1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Li M, Zhang H, Tao R, Chen A, Zhou P, Yu C, Bian Y, Zhang S, Fang C, Li C. Exploring Y-chromosomal STRs and SNPs for forensic and genetic insights in the Jiangsu Han population. BMC Genomics 2025; 26:440. [PMID: 40316924 PMCID: PMC12048932 DOI: 10.1186/s12864-025-11634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
Y-chromosome short tandem repeats (Y-STRs) and single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used for individual identification, forensic applications, and the study of paternal lineage history. This study analyzed the genetic polymorphism and paternal genetic structure of the Han population in Jiangsu Province by examining 374 unrelated male individuals using 29 Y-STRs and 183 Y-SNPs. Forensic parameters were calculated, and the discriminatory power of five Y-STR systems (MHT, EXT, PPY12, Yfiler, and Y29) was compared. Genetic structure was assessed in the context of the Jiangsu Han and other Chinese populations. Results showed that the Y29 system had the highest discriminatory capacity, identifying 374 unique haplotypes with HD and DC values of 1. Seven major haplogroups (C, D, J, K, O, Q, R) and 83 terminal haplogroups were identified, with haplogroup O being the most predominant (approximately 85%). Subdivision of haplogroup O revealed that the Jiangsu Han population exhibits genetic characteristics of both Southern and Northern Han groups. Population genetic analyses further confirmed that the Jiangsu Han clustered closely with Southern Han populations. Genetic admixture results revealed that the Jiangsu Han population derives 89% of their ancestry from Southern Han populations, while retaining 11% Northern Han contributions. The study provides valuable insights into the genetic structure of the Jiangsu Han population, with significant implications for forensic genetics, anthropological research, and broader population genetics studies.
Collapse
Affiliation(s)
- Min Li
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Peng Zhou
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Chunjiang Yu
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yingnan Bian
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Chen Fang
- Department of Forensic Medicine, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China.
| |
Collapse
|
3
|
Strütt S, Excoffier L, Peischl S. A generalized structured coalescent for purifying selection without recombination. Genetics 2025; 229:iyaf013. [PMID: 39862229 DOI: 10.1093/genetics/iyaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent. In this study, we extend an existing approach, the fitness-class coalescent, to incorporate arbitrary levels of purifying selection in haploid populations. This model offers a comprehensive framework for exploring the influence of purifying selection in a wide range of demographic scenarios. Moreover, our research reveals potential sources of qualitative and quantitative biases in demographic inference, highlighting the significant risk of attributing genetic patterns to past demographic events rather than purifying selection. This work expands our understanding of the complex interplay between selection, drift, and population dynamics, and how purifying selection distorts demographic inference.
Collapse
Affiliation(s)
- Stefan Strütt
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Poriswanish N, Eales J, Xu X, Scannali D, Neumann R, Wetton JH, Tomaszewski M, Jobling MA, May CA. Multiple origins and phenotypic implications of an extended human pseudoautosomal region shown by analysis of the UK Biobank. Am J Hum Genet 2025; 112:927-939. [PMID: 39983723 DOI: 10.1016/j.ajhg.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
The 2.7-Mb major pseudoautosomal region (PAR1) on the short arms of the human X and Y chromosomes plays a critical role in meiotic sex chromosome segregation and male fertility and has been regarded as evolutionarily stable. However, some European Y chromosomes belonging to Y haplogroups (Y-Hgs) R1b and I2a carry an ∼115-kb extension (ePAR [extended PAR]) arising from X-Y non-allelic homologous recombination (NAHR). To investigate the diversity, history, and dynamics of ePAR formation, we screened for its presence, and that of the predicted reciprocal X chromosome deletion, among ∼218,300 46,XY males of the UK Biobank (UKB), a cohort associated with longitudinal clinical data. The UKB incidence of ePAR is ∼0.77%, and that of the deletion is ∼0.02%. We found that Y-Hg I2a sub-lineages accounted for nearly 90% of ePAR cases but, by Y haplotyping and breakpoint sequencing, determined that, in total, there have been at least 18 independent ePAR origins, associated with nine different Y-Hgs. We found examples of ePAR linked to Y-Hg K among men of self-declared Pakistani ancestry and Y-Hg E1, typical of men with African ancestry, showing that ePAR is not restricted to Europeans. ePAR formation is likely random, with high frequencies in some Y-Hgs arising through drift and male-mediated expansions. Sequencing recombination junction fragments identified likely reciprocal events, and the heterogeneity of ePAR and X-deletion junctions highlighted the recurrent nature of the NAHR events. A phenome-wide association study revealed an association between ePAR and elevated levels of circulating IGF-1 as well as musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Nitikorn Poriswanish
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK; Department of Forensic Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rita Neumann
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jon H Wetton
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester, UK
| | - Mark A Jobling
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK.
| | - Celia A May
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
5
|
Wang M, Sun Q, Feng Y, Wei LH, Liu K, Luo L, Huang Y, Zhou K, Yuan H, Lv H, Lu Y, Cheng J, Wen S, Wang CC, Tang R, Bu F, Liu C, Yuan H, Wang Z, He G. Paleolithic divergence and multiple Neolithic expansions of ancestral nomadic emperor-related paternal lineages. J Genet Genomics 2025; 52:502-512. [PMID: 39608672 DOI: 10.1016/j.jgg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
The reconstruction of demographic history using ancient and modern genomic resources reveals extensive interactions and admixture between ancient nomadic pastoralists and the social organizations of the Chinese Central Plain. However, the extent to which Y-chromosome genetic legacies from nomadic emperor-related ancestral lineages influence the Chinese paternal gene pool remains unclear. Here, we genotype 2717 ethnolinguistically diverse samples belonging to C2a lineages, perform whole-genome sequencing on 997 representative samples, and integrate these data with ancient genomic sequences. We reconstruct the evolutionary histories of Northern Zhou-, Qing emperor-, and pastoralist-related lineages to assess their genetic impact on modern Chinese populations. This reassembled fine-scale Y-chromosome phylogeny identifies deep divergence and five Neolithic expansion events contributing differently to the formation of northern Chinese populations. Phylogeographic modeling indicates that the nomadic empires of the Northern Zhou and Qing dynasties genetically originated from the Mongolian Plateau. Phylogenetic topology and shared haplotype patterns show that three upstream ancestors of Northern Zhou (C2a1a1b1a2a1b-FGC28857), Donghu tribe (C2a1a1b1-F1756), and Qing (C2a1a3a2-F10283) emperor-related lineages expanded during the middle Neolithic, contributing significantly to genetic flow between ancient northeastern Asians and modern East Asians. Notably, this study reveals limited direct contributions of Emperor Wu of Northern Zhou's lineages to modern East Asians.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Qiuxia Sun
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Lan-Hai Wei
- Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Kaijun Liu
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Lintao Luo
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuguo Huang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Kun Zhou
- Institute of 23Mofang, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hongliang Lv
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yu Lu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Jing Cheng
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China
| | - Shaoqing Wen
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| | - Huijun Yuan
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Zhiyong Wang
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China; Human Genetics and Forensic Genomics Research Institute, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| | - Guanglin He
- Institute of Rare Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610000, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510230, China.
| |
Collapse
|
6
|
Wen J, Chen H, Pan Y, Yang Y, Mamatyusupu D, Maimaitiyiming D, Xu S. Sex-Biased Admixture Followed by Isolation and Adaptive Evolution Shaped the Genomic and Blood Pressure Diversity of the LopNur People. Mol Biol Evol 2025; 42:msaf091. [PMID: 40235149 PMCID: PMC12034462 DOI: 10.1093/molbev/msaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/28/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
The LopNur people are an ethnic group living on the edge of the Taklamakan Desert, and they are believed to demonstrate a unique genetic makeup due to their isolation and limited contact with neighboring populations. However, a lack of genetic studies on the LopNur people has resulted in limited knowledge about their ancestral origins and demographic history. Here, we conducted the first whole-genome sequencing study of 164 LopNur individuals (LOP) to gain insight into their genetic history and adaptive evolution in an isolated desert area. Our analysis revealed that the present-day LOP have experienced a complex history of admixture followed by long-term isolation, with their ancestry derived from East Asia (∼41.46%), West Eurasia (∼26.43%), Siberia (∼24.27%), and South Asia (∼7.82%). Notably, a remarkable sex-biased admixture occurred between Western males and Eastern females. In addition to complex admixture followed by long-term geographic isolation and further recent migrations, adaptive evolution jointly formed the gene pool and phenotypic diversity of the present-day LOP. Intriguingly, our analysis suggests that the USP35-GAB2 region may be correlated with blood pressure in LOP, based on a joint analysis of genomics and blood pressure data. Moreover, we identified two variants, rs7387065, and rs2229437, located on CSMD1 and PRCP, respectively. These variants exhibited frequency differences between Asian and European populations and were reported to be associated with antihypertensive drug absorption. Our results provide new insight into the complex history of the LOP, an admixed and isolated ethnic group residing at the crossroads of East and West, a case with ancient admixture, long-term isolation, adaptive evolution, and sex-biased gene flow.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hao Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwen Pan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhan Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Dilinuer Maimaitiyiming
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Shuhua Xu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Colucci M, Wetton JH, Rolf B, Sheehan N, Jobling MA. Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination. Forensic Sci Int Genet 2025; 76:103228. [PMID: 39848204 DOI: 10.1016/j.fsigen.2025.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit. MPS sequencing of ∼10,000 SNPs is available in the ForenSeq Kintelligence kit, promising detection of more distant kin, while SNP chips carrying hundreds of thousands of markers increase resolution still further. Here we evaluate these different resolutions in a set of pedigrees, and via simulations. As expected, the key factor influencing the precision of kinship estimation is the number of markers analysed and MPS-based analysis of STRs increases resolution, with the full set of ForenSeq DNA Signature Prep kit markers allowing detection of third-degree relatives. Since SNP chips include non-autosomal (X- and Y-chromosomal, and mitochondrial [mtDNA]) markers, we ask how these perform within the pedigrees, cross-referencing to Y-STR sequence data. We highlight the importance of understanding haplogroup resolutions in the increasingly complex Y and mtDNA phylogenies, to avoid false exclusions. Incorporation of X-SNPs allows tracing of X-chromosome segments within families. These different approaches can add value to kinship estimation, but some require simpler bioinformatic interfaces to make them more widely accessible in practice, and also access to appropriate allele frequency data to avoid problems associated with ancestry mis-specification.
