, Leiter SM, Kennedy J, Addy D, Ahmed M, Ajithkumar T, Allinson K, Ancliff P, Bailey S, Barnard G, Burke GAA, Burns C, Cano-Flanagan J, Chalker J, Coleman N, Cheng D, Clinch Y, Dryden C, Ghorashian S, Griffin B, Horan G, Hubank M, May P, McDerra J, Nagrecha R, Nicholson J, O'Connor D, Pavasovic V, Quaegebeur A, Rao A, Roberts T, Samarasinghe S, Stasevich I, Tadross JA, Trayers C, Trotman J, Vora A, Watkins J, Chitty LS, Bowdin S, Armstrong R, Murray MJ, Hook CE, Tarpey P, Vedi A, Bartram J, Behjati S. Benefits for children with suspected cancer from routine whole-genome sequencing. Nat Med 2024; 30:1905-1912. [PMID: 38956197 PMCID: PMC11271414 DOI: 10.1038/s41591-024-03056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
Clinical whole-genome sequencing (WGS) has been shown to deliver potential benefits to children with cancer and to alter treatment in high-risk patient groups. It remains unknown whether offering WGS to every child with suspected cancer can change patient management. We collected WGS variant calls and clinical and diagnostic information from 281 children (282 tumors) across two English units (n = 152 from a hematology center, n = 130 from a solid tumor center) where WGS had become a routine test. Our key finding was that variants uniquely attributable to WGS changed the management in ~7% (20 out of 282) of cases while providing additional disease-relevant findings, beyond standard-of-care molecular tests, in 108 instances for 83 (29%) cases. Furthermore, WGS faithfully reproduced every standard-of-care molecular test (n = 738) and revealed several previously unknown genomic features of childhood tumors. We show that WGS can be delivered as part of routine clinical care to children with suspected cancer and can change clinical management by delivering unexpected genomic insights. Our experience portrays WGS as a clinically impactful assay for routine practice, providing opportunities for assay consolidation and for delivery of molecularly informed patient care.
Collapse
Affiliation(s)
- Angus Hodder
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Sarah M Leiter
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Jonathan Kennedy
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Dilys Addy
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Munaza Ahmed
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Phil Ancliff
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Shivani Bailey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gemma Barnard
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - G A Amos Burke
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Charlotte Burns
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Danny Cheng
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Caryl Dryden
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Sara Ghorashian
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Blanche Griffin
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- North Thames Genomic Laboratory Hub, London, UK
| | - Gail Horan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Michael Hubank
- North Thames Genomic Laboratory Hub, London, UK
- The Institute of Cancer Research, London, UK
| | - Phillippa May
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Joanna McDerra
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Rajvi Nagrecha
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David O'Connor
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Vesna Pavasovic
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Annelies Quaegebeur
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anupama Rao
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Thomas Roberts
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge, UK
| | | | - Iryna Stasevich
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - John A Tadross
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claire Trayers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jamie Trotman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge, UK
| | - Ajay Vora
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - James Watkins
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge, UK
| | - Lyn S Chitty
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- North Thames Genomic Laboratory Hub, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sarah Bowdin
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge, UK
| | - Ruth Armstrong
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew J Murray
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Catherine E Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Patrick Tarpey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- East Genomics Laboratory Hub, Cambridge, UK.
| | - Aditi Vedi
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| | - Jack Bartram
- Great Ormond Street Hospital NHS Foundation Trust, London, UK.
- North Thames Genomic Laboratory Hub, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Hariprakash JM, Salviato E, La Mastra F, Sebestyén E, Tagliaferri I, Silva RS, Lucini F, Farina L, Cinquanta M, Rancati I, Riboni M, Minardi SP, Roz L, Gorini F, Lanzuolo C, Casola S, Ferrari F. Leveraging Tissue-Specific Enhancer-Target Gene Regulatory Networks Identifies Enhancer Somatic Mutations That Functionally Impact Lung Cancer. Cancer Res 2024; 84:133-153. [PMID: 37855660 PMCID: PMC10758689 DOI: 10.1158/0008-5472.can-23-1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification. SIGNIFICANCE Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.
Collapse
Affiliation(s)
| | - Elisa Salviato
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Endre Sebestyén
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Federica Lucini
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Lorenzo Farina
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Ilaria Rancati
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Luca Roz
- Fondazione IRCCS—Istituto Nazionale Tumori, Milan, Italy
| | - Francesca Gorini
- INGM, National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi,” Milan, Italy
| | - Chiara Lanzuolo
- INGM, National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi,” Milan, Italy
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Stefano Casola
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesco Ferrari
- IFOM-ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza,” National Research Council (IGM-CNR), Pavia, Italy
| |
Collapse
|
6
|
Roy A, Sakthikumar S, Kozyrev SV, Nordin J, Pensch R, Mäkeläinen S, Pettersson M, Zoonomia Consortium, Karlsson EK, Lindblad-Toh K, Forsberg-Nilsson K. Using evolutionary constraint to define novel candidate driver genes in medulloblastoma. Proc Natl Acad Sci U S A 2023; 120:e2300984120. [PMID: 37549291 PMCID: PMC10438395 DOI: 10.1073/pnas.2300984120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Jessika Nordin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Raphaela Pensch
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Suvi Mäkeläinen
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA02142
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA01605
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, NottinghamNG72RD, United Kingdom
| |
Collapse
|
7
|
Esposito R, Lanzós A, Uroda T, Ramnarayanan S, Büchi I, Polidori T, Guillen-Ramirez H, Mihaljevic A, Merlin BM, Mela L, Zoni E, Hovhannisyan L, McCluggage F, Medo M, Basile G, Meise DF, Zwyssig S, Wenger C, Schwarz K, Vancura A, Bosch-Guiteras N, Andrades Á, Tham AM, Roemmele M, Medina PP, Ochsenbein AF, Riether C, Kruithof-de Julio M, Zimmer Y, Medová M, Stroka D, Fox A, Johnson R. Tumour mutations in long noncoding RNAs enhance cell fitness. Nat Commun 2023; 14:3342. [PMID: 37291246 PMCID: PMC10250536 DOI: 10.1038/s41467-023-39160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Tina Uroda
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sunandini Ramnarayanan
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Isabel Büchi
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taisia Polidori
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Hugo Guillen-Ramirez
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ante Mihaljevic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bernard Mefi Merlin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Lia Mela
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Eugenio Zoni
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lusine Hovhannisyan
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Finn McCluggage
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Matúš Medo
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Giulia Basile
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Dominik F Meise
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Sandra Zwyssig
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Corina Wenger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Kyriakos Schwarz
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Núria Bosch-Guiteras
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Álvaro Andrades
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Ai Ming Tham
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michaela Roemmele
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, 18071, Spain
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Archa Fox
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
8
|
Zheng WH, Long ZQ, Zheng ZQ, Zhang LL, Liang YL, Li ZX, Lv JW, Kou J, Hong XH, He SW, Xu R, Zhou GQ, Liu N, Ma J, Sun Y, Lin L, Wei D. m6A-enriched lncRNA LINC00839 promotes tumor progression by enhancing TAF15-mediated transcription of amine oxidase AOC1 in nasopharyngeal carcinoma. J Biol Chem 2023:104873. [PMID: 37257820 PMCID: PMC10302167 DOI: 10.1016/j.jbc.2023.104873] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of m6A-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues, as well as in 10 paired samples from NPC with or without posttreatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pulldown assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, ChIP and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis, and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.
