1
|
Li B, Li T, Wang D, Yang Y, Tan P, Wang Y, Yang YG, Jia S, Au KF. Zygotic activation of transposable elements during zebrafish early embryogenesis. Nat Commun 2025; 16:3692. [PMID: 40246845 PMCID: PMC12006353 DOI: 10.1038/s41467-025-58863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Although previous studies have shown that transposable elements (TEs) are conservatively activated to play key roles during early embryonic development, the details of zygotic TE activation (ZTA) remain poorly understood. Here, we employ long-read sequencing to precisely identify that only a small subset of TE loci are activated among numerous copies, allowing us to map their hierarchical transcriptional cascades at the single-locus and single-transcript level. Despite the heterogeneity of ZTA across family, subfamily, locus, and transcript levels, our findings reveal that ZTA follows a markedly different pattern from conventional zygotic gene activation (ZGA): ZTA occurs significantly later than ZGA and shows a pronounced bias for nuclear localization of TE transcripts. This study advances our understanding of TE activation by providing a high-resolution view of TE copies and creating a comprehensive catalog of thousands of previously unannotated transcripts and genes that are activated during early zebrafish embryogenesis. Among these genes, we highlight two that are essential for zebrafish development.
Collapse
Affiliation(s)
- Bo Li
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ting Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Dingjie Wang
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ying Yang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Puwen Tan
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yunhao Wang
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yun-Gui Yang
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Shunji Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Kin Fai Au
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Stricker E, Peckham-Gregory EC, Lai SY, Sandulache VC, Scheurer ME. Targeted Variant Assessments of Human Endogenous Retroviral Regions in Whole Genome Sequencing Data Reveal Retroviral Variants Associated with Papillary Thyroid Cancer. Microorganisms 2024; 12:2435. [PMID: 39770638 PMCID: PMC11679660 DOI: 10.3390/microorganisms12122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality. Using targeted whole-genome sequence analysis in conjunction with high sequencing depth to overcome methodological limitations, we identified associations of specific HERV variants with PTC. Analyzing WGS data from 138 patients with PTC generated through The Cancer Genome Atlas project and 2015 control samples from the 1000 Genomes Project, we examined the mutational variation in HERVs within a 20 kb radius of known cancer predisposition genes (CPGs) differentially expressed in PTC. We discovered 15 common and 13 rare germline HERV variants near or within 20 CPGs that distinguish patients with PTC from healthy controls. We identified intragenic-intronic HERV variants within RYR2, LRP1B, FN1, MET, TCRVB, UNC5D, TRPM3, CNTN5, CD70, RYR1, RUNX1, CRLF2, and PCDH1X, and three variants downstream of SERPINA1 and RUNX1T1. Sanger sequencing analyses of 20 thyroid and 5 non-thyroid cancer cell lines confirmed associations with PTC, particularly for MSTA HERV-L variant rs200077102 within the FN1 gene and HERV-L MLT1A LTR variant rs78588384 within the CNTN5 gene. Variant rs78588384, in particular, was shown in our analyses to be located within a POL2 binding site regulating an alternative transcript of CNTN5. In addition, we identified 16 variants that modified the poly(A) region in Alu elements, potentially altering the potential to retrotranspose. In conclusion, this study serves as a proof-of-concept for targeted variant analysis of HERV regions and establishes a basis for further exploration of HERVs in thyroid cancer development.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular and Human Genomics, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Stephen Y. Lai
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Michael E. Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer & Hematology Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
4
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
5
|
Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev 2024; 91:e23728. [PMID: 38282314 DOI: 10.1002/mrd.23728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hailong Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
He T, Peng J, Yang S, Liu D, Gao S, Zhu Y, Chai Z, Lee BC, Wei R, Wang J, Liu Z, Jin J. SINE-Associated LncRNA SAWPA Regulates Porcine Zygotic Genome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307505. [PMID: 37984872 PMCID: PMC10787077 DOI: 10.1002/advs.202307505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
In mice, retrotransposon-associated long noncoding RNAs (lncRNA) play important regulatory roles in pre-implantation development; however, it is largely unknown whether they function in the pre-implantation development in pigs. The current study aims to screen for retrotransposon-associated lncRNA in porcine early embryos and identifies a porcine 8-cell embryo-specific SINE-associated nuclear long noncoding RNA named SAWPA. SAWPA is essential for porcine embryonic development as depletion of SAWPA results in a developmental arrest at the 8-cell stage, accompanied by the inhibition of the JNK-MAPK signaling pathway. Mechanistically, SAWPA works in trans as a transcription factor for JNK through the formation of an RNA-protein complex with HNRNPA1 and MED8 binding the SINE elements upstream of JNK. Therefore, as the first functional SINE-associated long noncoding RNAs in pigs, SAWPA provides novel insights for the mechanism research on retrotransposons in mammalian pre-implantation development.
Collapse
Affiliation(s)
- Tianyao He
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jinyu Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Dongsong Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shuang Gao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Yanlong Zhu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhuang Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Byeong Chun Lee
- Department of Theriogenology and BiotechnologyCollege of Veterinary MedicineSeoul National UniversitySeoul08826South Korea
| | - Renyue Wei
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jiaqiang Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jun‐Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
7
|
Jin M, Zhao L, Yang H, Zhao J, Ma H, Chen Y, Zhang J, Luo Y, Zhang Y, Liu J. A long non-coding RNA essential for early embryonic development improves somatic cell nuclear transfer somatic cell nuclear transfer efficiency in goats. Reproduction 2023; 166:285-297. [PMID: 37490350 PMCID: PMC10502959 DOI: 10.1530/rep-23-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In brief Early embryonic development in goats is a complex and an important process. This study identified a novel long non-coding RNA (lncRNA), lncRNA3720, that appears to affect early embryonic development in goats through histone variants. Abstract Although abundant lncRNAs have been found to be highly expressed in early embryos, the functions and mechanisms of most lncRNAs in regulating embryonic development remain unclear. This study was conducted to identify the key lncRNAs during embryonic genome activation (EGA) for promoting embryonic development after somatic cell nuclear transfer (SCNT) in goats. We screened and characterized lncRNAs from transcriptome data of in vitro-fertilized, two-cell (IVF-2c) and eight-cell embryos (IVF-8c) and eight-cell SCNT embryos (SCNT-8c). We obtained 12 differentially expressed lncRNAs that were highly expressed in IVF-8c embryos compared to IVF-2c and less expressed in SCNT-8c embryos. After target gene prediction, expression verification, and functional deletion experiments, we found that the expression level of lncRNA3720 affected the early embryonic development in goats. We cloned full-length lncRNA3720 and over-expressed it in goat fetal fibroblasts (GFFs). We identified histone variants by analyzing the transcriptome data from both GFFs and embryos. Gene annotation of the gene library and the literature search revealed that histone variants may have important roles in early embryo development, so we selected them as the potential target genes for lncRNA3720. Lastly, we compensated for the low expression of lncRNA3720 in SCNT embryos by microinjection and showed that the development rate and quality of SCNT embryos were significantly improved. We speculate that lncRNA3720 is a key promoter of embryonic development in goats by interacting with histone variants.