Collapse
Affiliation(s)
- Margherita Colucci
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK
| | - Jon H Wetton
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK
| | - Burkhard Rolf
- Eurofins Genomics and Forensics Campus, Ebersberg, Germany
| | - Nuala Sheehan
- Department of Population Health Sciences, University of Leicester, University Road, Leicester, UK
| | - Mark A Jobling
- Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK.
| |
Collapse
|
8
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
9
|
Buckleton JS, Hall TO, Bright JA, Yung MC, Goudet J, Kruijver M, Weir BS. Estimation of population-specific values of theta for PowerPlex Y23 profiles. Forensic Sci Int Genet 2025; 75:103175. [PMID: 39579651 DOI: 10.1016/j.fsigen.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
We examine 31,011 PPY23 profiles at the population, metapopulation and world levels. Most haplotypes appear only once but a few have higher counts, including a set of 23 matching profiles in Delhi, India and a set of 16 matching profiles in Burkina Faso with one additional matching American African profile. We estimate FSTvalues to be used as "theta" (θ) in match probability calculations, following the method we used in our earlier survey of autosomal STR data. Match probability estimates using FˆST or the κ method of Brenner for a previously unseen profile are similar but differ for any profile previously seen.
Collapse
Affiliation(s)
- John S Buckleton
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - Taryn O Hall
- UnitedHealth Group, Optum Genomics, Minnetonka, MN 55343, USA
| | - Jo-Anne Bright
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand.
| | - Michael C Yung
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Maarten Kruijver
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA
| |
Collapse
|
10
|
Saag L, Utevska O, Zadnikov S, Shramko I, Gorbenko K, Bandrivskyi M, Pavliv D, Bruyako I, Grechko D, Okatenko V, Toshev G, Andrukh S, Radziyevska V, Buynov Y, Kotenko V, Smyrnov O, Petrauskas O, Magomedov B, Didenko S, Heiko A, Reida R, Sapiehin S, Aksonov V, Laptiev O, Terskyi S, Skorokhod V, Zhyhola V, Sytyi Y, Järve M, Scheib CL, Anastasiadou K, Kelly M, Williams M, Silva M, Barrington C, Gilardet A, Macleod R, Skoglund P, Thomas MG. North Pontic crossroads: Mobility in Ukraine from the Bronze Age to the early modern period. SCIENCE ADVANCES 2025; 11:eadr0695. [PMID: 39772694 PMCID: PMC11708899 DOI: 10.1126/sciadv.adr0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The North Pontic region, which encompasses present-day Ukraine, was a crossroads of migration, connecting the vast Eurasian Steppe with Central Europe. We generated shotgun-sequenced genomic data for 91 individuals dating from around 7000 BCE to 1800 CE to study migration and mobility history in the region, with a particular focus on historically attested migrating groups during the Iron Age and the medieval period. We infer a high degree of temporal heterogeneity in ancestry, with fluctuating genetic affinities to different present-day Eurasian groups. We also infer high heterogeneity in ancestry within geographically, culturally, and socially defined groups. Despite this, we find that ancestry components which are widespread in Eastern and Central Europe have been present in the Ukraine region since the Bronze Age. In short, our study reveals a diverse range of ancestries in the Ukraine region through time as a result of frequent movements, assimilation, and contacts.
Collapse
Affiliation(s)
- Lehti Saag
- UCL Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Olga Utevska
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv 61000, Ukraine
| | - Stanislav Zadnikov
- Museum of Archaeology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Iryna Shramko
- Department of Historiography, Source Studies and Archaeology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Kyrylo Gorbenko
- Department of History, Petro Mohyla Black Sea National University, Mykolaiv 54003, Ukraine
| | - Mykola Bandrivskyi
- Department of Archaeology, Ivan Krypiakevych Institute of Ukrainian Studies, National Academy of Sciences of Ukraine, Lviv 79026, Ukraine
| | - Dmytro Pavliv
- Department of Archaeology, Ivan Krypiakevych Institute of Ukrainian Studies, National Academy of Sciences of Ukraine, Lviv 79026, Ukraine
| | - Igor Bruyako
- South Ukrainian K. D. Ushinsky National Pedagogical University State Institution, Odesa 65000, Ukraine
| | - Denys Grechko
- Department of Archaeology of the Early Iron Age, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Vitalii Okatenko
- State Enterprise “Research Center ‘Protective Archaeological Service of Ukraine,’” Institute of Archeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Gennadi Toshev
- Educational and Scientific Laboratory of Archaeological Research, Zaporizhzhia National University, Zaporizhzhia 69061, Ukraine
| | - Svitlana Andrukh
- Educational and Scientific Laboratory of Archaeological Research, Zaporizhzhia National University, Zaporizhzhia 69061, Ukraine
| | - Vira Radziyevska
- Museum of Archaeology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Yurii Buynov
- Department of Historiography, Source Studies and Archaeology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Viktoriia Kotenko
- Department of Ancient archaeology, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Oleksandr Smyrnov
- Department of History, Petro Mohyla Black Sea National University, Mykolaiv 54003, Ukraine
| | - Oleg Petrauskas
- Department of Archaeology of Early Slavs, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Borys Magomedov
- Department of Archaeology of Early Slavs, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Serhii Didenko
- Research Department of Archaeology of the Early Iron Age, National Museum of History of Ukraine, Kyiv 02000, Ukraine
| | - Anatolii Heiko
- Department of Accounting and Research of Archaeological Monuments and Survey of Land Plots, Communal institution “Center for Protection and Research of Archaeological Monuments” of the Poltava Regional Council, Poltava 36000, Ukraine
| | - Roman Reida
- Department of Archaeology of Early Slavs, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Serhii Sapiehin
- Anton Makarenko Museum, Poltava Regional Makarenko Scientific Lyceum, Kovalivka 38701, Ukraine
| | - Viktor Aksonov
- Department of Archaeology, Municipal Institution “M.F. Sumtsov Kharkiv Historical Museum” of the Kharkiv Regional Council, Kharkiv 61003, Ukraine
| | - Oleksii Laptiev
- Department of Archaeology, Municipal Institution “M.F. Sumtsov Kharkiv Historical Museum” of the Kharkiv Regional Council, Kharkiv 61003, Ukraine
| | - Svyatoslav Terskyi
- Department of History of Ukraine and Ethnocommunications, Lviv Polytechnic National University, Lviv 79013, Ukraine
| | - Viacheslav Skorokhod
- Department of Old Rus and Medieval Archeology, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Vitalii Zhyhola
- Department of Old Rus and Medieval Archeology, Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Yurii Sytyi
- D.Ya. Samokvasov Research Center of Archeology and Ancient and Early Modern History of the Northern Left Bank, T.H. Shevchenko National University “Chernihiv Colehium,” Chernihiv 14000, Ukraine
| | - Mari Järve
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Centre for Palaeogenetics, Stockholm 106 91, Sweden
| | - Ruairidh Macleod
- UCL Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mark G. Thomas
- UCL Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Zurel H, Bhérer C, Batten R, MacMillan ME, Demiriz S, Mirhendi S, Gilbert E, Cavalleri GL, Leach RA, Scott REM, Mugford G, Randhawa R, Symington AL, Stephens JC, Phillips MS. Characterization of Y chromosome diversity in newfoundland and labrador: evidence for a structured founding population. Eur J Hum Genet 2025; 33:98-107. [PMID: 39472688 PMCID: PMC11711158 DOI: 10.1038/s41431-024-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025] Open
Abstract
The population of Newfoundland and Labrador (NL) is largely derived from settlers who migrated primarily from England and Ireland in the 1700s-1800s. Previously described as an isolated founder population, based on historical and demographic studies, data on the genetic ancestry of this population remains fragmentary. Here we describe the largest investigation of patrilineal ancestry in NL. To determine the paternal genetic structure of the population, 1,110 Y chromosomes from an NL-based cohort were analyzed using 5,761 Y-specific SNPs. We identified 160 distinct terminal haplogroups, the majority of which (71.4%) belong to the R1b haplogroup. When compared with global reference populations, the NL population haplogroup composition and frequencies primarily resemble those observed in English and Irish ancestral source populations. There is also evidence of genetic contributions from Basque, French, Portuguese, and Spanish fishermen and early settlers who frequented NL. Interestingly, the observed population structure shows geographical and religious clustering that can be associated with the settlement of the ancestral source populations from predominantly Protestant, England, and Catholic, Ireland respectively. For example, the R1b-M222 haplogroup, seen in people of Irish descent, is found clustered in the Irish-settled Southeast region of NL. The clustering and expansion of Y haplogroups in conjunction with the geographical and religious clusters illustrate that limited subsequent in-migration, geographic isolation, and societal factors have contributed to the genetic substructure of the NL population and its designation as a founder population.