Collapse
Affiliation(s)
- Wei-Hong Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Lu-Lu Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jia-Wei Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jia Kou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Shi-Wei He
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Rui Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China.
| | - Denghui Wei
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.
| |
Collapse
|
9
|
Sherman MA, Yaari AU, Priebe O, Dietlein F, Loh PR, Berger B. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat Biotechnol 2022; 40:1634-1643. [PMID: 35726091 PMCID: PMC9646522 DOI: 10.1038/s41587-022-01353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
Identification of cancer driver mutations that confer a proliferative advantage is central to understanding cancer; however, searches have often been limited to protein-coding sequences and specific non-coding elements (for example, promoters) because of the challenge of modeling the highly variable somatic mutation rates observed across tumor genomes. Here we present Dig, a method to search for driver elements and mutations anywhere in the genome. We use deep neural networks to map cancer-specific mutation rates genome-wide at kilobase-scale resolution. These estimates are then refined to search for evidence of driver mutations under positive selection throughout the genome by comparing observed to expected mutation counts. We mapped mutation rates for 37 cancer types and applied these maps to identify putative drivers within intronic cryptic splice regions, 5' untranslated regions and infrequently mutated genes. Our high-resolution mutation rate maps, available for web-based exploration, are a resource to enable driver discovery genome-wide.
Collapse
Affiliation(s)
- Maxwell A Sherman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam U Yaari
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Center for Brains, Minds and Machines of MIT and Harvard, Cambridge, MA, USA
| | - Oliver Priebe
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Dietlein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Song H, Liu Y, Tan Y, Zhang Y, Jin W, Chen L, Wu S, Yan J, Li J, Chen Z, Chen S, Wang K. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. Blood 2022; 140:1132-1144. [PMID: 35653587 PMCID: PMC9461475 DOI: 10.1182/blood.2021014945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.
Collapse
Affiliation(s)
- Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
12
|
Nisar A, Kayani MA, Nasir W, Mehmood A, Ahmed MW, Parvez A, Mahjabeen I. Fyn and Lyn gene polymorphisms impact the risk of thyroid cancer. Mol Genet Genomics 2022; 297:1649-1659. [PMID: 36058999 DOI: 10.1007/s00438-022-01946-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
Thyroid cancer is the most common malignancy of the endocrine glands, and during last couple of decades, its incidence has risen alarmingly, across the globe. Etiology of thyroid cancer is still debatable. There are a few worth mentioning risk factors which contribute to initiation of abnormalities in thyroid gland leading to cancer. Genetic instability is major risk factors in thyroid carcinogenesis. Among the genetic factors, the Src family of genes (Src, Yes1, Fyn and Lyn) have been implicated in many cancers but there is little data regarding the association of these (Src, Yes1, Fyn and Lyn) genes with thyroid carcinogenesis. Fyn and Lyn genes of Src family found engaged in proliferation, migration, invasion, angiogenesis, and metastasis in different cancers. This study was planned to examine the effect of Fyn and Lyn SNPs on thyroid cancer risk in Pakistani population in 500 patients and 500 controls. Three polymorphisms of Fyn gene (rs6916861, rs2182644 and rs12910) and three polymorphisms of Lyn gene (rs2668011, rs45587541 and rs45489500) were analyzed using Tetra-primer ARMS-PCR followed by DNA sequencing. SNP rs6916861 of Fyn gene mutant genotype (CC) showed statistically significant threefold increased risk of thyroid cancer (P < 0.0001). In case of rs2182644 of Fyn gene, mutant genotype (AA) indicated statistically significant 17-fold increased risk of thyroid cancer (P < 0.0001). Statistically significant threefold increased risk of thyroid cancer was observed in genotype AC (P < 0.0001) of Fyn gene polymorphism rs12910. In SNP rs2668011 of Lyn gene, TT genotype showed statistically significant threefold increased risk of thyroid cancer (P < 0.0001). In case of rs45587541 of Lyn gene, GA genotypes showed statistically significant 11-fold increased risk in thyroid cancer (P < 0.0001). Haplotype analysis revealed that AAATAG*, AGACAG*, AGCCAA*, AGCCAG*, CAATAG*, CGCCAG* and CGCCGA* haplotypes of Fyn and Lyn polymorphisms are associated with increased thyroid cancer risk. These results showed that genotypes and allele distribution of Fyn and Lyn are significantly linked with increased thyroid cancer risk and could be genetic adjuster for said disease.