Collapse
Affiliation(s)
- Miaomiao Jin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lu Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yan Luo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Zhang J, Hou W, Zhao Q, Xiao S, Linghu H, Zhang L, Du J, Cui H, Yang X, Ling S, Su J, Kong Q. Deep annotation of long noncoding RNAs by assembling RNA-seq and small RNA-seq data. J Biol Chem 2023; 299:105130. [PMID: 37543366 PMCID: PMC10498003 DOI: 10.1016/j.jbc.2023.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators in various biological processes. However, due to their low expression, their systematic characterization is difficult to determine. Here, we performed transcript annotation by a newly developed computational pipeline, termed RNA-seq and small RNA-seq combined strategy (RSCS), in a wide variety of cellular contexts. Thousands of high-confidence potential novel transcripts were identified by the RSCS, and the reliability of the transcriptome was verified by analysis of transcript structure, base composition, and sequence complexity. Evidenced by the length comparison, the frequency of the core promoter and the polyadenylation signal motifs, and the locations of transcription start and end sites, the transcripts appear to be full length. Furthermore, taking advantage of our strategy, we identified a large number of endogenous retrovirus-associated lncRNAs, and a novel endogenous retrovirus-lncRNA that was functionally involved in control of Yap1 expression and essential for early embryogenesis was identified. In summary, the RSCS can generate a more complete and precise transcriptome, and our findings greatly expanded the transcriptome annotation for the mammalian community.
Collapse
Affiliation(s)
- Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Songling Xiao
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongye Linghu
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lixin Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Du
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongdi Cui
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xu Yang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shukuan Ling
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Hosseiniporgham S, Sechi LA. Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines (Basel) 2023; 11:vaccines11040751. [PMID: 37112663 PMCID: PMC10144246 DOI: 10.3390/vaccines11040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The footprint of human endogenous retroviruses (HERV), specifically HERV-K, has been found in malignancies, such as melanoma, teratocarcinoma, osteosarcoma, breast cancer, lymphoma, and ovary and prostate cancers. HERV-K is characterized as the most biologically active HERV due to possession of open reading frames (ORF) for all Gag, Pol, and Env genes, which enables it to be more infective and obstructive towards specific cell lines and other exogenous viruses, respectively. Some factors might contribute to carcinogenicity and at least one of them has been recognized in various tumors, including overexpression/methylation of long interspersed nuclear element 1 (LINE-1), HERV-K Gag, and Env genes themselves plus their transcripts and protein products, and HERV-K reverse transcriptase (RT). Therapies effective for HERV-K-associated tumors mostly target invasive autoimmune responses or growth of tumors through suppression of HERV-K Gag or Env protein and RT. To design new therapeutic options, more studies are needed to better understand whether HERV-K and its products (Gag/Env transcripts and HERV-K proteins/RT) are the initiators of tumor formation or just the disorder’s developers. Accordingly, this review aims to present evidence that highlights the association between HERV-K and tumorigenicity and introduces some of the available or potential therapies against HERV-K-induced tumors.
Collapse
|
10
|
Zheng X, Chen L, Chen T, Cao M, Zhang B, Yuan C, Zhao Z, Li C, Zhou X. The Mechanisms of BDNF Promoting the Proliferation of Porcine Follicular Granulosa Cells: Role of miR-127 and Involvement of the MAPK-ERK1/2 Pathway. Animals (Basel) 2023; 13:ani13061115. [PMID: 36978655 PMCID: PMC10044701 DOI: 10.3390/ani13061115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
As a member of the neurotrophic family, brain-derived neurotrophic factor (BDNF) provides a key link in the physiological process of mammalian ovarian follicle development, in addition to its functions in the nervous system. The emphasis of this study lay in the impact of BDNF on the proliferation of porcine follicular granulosa cells (GCs) in vitro. BDNF and tyrosine kinase B (TrkB, receptor of BDNF) were detected in porcine follicular GCs. Additionally, cell viability significantly increased during the culture of porcine GCs with BDNF (100 ng/mL) in vitro. However, BDNF knockdown in GCs decreased cell viability and S-phase cells proportion-and BDNF simultaneously regulated the expression of genes linked with cell proliferation (CCND1, p21 and Bcl2) and apoptosis (Bax). Then, the results of the receptor blocking experiment showed that BDNF promoted GC proliferation via TrkB. The high-throughput sequencing showed that BDNF also regulated the expression profiles of miRNAs in GCs. The differential expression profiles were obtained by miRNA sequencing after BDNF (100 ng/mL) treatment with GCs. The sequencing results showed that, after BDNF treatment, 72 significant differentially-expressed miRNAs were detected-5 of which were related to cell process and proliferation signaling pathways confirmed by RT-PCR. Furthermore, studies showed that BDNF promoted GCs' proliferation by increasing the expression of CCND1, downregulating miR-127 and activating the ERK1/2 signal pathway. Moreover, BDNF indirectly activated the ERK1/2 signal pathway by downregulating miR-127. In conclusion, BDNF promoted porcine GC proliferation by increasing CCND1 expression, downregulating miR-127 and stimulating the MAPK-ERK1/2 signaling cascade.
Collapse
Affiliation(s)
- Xue Zheng
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Lu Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Tong Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Maosheng Cao
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Boqi Zhang
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chenfeng Yuan
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zijiao Zhao
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chunjin Li
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xu Zhou
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
12
|
Furtado CLM, da Silva Santos R, Sales SLA, Teixeira LPR, Pessoa CDÓ. Long Non-coding RNAs and CRISPR-Cas Edition in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:41-58. [PMID: 37486515 DOI: 10.1007/978-3-031-33325-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are one of the most abundant and heterogeneous transcripts with key roles in chromatin remodeling and gene regulation at the transcriptional and post-transcriptional levels. Due to their role in cell growth and differentiation, lncRNAs have emerged as an important biomarker in cancer diagnosis, prognosis, and targeted treatment. Recent studies have focused on elucidating lncRNA function during malignant transformation, tumor progression and drug resistance. The advent of the CRISPR system has made it possible to precisely edit complex genomic loci such as lncRNAs. Thus, we summarized the advances in CRISPR-Cas approaches for functional studies of lncRNAs including gene knockout, knockdown, overexpression and RNA targeting in tumorigenesis and drug resistance. Additionally, we highlighted the perspectives and potential applications of CRISPR approaches to treat cancer, as an emerging and promising target therapy.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- University of Fortaleza, Experimental Biology Center, Fortaleza, Ceara, Brazil.
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceara, Fortaleza, Brazil.
| | - Renan da Silva Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
13
|
Foord C, Hsu J, Jarroux J, Hu W, Belchikov N, Pollard S, He Y, Joglekar A, Tilgner HU. The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing. Nat Methods 2023; 20:20-24. [PMID: 36635536 DOI: 10.1038/s41592-022-01715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Shaun Pollard
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Yi He
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Chen F, Li X, Feng X, Gao T, Zhang W, Cheng Z, Zhao X, Chen R, Lu X. Long Noncoding RNA Lx8-SINE B2 Interacts with Eno1 to Regulate Self-Renewal and Metabolism of Embryonic Stem Cells. Stem Cells 2022; 40:1094-1106. [PMID: 36087098 DOI: 10.1093/stmcls/sxac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) emerge as important orchestrators of biological processes in embryonic stem cells (ESCs). LncRNA Lx8-SINE B2 was recently identified as an ESC-specific lncRNA that marks pluripotency. Here, we studied the function of lncRNA Lx8-SINE B2 in ESCs. Depletion of Lx8-SINE B2 disrupted ESC proliferation, repressed the expression of pluripotency genes, activated differentiation genes, and inhibited reprogramming to induced pluripotent stem cells. The reduction of the colony formation ability of ESCs upon Lx8-SINE B2 knockdown was accompanied by the elongation of the G1 phase and the shortening of the S phase. Transcriptome analysis revealed that Lx8-SINE B2 deficiency affected multiple metabolic pathways, particularly glycolysis. Mechanistically, Lx8-SINE B2 functions as a cytoplasmic lncRNA and interacts with the glycolytic enzyme Eno1 as shown by RNA pull-down and RNA localization analysis. Lx8-SINE B2 and Eno1 interact with and regulate each other's expression, hence promoting the expression of metabolic genes and influencing glycolysis. In conclusion, we have identified lncRNA Lx8-SINE B2 as a novel regulator of ESC proliferation, cell cycle, and metabolism through working with Eno1.