Collapse
Affiliation(s)
- Heather Zurel
- Sequence Bioinformatics Inc., St. John's, NL, Canada
| | - Claude Bhérer
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Ryan Batten
- Sequence Bioinformatics Inc., St. John's, NL, Canada
| | | | - Sedat Demiriz
- Sequence Bioinformatics Inc., St. John's, NL, Canada
| | | | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang M, Liu Y, Luo L, Feng Y, Wang Z, Yang T, Yuan H, Liu C, He G. Genomic insights into Neolithic founding paternal lineages around the Qinghai-Xizang Plateau using integrated YanHuang resource. iScience 2024; 27:111456. [PMID: 39759003 PMCID: PMC11696643 DOI: 10.1016/j.isci.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025] Open
Abstract
Indigenous populations of the Qinghai-Xizang Plateau exhibit unique high-altitude adaptations, especially within Tibeto-Burman (TB) groups. However, the paternal genetic heritage of eastern Plateau regions remains less explored. We present one integrative Y chromosome dataset of 9,901 modern and ancient individuals, including whole Y chromosome sequences from 1,297 individuals and extensive Y-SNP/STR genotype data. We reveal the Paleolithic common origin and following divergence of Qinghai-Xizang Plateau ancestors from East Asian lowlands, marked by subsequent isolation and Holocene expansion involving local hunter-gatherers and millet-farming communities. We identified two key TB-related founding lineages, D-Z31591 and O-CTS4658, which underwent significant expansions around 5,000 years ago on the Qinghai-Xizang Plateau and its eastern Tibetan-Yi Corridor. The genetic legacy of these TB lineages highlights crucial migration pathways linking the Plateau and lowland southwestern China. Our findings align paternal genetic structures with East Asian geography and linguistic groups, underscoring the utility of Y chromosome analyses in unraveling complex paternal histories.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Ting Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| |
Collapse
|
13
|
Amstler S, Streiter G, Pfurtscheller C, Forer L, Di Maio S, Weissensteiner H, Paulweber B, Schönherr S, Kronenberg F, Coassin S. Nanopore sequencing with unique molecular identifiers enables accurate mutation analysis and haplotyping in the complex lipoprotein(a) KIV-2 VNTR. Genome Med 2024; 16:117. [PMID: 39380090 PMCID: PMC11462820 DOI: 10.1186/s13073-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. The protein-coding LPA kringle IV type-2 (KIV-2) VNTR (5.6 kb per unit, 1-40 units per allele) is a medically highly relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies, and an intra-VNTR STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. Lp(a) concentrations vary widely between individuals and ancestries. Multiple variants and functional haplotypes in the LPA gene and especially in the KIV-2 VNTR strongly contribute to this variance. METHODS We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identifiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation, and copy number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples and low-level mixtures (0.5 to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract KIV-2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR within the KIV-2 VNTR. RESULTS UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity, and precision (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR unit. Human variant levels were highly correlated with next-generation sequencing (R2 = 0.983) without bias across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40 quality. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agreement with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval of ddPCR. We then analyzed 62,679 intra-KIV-2 STR sequences and explored KIV-2 SNP haplotype patterns across five ancestries. CONCLUSIONS UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome regions at scale.
Collapse
Affiliation(s)
- Stephan Amstler
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cathrin Pfurtscheller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Scheib CL, Hui R, Rose AK, D’Atanasio E, Inskip SA, Dittmar J, Cessford C, Griffith SJ, Solnik A, Wiseman R, Neil B, Biers T, Harknett SJ, Sasso S, Biagini SA, Runfeldt G, Duhig C, Evans C, Metspalu M, Millett MJ, O’Connell TC, Robb JE, Kivisild T. Low Genetic Impact of the Roman Occupation of Britain in Rural Communities. Mol Biol Evol 2024; 41:msae168. [PMID: 39268685 PMCID: PMC11393495 DOI: 10.1093/molbev/msae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
The Roman period saw the empire expand across Europe and the Mediterranean, including much of what is today Great Britain. While there is written evidence of high mobility into and out of Britain for administrators, traders, and the military, the impact of imperialism on local, rural population structure, kinship, and mobility is invisible in the textual record. The extent of genetic change that occurred in Britain during the Roman military occupation remains underexplored. Here, using genome-wide data from 52 ancient individuals from eight sites in Cambridgeshire covering the period of Roman occupation, we show low levels of genetic ancestry differentiation between Romano-British sites and indications of larger populations than in the Bronze Age and Neolithic. We find no evidence of long-distance migration from elsewhere in the Empire, though we do find one case of possible temporary mobility within a family unit during the Late Romano-British period. We also show that the present-day patterns of genetic ancestry composition in Britain emerged after the Roman period.
Collapse
Affiliation(s)
- Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- St John's College, University of Cambridge, Cambridge CB2 1TP, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Ruoyun Hui
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Alice K Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology, IBPM CNR, Rome 00185, Italy
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jenna Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Craig Cessford
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge CB3 0DT, UK
| | - Samuel J Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Rob Wiseman
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin Neil
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Trish Biers
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | | | - Stefania Sasso
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Corinne Duhig
- Wolfson College, University of Cambridge, Cambridge CB3 9BB, UK
| | - Christopher Evans
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Martin J Millett
- Faculty of Classics, University of Cambridge, Cambridge CB3 9DA, UK
| | - Tamsin C O’Connell
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - John E Robb
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Wang M, Huang Y, Liu K, Wang Z, Zhang M, Yuan H, Duan S, Wei L, Yao H, Sun Q, Zhong J, Tang R, Chen J, Sun Y, Li X, Su H, Yang Q, Hu L, Yun L, Yang J, Nie S, Cai Y, Yan J, Zhou K, Wang C, Zhu B, Liu C, He G. Multiple Human Population Movements and Cultural Dispersal Events Shaped the Landscape of Chinese Paternal Heritage. Mol Biol Evol 2024; 41:msae122. [PMID: 38885310 PMCID: PMC11232699 DOI: 10.1093/molbev/msae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate the Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations that have shaped the Chinese paternal landscape. First, the expansion of early East Asians and millet farmers from the Yellow River Basin predominantly carrying O2/D subclades significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Second, the dispersal of rice farmers from the Yangtze River Valley carrying O1 and certain O2 sublineages reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Third, the Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourth, the J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot 010022, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan Cai
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Chuanchao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| |
Collapse
|
16
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
17
|
Pathak AK, Simonian H, Ibrahim IAA, Hrechdakian P, Behar DM, Ayub Q, Arsanov P, Metspalu E, Yepiskoposyan L, Rootsi S, Endicott P, Villems R, Sahakyan H. Human Y chromosome haplogroup L1-M22 traces Neolithic expansion in West Asia and supports the Elamite and Dravidian connection. iScience 2024; 27:110016. [PMID: 38883810 PMCID: PMC11177204 DOI: 10.1016/j.isci.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.
Collapse
Affiliation(s)
- Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hovann Simonian
- Armenian DNA Project at Family Tree DNA, Houston, TX 77008, USA
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Doron M. Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Qasim Ayub
- Monash University Malaysia Genomics Platform, School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Pakhrudin Arsanov
- Chechen-Noahcho DNA Project at Family Tree DNA, Kostanay 110008, Kazakhstan
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Phillip Endicott
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, UK
- Department of Linguistics, University of Hawai’i at Mānoa, Honolulu, Hawai’i 96822, USA
- DFG Center for Advanced Studies, University of Tübingen, 72074 Tübingen, Germany
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
18
|
Bozlak E, Pokharel K, Weldenegodguad M, Paasivaara A, Stammler F, Røed KH, Kantanen J, Wallner B. Inferences about the population history of Rangifer tarandus from Y chromosome and mtDNA phylogenies. Ecol Evol 2024; 14:e11573. [PMID: 38863721 PMCID: PMC11164974 DOI: 10.1002/ece3.11573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Reindeer, called caribou in North America, has a circumpolar distribution and all extant populations belong to the same species (Rangifer tarandus). It has survived the Holocene thanks to its immense adaptability and successful coexistence with humans in different forms of hunting and herding cultures. Here, we examine the paternal and maternal history of Rangifer based on robust Y-chromosomal and mitochondrial DNA (mtDNA) trees representing Eurasian tundra reindeer, Finnish forest reindeer, Svalbard reindeer, Alaska tundra caribou, and woodland caribou. We first assembled Y-chromosomal contigs, representing 1.3 Mb of single-copy Y regions. Based on 545 Y-chromosomal and 458 mtDNA SNPs defined in 55 males, maximum parsimony trees were created. We observed two well separated clades in both phylogenies: the "EuroBeringian clade" formed by animals from Arctic Islands, Eurasia, and a few from North America and the "North American clade" formed only by caribou from North America. The time calibrated Y tree revealed an expansion and dispersal of lineages across continents after the Last Glacial Maximum. We show for the first time unique paternal lineages in Svalbard reindeer and Finnish forest reindeer and reveal a circumscribed Y haplogroup in Fennoscandian tundra reindeer. The Y chromosome in domesticated reindeer is markedly diverse indicating that several male lineages have undergone domestication and less intensive selection on males. This study places R. tarandus onto the list of species with resolved Y and mtDNA phylogenies and builds the basis for studies of the distribution and origin of paternal and maternal lineages in the future.