Collapse
Affiliation(s)
- Asif Nisar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Wajiha Nasir
- Department of Radiation, Nuclear Oncology Radiation Institute, Islamabad, Pakistan
| | - Azhar Mehmood
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Aamir Parvez
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
13
|
Rosenquist R, Cuppen E, Buettner R, Caldas C, Dreau H, Elemento O, Frederix G, Grimmond S, Haferlach T, Jobanputra V, Meggendorfer M, Mullighan CG, Wordsworth S, Schuh A. Clinical utility of whole-genome sequencing in precision oncology. Semin Cancer Biol 2022; 84:32-39. [PMID: 34175442 DOI: 10.1016/j.semcancer.2021.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Precision diagnostics is one of the two pillars of precision medicine. Sequencing efforts in the past decade have firmly established cancer as a primarily genetically driven disease. This concept is supported by therapeutic successes aimed at particular pathways that are perturbed by specific driver mutations in protein-coding domains and reflected in three recent FDA tissue agnostic cancer drug approvals. In addition, there is increasing evidence from studies that interrogate the entire genome by whole-genome sequencing that acquired global and complex genomic aberrations including those in non-coding regions of the genome might also reflect clinical outcome. After addressing technical, logistical, financial and ethical challenges, national initiatives now aim to introduce clinical whole-genome sequencing into real-world diagnostics as a rational and potentially cost-effective tool for response prediction in cancer and to identify patients who would benefit most from 'expensive' targeted therapies and recruitment into clinical trials. However, so far, this has not been accompanied by a systematic and prospective evaluation of the clinical utility of whole-genome sequencing within clinical trials of uniformly treated patients of defined clinical outcome. This approach would also greatly facilitate novel predictive biomarker discovery and validation, ultimately reducing size and duration of clinical trials and cost of drug development. This manuscript is the third in a series of three to review and critically appraise the potential and challenges of clinical whole-genome sequencing in solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands; Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, The Netherlands
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, United Kingdom
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, United States; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, United States
| | - Geert Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | | | - Vaidehi Jobanputra
- New York Genome Center, 101 Avenue of the Americas, New York, NY 100132, United States; Columbia University Medical Center, 650 W 168th St, New York, NY 10032, United States
| | | | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, United States
| | - Sarah Wordsworth
- Nuffield Department of Population Health and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Majic P, Erten EY, Payne JL. The adaptive potential of nonheritable somatic mutations. Am Nat 2022; 200:755-772. [DOI: 10.1086/721766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
17
|
Duan M, Sivapragasam S, Antony JS, Ulibarri J, Hinz JM, Poon GMK, Wyrick JJ, Mao P. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 2022; 11:73943. [PMID: 35289750 PMCID: PMC8970589 DOI: 10.7554/elife.73943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jacob S Antony
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| |
Collapse
|
18
|
Ebner S, Winkelmann R, Martin S, Köllermann J, Wild PJ, Demes M. Sequencing of BRCA1/2-alterations using NGS-based technology: annotation as a challenge. Oncotarget 2022; 13:464-475. [PMID: 35251494 PMCID: PMC8893798 DOI: 10.18632/oncotarget.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, the molecular profile of different BRCA-associated tumor types was assessed with regard to the classification and annotation of detected BRCA1/2 variants. The aim was to establish guidelines in order to facilitate the interpretation of BRCA1/2 alterations in routine diagnostics. Annotation of detected variants was evaluated compared to background mutations found in normal tissue samples and manually reviewed according to distinct online databases. This retrospective study included 48 samples (45 tumors, three non-tumors), which were sequenced with the GeneReader (QIAGEN). Thereof ten samples were additionally analyzed with the Ion S5™ (Thermo Fisher) and 20 samples with the MiSeq™ (Illumina®) to compare the different NGS devices, as well as the sequencing results and their quality. The analysis showed that the individual NGS platforms detected different numbers of BRCA1/2 alterations in the respective tumor sample. In addition, the GeneReader revealed variability in the detection and classification of pathogenic alterations within the platform itself as well as in comparison with the other platforms or online databases. The study concluded that the Ion S5™ in combination with the Oncomine™ Comprehensive Assay v3 is most recommendable for current and prospective requirements of molecular analysis in routine diagnostics. In addition to the two BRCA1/2 genes, a broad number of other genes (BRCAness genes and genes involved in the repair pathway) is covered by the panel, which may open up new treatment options for patients depending on the respective eligibility criteria.
Collapse
Affiliation(s)
- Silvana Ebner
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Saskia Martin
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Wildlab, University Hospital MVZ GmbH, Frankfurt am Main, Germany
| | - Melanie Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Wildlab, University Hospital MVZ GmbH, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Adnane S, Marino A, Leucci E. LncRNAs in human cancers: signal from noise. Trends Cell Biol 2022; 32:565-573. [DOI: 10.1016/j.tcb.2022.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
|
20
|
Saad OA, Li WT, Krishnan AR, Nguyen GC, Lopez JP, McKay RR, Wang-Rodriguez J, Ongkeko WM. The renal clear cell carcinoma immune landscape. Neoplasia 2022; 24:145-154. [PMID: 34991061 PMCID: PMC8740459 DOI: 10.1016/j.neo.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
A comprehensive evaluation of the clear cell renal cell carcinoma (ccRCC) immune landscape was found using 584 RNA-sequencing datasets from The Cancer Genome Atlas (TCGA), we identified 17 key dysregulated immune-associated genes in ccRCC based on association with clinical variables and important immune pathways. Of the numerous findings from our analyses, we found that several of the 17 key dysregulated genes are heavily involved in interleukin and NF-kB signaling and that somatic copy number alteration (SCNA) hotspots may be causally associated with gene dysregulation. More importantly, we also found that key immune-associated genes and pathways are strongly upregulated in ccRCC. Our study may lend novel insights into the clinical implications of immune dysregulation in ccRCC and suggests potential immunotherapeutic targets for further evaluation.
Collapse
Affiliation(s)
- Omar A Saad
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wei Tse Li
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Aswini R Krishnan
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Griffith C Nguyen
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jay P Lopez
- Division of Hematology and Oncology, New York-Presbyterian/Weill Cornell Medical College, NY, USA
| | - Rana R McKay
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, CA, USA.
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, California 92161, USA.
| | - Weg M Ongkeko
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Studd JB, Cornish AJ, Hoang PH, Law P, Kinnersley B, Houlston R. Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. Blood Cancer J 2021; 11:177. [PMID: 34753926 PMCID: PMC8578656 DOI: 10.1038/s41408-021-00570-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
To obtain a comprehensive picture of composite genetic driver events and clonal dynamics in subtypes of paediatric acute lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly diagnosed patients. We report the identification of both structural drivers, as well as recurrent non-coding variation in promoters. Additionally we found the transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of hyperdiploid ALL suggesting a 'hyperdiploid like' subtype. ALL subtypes are driven by distinct mutational processes with AID mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation, this analysis highlights that targeted therapies should take into account composite mutational profile and clonality.