Collapse
Affiliation(s)
- Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xiaomin Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xiao Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Tingting Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Zhi Cheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Ruiqing Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Activation of Transposable Elements in Human Skeletal Muscle Fibers upon Statin Treatment. Int J Mol Sci 2022; 24:ijms24010244. [PMID: 36613689 PMCID: PMC9820482 DOI: 10.3390/ijms24010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
High cholesterol levels have been linked to a high risk of cardiovascular diseases, and preventative pharmacological care to lower cholesterol levels is critically important. Statins, which are hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are drugs used to reduce the endogenous cholesterol synthesis, thus minimizing its pathophysiological effects. Despite the proven benefits, statins therapy is known to cause a number of skeletal muscle disorders, including myalgia, myopathy and myositis. The mechanisms underlying such statin-induced side effects are unknown. Recently, a group of genes and molecular pathways has been described to participate in statin-induced myopathy, caused by either simvastatin or rosuvastatin, although the mechanism by which changes in gene regulation occur was not studied. Transposable Elements (TEs), repetitive elements that move within the genome, are known to play regulatory roles in gene expression; however, their role in statin-induced muscle damage has not been studied. We analyzed the expression of TEs in human skeletal fiber cells treated with either simvastatin or rosuvastatin, as well as their respective controls, and identified TEs that change their expression in response to the treatment. We found that simvastatin resulted in >1000 differentially expressed (DE) TEs, whereas rosuvastatin resulted in only 27 DE TEs. Using network analysis tools, we predicted the impact of the DE TEs on the expression of genes and found that amongst the genes potentially modulated by TEs, there are some previously associated to statin-linked myopathy pathways (e.g., AKT3). Overall, our results indicate that TEs may be a key player in the statin-induced muscle side effects.
Collapse
|
16
|
Paloviita P, Vuoristo S. The non-coding genome in early human development - Recent advancements. Semin Cell Dev Biol 2022; 131:4-13. [PMID: 35177347 DOI: 10.1016/j.semcdb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Not that long ago, the human genome was discovered to be mainly non-coding, that is comprised of DNA sequences that do not code for proteins. The initial paradigm that non-coding is also non-functional was soon overturned and today the work to uncover the functions of non-coding DNA and RNA in human early embryogenesis has commenced. Early human development is characterized by large-scale changes in genomic activity and the transcriptome that are partly driven by the coordinated activation and repression of repetitive DNA elements scattered across the genome. Here we provide examples of recent novel discoveries of non-coding DNA and RNA interactions and mechanisms that ensure accurate non-coding activity during human maternal-to-zygotic transition and lineage segregation. These include studies on small and long non-coding RNAs, transposable element regulation, and RNA tailing in human oocytes and early embryos. High-throughput approaches to dissect the non-coding regulatory networks governing early human development are a foundation for functional studies of specific genomic elements and molecules that has only begun and will provide a wider understanding of early human embryogenesis and causes of infertility.
Collapse
Affiliation(s)
- Pauliina Paloviita
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
17
|
Yang X, Ji J, Cui H, Zhao Q, Ding C, Xu C. Functional evaluation of LTR-derived lncRNAs in porcine oocytes and zygotes with RNA-seq and small RNA-seq. Front Genet 2022; 13:1023041. [PMID: 36313467 PMCID: PMC9606649 DOI: 10.3389/fgene.2022.1023041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators of early embryonic development in mammals. However, they are seldom investigated in pigs. Here, to annotate full-length RNA transcripts, we performed annotation using a newly developed computational pipeline—an RNA-seq and small RNA-seq combined strategy—using our previously obtained RNA-seq and small RNA-seq data from porcine oocytes and zygotes. As evidenced by the length comparison, the frequency of the core promoter, and the polyadenylation signal motifs, the transcripts appear to be full-length. Furthermore, our strategy allowed the identification of a large number of endogenous retrovirus-associated lncRNAs (ERV-lncRNAs) and found that some of them were highly expressed in porcine zygotes, as compared to oocytes. Through the knockdown strategy, two ERV-lncRNAs (TCONS_00035465 and TCONS_00031520) were identified as playing potential roles in the early embryo development of pigs, laying a foundation for future research.
Collapse
Affiliation(s)
- Xu Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingzhang Ji
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongdi Cui
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Chunming Ding, ; Chang Xu,
| | - Chang Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Chunming Ding, ; Chang Xu,
| |
Collapse
|
18
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
19
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
20
|
Yu H, Chen M, Hu Y, Ou S, Yu X, Liang S, Li N, Yang M, Kong X, Sun C, Jia S, Zhang Q, Liu L, Hurst LD, Li R, Wang W, Wang J. Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development. Cell Stem Cell 2022; 29:1031-1050.e12. [PMID: 35803225 DOI: 10.1016/j.stem.2022.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Reprogramming of H3K9me3-dependent heterochromatin is required for early development. How H3K9me3 is involved in early human development remains, however, largely unclear. Here, we resolve the temporal landscape of H3K9me3 during human preimplantation development and its regulation for diverse hominoid-specific retrotransposons. At the 8-cell stage, H3K9me3 reprogramming at hominoid-specific retrotransposons termed SINE-VNTR-Alu (SVA) facilitates interaction between certain promoters and SVA-derived enhancers, promoting the zygotic genome activation. In trophectoderm, de novo H3K9me3 domains prevent pluripotent transcription factors from binding to hominoid-specific retrotransposons-derived regulatory elements for inner cell mass (ICM)-specific genes. H3K9me3 re-establishment at SVA elements in the ICM is associated with higher transcription of DNA repair genes, when compared with naive human pluripotent stem cells. Our data demonstrate that species-specific reorganization of H3K9me3-dependent heterochromatin at hominoid-specific retrotransposons plays important roles during early human development, shedding light on how the epigenetic regulation for early development has evolved in mammals.
Collapse
Affiliation(s)
- Hanwen Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuanlang Hu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Songbang Ou
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiu Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Shiqi Liang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingzhu Yang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xuhui Kong
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qingxue Zhang
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ruiqi Li
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wenjun Wang
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jichang Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
21
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Zhang S, Ma Q, Wu X, Chen P. LncRNA HOTTIP PROMOTES OVARIAN CANCER CELL INVASION AND METASTASIS BY STABILIZING HIF-1α IN THE ANOXIC CELLULAR MICROENVIRONMENT. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:263-270. [PMID: 36699159 PMCID: PMC9867806 DOI: 10.4183/aeb.2022.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The high recurrence rate and low survival rate of ovarian cancer (OC) patients are closely related to an anoxic environment. We aim to study the mechanism of long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) on hypoxia ovarian cancer cells (OCC) and its mechanism was investigated. Methods Knockdown and overexpression of HOTTIP in human OCC (SKOV-3, OVCAR3) were performed. The expression levels of HOTTIP and HIF-1α were monitored by qRT-PCR and WB. Transwell was conducted to validate the cell migration and invasion. ELISA was performed to calculate VEGF concentration in cells. Cell viability was monitored by CCK-8. Cell apoptosis and cycle were tested by flow cytometry. RNA pull-down was used to analyze the interaction between HIF-1α and HOTTIP. Results HOTTIP was highly expressed in OCC. After HOTTIP knockdown, HIF-1α expression and VEGF concentration in OCC were decreased. Cell migration, invasion, and cell viability were decreased. Cell apoptosis rate and G0/G1 phase cells were increased. RNA pull-down indicated a direct interaction between HIF-1α and HOTTIP. Conclusions HOTTIP formed a positive feedback loop with HIF-1α to promote the development and metastasis of hypoxia ovarian cancer. This study provided theoretical support for the development of new OC treatment strategies.