Collapse
Affiliation(s)
- Elif Bozlak
- Department of Biomedical Sciences, Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine ViennaViennaAustria
- Vienna Graduate School of Population GeneticsUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | | | | | - Knut H. Røed
- Department of Preclinical Sciences and PathologyNorwegian University of Life SciencesÅsNorway
| | | | - Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
19
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
20
|
Guyon L, Guez J, Toupance B, Heyer E, Chaix R. Patrilineal segmentary systems provide a peaceful explanation for the post-Neolithic Y-chromosome bottleneck. Nat Commun 2024; 15:3243. [PMID: 38658560 PMCID: PMC11043392 DOI: 10.1038/s41467-024-47618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Studies have found a pronounced decline in male effective population sizes worldwide around 3000-5000 years ago. This bottleneck was not observed for female effective population sizes, which continued to increase over time. Until now, this remarkable genetic pattern was interpreted as the result of an ancient structuring of human populations into patrilineal groups (gathering closely related males) violently competing with each other. In this scenario, violence is responsible for the repeated extinctions of patrilineal groups, leading to a significant reduction in male effective population size. Here, we propose an alternative hypothesis by modelling a segmentary patrilineal system based on anthropological literature. We show that variance in reproductive success between patrilineal groups, combined with lineal fission (i.e., the splitting of a group into two new groups of patrilineally related individuals), can lead to a substantial reduction in the male effective population size without resorting to the violence hypothesis. Thus, a peaceful explanation involving ancient changes in social structures, linked to global changes in subsistence systems, may be sufficient to explain the reported decline in Y-chromosome diversity.
Collapse
Affiliation(s)
- Léa Guyon
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| | - Jérémy Guez
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, 91400, France
| | - Bruno Toupance
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
- Université Paris Cité, Eco-anthropologie, Paris, F-75006, France
| | - Evelyne Heyer
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France
| | - Raphaëlle Chaix
- Eco-Anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Cité, Paris, 75116, France.
| |
Collapse
|
21
|
Sequeira JJ, Vinuthalakshmi K, Das R, van Driem G, Mustak MS. The maternal U1 haplogroup in the Koraga tribe as a correlate of their North Dravidian linguistic affinity. Front Genet 2024; 14:1303628. [PMID: 38384360 PMCID: PMC10880486 DOI: 10.3389/fgene.2023.1303628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/31/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction: The Koraga tribe are an isolated endogamous tribal group found in the southwest coastal region of India. The Koraga language shares inherited grammatical features with North Dravidian languages. To seek a possible genetic basis for this exceptionality and understand the maternal lineage pattern, we have aimed to reconstruct the inter-population and intra-population relationships of the Koraga tribal population by using mtDNA markers for the hypervariable regions along with a partial coding region sequence analysis. Methods and Results: Amongst the 96 individuals studied, we observe 11 haplogroups, of which a few are shared and others are unique to the clans Soppu, Oṇṭi and Kuṇṭu. In addition to several deep rooted Indian-specific lineages of macrohaplogroups M and U, we observe a high frequency of the U1 lineage (∼38%), unique to the Koraga. A Bayesian analysis of the U1 clade shows that the Koraga tribe share their maternal lineage with ancestral populations of the Caucasus at the cusp of the Last Glacial Maximum. Discussion: Our study suggests that the U1 lineage found in the Indian subcontinent represents a remnant of a post-glacial dispersal. The presence of West Asian U1 when viewed along with historical linguistics leads us to hypothesise that Koraga represents a mother tongue retained by a vanquished population group that fled southward at the demise of the Indus civilisation as opposed to a father tongue, associated with a particular paternal lineage.
Collapse
Affiliation(s)
| | | | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Bern, Switzerland
| | - Mohammed S. Mustak
- Department of Applied Zoology, Mangalore University, Mangalore, Karnataka, India
| |
Collapse
|
22
|
He G, Wang P, Chen J, Liu Y, Sun Y, Hu R, Duan S, Sun Q, Tang R, Yang J, Wang Z, Yun L, Hu L, Yan J, Nie S, Wei L, Liu C, Wang M. Differentiated genomic footprints suggest isolation and long-distance migration of Hmong-Mien populations. BMC Biol 2024; 22:18. [PMID: 38273256 PMCID: PMC10809681 DOI: 10.1186/s12915-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Peixin Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rong Hu
- School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liping Hu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Inner Mongolia, 010028, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
23
|
Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, Wohns AW, Ali MQ, Griffith SJ, Solnik A, Niinemäe H, Ge XJ, Rose AK, Beneker O, O’Connell TC, Robb JE, Kivisild T. Genetic history of Cambridgeshire before and after the Black Death. SCIENCE ADVANCES 2024; 10:eadi5903. [PMID: 38232165 PMCID: PMC10793959 DOI: 10.1126/sciadv.adi5903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
The extent of the devastation of the Black Death pandemic (1346-1353) on European populations is known from documentary sources and its bacterial source illuminated by studies of ancient pathogen DNA. What has remained less understood is the effect of the pandemic on human mobility and genetic diversity at the local scale. Here, we report 275 ancient genomes, including 109 with coverage >0.1×, from later medieval and postmedieval Cambridgeshire of individuals buried before and after the Black Death. Consistent with the function of the institutions, we found a lack of close relatives among the friars and the inmates of the hospital in contrast to their abundance in general urban and rural parish communities. While we detect long-term shifts in local genetic ancestry in Cambridgeshire, we find no evidence of major changes in genetic ancestry nor higher differentiation of immune loci between cohorts living before and after the Black Death.
Collapse
Affiliation(s)
- Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Christiana L. Scheib
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, University of Cambridge, Cambridge, UK
| | | | - Sarah A. Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge, UK
| | | | - Anthony W. Wohns
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Biology, Stanford University, Stanford, CA, USA
| | | | - Samuel J. Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Niinemäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK
| | - Alice K. Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Department of Archaeology, University of Durham, Durham, UK
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tamsin C. O’Connell
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John E. Robb
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Toomas Kivisild
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Di Santo LN, Quilodrán CS, Currat M. Temporal Variation in Introgressed Segments' Length Statistics Computed from a Limited Number of Ancient Genomes Sheds Light on Past Admixture Pulses. Mol Biol Evol 2023; 40:msad252. [PMID: 37992125 PMCID: PMC10715198 DOI: 10.1093/molbev/msad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Hybridization is recognized as an important evolutionary force, but identifying and timing admixture events between divergent lineages remain a major aim of evolutionary biology. While this has traditionally been done using inferential tools on contemporary genomes, the latest advances in paleogenomics have provided a growing wealth of temporally distributed genomic data. Here, we used individual-based simulations to generate chromosome-level genomic data for a 2-population system and described temporal neutral introgression patterns under a single- and 2-pulse admixture model. We computed 6 summary statistics aiming to inform the timing and number of admixture pulses between interbreeding entities: lengths of introgressed sequences and their variance within genomes, as well as genome-wide introgression proportions and related measures. The first 2 statistics could confidently be used to infer interlineage hybridization history, peaking at the beginning and shortly after an admixture pulse. Temporal variation in introgression proportions and related statistics provided more limited insights, particularly when considering their application to ancient genomes still scant in number. Lastly, we computed these statistics on Homo sapiens paleogenomes and successfully inferred the hybridization pulse from Neanderthal that occurred approximately 40 to 60 kya. The scarce number of genomes dating from this period prevented more precise inferences, but the accumulation of paleogenomic data opens promising perspectives as our approach only requires a limited number of ancient genomes.
Collapse
Affiliation(s)
- Lionel N Di Santo
- Department of Genetics and Evolution, University of Geneva, Geneva CH-1205
| | | | - Mathias Currat
- Department of Genetics and Evolution, University of Geneva, Geneva CH-1205
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva CH-1205
| |
Collapse
|
25
|
Zupanič Pajnič I, Mlinšek T, Počivavšek T, Leskovar T. Genetic sexing of subadult skeletal remains. Sci Rep 2023; 13:20463. [PMID: 37993531 PMCID: PMC10665466 DOI: 10.1038/s41598-023-47836-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
When subadult skeletons need to be identified, biological sex diagnosis is one of the first steps in the identification process. Sex assessment of subadults using morphological features is unreliable, and molecular genetic methods were applied in this study. Eighty-three ancient skeletons were used as models for poorly preserved DNA. Three sex-informative markers on the Y and X chromosome were used for sex identification: a qPCR test using the PowerQuant Y target included in PowerQuant System (Promega), the amelogenin test included in ESI 17 Fast STR kit (Promega), and a Y-STR amplification test using the PowerPlex Y-23 kit (Promega). Sex was successfully determined in all but five skeletons. Successful PowerQuant Y-target, Y-amelogenin, and Y-chromosomal STR amplifications proved the presence of male DNA in 35 skeletons, and in 43 subadults female sex was established. No match was found between the genetic profiles of subadult skeletons, and the elimination database and negative control samples produced no profiles, indicating no contamination issue. Our study shows that genetic sex identification is a very successful approach for biological sexing of subadult skeletons whose sex cannot be assessed by anthropological methods. The results of this study are applicable for badly preserved subadult skeletons from routine forensic casework.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Teo Mlinšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tadej Počivavšek
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
27
|
Wen Y, Liu J, Su Y, Chen X, Hou Y, Liao L, Wang Z. Forensic biogeographical ancestry inference: recent insights and current trends. Genes Genomics 2023; 45:1229-1238. [PMID: 37081293 DOI: 10.1007/s13258-023-01387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND As a powerful complement to the paradigmatic DNA profiling strategy, biogeographical ancestry inference (BGAI) plays a significant part in human forensic investigation especially when a database hit or eyewitness testimony are not available. It indicates one's biogeographical profile based on known population-specific genetic variations, and thus is crucial for guiding authority investigations to find unknown individuals. Forensic biogeographical ancestry testing exploits much of the recent advances in the understanding of human genomic variation and improving of molecular biology. OBJECTIVE In this review, recent development of prospective ancestry informative markers (AIMs) and the statistical approaches of inferring biogeographic ancestry from AIMs are elucidated and discussed. METHODS We highlight the research progress of three potential AIMs (i.e., single nucleotide polymorphisms, microhaplotypes, and Y or mtDNA uniparental markers) and discuss the prospects and challenges of two methods that are commonly used in BGAI. CONCLUSION While BGAI for forensic purposes has been thriving in recent years, important challenges, such as ethics and responsibilities, data completeness, and ununified standards for evaluation, remain for the use of biogeographical ancestry information in human forensic investigations. To address these issues and fully realize the value of BGAI in forensic investigation, efforts should be made not only by labs/institutions around the world independently, but also by inter-lab/institution collaborations.