Collapse
Affiliation(s)
- James B Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Phuc H Hoang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, ML, USA
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| |
Collapse
|
22
|
Diedrich JD, Dong Q, Ferguson DC, Bergeron BP, Autry RJ, Qian M, Yang W, Smith C, Papizan JB, Connelly JP, Hagiwara K, Crews KR, Pruett-Miller SM, Pui CH, Yang JJ, Relling MV, Evans WE, Savic D. Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia 2021; 35:3078-3091. [PMID: 33714976 PMCID: PMC8435544 DOI: 10.1038/s41375-021-01209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematopoietic malignancy comprised of molecular subtypes largely characterized by aneuploidy or recurring chromosomal rearrangements. Despite extensive information on the ALL transcriptome and methylome, there is limited understanding of the ALL chromatin landscape. We therefore mapped accessible chromatin in 24 primary ALL cell biospecimens comprising three common molecular subtypes (DUX4/ERG, ETV6-RUNX1 and hyperdiploid) from patients treated at St. Jude Children's Research Hospital. Our findings highlight extensive chromatin reprogramming in ALL, including the identification ALL subtype-specific chromatin landscapes that are additionally modulated by genetic variation. Chromatin accessibility differences between ALL and normal B-cells implicate the activation of B-cell repressed chromatin domains and detail the disruption of normal B-cell development in ALL. Among ALL subtypes, we uncovered roles for basic helix-loop-helix, homeodomain and activator protein 1 transcription factors in promoting subtype-specific chromatin accessibility and distinct gene regulatory networks. In addition to chromatin subtype-specificity, we further identified over 3500 DNA sequence variants that alter the ALL chromatin landscape and contribute to inter-individual variability in chromatin accessibility. Collectively, our data suggest that subtype-specific chromatin landscapes and gene regulatory networks impact ALL biology and contribute to transcriptomic differences among ALL subtypes.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Maoxiang Qian
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James B Papizan
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Chen J, Guo JT. Structural and functional analysis of somatic coding and UTR indels in breast and lung cancer genomes. Sci Rep 2021; 11:21178. [PMID: 34707120 PMCID: PMC8551294 DOI: 10.1038/s41598-021-00583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Insertions and deletions (Indels) represent one of the major variation types in the human genome and have been implicated in diseases including cancer. To study the features of somatic indels in different cancer genomes, we investigated the indels from two large samples of cancer types: invasive breast carcinoma (BRCA) and lung adenocarcinoma (LUAD). Besides mapping somatic indels in both coding and untranslated regions (UTRs) from the cancer whole exome sequences, we investigated the overlap between these indels and transcription factor binding sites (TFBSs), the key elements for regulation of gene expression that have been found in both coding and non-coding sequences. Compared to the germline indels in healthy genomes, somatic indels contain more coding indels with higher than expected frame-shift (FS) indels in cancer genomes. LUAD has a higher ratio of deletions and higher coding and FS indel rates than BRCA. More importantly, these somatic indels in cancer genomes tend to locate in sequences with important functions, which can affect the core secondary structures of proteins and have a bigger overlap with predicted TFBSs in coding regions than the germline indels. The somatic CDS indels are also enriched in highly conserved nucleotides when compared with germline CDS indels.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
24
|
Zhao Z, Xu Q, Wei R, Huang L, Wang W, Wei G, Ni T. Comprehensive characterization of somatic variants associated with intronic polyadenylation in human cancers. Nucleic Acids Res 2021; 49:10369-10381. [PMID: 34508351 PMCID: PMC8501991 DOI: 10.1093/nar/gkab772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Somatic single nucleotide variants (SNVs) in cancer genome affect gene expression through various mechanisms depending on their genomic location. While somatic SNVs near canonical splice sites have been reported to cause abnormal splicing of cancer-related genes, whether these SNVs can affect gene expression through other mechanisms remains an open question. Here, we analyzed RNA sequencing and exome data from 4,998 cancer patients covering ten cancer types and identified 152 somatic SNVs near splice sites that were associated with abnormal intronic polyadenylation (IPA). IPA-associated somatic variants favored the localization near the donor splice sites compared to the acceptor splice sites. A proportion of SNV-associated IPA events overlapped with premature cleavage and polyadenylation events triggered by U1 small nuclear ribonucleoproteins (snRNP) inhibition. GC content, intron length and polyadenylation signal were three genomic features that differentiated between SNV-associated IPA and intron retention. Notably, IPA-associated SNVs were enriched in tumor suppressor genes (TSGs), including the well-known TSGs such as PTEN and CDH1 with recurrent SNV-associated IPA events. Minigene assay confirmed that SNVs from PTEN, CDH1, VEGFA, GRHL2, CUL3 and WWC2 could lead to IPA. This work reveals that IPA acts as a novel mechanism explaining the functional consequence of somatic SNVs in human cancer.
Collapse
Affiliation(s)
- Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Qiushi Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Ran Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China.,Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Leihuan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China.,MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, P.R. China.,Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
25
|
Zhou X, Kurywchak P, Wolf-Dennen K, Che SP, Sulakhe D, D’Souza M, Xie B, Maltsev N, Gilliam TC, Wu CC, McAndrews KM, LeBleu VS, McConkey DJ, Volpert OV, Pretzsch SM, Czerniak BA, Dinney CP, Kalluri R. Unique somatic variants in DNA from urine exosomes of individuals with bladder cancer. Mol Ther Methods Clin Dev 2021; 22:360-376. [PMID: 34514028 PMCID: PMC8408559 DOI: 10.1016/j.omtm.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Kurywchak
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kerri Wolf-Dennen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara P.Y. Che
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mark D’Souza
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - T. Conrad Gilliam
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanna M. Pretzsch
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan A. Czerniak
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P. Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Gutman T, Goren G, Efroni O, Tuller T. Estimating the predictive power of silent mutations on cancer classification and prognosis. NPJ Genom Med 2021; 6:67. [PMID: 34385450 PMCID: PMC8361094 DOI: 10.1038/s41525-021-00229-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years it has been shown that silent mutations, in and out of the coding region, can affect gene expression and may be related to tumorigenesis and cancer cell fitness. However, the predictive ability of these mutations for cancer type diagnosis and prognosis has not been evaluated yet. In the current study, based on the analysis of 9,915 cancer genomes and approximately three million mutations, we provide a comprehensive quantitative evaluation of the predictive power of various types of silent and non-silent mutations over cancer classification and prognosis. The results indicate that silent-mutation models outperform the equivalent null models in classifying all examined cancer types and in estimating the probability of survival 10 years after the initial diagnosis. Additionally, combining both non-silent and silent mutations achieved the best classification results for 68% of the cancer types and the best survival estimation results for up to nine years after the diagnosis. Thus, silent mutations hold considerable predictive power over both cancer classification and prognosis, most likely due to their effect on gene expression. It is highly advised that silent mutations are integrated in cancer research in order to unravel the full genomic landscape of cancer and its ramifications on cancer fitness.