Collapse
Affiliation(s)
- S. Zhang
- Department of Gynecology and Obstetrics, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Q. Ma
- Department of Gynecology and Obstetrics, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - X. Wu
- Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Central South University - Department of Pathology, School of Basic Medical Science, Changsha, Hunan, China
| | - P. Chen
- Department of Gynecology and Obstetrics, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Chang NC, Rovira Q, Wells J, Feschotte C, Vaquerizas JM. Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Res 2022; 32:1408-1423. [PMID: 34987056 PMCID: PMC9341512 DOI: 10.1101/gr.275655.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Jonathan Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
24
|
Pulido-Quetglas C, Johnson R. Designing libraries for pooled CRISPR functional screens of long noncoding RNAs. Mamm Genome 2022; 33:312-327. [PMID: 34533605 PMCID: PMC9114037 DOI: 10.1007/s00335-021-09918-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 02/01/2023]
Abstract
Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.
Collapse
Affiliation(s)
- Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
25
|
A hypothesis: Retrotransposons as a relay of epigenetic marks in intergenerational epigenetic inheritance. Gene 2022; 817:146229. [PMID: 35063571 DOI: 10.1016/j.gene.2022.146229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Epigenetic marks in gametes, which both respond to the parental environmental factors and shape offspring phenotypes, are usually positioned to mediate intergenerational or transgenerational epigenetic inheritance. Nonetheless, the mechanisms through which gametic epigenetic signatures encode parental acquired phenotypes, and further initiate a cascade of molecular events to affect offspring phenotypes during early embryonic development, remain unclear. Retrotransposons are mobile DNA elements that could resist to genomic epigenetic reprogramming at specific loci and rewire the core regulatory networks of embryogenesis. Increasing evidences show that retrotransposons in the embryonic genome could interact with gametic epigenetic marks, which provides a tentative possibility that retrotransposons may serve as a relay of gametic epigenetic marks to transmit parental acquired traits. Here, we summarize the recent progress in exploring the crosstalk between gametic epigenetic marks and retrotransposons, and the regulation of gene expression and early embryonic development by retrotransposons. Accordingly, deciphering the mystery of interactions between gametic epigenetic marks and retrotransposons during early embryonic development will provide valuable insights into the intergenerational or transgenerational transmission of acquired traits.
Collapse
|
26
|
Li J, Zhu L, Huang J, Liu W, Han W, Huang G. Long-Term Storage Does Not Affect the Expression Profiles of mRNA and Long Non-Coding RNA in Vitrified-Warmed Human Embryos. Front Genet 2022; 12:751467. [PMID: 35178066 PMCID: PMC8844023 DOI: 10.3389/fgene.2021.751467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Although vitrification has been widely applied in assisted reproductive technology, it is unknown whether storage time has any impact on the mRNA and lncRNA expression profiles in human embryos. Eleven women (aged 23-35 years) who had undergone in vitro fertilization treatment were recruited for this study. The transcriptomes of 3 fresh eight-cell embryos and 8 surviving vitrified-warmed eight-cell embryos (4 embryos were cryostored for 3 years, and the others were cryostored for 8 years) were analyzed through single-cell RNA-Seq. No differentially expressed mRNAs or lncRNAs were identified between the 3-years group and 8-years group. A total of 128 mRNAs and 365 lncRNAs were differentially expressed in the 8 vitrified-warmed embryos compared with the fresh embryos. The vitrification-warming impact was moderate, and it was mainly related to the pathways of metabolism, stress response, apoptosis, cell cycle, cell adhesion, and signaling for TFG-β and Hippo. The analysis of target mRNAs suggested that lncRNAs might contribute to the regulation of mRNAs after vitrification-warming. Our findings indicated that long-term storage after vitrification does not affect the mRNA and lncRNA expression profiles in human embryos, however, the procedure of vitrification-warming would lead to minor alteration of transcriptome.
Collapse
Affiliation(s)
- Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jin Huang
- Information Department, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
27
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
28
|
Chen GY, Wang D. Prognostic Value of Macrophage-Associated Long Non-Coding RNA Expression for Hepatocellular Carcinoma. Cancer Manag Res 2022; 14:215-224. [PMID: 35058716 PMCID: PMC8765715 DOI: 10.2147/cmar.s340574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background There is ample evidence that macrophages play a crucial role in the biological processes of hepatocellular carcinoma (HCC). This study was designed to establish a novel macrophage-associated prognostic model for HCC. Methods Long non-coding RNA (lncRNA) microarrays and clinical data in The Cancer Genome Atlas (TCGA) database were analysed using a univariate Cox proportional regression model to select macrophage-associated prognostic lncRNAs. Multivariate Cox proportional regression models and survival analysis were used to establish a prognosis index (PI) model. Furthermore, to better understand the biological functions of differentially expressed macrophage-associated lncRNAs (MALs) in HCC, enrichment analysis was performed. Finally, the correlation between MALs and clinical features was further analysed in HCC. Results We identified eight MALs with significant prognostic values for HCC. Next, a PI model for HCC was developed, and patients were classified into the high-risk or low-risk group based on risk scores. The overall survival (OS) of high-risk patients was significantly shorter than that of low-risk patients (P < 0.001). Univariate and multivariate factors indicate that risk scores can be used as independent prognostic factors for patients with HCC. Multiple receiver operating characteristic (ROC) plots show that the area under the ROC curve (AUC) of the risk score is higher than that of other clinical features. The C-index of our nomogram was 0.768. Conclusion The PI model has a prognostic efficacy superior to that of other clinical features.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Departments of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, People’s Republic of China
- Correspondence: Guan-Yu Chen Email
| | - Duo Wang
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
29
|
Zhang Q, Li W, Feng P, Liu Y, Meng P, Chu B, Zhao J, Li Y, Zhang Y, Liu J. Lnc5926 is essential for early embryonic development in goats through regulation of ZSCAN4 and EIF1AX. Theriogenology 2021; 180:87-93. [PMID: 34954662 DOI: 10.1016/j.theriogenology.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are abundant in mammalian genomes and have been found to play important roles in many biological events. However, the mechanism by which lncRNAs regulate embryonic development remains to be fully elucidated. Here, we investigated the function of the lncRNA, TCONS_00135926 (referred to as lnc5926), through knockdown and overexpression experiments in goat early embryos. Lnc5926 expression at the eight-cell embryonic stage was significantly higher than that at other stages, which was consistent with the pattern of embryonic genome activation (EGA) gene expression. The blastocyst rate after lnc5926 knockdown in eight-cell embryos was significantly lower than that in the control group (0.2% vs. 17.1%, p < 0.05), whereas the cleavage rate was not affected (71.9% vs. 75.1%, p ˃ 0.05). After knockdown or overexpression of lnc5926 in embryos, we measured expression levels of the potential target genes, STAM, HACD1, UBL5, MIOX, ELF1, and the key EGA genes, ZSCAN4 and EIF1AX. Only ZSCAN4 and EIF1AX were significantly downregulated after lnc5926 knockdown, and this effect was reversed by lnc5926 overexpression. We conclude that lnc5926 plays an essential role in early embryonic development in goats by regulating expression of EGA-associated genes.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenjing Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei Feng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yayi Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Meng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Chu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianglin Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxue Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
30
|
Chen S, Zhao R, Wu T, Wang D, Wang B, Pan S, Hu X, Pan Z, Cui H. An Endogenous Retroviral LTR-Derived Long Noncoding RNA lnc-LTR5B Interacts With BiP to Modulate ALV-J Replication in Chicken Cells. Front Microbiol 2021; 12:788317. [PMID: 34912323 PMCID: PMC8667585 DOI: 10.3389/fmicb.2021.788317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Infection with the avian leukosis virus subgroup J (ALV-J) impairs host genes and facilitates the establishment of chronic infection and the viral life cycle. However, the involvement of long noncoding RNAs (lncRNAs) in ALV-J infection remains largely unknown. In this study, we identified a novel chicken lncRNA derived from LTR5B of the ERV-L family (namely lnc-LTR5B), which is significantly downregulated in ALV-J infected cells. lnc-LTR5B was localized in the cytoplasm and was relatively high expressed in the chicken lung and liver. Notably, the replication of ALV-J was inhibited by the overexpression of lnc-LTR5B but enhanced when lnc-LTR5B expression was knocked down. We further confirmed that lnc-LTR5B could bind to the binding immunoglobulin protein (BiP), a master regulator of endoplasmic reticulum (ER) function. Mechanistically, lnc-LTR5B serves as a competing endogenous RNA for BiP, restricting its physical availability. Upon ALV-J infection, the reduction of lnc-LTR5B released BiP, which facilitated its translocation to the cell surface. This is crucial for ALV-J entry as well as pro-survival signaling. In conclusion, we identified an endogenous retroviral LTR-activated lnc-LTR5B that is involved in regulating the cell surface translocation of BiP, and such regulatory machinery can be exploited by ALV-J to complete its life cycle and propagate.