Collapse
Affiliation(s)
- Yufeng Wen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Linchuan Liao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zheng Wang
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China.
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
García-Olivares V, Muñoz-Barrera A, Rubio-Rodríguez LA, Jáspez D, Díaz-de Usera A, Iñigo-Campos A, Veeramah KR, Alonso S, Thomas MG, Lorenzo-Salazar JM, González-Montelongo R, Flores C. Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data. Comput Struct Biotechnol J 2023; 21:4613-4618. [PMID: 37817776 PMCID: PMC10560978 DOI: 10.1016/j.csbj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- María Goyri Building, Biotechnology Center, Human Molecular Evolution Lab 2.08 UPV/EHU Science Park, 48940 Leioa, Bizkaia, Spain
| | - Mark G. Thomas
- UCL Genetics Institute, University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom
- Research Department of Genetics, Evolution & Environment, University College London (UCL), Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
29
|
Woravatin W, Stoneking M, Srikummool M, Kampuansai J, Arias L, Kutanan W. South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. PLoS One 2023; 18:e0291547. [PMID: 37708147 PMCID: PMC10501589 DOI: 10.1371/journal.pone.0291547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated ∼2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35-45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, The Netherlands
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
30
|
Hallast P, Ebert P, Loftus M, Yilmaz F, Audano PA, Logsdon GA, Bonder MJ, Zhou W, Höps W, Kim K, Li C, Hoyt SJ, Dishuck PC, Porubsky D, Tsetsos F, Kwon JY, Zhu Q, Munson KM, Hasenfeld P, Harvey WT, Lewis AP, Kordosky J, Hoekzema K, O'Neill RJ, Korbel JO, Tyler-Smith C, Eichler EE, Shi X, Beck CR, Marschall T, Konkel MK, Lee C. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 2023; 621:355-364. [PMID: 37612510 PMCID: PMC10726138 DOI: 10.1038/s41586-023-06425-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.
Collapse
Affiliation(s)
- Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Mark Loftus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wolfram Höps
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kwondo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Chong Li
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Savannah J Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fotios Tsetsos
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jee Young Kwon
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Hasenfeld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- The University of Connecticut Health Center, Farmington, CT, USA
| | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- The University of Connecticut Health Center, Farmington, CT, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Miriam K Konkel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
31
|
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, Hook PW, Koren S, Rautiainen M, Alexandrov IA, Allen J, Asri M, Bzikadze AV, Chen NC, Chin CS, Diekhans M, Flicek P, Formenti G, Fungtammasan A, Garcia Giron C, Garrison E, Gershman A, Gerton JL, Grady PGS, Guarracino A, Haggerty L, Halabian R, Hansen NF, Harris R, Hartley GA, Harvey WT, Haukness M, Heinz J, Hourlier T, Hubley RM, Hunt SE, Hwang S, Jain M, Kesharwani RK, Lewis AP, Li H, Logsdon GA, Lucas JK, Makalowski W, Markovic C, Martin FJ, Mc Cartney AM, McCoy RC, McDaniel J, McNulty BM, Medvedev P, Mikheenko A, Munson KM, Murphy TD, Olsen HE, Olson ND, Paulin LF, Porubsky D, Potapova T, Ryabov F, Salzberg SL, Sauria MEG, Sedlazeck FJ, Shafin K, Shepelev VA, Shumate A, Storer JM, Surapaneni L, Taravella Oill AM, Thibaud-Nissen F, Timp W, Tomaszkiewicz M, Vollger MR, Walenz BP, Watwood AC, Weissensteiner MH, Wenger AM, Wilson MA, Zarate S, Zhu Y, Zook JM, Eichler EE, O'Neill RJ, Schatz MC, Miga KH, Makova KD, Phillippy AM. The complete sequence of a human Y chromosome. Nature 2023; 621:344-354. [PMID: 37612512 PMCID: PMC10752217 DOI: 10.1038/s41586-023-06457-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.
Collapse
Affiliation(s)
- Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies Inc., Oxford, UK
| | - Monika Cechova
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Savannah J Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Altemose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Paul W Hook
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A Alexandrov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Center for Algorithmic Biotechnology, Saint Petersburg State University, St Petersburg, Russia
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jamie Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Andrey V Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California, San Diego, CA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Chen-Shan Chin
- GeneDX Holdings Corp, Stamford, CT, USA
- Foundation of Biological Data Science, Belmont, CA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Nancy F Hansen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jakob Heinz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephen Hwang
- XDBio Program, Johns Hopkins University, Baltimore, MD, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Rupesh K Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Christopher Markovic
- Genome Technology Access Center at the McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ann M Mc Cartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer McDaniel
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Brandy M McNulty
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Paul Medvedev
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Saint Petersburg State University, St Petersburg, Russia
- UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hugh E Olsen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Nathan D Olson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | | | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Likhitha Surapaneni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Angela M Taravella Oill
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison C Watwood
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yiming Zhu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Justin M Zook
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Investigator, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Li J, Song F, Lang M, Xie M. Comprehensive insights into the genetic background of Chinese populations using Y chromosome markers. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230814. [PMID: 37736526 PMCID: PMC10509572 DOI: 10.1098/rsos.230814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
China is located in East Asia. With a high genetic and cultural diversity, human migration in China has always been a hot topic of genetics research. To explore the origins and migration routes of Chinese males, 3333 Chinese individuals (Han, Hui, Mongolia, Yi and Kyrgyz) with 27 Y-STRs and 143 Y-SNPs from published literature were analysed. Our data showed that there are five dominant haplogroups (O2-M122, O1-F265, C-M130, N-M231, R-M207) in China. Combining analysis of haplogroup frequencies, geographical positions and time with the most recent common ancestor (TMRCA), we found that haplogroups C-M130, N-M231 and R1-M173 and O1a-M175 probably migrated into China via the northern route. Interestingly, we found that haplogroup C*-M130 in China may originate in South Asia, whereas the major subbranches C2a-L1373 and C2b-F1067 migrated from northern China. The results of BATWING showed that the common ancestry of Y haplogroup in China can be traced back to 17 000 years ago, which was concurrent with global temperature increases after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Min Lang
- Sichuan University Law School, Sichuan University, Chengdu, People's Republic of China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
33
|
Ferraz T, Suarez Villagran X, Nägele K, Radzevičiūtė R, Barbosa Lemes R, Salazar-García DC, Wesolowski V, Lopes Alves M, Bastos M, Rapp Py-Daniel A, Pinto Lima H, Mendes Cardoso J, Estevam R, Liryo A, Guimarães GM, Figuti L, Eggers S, Plens CR, Azevedo Erler DM, Valadares Costa HA, da Silva Erler I, Koole E, Henriques G, Solari A, Martin G, Serafim Monteiro da Silva SF, Kipnis R, Müller LM, Ferreira M, Carvalho Resende J, Chim E, da Silva CA, Borella AC, Tomé T, Müller Plumm Gomes L, Barros Fonseca D, Santos da Rosa C, de Moura Saldanha JD, Costa Leite L, Cunha CMS, Viana SA, Ozorio Almeida F, Klokler D, Fernandes HLA, Talamo S, DeBlasis P, Mendonça de Souza S, de Paula Moraes C, Elias Oliveira R, Hünemeier T, Strauss A, Posth C. Genomic history of coastal societies from eastern South America. Nat Ecol Evol 2023; 7:1315-1330. [PMID: 37524799 PMCID: PMC10406606 DOI: 10.1038/s41559-023-02114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 06/08/2023] [Indexed: 08/02/2023]
Abstract
Sambaqui (shellmound) societies are among the most intriguing archaeological phenomena in pre-colonial South America, extending from approximately 8,000 to 1,000 years before present (yr BP) across 3,000 km on the Atlantic coast. However, little is known about their connection to early Holocene hunter-gatherers, how this may have contributed to different historical pathways and the processes through which late Holocene ceramists came to rule the coast shortly before European contact. To contribute to our understanding of the population history of indigenous societies on the eastern coast of South America, we produced genome-wide data from 34 ancient individuals as early as 10,000 yr BP from four different regions in Brazil. Early Holocene hunter-gatherers were found to lack shared genetic drift among themselves and with later populations from eastern South America, suggesting that they derived from a common radiation and did not contribute substantially to later coastal groups. Our analyses show genetic heterogeneity among contemporaneous Sambaqui groups from the southeastern and southern Brazilian coast, contrary to the similarity expressed in the archaeological record. The complex history of intercultural contact between inland horticulturists and coastal populations becomes genetically evident during the final horizon of Sambaqui societies, from around 2,200 yr BP, corroborating evidence of cultural change.