Collapse
Affiliation(s)
- Tal Gutman
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Guy Goren
- Department of Electrical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Omri Efroni
- Department of Electrical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
27
|
Umer HM, Smolinska K, Komorowski J, Wadelius C. Functional annotation of noncoding mutations in cancer. Life Sci Alliance 2021; 4:4/9/e201900523. [PMID: 34282050 PMCID: PMC8321657 DOI: 10.26508/lsa.201900523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Recurrent regulatory mutations affecting transcription factor binding sites in 2,500 cancer samples. In a cancer genome, the noncoding sequence contains the vast majority of somatic mutations. While very few are expected to be cancer drivers, those affecting regulatory elements have the potential to have downstream effects on gene regulation that may contribute to cancer progression. To prioritize regulatory mutations, we screened somatic mutations in the Pan-Cancer Analysis of Whole Genomes cohort of 2,515 cancer genomes on individual bases to assess their potential regulatory roles in their respective cancer types. We found a highly significant enrichment of regulatory mutations associated with the deamination signature overlapping a CpG site in the CCAAT/Enhancer Binding Protein β recognition sites in many cancer types. Overall, 5,749 mutated regulatory elements were identified in 1,844 tumor samples from 39 cohorts containing 11,962 candidate regulatory mutations. Our analysis indicated 20 or more regulatory mutations in 5.5% of the samples, and an overall average of six per tumor. Several recurrent elements were identified, and major cancer-related pathways were significantly enriched for genes nearby the mutated regulatory elements. Our results provide a detailed view of the role of regulatory elements in cancer genomes.
Collapse
Affiliation(s)
- Husen M Umer
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Smolinska
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.,Swedish Collegium for Advanced Study, Uppsala, Sweden.,Washington National Primate Research Center, Seattle, WA, USA
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Lawlor RT, Mattiolo P, Mafficini A, Hong SM, Piredda ML, Taormina SV, Malleo G, Marchegiani G, Pea A, Salvia R, Kryklyva V, Shin JI, Brosens LA, Milella M, Scarpa A, Luchini C. Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Pancreatic Cancer: Systematic Review and Still-Open Questions. Cancers (Basel) 2021; 13:3119. [PMID: 34206554 PMCID: PMC8269341 DOI: 10.3390/cancers13133119] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor mutational burden (TMB) is a numeric index that expresses the number of mutations per megabase (muts/Mb) harbored by tumor cells in a neoplasm. TMB can be determined using different approaches based on next-generation sequencing. In the case of high values, it indicates a potential response to immunotherapy. In this systematic review, we assessed the potential predictive role of high-TMB in pancreatic ductal adenocarcinoma (PDAC), as well as the histo-molecular features of high-TMB PDAC. High-TMB appeared as a rare but not-negligible molecular feature in PDAC, being present in about 1.1% of cases. This genetic condition was closely associated with mucinous/colloid and medullary histology (p < 0.01). PDAC with high-TMB frequently harbored other actionable alterations, with microsatellite instability/defective mismatch repair as the most common. Immunotherapy has shown promising results in high-TMB PDAC, but the sample size of high-TMB PDAC treated so far is quite small. This study highlights interesting peculiarities of PDAC harboring high-TMB and may represent a reliable starting point for the assessment of TMB in the clinical management of patients affected by pancreatic cancer.
Collapse
Affiliation(s)
- Rita T. Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; (R.T.L.); (A.M.); (M.L.P.); (S.V.T.)
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Andrea Mafficini
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; (R.T.L.); (A.M.); (M.L.P.); (S.V.T.)
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Seung-Mo Hong
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Maria L. Piredda
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; (R.T.L.); (A.M.); (M.L.P.); (S.V.T.)
| | - Sergio V. Taormina
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; (R.T.L.); (A.M.); (M.L.P.); (S.V.T.)
| | - Giuseppe Malleo
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy; (G.M.); (G.M.); (A.P.); (R.S.)
| | - Giovanni Marchegiani
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy; (G.M.); (G.M.); (A.P.); (R.S.)
| | - Antonio Pea
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy; (G.M.); (G.M.); (A.P.); (R.S.)
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy; (G.M.); (G.M.); (A.P.); (R.S.)
| | - Valentyna Kryklyva
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (V.K.); (L.A.B.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 120-752, Korea;
| | - Lodewijk A. Brosens
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (V.K.); (L.A.B.)
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Aldo Scarpa
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134 Verona, Italy; (R.T.L.); (A.M.); (M.L.P.); (S.V.T.)
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| |
Collapse
|
29
|
Ershova AS, Eliseeva IA, Nikonov OS, Fedorova AD, Vorontsov IE, Papatsenko D, Kulakovskiy IV. Enhanced C/EBP binding to G·T mismatches facilitates fixation of CpG mutations in cancer and adult stem cells. Cell Rep 2021; 35:109221. [PMID: 34107262 DOI: 10.1016/j.celrep.2021.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Somatic mutations in regulatory sites of human stem cells affect cell identity or cause malignant transformation. By mining the human genome for co-occurrence of mutations and transcription factor binding sites, we show that C/EBP binding sites are strongly enriched with [C > T]G mutations in cancer and adult stem cells, which is of special interest because C/EBPs regulate cell fate and differentiation. In vitro protein-DNA binding assay and structural modeling of the CEBPB-DNA complex show that the G·T mismatch in the core CG dinucleotide strongly enhances affinity of the binding site. We conclude that enhanced binding of C/EBPs shields CpG·TpG mismatches from DNA repair, leading to selective accumulation of [C > T]G mutations and consequent deterioration of the binding sites. This mechanism of targeted mutagenesis highlights the effect of a mutational process on certain regulatory sites and reveals the molecular basis of putative regulatory alterations in stem cells.
Collapse
Affiliation(s)
- Anna S Ershova
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland
| | - Ilya E Vorontsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Papatsenko
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
30
|
Stone JK, Vukadin L, Ahn EYE. eNEMAL, an enhancer RNA transcribed from a distal MALAT1 enhancer, promotes NEAT1 long isoform expression. PLoS One 2021; 16:e0251515. [PMID: 34019552 PMCID: PMC8139514 DOI: 10.1371/journal.pone.0251515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Emerging evidence has shown that active enhancers are abundantly transcribed, generating long non-coding RNAs, called enhancer RNAs (eRNAs). While putative eRNAs are often observed from RNA sequencing, the roles of most eRNAs remain largely unknown. Previously, we identified putative enhancer regions at the MALAT1 locus that form chromatin-chromatin interactions under hypoxia, and one of these enhancers is located about 30 kb downstream of the NEAT1 gene and -20 kb upstream of the MALAT1 gene (MALAT1–20 kb enhancer). Here, we report that a novel eRNA, named eRNA of the NEAT1-MALAT1-Locus (eNEMAL), is transcribed from the MALAT1–20 kb enhancer and conserved in primates. We found that eNEMAL is upregulated in response to hypoxia in multiple breast cancer cell lines, but not in non-tumorigenic MCF10A cells. Overexpression and knockdown of eNEMAL revealed that alteration of eNEMAL level does not affect MALAT1 expression. Instead, we found that eNEMAL upregulates the long isoform of NEAT1 (NEAT1_2) without increasing the total NEAT1 transcript level in MCF7 breast cancer cells, suggesting that eNEMAL has a repressive effect on the 3’-end polyadenylation process required for generating the short isoform of NEAT1 (NEAT1_1). Altogether, we demonstrated that an eRNA transcribed from a MALAT1 enhancer regulates NEAT1 isoform expression, implicating the MALAT1–20 kb enhancer and its transcript eNEMAL in co-regulation of MALAT1 and NEAT1 in response to hypoxia in breast cancer cells.