Collapse
Affiliation(s)
- Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruihan Zhao
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ting Wu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Biao Wang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shiyu Pan
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
32
|
Hashimoto K, Jouhilahti EM, Töhönen V, Carninci P, Kere J, Katayama S. Embryonic LTR retrotransposons supply promoter modules to somatic tissues. Genome Res 2021; 31:1983-1993. [PMID: 34675070 PMCID: PMC8559712 DOI: 10.1101/gr.275354.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Long terminal repeat (LTR) retrotransposons are widely distributed across the human genome. They have accumulated through retroviral integration into germline DNA and are latent genetic modules. Active LTR promoters are observed in germline cells; however, little is known about the mechanisms underlying their active transcription in somatic tissues. Here, by integrating our previous transcriptome data set with publicly available data sets, we show that the LTR families MLT2A1 and MLT2A2 are primarily expressed in human four-cell and eight-cell embryos and are also activated in some adult somatic tissues, particularly pineal gland. Three MLT2A elements function as the promoters and first exons of the protein-coding genes ABCE1, COL5A1, and GALNT13 specifically in the pineal gland of humans but not in that of macaques, suggesting that the exaptation of these LTRs as promoters occurred during recent primate evolution. This analysis provides insight into the possible transition from germline insertion to somatic expression of LTR retrotransposons.
Collapse
Affiliation(s)
- Kosuke Hashimoto
- Laboratory for Computational Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Virpi Töhönen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan.,Human Technopole, 20157 Milan, Italy
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden.,Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
33
|
Sexton CE, Tillett RL, Han MV. The essential but enigmatic regulatory role of HERVH in pluripotency. Trends Genet 2021; 38:12-21. [PMID: 34340871 DOI: 10.1016/j.tig.2021.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Human specific endogenous retrovirus H (HERVH) is highly expressed in both naive and primed stem cells and is essential for pluripotency. Despite the proven relationship between HERVH expression and pluripotency, there is no single definitive model for the function of HERVH. Instead, several hypotheses of a regulatory function have been put forward including HERVH acting as enhancers, long noncoding RNAs (lncRNAs), and most recently as markers of topologically associating domain (TAD) boundaries. Recently several enhancer-associated lncRNAs have been characterized, which bind to Mediator and are necessary for promoter-enhancer folding interactions. We propose a synergistic model of HERVH function combining relevant findings and discuss the current limitations for its role in regulation, including the lack of evidence for a pluripotency-associated target gene.
Collapse
Affiliation(s)
- Corinne E Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, Las Vegas, NV 89154, USA.
| |
Collapse
|
34
|
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G, Han X, Zhang K, Tao Y, Percharde M, Wang L, Peng Q, Yan P, Zhang H, Bi X, Shao W, Hong Y, Wu Z, Ma R, Wang P, Li W, Zhang J, Chang Z, Hou Y, Zhu B, Ramalho-Santos M, Li P, Xie W, Na J, Sun Y, Shen X. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res 2021; 31:613-630. [PMID: 33514913 PMCID: PMC8169921 DOI: 10.1038/s41422-020-00466-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Organization of the genome into euchromatin and heterochromatin appears to be evolutionarily conserved and relatively stable during lineage differentiation. In an effort to unravel the basic principle underlying genome folding, here we focus on the genome itself and report a fundamental role for L1 (LINE1 or LINE-1) and B1/Alu retrotransposons, the most abundant subclasses of repetitive sequences, in chromatin compartmentalization. We find that homotypic clustering of L1 and B1/Alu demarcates the genome into grossly exclusive domains, and characterizes and predicts Hi-C compartments. Spatial segregation of L1-rich sequences in the nuclear and nucleolar peripheries and B1/Alu-rich sequences in the nuclear interior is conserved in mouse and human cells and occurs dynamically during the cell cycle. In addition, de novo establishment of L1 and B1 nuclear segregation is coincident with the formation of higher-order chromatin structures during early embryogenesis and appears to be critically regulated by L1 and B1 transcripts. Importantly, depletion of L1 transcripts in embryonic stem cells drastically weakens homotypic repeat contacts and compartmental strength, and disrupts the nuclear segregation of L1- or B1-rich chromosomal sequences at genome-wide and individual sites. Mechanistically, nuclear co-localization and liquid droplet formation of L1 repeat DNA and RNA with heterochromatin protein HP1α suggest a phase-separation mechanism by which L1 promotes heterochromatin compartmentalization. Taken together, we propose a genetically encoded model in which L1 and B1/Alu repeats blueprint chromatin macrostructure. Our model explains the robustness of genome folding into a common conserved core, on which dynamic gene regulation is overlaid across cells.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| | - Tong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yafei Yin
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Zhan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Han
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yibing Tao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London, W120NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W120NN, UK
| | - Liang Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qi Peng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pixi Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hui Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianju Bi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wen Shao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yantao Hong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyang Wu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peizhe Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenzhi Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zai Chang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yingping Hou
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Pilong Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xie
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jie Na
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, and College of Future Technology, Peking University, Beijing, 100871, China.