Collapse
Affiliation(s)
- Tiago Ferraz
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Renan Barbosa Lemes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Verônica Wesolowski
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Marcony Lopes Alves
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Murilo Bastos
- Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jéssica Mendes Cardoso
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, UMR 5563, CNRS, Toulouse, France
| | - Renata Estevam
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Andersen Liryo
- National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geovan M Guimarães
- Grupo de Pesquisa em Educação Patrimonial e Arqueologia (Grupep), Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Levy Figuti
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Cláudia R Plens
- Laboratory of Archaeological Studies, Department of History, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Ana Solari
- Fundação Museu do Homem Americano, Piauí, Brazil
| | | | | | | | - Letícia Morgana Müller
- Scientia Consultoria Científica, São Paulo, Brazil
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mariane Ferreira
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Scientia Consultoria Científica, São Paulo, Brazil
| | - Janine Carvalho Resende
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Eliane Chim
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Ana Claudia Borella
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Tiago Tomé
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lisiane Müller Plumm Gomes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - João Darcy de Moura Saldanha
- Universidade de Évora, Évora, Portugal
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Lúcio Costa Leite
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Claudia M S Cunha
- Federal University of Piauí, Piauí, Brazil
- Centro de Investigação em Antropologia e Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Sibeli Aparecida Viana
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Fernando Ozorio Almeida
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Arqueologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Klokler
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Antropologia e Arqueologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henry Luydy Abraham Fernandes
- Programa de Pós-Graduação em Arqueologia e Patrimônio Cultural, Universidade Federal do Recôncavo da Bahia, Bahia, Brazil
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paulo DeBlasis
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - Rodrigo Elias Oliveira
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Tábita Hünemeier
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil.
- Institut de Biologia Evolutiva, CSIC/Universitat Pompeu Fabra, Barcelona, Spain.
| | - André Strauss
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil.
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Esteller-Cucala P, Palmada-Flores M, Kuderna LFK, Fontsere C, Serres-Armero A, Dabad M, Torralvo M, Faella A, Ferrández-Peral L, Llovera L, Fornas O, Julià E, Ramírez E, González I, Hecht J, Lizano E, Juan D, Marquès-Bonet T. Y chromosome sequence and epigenomic reconstruction across human populations. Commun Biol 2023; 6:623. [PMID: 37296226 PMCID: PMC10256797 DOI: 10.1038/s42003-023-05004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
Collapse
Affiliation(s)
- Paula Esteller-Cucala
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
| | - Marc Palmada-Flores
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Aitor Serres-Armero
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain
| | - María Torralvo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Armida Faella
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Luis Ferrández-Peral
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Laia Llovera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Oscar Fornas
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain
| | - Eva Julià
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Erika Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Irene González
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
35
|
Villa-Islas V, Izarraras-Gomez A, Larena M, Campos EMP, Sandoval-Velasco M, Rodríguez-Rodríguez JE, Bravo-Lopez M, Moguel B, Fregel R, Garfias-Morales E, Medina Tretmanis J, Velázquez-Ramírez DA, Herrera-Muñóz A, Sandoval K, Nieves-Colón MA, Zepeda García Moreno G, Villanea FA, Medina EFV, Aguayo-Haro R, Valdiosera C, Ioannidis AG, Moreno-Estrada A, Jay F, Huerta-Sanchez E, Moreno-Mayar JV, Sánchez-Quinto F, Ávila-Arcos MC. Demographic history and genetic structure in pre-Hispanic Central Mexico. Science 2023; 380:eadd6142. [PMID: 37167382 DOI: 10.1126/science.add6142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.
Collapse
Affiliation(s)
- Viridiana Villa-Islas
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Alan Izarraras-Gomez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Maximilian Larena
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Cuidad de México, Mexico
| | | | - Miriam Bravo-Lopez
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Barbara Moguel
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
- Centro de Geociencias, UNAM Juriquilla, Juriquilla, Querétaro, México
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ernesto Garfias-Morales
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | | | | | | | - Karla Sandoval
- Equity and Gender Office of the Centre for Research and Advanced Studies (CODIGO-C), CINVESTAV, Mexico City, Mexico
| | - Maria A Nieves-Colón
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
- Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | - Fernando A Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Cristina Valdiosera
- Departamento de Historia, Geografía y Comunicaciones, Universidad de Burgos, Burgos, Spain
- Department of History and Archaeology, La Trobe University, Melbourne, Australia
| | - Alexander G Ioannidis
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- Unit of Advanced Genomics, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Flora Jay
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS, INRIA, 91400 Orsay, France
| | | | - J Víctor Moreno-Mayar
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
36
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
37
|
Guanglin H, Lan-Hai W, Mengge W. Editorial: Forensic investigative genetic genealogy and fine-scale structure of human populations. Front Genet 2023; 13:1067865. [PMID: 36685813 PMCID: PMC9849385 DOI: 10.3389/fgene.2022.1067865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- He Guanglin
- 1Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, China,*Correspondence: He Guanglin, ; Wang Mengge,
| | - Wei Lan-Hai
- 2School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Wang Mengge
- 3Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China,*Correspondence: He Guanglin, ; Wang Mengge,
| |
Collapse
|
38
|
Mansouri S, Gogoi H, Patel S, Katikaneni DS, Singh A, Aybar-Torres A, de Lartigue G, Jin L. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2114-2132. [PMID: 36261171 PMCID: PMC9679991 DOI: 10.4049/jimmunol.2200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
MPYS/STING (stimulator of IFN genes) senses cyclic dinucleotides (CDNs), generates type I IFNs, and plays a critical role in infection, inflammation, and cancer. In this study, analyzing genotype and haplotype data from the 1000 Genomes Project, we found that the R71H-G230A-R293Q (HAQ) MPYS allele frequency increased 57-fold in East Asians compared with sub-Saharan Africans. Meanwhile, the G230A-R293Q (AQ) allele frequency decreased by 98% in East Asians compared with sub-Saharan Africans. We propose that the HAQ and AQ alleles underwent a natural selection during the out-of-Africa migration. We used mouse models of HAQ and AQ to investigate the underlying mechanism. We found that the mice carrying the AQ allele, which disappeared in East Asians, had normal CDN-type I IFN responses. Adult AQ mice, however, had less fat mass than did HAQ or wild-type mice on a chow diet. AQ epididymal adipose tissue had increased regulatory T cells and M2 macrophages with protein expression associated with enhanced fatty acid oxidation. Conditional knockout mice and adoptive cell transfer indicate a macrophage and regulatory T cell-intrinsic role of MPYS in fatty acid metabolism. Mechanistically, AQ/IFNAR1-/- mice had a similar lean phenotype as for the AQ mice. MPYS intrinsic tryptophan fluorescence revealed that the R71H change increased MPYS hydrophilicity. Lastly, we found that the second transmembrane (TM) and the TM2-TM3 linker region of MPYS interact with activated fatty acid, fatty acyl-CoA. In summary, studying the evolution of the human MPYS gene revealed an MPYS function in modulating fatty acid metabolism that may be critical during the out-of-Africa migration.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Divya S. Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
39
|
Ikram MS, Mehmood T, Rakha A, Akhtar S, Khan MIM, Al-Qahtani WS, Safhi FA, Hadi S, Wang CC, Adnan A. Genetic diversity and forensic application of Y-filer STRs in four major ethnic groups of Pakistan. BMC Genomics 2022; 23:788. [PMID: 36451116 PMCID: PMC9714238 DOI: 10.1186/s12864-022-09028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
17 Y-chromosomal STRs which are part of the Yfiler Amplification Kit were investigated in 493 unrelated Pakistani individuals belonging to the Punjabi, Sindhi, Baloch, and Pathan ethnic groups. We have assessed the forensic parameters and population genetic structure for each group. Among the 493 unrelated individuals from four ethnic groups (128 Baloch, 122 Pathan, 108 Punjabi, and 135 Sindhi), 82 haplotypes were observed with haplotype diversity (HD) of 0.9906 in Baloch, 102 haplotypes with HD value of 0.9957 in Pathans, 80 haplotypes with HD value of 0.9924 in Punjabi, and 105 haplotypes with HD value of 0.9945 in the Sindhi population. The overall gene diversity for Baloch, Pathan, Punjabi, and Sindhi populations was 0.6367, 0.6479, 0.6657, and 0.6112, respectively. The results had shown us that Pakistani populations do not have a unique set of genes but share the genetic affinity with regional (Central Asia and Northern India) populations. The observed low gene diversity (heterozygosity) values may be because of endogamy trends and this observation is equally supported by the results of forensic parameters which are mostly static across 4 combinations (minimal STRs, extended 11 Y-STRs, Powerplex 12 Y System, and Yfiler 17 Y-STRs) of STRs in these four populations.