Collapse
Affiliation(s)
- Joshua K. Stone
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Lana Vukadin
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eun-Young Erin Ahn
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
31
|
Okabe A, Kaneda A. Transcriptional dysregulation by aberrant enhancer activation and rewiring in cancer. Cancer Sci 2021; 112:2081-2088. [PMID: 33728716 PMCID: PMC8177786 DOI: 10.1111/cas.14884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cell identity is controlled by regulatory elements, such as promoters, enhancers, and insulators, within the genome. These regulatory elements interact in the nucleus and form tissue‐specific chromatin structures. Dysregulation of these elements and their interactions can lead to loss of cell identity and promote the development of diseases such as cancer. Tumor cells acquire aberrantly activated enhancers at oncogenic driver genes through various mechanisms. Small genomic changes such as mutations, insertions, and amplifications can form aberrant enhancers. Genomic rearrangements at the chromosomal level, including translocations and inversions, are also often observed in cancers. These rearrangements can result in repositioning of enhancers to locations near tumor‐type‐specific oncogenes. Chromatin structural changes caused by genomic or epigenomic changes lead to mis‐interaction between enhancers and proto‐oncogenes, ultimately contributing to tumorigenesis through activation of oncogenic signals. Additional epigenomic mechanisms can also cause aberrant enhancer activation, including those associated with overexpression of oncogenic transcription factors and the mutation of transcriptional cofactors. Exogenous viral DNA can also lead to enhancer aberrations. Here, we review the mechanisms underlying aberrant oncogene activation through enhancer activation and rewiring, both of which are caused by genomic or epigenomic alterations in non‐coding regions.
Collapse
Affiliation(s)
- Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
32
|
Zhang J, Ding T, Zhang H. Insight Into Chromatin-Enriched RNA: A Key Chromatin Regulator in Tumors. Front Cell Dev Biol 2021; 9:649605. [PMID: 33937246 PMCID: PMC8079759 DOI: 10.3389/fcell.2021.649605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chromatin-enriched RNAs (cheRNAs) constitute a special class of long noncoding RNAs (lncRNAs) that are enriched around chromatin and function to activate neighboring or distal gene transcription. Recent studies have shown that cheRNAs affect chromatin structure and gene expression by recruiting chromatin modifiers or acting as bridges between distal enhancers and promoters. The abnormal transcription of cheRNAs plays an important role in the occurrence of many diseases, particularly tumors. The critical effect of cancer stem cells (CSCs) on the formation and development of tumors is well known, but the function of cheRNAs in tumorigenesis, especially in CSC proliferation and stemness maintenance, is not yet fully understood. This review focuses on the mechanisms of cheRNAs in epigenetic regulation and chromatin conformation and discusses the way cheRNAs function in CSCs to deepen the understanding of tumorigenesis and provide novel insight to advance tumor-targeting therapy.
Collapse
Affiliation(s)
- Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Atak ZK, Taskiran II, Demeulemeester J, Flerin C, Mauduit D, Minnoye L, Hulselmans G, Christiaens V, Ghanem GE, Wouters J, Aerts S. Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning. Genome Res 2021; 31:1082-1096. [PMID: 33832990 PMCID: PMC8168584 DOI: 10.1101/gr.260851.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and phenotype. However, sifting through the millions of candidate variants in a personal genome or a cancer genome, to identify those that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This model outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands of allele-specific chromatin accessibility variants (ASCAVs) in each melanoma genome, of which 15%-20% can be explained by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1 binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augmenting the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.
Collapse
Affiliation(s)
- Zeynep Kalender Atak
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Jonas Demeulemeester
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium.,Cancer Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Christopher Flerin
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - David Mauduit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Liesbeth Minnoye
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ghanem-Elias Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
35
|
Singh D, Yi SV. Enhancer pleiotropy, gene expression, and the architecture of human enhancer-gene interactions. Mol Biol Evol 2021; 38:3898-3909. [PMID: 33749795 PMCID: PMC8383896 DOI: 10.1093/molbev/msab085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Enhancers are often studied as noncoding regulatory elements that modulate the precise spatiotemporal expression of genes in a highly tissue-specific manner. This paradigm has been challenged by recent evidence of individual enhancers acting in multiple tissues or developmental contexts. However, the frequency of these enhancers with high degrees of “pleiotropy” out of all putative enhancers is not well understood. Consequently, it is unclear how the variation of enhancer pleiotropy corresponds to the variation in expression breadth of target genes. Here, we use multi-tissue chromatin maps from diverse human tissues to investigate the enhancer–gene interaction architecture while accounting for 1) the distribution of enhancer pleiotropy, 2) the variations of regulatory links from enhancers to target genes, and 3) the expression breadth of target genes. We show that most enhancers are tissue-specific and that highly pleiotropy enhancers account for <1% of all putative regulatory sequences in the human genome. Notably, several genomic features are indicative of increasing enhancer pleiotropy, including longer sequence length, greater number of links to genes, increasing abundance and diversity of encoded transcription factor motifs, and stronger evolutionary conservation. Intriguingly, the number of enhancers per gene remains remarkably consistent for all genes (∼14). However, enhancer pleiotropy does not directly translate to the expression breadth of target genes. We further present a series of Gaussian Mixture Models to represent this organization architecture. Consequently, we demonstrate that a modest trend of more pleiotropic enhancers targeting more broadly expressed genes can generate the observed diversity of expression breadths in the human genome.