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Jansz N, Faulkner GJ. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol 2021; 22:147. [PMID: 33971937 PMCID: PMC8108463 DOI: 10.1186/s13059-021-02357-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) are emerging as promising therapeutic targets in cancer. As remnants of ancient retroviral infections, ERV-derived regulatory elements coordinate expression from gene networks, including those underpinning embryogenesis and immune cell function. ERV activation can promote an interferon response, a phenomenon termed viral mimicry. Although ERV expression is associated with cancer, and provisionally with autoimmune and neurodegenerative diseases, ERV-mediated inflammation is being explored as a way to sensitize tumors to immunotherapy. Here we review ERV co-option in development and innate immunity, the aberrant contribution of ERVs to tumorigenesis, and the wider biomedical potential of therapies directed at ERVs.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
36
|
He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, Chu X. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res 2021; 11:1031-1050. [PMID: 33948344 PMCID: PMC8085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) system offers a powerful platform for genome manipulation, including protein-coding genes, noncoding RNAs and regulatory elements. The development of CRISPR screen enables high-throughput interrogation of gene functions in diverse tumor biologies, such as tumor growth, metastasis, synthetic lethal interactions, therapeutic resistance and immunotherapy response, which are mostly performed in vitro or in transplant models. Recently, direct in vivo CRISPR screens have been developed to identify drivers of tumorigenesis in native microenvironment. Key parameters of CRISPR screen are constantly being optimized to achieve higher targeting efficiency and lower off-target effect. Here, we review the recent advances of CRISPR screen in cancer studies both in vitro and in vivo, with a particular focus on identifying cancer immunotherapy targets, and propose optimizing strategies and future perspectives for CRISPR screen.
Collapse
Affiliation(s)
- Chenglong He
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Yulu Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| |
Collapse
|
37
|
Rodrigues DC, Mufteev M, Weatheritt RJ, Djuric U, Ha KCH, Ross PJ, Wei W, Piekna A, Sartori MA, Byres L, Mok RSF, Zaslavsky K, Pasceri P, Diamandis P, Morris Q, Blencowe BJ, Ellis J. Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Rep 2021; 30:4179-4196.e11. [PMID: 32209477 DOI: 10.1016/j.celrep.2020.02.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Marat Mufteev
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ugljesa Djuric
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria A Sartori
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Loryn Byres
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter Pasceri
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Phedias Diamandis
- Laboratory Medicine and Pathology Program, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Vector Institute, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
38
|
Lu P, Li M, Zhang D, Jiang W. Lnc-ing pluripotency maintenance and early differentiation in human pluripotent stem cells. FASEB J 2021; 35:e21438. [PMID: 33749897 DOI: 10.1096/fj.202002278r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023]
Abstract
Pluripotency maintenance and lineage differentiation are two major characteristics of human embryonic and induced pluripotent stem cells. The determination of self-renewal or differentiation is under the exquisite control of the gene regulatory network, which is composed of transcription factors, signaling pathways, metabolic factors, chromatin or histone modifiers, miRNAs, and lncRNAs. Growing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in epigenetic, transcriptional, and posttranscriptional gene regulation during the cell fate determination of pluripotent stem cells. Here, we summarize recent reports of lncRNA functions in pluripotency maintenance/exit and the early germ layer specification of human pluripotent stem cells. We also illustrate four major lncRNA functional mechanisms according to different types of cofactors: chromatin or histone modifiers, transcription factors, canonical and noncanonical RNA-binding proteins, and miRNAs. Further understanding of lncRNA-based regulation will provide more insights into the drivers manipulating cell fate and promote the therapeutic and research potential of human embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
39
|
Han G, Zhang N, Jiang H, Meng X, Qian K, Zheng Y, Xu J, Wang J. Diversity of short interspersed nuclear elements (SINEs) in lepidopteran insects and evidence of horizontal SINE transfer between baculovirus and lepidopteran hosts. BMC Genomics 2021; 22:226. [PMID: 33789582 PMCID: PMC8010984 DOI: 10.1186/s12864-021-07543-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background Short interspersed nuclear elements (SINEs) belong to non-long terminal repeat (non-LTR) retrotransposons, which can mobilize dependent on the help of counterpart long interspersed nuclear elements (LINEs). Although 234 SINEs have been identified so far, only 23 are from insect species (SINEbase: http://sines.eimb.ru/). Results Here, five SINEs were identified from the genome of Plutella xylostella, among which PxSE1, PxSE2 and PxSE3 were tRNA-derived SINEs, PxSE4 and PxSE5 were 5S RNA-derived SINEs. A total of 18 related SINEs were further identified in 13 lepidopteran insects and a baculovirus. The 3′-tail of PxSE5 shares highly identity with that of LINE retrotransposon, PxLINE1. The analysis of relative age distribution profiles revealed that PxSE1 is a relatively young retrotransposon in the genome of P. xylostella and was generated by recent explosive amplification. Integration pattern analysis showed that SINEs in P. xylostella prefer to insert into or accumulate in introns and regions 5 kb downstream of genes. In particular, the PxSE1-like element, SlNPVSE1, in Spodoptera litura nucleopolyhedrovirus II genome is highly identical to SfSE1 in Spodoptera frugiperda, SlittSE1 in Spodoptera littoralis, and SlituSE1 in Spodoptera litura, suggesting the occurrence of horizontal transfer. Conclusions Lepidopteran insect genomes harbor a diversity of SINEs. The retrotransposition activity and copy number of these SINEs varies considerably between host lineages and SINE lineages. Host-parasite interactions facilitate the horizontal transfer of SINE between baculovirus and its lepidopteran hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07543-z.
Collapse
Affiliation(s)
- Guangjie Han
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, 225008, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture andAgri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
40
|
Glinsky GV. Genomics-Guided Drawing of Molecular and Pathophysiological Components of Malignant Regulatory Signatures Reveals a Pivotal Role in Human Diseases of Stem Cell-Associated Retroviral Sequences and Functionally-Active hESC Enhancers. Front Oncol 2021; 11:638363. [PMID: 33869024 PMCID: PMC8044830 DOI: 10.3389/fonc.2021.638363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Repetitive DNA sequences (repeats) colonized two-third of human genome and a majority of repeats comprised of transposable genetic elements (TE). Evolutionary distinct categories of TE represent nucleic acid sequences that are repeatedly copied from and pasted into chromosomes at multiple genomic locations and acquired a multitude of regulatory functions. Here, genomics-guided maps of stemness regulatory signatures were drawn to dissect the contribution of TE to clinical manifestations of malignant phenotypes of human cancers. From patients’ and physicians’ perspectives, the clinical definition of a tumor’s malignant phenotype could be restricted to the early diagnosis of sub-types of malignancies with the increased risk of existing therapy failure and high likelihood of death from cancer. It is the viewpoint from which the understanding of stemness and malignant regulatory signatures is considered in this contribution. Genomics-guided analyses of experimental and clinical observations revealed the pivotal role of human stem cell-associated retroviral sequences (SCARS) in the origin and pathophysiology of clinically-lethal malignancies. SCARS were defined as the evolutionary- and biologically-related family of genomic regulatory sequences, the principal physiological function of which is to create and maintain the stemness phenotype during human preimplantation embryogenesis. For cell differentiation to occur, SCARS expression must be silenced and SCARS activity remains repressed in most terminally-differentiated human cells which are destined to perform specialized functions in the human body. Epigenetic reprogramming, de-repression, and sustained activity of SCARS results in various differentiation-defective phenotypes. One of the most prominent tissue- and organ-specific clinical manifestations of sustained SCARS activities is diagnosed as a pathological condition defined by a consensus of morphological, molecular, and genetic examinations as the malignant growth. Here, contemporary evidence are acquired, analyzed, and reported defining both novel diagnostic tools and druggable molecular targets readily amenable for diagnosis and efficient therapeutic management of clinically-lethal malignancies. These diagnostic and therapeutic approaches are based on monitoring of high-fidelity molecular signals of continuing SCARS activities in conjunction with genomic regulatory networks of thousands’ functionally-active embryonic enhancers affecting down-stream phenotype-altering genetic loci. Collectively, reported herein observations support a model of SCARS-activation triggered singular source code facilitating the intracellular propagation and intercellular (systemic) dissemination of disease states in the human body.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States.,Department of Functional & Translational Genomics, OncoSCAR, Inc., Portland, OR, United States
| |
Collapse
|
41
|
The Regulation and Functions of Endogenous Retrovirus in Embryo Development and Stem Cell Differentiation. Stem Cells Int 2021; 2021:6660936. [PMID: 33727936 PMCID: PMC7937486 DOI: 10.1155/2021/6660936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Endogenous retroviruses (ERVs) are repetitive sequences in the genome, belonging to the retrotransposon family. During the course of life, ERVs are associated with multiple aspects of chromatin and transcriptional regulation in development and pathological conditions. In mammalian embryos, ERVs are extensively activated in early embryo development, but with a highly restricted spatial-temporal pattern; and they are drastically silenced during differentiation with exceptions in extraembryonic tissue and germlines. The dynamic activation pattern of ERVs raises questions about how ERVs are regulated in the life cycle and whether they are functionally important to cell fate decision during early embryo and somatic cell development. Therefore, in this review, we focus on the pieces of evidence demonstrating regulations and functions of ERVs during stem cell differentiation, which suggests that ERV activation is not a passive result of cell fate transition but the active epigenetic and transcriptional regulation during mammalian development and stem cell differentiation.