Collapse
Affiliation(s)
- Muhammad Salman Ikram
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China ,grid.412782.a0000 0004 0609 4693Institute of Chemistry, University of Sargodha, Sargodha, 40100 Punjab Pakistan
| | - Tahir Mehmood
- grid.412782.a0000 0004 0609 4693Institute of Chemistry, University of Sargodha, Sargodha, 40100 Punjab Pakistan ,grid.11173.350000 0001 0670 519XCentre for Applied and Molecular Biology (CAMB), University of the Punjab, Lahore, 53700 Punjab Pakistan
| | - Allah Rakha
- grid.412956.d0000 0004 0609 0537Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
| | - Sareen Akhtar
- grid.412956.d0000 0004 0609 0537Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
| | | | - Wedad Saeed Al-Qahtani
- grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| | - Fatmah Ahmed Safhi
- grid.449346.80000 0004 0501 7602Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Sibte Hadi
- grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| | - Chuan-Chao Wang
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Atif Adnan
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China ,grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Liu J, Jiang L, Zhao M, Du W, Wen Y, Li S, Zhang S, Fang F, Shen J, He G, Wang M, Dai H, Hou Y, Wang Z. Development and validation of a custom panel including 256 Y-SNPs for Chinese Y-chromosomal haplogroups dissection. Forensic Sci Int Genet 2022; 61:102786. [DOI: 10.1016/j.fsigen.2022.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
41
|
Gopalakrishnan S, Ebenesersdóttir SS, Lundstrøm IKC, Turner-Walker G, Moore KHS, Luisi P, Margaryan A, Martin MD, Ellegaard MR, Magnússon ÓÞ, Sigurðsson Á, Snorradóttir S, Magnúsdóttir DN, Laffoon JE, van Dorp L, Liu X, Moltke I, Ávila-Arcos MC, Schraiber JG, Rasmussen S, Juan D, Gelabert P, de-Dios T, Fotakis AK, Iraeta-Orbegozo M, Vågene ÅJ, Denham SD, Christophersen A, Stenøien HK, Vieira FG, Liu S, Günther T, Kivisild T, Moseng OG, Skar B, Cheung C, Sandoval-Velasco M, Wales N, Schroeder H, Campos PF, Guðmundsdóttir VB, Sicheritz-Ponten T, Petersen B, Halgunset J, Gilbert E, Cavalleri GL, Hovig E, Kockum I, Olsson T, Alfredsson L, Hansen TF, Werge T, Willerslev E, Balloux F, Marques-Bonet T, Lalueza-Fox C, Nielsen R, Stefánsson K, Helgason A, Gilbert MTP. The population genomic legacy of the second plague pandemic. Curr Biol 2022; 32:4743-4751.e6. [PMID: 36182700 DOI: 10.1016/j.cub.2022.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/15/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Collapse
Affiliation(s)
- Shyam Gopalakrishnan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - S Sunna Ebenesersdóttir
- deCODE Genetics, AMGEN Inc., Sturlugata 8, 102 Reykjavík, Iceland; Department of Anthropology, School of Social Sciences, University of Iceland, Gimli, Sæmundargata, 102 Reykjavík, Iceland
| | - Inge K C Lundstrøm
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Gordon Turner-Walker
- National Yunlin University of Science & Technology, 123 University Road, Section 3, 64002 Douliu, Yun-Lin County, Taiwan; Department of Archaeology and Anthropology, National Museum of Natural Science, 1 Guanqian Road, North District Taichung City 404023, Taiwan
| | | | - Pierre Luisi
- Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba, Argentina; Microbial Paleogenomics Unit, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ashot Margaryan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Michael D Martin
- NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martin Rene Ellegaard
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | | | | | | | - Jason E Laffoon
- Department of Archaeological Sciences, Faculty of Archaeology, Leiden University, Leiden, the Netherlands
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México (UNAM), 3001 Boulevard Juriquilla, 76230 Querétaro, Mexico
| | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, USA
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Pere Gelabert
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Toni de-Dios
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Anna K Fotakis
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Miren Iraeta-Orbegozo
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Åshild J Vågene
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | | | - Axel Christophersen
- NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Hans K Stenøien
- NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Filipe G Vieira
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Shanlin Liu
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Torsten Günther
- Evolutionsbiologisk Centrum EBC, Norbyv. 18A, 752 36 Uppsala, Sweden
| | - Toomas Kivisild
- KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Ole Georg Moseng
- Department of Business, History and Social Sciences, University of South-Eastern Norway, Notodden, Norway
| | - Birgitte Skar
- NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Christina Cheung
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; EA - Eco-anthropologie (UMR 7206), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Marcela Sandoval-Velasco
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Nathan Wales
- Department of Archaeology, Kings Manor and Principals House, University of York, Exhibition Square, York YO1 7EP, UK
| | - Hannes Schroeder
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark
| | - Paula F Campos
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, Matosinhos, Portugal
| | - Valdís B Guðmundsdóttir
- deCODE Genetics, AMGEN Inc., Sturlugata 8, 102 Reykjavík, Iceland; Department of Anthropology, School of Social Sciences, University of Iceland, Gimli, Sæmundargata, 102 Reykjavík, Iceland
| | - Thomas Sicheritz-Ponten
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology (AIMST), 08100 Bedong, Kedah, Malaysia
| | - Bent Petersen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology (AIMST), 08100 Bedong, Kedah, Malaysia
| | | | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, Dublin, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, RCSI, Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, Dublin, Ireland
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ingrid Kockum
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark; Danish Headache Center, Department of Neurology, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark; The Globe Institute, Lundbeck Foundation Center for Geogenetics, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Eske Willerslev
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Francois Balloux
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain; Museu de Ciències Naturals de Barcelona, 08019 Barcelona, Spain
| | - Rasmus Nielsen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720-3140, USA
| | - Kári Stefánsson
- deCODE Genetics, AMGEN Inc., Sturlugata 8, 102 Reykjavík, Iceland; Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Agnar Helgason
- deCODE Genetics, AMGEN Inc., Sturlugata 8, 102 Reykjavík, Iceland; Department of Anthropology, School of Social Sciences, University of Iceland, Gimli, Sæmundargata, 102 Reykjavík, Iceland
| | - M Thomas P Gilbert
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark; NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
42
|
Chen H, Lin R, Lu Y, Zhang R, Gao Y, He Y, Xu S. Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. Mol Biol Evol 2022; 39:6731089. [PMID: 36173765 PMCID: PMC9585476 DOI: 10.1093/molbev/msac210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the most prevalent aboriginal group on Hainan Island located between South China and the mainland of Southeast Asia, the Li people are believed to preserve some unique genetic information due to their isolated circumstances, although this has been largely uninvestigated. We performed the first whole-genome sequencing of 55 Hainan Li (HNL) individuals with high coverage (∼30-50×) to gain insight into their genetic history and potential adaptations. We identified the ancestry enriched in HNL (∼85%) is well preserved in present-day Tai-Kadai speakers residing in South China and North Vietnam, that is, Bai-Yue populations. A lack of admixture signature due to the geographical restriction exacerbated the bottleneck in the present-day HNL. The genetic divergence among Bai-Yue populations began ∼4,000-3,000 years ago when the proto-HNL underwent migration and the settling of Hainan Island. Finally, we identified signatures of positive selection in the HNL, some outstanding examples included FADS1 and FADS2 related to a diet rich in polyunsaturated fatty acids. In addition, we observed that malaria-driven selection had occurred in the HNL, with population-specific variants of malaria-related genes (e.g., CR1) present. Interestingly, HNL harbors a high prevalence of malaria leveraged gene variants related to hematopoietic function (e.g., CD3G) that may explain the high incidence of blood disorders such as B-cell lymphomas in the present-day HNL. The results have advanced our understanding of the genetic history of the Bai-Yue populations and have provided new insights into the adaptive scenarios of the Li people.
Collapse
Affiliation(s)
| | | | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | | |
Collapse
|
43
|
Song M, Jiang L, Lyu Q, Ying J, Wang Z, Zhou Y, Song F, Luo H, Song X, Ying B. Developmental validation of the Microreader Group Y Direct ID System: A novel six‐dye typing system with 54 Y‐chromosomal loci for forensic application. Electrophoresis 2022; 43:2023-2032. [DOI: 10.1002/elps.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyuan Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| | - Lanrui Jiang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Qiang Lyu
- Department of Clinical Laboratory People's Hospital of Beichuan Qiang Autonomous County Beichuan Sichuan P. R. China
| | - Jun Ying
- Department of Clinical Laboratory Santai People's Hospital Santai Sichuan P. R. China
| | - Zefei Wang
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Yuxiang Zhou
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Feng Song
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Haibo Luo
- Department of Forensic Genetics West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu Sichuan P. R. China
| | - Xingbo Song
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
- Department of Clinical Laboratory Karamay Hospital of Integrated Traditional Chinese and Western Medicine (Karamay People's Hospital) Karamay Xinjiang P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine West China Hospital Sichuan University Chengdu Sichuan P. R. China
| |
Collapse
|
44
|
Timmers PRHJ, Wilson JF. Limited Effect of Y Chromosome Variation on Coronary Artery Disease and Mortality in UK Biobank-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:1198-1206. [PMID: 35861954 PMCID: PMC9394501 DOI: 10.1161/atvbaha.122.317664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The effect of genetic variation in the male-specific region of the Y chromosome (MSY) on coronary artery disease and cardiovascular risk factors has been disputed. In this study, we systematically assessed the association of MSY genetic variation on these traits using a kin-cohort analysis of family disease history in the largest sample to date. METHODS We tested 90 MSY haplogroups against coronary artery disease, hypertension, blood pressure, classical lipid levels, and all-cause mortality in up to 152 186 unrelated, genomically British individuals from UK Biobank. Unlike previous studies, we did not adjust for heritable lifestyle factors (to avoid collider bias) and instead adjusted for geographic variables and socioeconomic deprivation, given the link between MSY haplogroups and geography. For family history traits, subject MSY haplogroups were tested against father and mother disease as validation and negative control, respectively. RESULTS Our models find little evidence for an effect of any MSY haplogroup on cardiovascular risk in participants. Parental models confirm these findings. CONCLUSIONS Kin-cohort analysis of the Y chromosome uniquely allows for discoveries in subjects to be validated using family history data. Despite our large sample size, improved models, and parental validation, there is little evidence to suggest cardiovascular risk in UK Biobank is influenced by genetic variation in MSY.