Collapse
Affiliation(s)
- Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Cheng Z, Vermeulen M, Rollins-Green M, DeVeale B, Babak T. Cis-regulatory mutations with driver hallmarks in major cancers. iScience 2021; 24:102144. [PMID: 33665563 PMCID: PMC7903341 DOI: 10.1016/j.isci.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the recent availability of complete genome sequences of tumors from thousands of patients, isolating disease-causing (driver) non-coding mutations from the plethora of somatic variants remains challenging, and only a handful of validated examples exist. By integrating whole-genome sequencing, genetic data, and allele-specific gene expression from TCGA, we identified 320 somatic non-coding mutations that affect gene expression in cis (FDR<0.25). These mutations cluster into 47 cis-regulatory elements that modulate expression of their subject genes through diverse molecular mechanisms. We further show that these mutations have hallmark features of non-coding drivers; namely, that they preferentially disrupt transcription factor binding motifs, are associated with a selective advantage, increased oncogene expression and decreased tumor suppressor expression. Enrichment of functional non-coding somatic mutations predicts drivers Elevated variant allele frequencies are consistent with roles in tumorigenesis Putative non-coding drivers disrupt transcription factor binding motifs Predicted drivers associate with increased oncogene and decreased TSG expression
Collapse
Affiliation(s)
- Zhongshan Cheng
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Vermeulen
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Brian DeVeale
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas Babak
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
37
|
He Z, Wu T, Wang S, Zhang J, Sun X, Tao Z, Zhao X, Li H, Wu K, Liu XS. Pan-cancer noncoding genomic analysis identifies functional CDC20 promoter mutation hotspots. iScience 2021; 24:102285. [PMID: 33851100 PMCID: PMC8024666 DOI: 10.1016/j.isci.2021.102285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
Noncoding DNA sequences occupy more than 98% of the human genome; however, few cancer noncoding drivers have been identified compared with cancer coding drivers, probably because cancer noncoding drivers have a distinct mutation pattern due to the distinct function of noncoding DNA. Here we performed pan-cancer whole genome mutation analysis to screen for functional noncoding mutations that influence protein factor binding. Recurrent mutations were identified in the promoter of CDC20 gene. These CDC20 promoter hotspot mutations disrupt the binding of ELK4 transcription repressor, lead to the up-regulation of CDC20 transcription. Physiologically ELK4 binds to the unmutated hotspot sites and is involved in DNA damage-induced CDC20 transcriptional repression. Overall, our study not only identifies a detailed mechanism for CDC20 gene deregulation in human cancers but also finds functional noncoding genetic alterations, with implications for the further development of function-based noncoding driver discovery pipelines. Pan-cancer noncoding analysis for mutations that influence protein factor binding Recurrent mutations were identified in the promoter of CDC20 gene Promoter hotspot mutations disrupt ELK4 binding, up-regulate CDC20 transcription Promoter hotspot mutation site is involved in DNA damage-induced CDC20 repression
Collapse
Affiliation(s)
- Zaoke He
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Huimin Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Corresponding author
| |
Collapse
|
38
|
López-Jiménez E, Andrés-León E. The Implications of ncRNAs in the Development of Human Diseases. Noncoding RNA 2021; 7:17. [PMID: 33668203 PMCID: PMC8006041 DOI: 10.3390/ncrna7010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian genome comprehends a small minority of genes that encode for proteins (barely 2% of the total genome in humans) and an immense majority of genes that are transcribed into RNA but not encoded for proteins (ncRNAs). These non-coding genes are intimately related to the expression regulation of protein-coding genes. The ncRNAs subtypes differ in their size, so there are long non-coding genes (lncRNAs) and other smaller ones, like microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs). Due to their important role in the maintenance of cellular functioning, any deregulation of the expression profiles of these ncRNAs can dissemble in the development of different types of diseases. Among them, we can highlight some of high incidence in the population, such as cancer, neurodegenerative, or cardiovascular disorders. In addition, thanks to the enormous advances in the field of medical genomics, these same ncRNAs are starting to be used as possible drugs, approved by the FDA, as an effective treatment for diseases.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Centre for Haematology, Immunology and Inflammation Department, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Eduardo Andrés-León
- Unidad de Bioinformática, Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
39
|
Hennessey RC, Brown KM. Cancer regulatory variation. Curr Opin Genet Dev 2021; 66:41-49. [DOI: 10.1016/j.gde.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
|
40
|
Wagner A. Information Theory Can Help Quantify the Potential of New Phenotypes to Originate as Exaptations. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.564071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exaptations are adaptive traits that do not originate de novo but from other adaptive traits. They include complex macroscopic traits, such as the middle ear bones of mammals, which originated from reptile jaw bones, but also molecular traits, such as new binding sites of transcriptional regulators. What determines whether a trait originates de novo or as an exaptation is unknown. I here use simple information theoretic concepts to quantify a molecular phenotype’s potential to give rise to new phenotypes. These quantities rely on the amount of genetic information needed to encode a phenotype. I use these quantities to estimate the propensity of new transcription factor binding phenotypes to emerge de novo or exaptively, and do so for 187 mouse transcription factors. I also use them to quantify whether an organism’s viability in one of 10 different chemical environment is likely to arise exaptively. I show that informationally expensive traits are more likely to originate exaptively. Exaptive evolution is only sometimes favored for new transcription factor binding, but it is always favored for the informationally complex metabolic phenotypes I consider. As our ability to genotype evolving populations increases, so will our ability to understand how phenotypes of ever-increasing informational complexity originate in evolution.
Collapse
|
41
|
NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis. BMC Bioinformatics 2020; 21:474. [PMID: 33092526 PMCID: PMC7580035 DOI: 10.1186/s12859-020-03758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/16/2020] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Identifying frequently mutated regions is a key approach to discover DNA elements influencing cancer progression.
However, it is challenging to identify these burdened regions due to mutation rate heterogeneity across the genome and across different individuals. Moreover, it is known that this heterogeneity partially stems from genomic confounding factors, such as replication timing and chromatin organization. The increasing availability of cancer whole genome sequences and functional genomics data from the Encyclopedia of DNA Elements (ENCODE) may help address these issues.
Results
We developed a negative binomial regression-based Integrative Method for mutation Burden analysiS (NIMBus). Our approach addresses the over-dispersion of mutation count statistics by (1) using a Gamma–Poisson mixture model to capture the mutation-rate heterogeneity across different individuals and (2) estimating regional background mutation rates by regressing the varying local mutation counts against genomic features extracted from ENCODE. We applied NIMBus to whole-genome cancer sequences from the PanCancer Analysis of Whole Genomes project (PCAWG) and other cohorts. It successfully identified well-known coding and noncoding drivers, such as TP53 and the TERT promoter. To further characterize the burdening of non-coding regions, we used NIMBus to screen transcription factor binding sites in promoter regions that intersect DNase I hypersensitive sites (DHSs). This analysis identified mutational hotspots that potentially disrupt gene regulatory networks in cancer. We also compare this method to other mutation burden analysis methods.
Conclusion
NIMBus is a powerful tool to identify mutational hotspots. The NIMBus software and results are available as an online resource at github.gersteinlab.org/nimbus.