Collapse
|
42
|
Maleki P, Mowla SJ, Taheri M, Ghafouri-Fard S, Raheb J. The role of long intergenic non-coding RNA for kinase activation (LINK-A) as an oncogene in non-small cell lung carcinoma. Sci Rep 2021; 11:4210. [PMID: 33602983 PMCID: PMC7892821 DOI: 10.1038/s41598-021-82892-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
The oncogenic role of long intergenic non-coding RNA for kinase activation (LINK-A) has been appraised in triple-negative breast cancer. However, the molecular function of LINK-A is still unclear in most cancers including lung cancer. The present study aimed to evaluate the impact of down-regulation of LINK-A in A549 and Calu-3 cell lines as cellular models of non-small cell lung carcinoma (NSCLC). We used the RNA interference system to knock down LINK-A. LINK-A expression was significantly reduced by siRNA transfection in A549 and Calu-3 cell lines. LINK-A down-regulation significantly reduced cell viability, colony-forming ability and cell migration, as measured by MTT, colony formation and invasion assays. Finally, cell cycle analysis and Annexin-V/7AAD staining indicated that apoptosis was influenced by LINK-A silencing. Taken together, LINK-A can be proposed as an oncogene in NSCLC.
Collapse
Affiliation(s)
- Parichehr Maleki
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Raheb
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
43
|
Discovery of a Novel Long Noncoding RNA Lx8-SINE B2 as a Marker of Pluripotency. Stem Cells Int 2021; 2021:6657597. [PMID: 33628268 PMCID: PMC7884122 DOI: 10.1155/2021/6657597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
Pluripotency and self-renewal of embryonic stem cells (ESCs) are marked by core transcription regulators such as Oct4, Sox2, and Nanog. Another important marker of pluripotency is the long noncoding RNA (lncRNA). Here, we ind that a novel long noncoding RNA (lncRNA) Lx8-SINE B2 is a marker of pluripotency. LncRNA Lx8-SINE B2 is enriched in ESCs and downregulated during ESC differentiation. By rapid amplification of cDNA ends, we identified the full-length sequence of lncRNA Lx8-SINE B2. We further showed that transposable elements at upstream of lncRNA Lx8-SINE B2 could drive the expression of lncRNA Lx8-SINE B2. Furthermore, ESC-specific expression of lncRNA Lx8-SINE B2 was driven by Oct4 and Sox2. In summary, we identified a novel marker lncRNA of ESCs, which is driven by core pluripotency regulators.
Collapse
|
44
|
El-Shehawi AM, Alotaibi SS, Elseehy MM. Genomic Study of COVID-19 Corona Virus Excludes Its Origin from Recombination or Characterized Biological Sources and Suggests a Role for HERVS in Its Wide Range Symptoms. CYTOL GENET+ 2021; 54:588-604. [PMID: 33487779 PMCID: PMC7810191 DOI: 10.3103/s0095452720060031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/12/2019] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 corona virus has become a world pandemic which started in December 2019 in Wuhan, China with no confirmed biological source. Various countries reported the genomic sequence of different isolates obtained from infected patients. This allowed us to obtain a number of 38 isolates of full genomic sequences. Alignment of nucleotide (nt) sequence was carried out using Clustal Omega multiple alignment service at the EBI website. Alignment of nt sequence and phylogenetic relationship revealed that the COVID-19 is a new viral strain and its biological source has not been yet detected. The expected orf pattern was different among isolates obtained from the same country or different countries as well as from SARS-CoV isolates or bats CoV suggesting different virus human interaction possibilities during infection and severity. All isolates had the main five orfs (1ab, S, M, N, E), whereas they differed in the expected accessory orfs. Being with the biological source of COVID-19 undetected, the role of human endogenous retrovirus (HERVs) in the regulation of the host cell gene expression or the encoding for products that could modulate COVID-19 infection and the spectrum of its symptoms is discussed.
Collapse
Affiliation(s)
- Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099 21944 Taif, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, University of Alexandria, 21527 Alexandria, Egypt
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099 21944 Taif, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, 21527 Alexandria, Egypt
| |
Collapse
|
45
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
46
|
Foulkes AS, Selvaggi C, Cao T, O'Reilly ME, Cynn E, Ma P, Lumish H, Xue C, Reilly MP. Nonconserved Long Intergenic Noncoding RNAs Associate With Complex Cardiometabolic Disease Traits. Arterioscler Thromb Vasc Biol 2020; 41:501-511. [PMID: 33176448 DOI: 10.1161/atvbaha.120.315045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transcriptome profiling of human tissues has revealed thousands of long intergenic noncoding RNAs (lincRNAs) at loci identified through large-scale genome-wide studies for complex cardiometabolic traits. This raises the question of whether genetic variation at nonconserved lincRNAs has any systematic association with complex disease, and if so, how different this pattern is from conserved lincRNAs. We evaluated whether the associations between nonconserved lincRNAs and 8 complex cardiometabolic traits resemble or differ from the pattern of association for conserved lincRNAs. Approach and Results: Our investigation of over 7000 lincRNA annotations from GENCODE Release 33-GRCh38.p13 for complex trait genetic associations leveraged several large, established meta-analyses genome-wide association study summary data resources, including GIANT (Genetic Investigation of Anthropometric Traits), UK Biobank, GLGC (Global Lipids Genetics Consortium), Cardiogram (Coronary Artery Disease Genome Wide Replication and Meta-Analysis), and DIAGRAM (Diabetes Genetics Replication and Meta-Analysis)/DIAMANTE (Diabetes Meta-Analysis of Trans-Ethnic Association Studies). These analyses revealed that (1) nonconserved lincRNAs associate with a range of cardiometabolic traits at a rate that is generally consistent with conserved lincRNAs; (2) these findings persist across different definitions of conservation; and (3) overall across all cardiometabolic traits, approximately one-third of genome-wide association study-associated lincRNAs are nonconserved, and this increases to about two-thirds using a more stringent definition of conservation. CONCLUSIONS These findings suggest that the traditional notion of conservation driving prioritization for functional and translational follow-up of complex cardiometabolic genomic discoveries may need to be revised in the context of the abundance of nonconserved long noncoding RNAs in the human genome and their apparent predilection to associate with complex cardiometabolic traits.