Collapse
Affiliation(s)
- Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer (P.R.H.J.T., J.F.W.), University of Edinburgh, United Kingdom.,Centre for Global Health Research, Usher Institute (P.R.H.J.T., J.F.W.), University of Edinburgh, United Kingdom
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer (P.R.H.J.T., J.F.W.), University of Edinburgh, United Kingdom.,Centre for Global Health Research, Usher Institute (P.R.H.J.T., J.F.W.), University of Edinburgh, United Kingdom
| |
Collapse
|
45
|
Paz Sepúlveda PB, Mayordomo AC, Sala C, Sosa EJ, Zaiat JJ, Cuello M, Schwab M, Rodríguez Golpe D, Aquilano E, Santos MR, Dipierri JE, Alfaro Gómez EL, Bravi CM, Muzzio M, Bailliet G. Human Y chromosome sequences from Q Haplogroup reveal a South American settlement pre-18,000 years ago and a profound genomic impact during the Younger Dryas. PLoS One 2022; 17:e0271971. [PMID: 35976870 PMCID: PMC9385064 DOI: 10.1371/journal.pone.0271971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The settlement of the Americas has been the focus of incessant debate for more than 100 years, and open questions regarding the timing and spatial patterns of colonization still remain today. Phylogenetic studies with complete human Y chromosome sequences are used as a highly informative tool to investigate the history of human populations in a given time frame. To study the phylogenetic relationships of Native American lineages and infer the settlement history of the Americas, we analyzed Y chromosome Q Haplogroup, which is a Pan-American haplogroup and represents practically all Native American lineages in Mesoamerica and South America. We built a phylogenetic tree for Q Haplogroup based on 102 whole Y chromosome sequences, of which 13 new Argentine sequences were provided by our group. Moreover, 1,072 new single nucleotide polymorphisms (SNPs) that contribute to its resolution and diversity were identified. Q-M848 is known to be the most frequent autochthonous sub-haplogroup of the Americas. The present is the first genomic study of Q Haplogroup in which current knowledge on Q-M848 sub-lineages is contrasted with the historical, archaeological and linguistic data available. The divergence times, spatial structure and the SNPs found here as novel for Q-Z780, a less frequent sub-haplogroup autochthonous of the Americas, provide genetic support for a South American settlement before 18,000 years ago. We analyzed how environmental events that occurred during the Younger Dryas period may have affected Native American lineages, and found that this event may have caused a substantial loss of lineages. This could explain the current low frequency of Q-Z780 (also perhaps of Q-F4674, a third possible sub-haplogroup autochthonous of the Americas). These environmental events could have acted as a driving force for expansion and diversification of the Q-M848 sub-lineages, which show a spatial structure that developed during the Younger Dryas period.
Collapse
Affiliation(s)
- Paula B. Paz Sepúlveda
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Andrea Constanza Mayordomo
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Programa de Cáncer Hereditario, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Camila Sala
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Ezequiel Jorge Sosa
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jonathan Javier Zaiat
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Cuello
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Marisol Schwab
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Daniela Rodríguez Golpe
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Eliana Aquilano
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - María Rita Santos
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - José Edgardo Dipierri
- Instituto de Biología de la Altura, Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Emma L. Alfaro Gómez
- Instituto de Biología de la Altura, Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
- Instituto de Ecorregiones Andinas, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Claudio M. Bravi
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marina Muzzio
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Bailliet
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Doniec A, Januła M, Grzmil P, Kupiec T. Assessing the utility of quantitative and qualitative metrics in the DNA quantification process of skeletal remains for autosomal and Y-chromosome STR amplification purposes. Forensic Sci Int Genet 2022; 60:102751. [PMID: 35914369 DOI: 10.1016/j.fsigen.2022.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
In historical cases, ancient DNA investigations and missing persons identification, teeth or bone samples are often the only and almost always the best biological material available for DNA typing. On the other hand, DNA obtained from bone material may be characterized by a high degradation index (DI) or its low content, or DNA tests cannot be repeated due to bone piece size limitation. That is often the effect of the environment in which the material was placed and the time during which exposure to unfavorable environmental factors took place. Therefore, it is very important to use appropriate procedures related to STR analysis. For our study, we selected 80 challenging bone samples. The amount of DNA was compared in qPCR using Quantifiler™ Trio DNA Quantification Kit and Investigator® Quantiplex® Pro RGQ. All qPCR results were confirmed by PCR-CE. The results of DNA concentrations and the assigned degradation index (DI) differed significantly within analyzed samples (~10%). Additionally, the Y-chromosome DI also differed from the autosomal DI in the samples. The difference in degradation indexes could explain the lower Y-chromosome amplification success rate compared to autosomal e.g. during human identification process. The results indicate that performing two DNA quantifications with the use of two different kits (primers sets) allows for a much more precise evaluation of the DNA quality and quantity in the isolate. We suggest that at least one of two suggested DNA concentration measurements should be based on an additional determination of the Y chromosome degradation index. Altogether, it allows for rational isolate management, especially when the volume is limited and the sample is unique.
Collapse
Affiliation(s)
- Andrzej Doniec
- Forensic Genetics Section, Institute of Forensic Research, Westerplatte 9, 31-033 Kraków, Poland; Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Miłosz Januła
- Forensic Genetics Section, Institute of Forensic Research, Westerplatte 9, 31-033 Kraków, Poland
| | - Paweł Grzmil
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Tomasz Kupiec
- Forensic Genetics Section, Institute of Forensic Research, Westerplatte 9, 31-033 Kraków, Poland.
| |
Collapse
|
47
|
Rowe TB, Stafford TW, Fisher DC, Enghild JJ, Quigg JM, Ketcham RA, Sagebiel JC, Hanna R, Colbert MW. Human Occupation of the North American Colorado Plateau ∼37,000 Years Ago. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.903795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calibrating human population dispersals across Earth’s surface is fundamental to assessing rates and timing of anthropogenic impacts and distinguishing ecological phenomena influenced by humans from those that were not. Here, we describe the Hartley mammoth locality, which dates to 38,900–36,250 cal BP by AMS 14C analysis of hydroxyproline from bone collagen. We accept the standard view that elaborate stone technology of the Eurasian Upper Paleolithic was introduced into the Americas by arrival of the Native American clade ∼16,000 cal BP. It follows that if older cultural sites exist in the Americas, they might only be diagnosed using nuanced taphonomic approaches. We employed computed tomography (CT and μCT) and other state-of-the-art methods that had not previously been applied to investigating ancient American sites. This revealed multiple lines of taphonomic evidence suggesting that two mammoths were butchered using expedient lithic and bone technology, along with evidence diagnostic of controlled (domestic) fire. That this may be an ancient cultural site is corroborated by independent genetic evidence of two founding populations for humans in the Americas, which has already raised the possibility of a dispersal into the Americas by people of East Asian ancestry that preceded the Native American clade by millennia. The Hartley mammoth locality thus provides a new deep point of chronologic reference for occupation of the Americas and the attainment by humans of a near-global distribution.
Collapse
|
48
|
Lassek WD, Gaulin SJC. Substantial but Misunderstood Human Sexual Dimorphism Results Mainly From Sexual Selection on Males and Natural Selection on Females. Front Psychol 2022; 13:859931. [PMID: 35664212 PMCID: PMC9156798 DOI: 10.3389/fpsyg.2022.859931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
Human sexual dimorphism has been widely misunderstood. A large literature has underestimated the effect of differences in body composition and the role of male contest competition for mates. It is often assumed that sexually dimorphic traits reflect a history of sexual selection, but natural selection frequently builds different phenotypes in males and females. The relatively small sex difference in stature (∼7%) and its decrease during human evolution have been widely presumed to indicate decreased male contest competition for mates. However, females likely increased in stature relative to males in order to successfully deliver large-brained neonates through a bipedally-adapted pelvis. Despite the relatively small differences in stature and body mass (∼16%), there are marked sex differences in body composition. Across multiple samples from groups with different nutrition, males typically have 36% more lean body mass, 65% more muscle mass, and 72% more arm muscle than women, yielding parallel sex differences in strength. These sex differences in muscle and strength are comparable to those seen in primates where sexual selection, arising from aggressive male mating competition, has produced high levels of dimorphism. Body fat percentage shows a reverse pattern, with females having ∼1.6 times more than males and depositing that fat in different body regions than males. We argue that these sex differences in adipose arise mainly from natural selection on women to accumulate neurodevelopmental resources.
Collapse
Affiliation(s)
| | - Steven J. C. Gaulin
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
49
|
Tang W, Zhang Y, Wang J, Zhao Y, Xu X, Liu C, Liu Y, Zhang X. High-Selectivity Single-Nucleotide Variant Capture Technology Based on the DNA Reaction Network. Anal Chem 2022; 94:5838-5845. [PMID: 35385254 DOI: 10.1021/acs.analchem.1c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely low abundance of circulating tumor DNA in blood samples has limited the development of liquid biopsy techniques for the early diagnosis of major diseases. In this study, we demonstrate a DRN-based screening technique, SCREEN, which achieves the specific capture and enrichment of low abundance SNV nucleic acid samples without selective amplification. The SCREEN technique achieved a 108-fold increase in the abundance of single-nucleotide variant (SNV) nucleic acids from highly homologous mixtures (from 0.01% to 1.08%) and has been shown to significantly increase the abundance of SNV nucleic acids from 0.1% to 51% further through two rounds of capture. As a highly effective pre-enrichment technique, SCREEN has demonstrated the ability to enhance NGS in detecting an ultralow abundance SNV nucleic acid powerfully and has high compatibility with existing molecular diagnostic methods.
Collapse
Affiliation(s)
- Weiyang Tang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060.,School of Chemistry Science and Engineering, Tongji University, Shanghai, China, 200092
| | - Yibin Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Jiachun Wang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yi Zhao
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xiaoling Xu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Conghui Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yizhen Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xueji Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| |
Collapse
|
50
|
Testing the Ion AmpliSeq™ HID Y-SNP Research Panel v1 for performance and resolution in admixed South Americans of haplogroup Q. Forensic Sci Int Genet 2022; 59:102708. [DOI: 10.1016/j.fsigen.2022.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|