Collapse
|
42
|
Martinez-Ledesma E, Flores D, Trevino V. Computational methods for detecting cancer hotspots. Comput Struct Biotechnol J 2020; 18:3567-3576. [PMID: 33304455 PMCID: PMC7711189 DOI: 10.1016/j.csbj.2020.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer mutations that are recurrently observed among patients are known as hotspots. Hotspots are highly relevant because they are, presumably, likely functional. Known hotspots in BRAF, PIK3CA, TP53, KRAS, IDH1 support this idea. However, hundreds of hotspots have never been validated experimentally. The detection of hotspots nevertheless is challenging because background mutations obscure their statistical and computational identification. Although several algorithms have been applied to identify hotspots, they have not been reviewed before. Thus, in this mini-review, we summarize more than 40 computational methods applied to detect cancer hotspots in coding and non-coding DNA. We first organize the methods in cluster-based, 3D, position-specific, and miscellaneous to provide a general overview. Then, we describe their embed procedures, implementations, variations, and differences. Finally, we discuss some advantages, provide some ideas for future developments, and mention opportunities such as application to viral integrations, translocations, and epigenetics.
Collapse
Affiliation(s)
- Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformática y Diagnóstico Clínico, Monterrey, Nuevo León, Mexico
| | - David Flores
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformática y Diagnóstico Clínico, Monterrey, Nuevo León, Mexico
- Universidad del Caribe, Departamento de Ciencias Básicas e Ingenierías, Cancún, Quintana Roo, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformática y Diagnóstico Clínico, Monterrey, Nuevo León, Mexico
| |
Collapse
|
43
|
Cao S, Zhou DC, Oh C, Jayasinghe RG, Zhao Y, Yoon CJ, Wyczalkowski MA, Bailey MH, Tsou T, Gao Q, Malone A, Reynolds S, Shmulevich I, Wendl MC, Chen F, Ding L. Discovery of driver non-coding splice-site-creating mutations in cancer. Nat Commun 2020; 11:5573. [PMID: 33149122 PMCID: PMC7642382 DOI: 10.1038/s41467-020-19307-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.
Collapse
Affiliation(s)
- Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Clara Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher J Yoon
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Matthew H Bailey
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Terrence Tsou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Andrew Malone
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | | | | | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Abstract
Long noncoding RNAs (lncRNAs) have been found to associate with all major types of malignancies and play important roles in regulating several hallmarks of cancer by interacting with proteins, DNA, and RNA. The possible functions of lncRNAs and their roles in the regulation of tumour growth will be reported and discussed in the present review. In our recent report, based on genetic mice models and a series of systematic analyses, we suggested that lncRNAs also play critical roles in the regulation of antigen presentation in tumour cells and allow tumour cells to escape immune surveillance, which further broadens the scope of understanding lncRNA functions and how they relate to cancer immunotherapy resistance.
Collapse
Affiliation(s)
- Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Prediction of genome-wide effects of single nucleotide variants on transcription factor binding. Sci Rep 2020; 10:17632. [PMID: 33077858 PMCID: PMC7572467 DOI: 10.1038/s41598-020-74793-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated ‘gainability’ and ‘disruptability’ scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.
Collapse
|
46
|
Hoang PH, Cornish AJ, Sherborne AL, Chubb D, Kimber S, Jackson G, Morgan GJ, Cook G, Kinnersley B, Kaiser M, Houlston RS. An enhanced genetic model of relapsed IGH-translocated multiple myeloma evolutionary dynamics. Blood Cancer J 2020; 10:101. [PMID: 33057009 PMCID: PMC7560599 DOI: 10.1038/s41408-020-00367-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023] Open
Abstract
Most patients with multiple myeloma (MM) die from progressive disease after relapse. To advance our understanding of MM evolution mechanisms, we performed whole-genome sequencing of 80 IGH-translocated tumour-normal newly diagnosed pairs and 24 matched relapsed tumours from the Myeloma XI trial. We identify multiple events as potentially important for survival and therapy-resistance at relapse including driver point mutations (e.g., TET2), translocations (MAP3K14), lengthened telomeres, and increased genomic instability (e.g., 17p deletions). Despite heterogeneous mutational processes contributing to relapsed mutations across MM subtypes, increased AID/APOBEC activity is particularly associated with shorter progression time to relapse, and contributes to higher mutational burden at relapse. In addition, we identify three enhanced major clonal evolution patterns of MM relapse, independent of treatment strategies and molecular karyotypes, questioning the viability of "evolutionary herding" approach in treating drug-resistant MM. Our data show that MM relapse is associated with acquisition of new mutations and clonal selection, and suggest APOBEC enzymes among potential targets for therapy-resistant MM.
Collapse
Affiliation(s)
- Phuc H Hoang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Amy L Sherborne
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Scott Kimber
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Graham Jackson
- Department of Haematology, University of Newcastle, Newcastle Upon Tyne, UK
| | | | - Gordon Cook
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
47
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
48
|
Liu Y, Li C, Shen S, Chen X, Szlachta K, Edmonson MN, Shao Y, Ma X, Hyle J, Wright S, Ju B, Rusch MC, Liu Y, Li B, Macias M, Tian L, Easton J, Qian M, Yang JJ, Hu S, Look AT, Zhang J. Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X. Nat Genet 2020; 52:811-818. [PMID: 32632335 PMCID: PMC7679232 DOI: 10.1038/s41588-020-0659-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.
Collapse
Affiliation(s)
- Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benshang Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Macias
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.,Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
49
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
50
|
Hu X, Hu Y, Wu F, Leung RWT, Qin J. Integration of single-cell multi-omics for gene regulatory network inference. Comput Struct Biotechnol J 2020; 18:1925-1938. [PMID: 32774787 PMCID: PMC7385034 DOI: 10.1016/j.csbj.2020.06.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
Abstract
The advancement of single-cell sequencing technology in recent years has provided an opportunity to reconstruct gene regulatory networks (GRNs) with the data from thousands of single cells in one sample. This uncovers regulatory interactions in cells and speeds up the discoveries of regulatory mechanisms in diseases and biological processes. Therefore, more methods have been proposed to reconstruct GRNs using single-cell sequencing data. In this review, we introduce technologies for sequencing single-cell genome, transcriptome, and epigenome. At the same time, we present an overview of current GRN reconstruction strategies utilizing different single-cell sequencing data. Bioinformatics tools were grouped by their input data type and mathematical principles for reader's convenience, and the fundamental mathematics inherent in each group will be discussed. Furthermore, the adaptabilities and limitations of these different methods will also be summarized and compared, with the hope to facilitate researchers recognizing the most suitable tools for them.
Collapse
Affiliation(s)
- Xinlin Hu
- Shenzhen Key Laboratory of Advanced Machine Learning and Applications, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Yaohua Hu
- Shenzhen Key Laboratory of Advanced Machine Learning and Applications, College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Fanjie Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ricky Wai Tak Leung
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|