Collapse
Affiliation(s)
- Andrea S Foulkes
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.).,Department of Medicine, Harvard Medical School, Boston, MA (A.S.F.).,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (A.S.F., T.C.)
| | - Caitlin Selvaggi
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.)
| | - Tingyi Cao
- Biostatistics Center, Massachusetts General Hospital, Boston (A.S.F., C.S., T.C.).,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA (A.S.F., T.C.)
| | - Marcella E O'Reilly
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Esther Cynn
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Puyang Ma
- Data Science Institute, Stanford University, CA (P.M.)
| | - Heidi Lumish
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Chenyi Xue
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY
| | - Muredach P Reilly
- Cardiology Division, Department of Medicine (M.E.O., E.C., H.L., C.X., M.P.R.), Columbia University, New York, NY.,Irving Institute for Clinical and Translational Sciences (M.P.R.), Columbia University, New York, NY
| |
Collapse
|
47
|
Pichler M, Rodriguez-Aguayo C, Nam SY, Dragomir MP, Bayraktar R, Anfossi S, Knutsen E, Ivan C, Fuentes-Mattei E, Lee SK, Ling H, Ivkovic TC, Huang G, Huang L, Okugawa Y, Katayama H, Taguchi A, Bayraktar E, Bhattacharya R, Amero P, He WR, Tran AM, Vychytilova-Faltejskova P, Klec C, Bonilla DL, Zhang X, Kapitanovic S, Loncar B, Gafà R, Wang Z, Cristini V, Hanash S, Bar-Eli M, Lanza G, Slaby O, Goel A, Rigoutsos I, Lopez-Berestein G, Calin GA. Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut 2020; 69:1818-1831. [PMID: 31988194 PMCID: PMC7382985 DOI: 10.1136/gutjnl-2019-318903] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.
Collapse
Affiliation(s)
- Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Research Unit of Non-Coding RNA and Genome Editing, Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Su Youn Nam
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Gastroenterology Department, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang Kil Lee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Guoliang Huang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, Guangdong, P.R. China
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ayumu Taguchi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Ruixian He
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anh M. Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Petra Vychytilova-Faltejskova
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Czech Republic
| | - Christiane Klec
- Research Unit of Non-Coding RNA and Genome Editing, Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Diana L. Bonilla
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Medical and Molecular Genetics Department, Indiana University, Indianapolis, IN, USA
| | - Sanja Kapitanovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Bozo Loncar
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Zhihui Wang
- Mathematics in Medicine Program, The Houston Methodist Research Institute HMRI R8-122, 6670 Bertner Ave, Houston, TX 77030
| | - Vittorio Cristini
- Mathematics in Medicine Program, The Houston Methodist Research Institute HMRI R8-122, 6670 Bertner Ave, Houston, TX 77030
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Lanza
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ondrej Slaby
- Molecular Oncology II - Solid Cancers, Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Czech Republic
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX,Present address: Department of Molecular Diagnostics, Therapeutics and Translational Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA .,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding authors George A. Calin, M.D., Ph.D. Professor, Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, P.O. Box 301429, Houston, Texas 77030-1429, and Gabriel Lopez-Berestein, M.D., Professor, Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNAs, Department of Experimental Therapeutics - Unit 1950, The University of Texas MD Anderson Cancer Center, P.O. Box 301429, Houston, Texas 77030-1429,
| |
Collapse
|
48
|
Maleki P, Sheida SV, Mowla SJ, Soleimani V, Taheri M, Raheb J. LINK-A long non-coding RNA and VEGF RNA expression in epithelial ovarian cancer patients. Hum Antibodies 2020; 28:227-232. [PMID: 32333582 DOI: 10.3233/hab-200411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
LINK-A (long intergenic non-coding RNA for kinase activation) is a newly identified long non-coding RNA with oncogenic function, which leads to the hyperactivation of AKT and HIF1α. thereby, fosters cell proliferation, mobility and metastasis. VEGF (vascular endothelial growth factor), a well-known cytokine has an important role in angiogenesis. In this study, we quantified RNA expression of LINK-A and VEGF on 45 tumor specimens obtained from Iranian patients diagnosed with Epithelial Ovarian Cancer (EOC). Our goal was to evaluate expression of LINK-A lncRNA and VEGF mRNA in ovarian cancer tissues and find the probable correlation of LINK-A with VEGF as a major transcription target for HIF1α. LINK-A and VEGF were remarkably overexpressed in EOC tissues compared to normal tissues (P value: 0.004, 0.0001, respectively), but we did not find correlation between LINK-A and VEGF RNA expressions in this study. LINK-A was significantly overexpressed in higher stages of cancer and tumor grades. VEGF was only significantly elevated in higher stages. This study confirms importance of novel lncRNA of LINK-A in Iranian EOC patients.
Collapse
Affiliation(s)
- Parichehr Maleki
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadaf Valeh Sheida
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Soleimani
- Pathology Department, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Raheb
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
49
|
Liu J, Hu HB, Liu YM, Li FX, Zhang LP, Liao ZM. LncRNA HOTTIP promotes the proliferation and invasion of ovarian cancer cells by activating the MEK/ERK pathway. Mol Med Rep 2020; 22:3667-3676. [PMID: 33000231 PMCID: PMC7533522 DOI: 10.3892/mmr.2020.11452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed that long non-coding RNAs (lncRNAs) serve important roles in carcinogenesis and that this type of gene may be used as biomarkers in cancer. A high level of lncRNA HOXA distal transcript antisense RNA (HOTTIP) is associated with unfavorable prognosis for patients with ovarian cancer (OC), but the mechanism of HOTTIP involved in OC development remains to be elucidated. The present study aimed to investigate the mechanism of HOTTIP in metastasis-associated OC cell behaviors. HOTTIP levels in ovarian cells were quantified by reverse transcription-quantitative PCR, cell proliferation was analyzed by colony formation assay, and apoptosis was assessed by flow cytometry. Cell migratory and invasive abilities were evaluated by wound healing and Transwell assays, respectively. The expression levels of mitogen-activated protein kinase kinase (MEK)/ERK pathway-associated proteins were detected by western blotting. The results demonstrated that knockdown of HOTTIP in OC cells significantly reduced the phosphorylation levels of MEK and ERK, inhibited the proliferation and invasion of OC cells and promoted their apoptosis. Furthermore, the effects of HOTTIP on cell migration and invasion were partly associated with the epithelial-mesenchymal transition (EMT) process. Proliferation, invasion and EMT of OC cells were enhanced following overexpression of HOTTIP; however, these effects were reversed by the MEK/ERK pathway inhibitor U0126. In conclusion, HOTTIP was demonstrated to promote the proliferation, migration and invasion of OC cells by activating the MEK/ERK pathway. Therefore, HOTTIP may serve as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Hong-Bo Hu
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yan-Ming Liu
- Department of Clinical Laboratory, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Fan-Xiang Li
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Liu-Ping Zhang
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zong-Min Liao
- Department of Gynaecology, Yuebei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
50
|
He L, He Q, Qiao L, Huang S, Dai Z, Yang T, Liu L, Zhao Z. LncWNT3‐IT affects the proliferation of Sertoli cells by regulating the expression of the WNT3 gene in goat testis. Reprod Domest Anim 2020; 55:1061-1071. [DOI: 10.1111/rda.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/28/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Lina He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Qijie He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lei Qiao
- College of Animal Science and Technology Southwest University Chongqing China
| | - Siyi Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zinuo Dai
- College of Animal Science and Technology Southwest University Chongqing China
| | - Tianyuan Yang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lingbin Liu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhongquan Zhao
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|