1
|
Rich BS, Weil BR, Thaker H, Cromeens BP, Stankovic ZB, Billmire DF, Dicken BJ. Current surgical approach: Extracranial malignant germ cell tumors. Pediatr Blood Cancer 2025; 72 Suppl 2:e31217. [PMID: 39039777 DOI: 10.1002/pbc.31217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Germ cell tumors (GCT) are a complex, heterogeneous collection of tumors that may present in either gonadal or extragonadal sites. They consist of a variety of benign and malignant histologies that can occur at several locations throughout the body. An important component of treatment is surgical resection, and while the key components of resection are site specific, the universal goals of GCT resection include the complete resection of tumor without violating the tumor capsule, while preserving function of surrounding organs, minimizing morbidity, and assessing for regional spread.
Collapse
Affiliation(s)
- Barrie S Rich
- Division of Pediatric Surgery, Cohen Children's Medical Center, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| | - Brent R Weil
- Department of Pediatric Surgery, Boston Children's Hospital, Harvard University, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | - Hatim Thaker
- Department of Pediatric Urology, Boston Children's Hospital, Harvard University, Boston, Massachusetts, USA
| | - Barrett P Cromeens
- Division of Pediatric Surgery, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zoran B Stankovic
- Department of Pediatric and Adolescent Gynecologic Surgery, Euromedik Hospital, Belgrade, Serbia
| | - Deborah F Billmire
- Division of Pediatric Surgery, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan J Dicken
- Division of Pediatric Surgery, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Hemminki K, Hemminki O, Koskinen A, Hemminki A, Försti A. High familial risks in some rare cancers may pinpoint to hidden germline genetics: focus on esophageal, stomach, small intestinal, testis, thyroid and bone cancers. Hered Cancer Clin Pract 2025; 23:9. [PMID: 40016794 PMCID: PMC11866814 DOI: 10.1186/s13053-024-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Germline genetic susceptibilities of rare cancers of the esophagus, stomach, small intestine, testis, (nonmedullary) thyroid gland and bone with high familial risks are not well known. Here, we use familial risk data from the Swedish Family-Cancer Database which contains records of cancers in Swedish families obtained over a century. We compare familial risks for offspring diagnosed with any of these cancers when their parent had or had not that cancer. We review the global literature of the reported constitutional variants that may explain part of the familial risk. MAIN BODY Familial risks for esophageal and stomach cancers are about 2.0 and apart from early-onset stomach cancer few high-risk variants are known. Genetic studies may be hampered by dominant environmental risk factors for these cancers. Small intestinal carcinoids have a very high familial risk (28 between siblings) but no high-risk genes have been identified to explain this. Low-risk polygenic variants have been identified. Small intestinal adenocarcinoma is a manifestation in Lynch syndrome. Testicular and thyroid cancers are characterized by high familial risk (about 5) which may be explained largely by a polygenic background, although thyroid cancer is a component in a number of rare cancer syndromes. Several predisposing genes have been identified for bone cancer (familial risk 7). CONCLUSIONS The discussed cancers are rare and they present with a relatively high familial risk, in spite of lacking identified high-penetrant constitutional variants. It is possible that the polygenic component, already recognized for testis cancer, is stronger than previously expected. Thus polygenic models with rare high/moderate- and low-risk variants could fit the familial risk and shape the germline genetic landscape of these cancers. Polygenic background may have clinical implications.
Collapse
Affiliation(s)
- Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, 30605, Czech Republic.
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| | - Otto Hemminki
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anni Koskinen
- Department of Otorhinolaryngology- Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Asta Försti
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
3
|
Ghirardelli Smith OC, Tsai AK, Zhong M, Dejban P, Nelson AC, Dolan M, Antonarakis ES, Murugan P. Case Report: Prepubertal-type testicular teratoma with local metastasis in a postpubertal patient. Front Oncol 2025; 15:1547258. [PMID: 40071092 PMCID: PMC11893418 DOI: 10.3389/fonc.2025.1547258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction We report for the first time a case of a postpubertal patient presenting with a metastatic prepubertal-type testicular teratoma. Case discussion A 29-year-old male with a history of corrected unilateral cryptorchidism presented with progressive bilateral lower extremity edema. Imaging revealed an inferior vena cava thrombus associated with a complex mass. A left testicular ultrasound identified a solid lesion suggestive of a germ cell tumor, leading to a left radical orchiectomy, which revealed a mature pure teratoma with no evidence of germ cell neoplasia in situ (GCNIS). Excision of the retroperitoneal mass confirmed the presence of mature teratomatous elements without evidence of non-teratomatous germ cell tumor elements or cytological atypia. Fluorescence in situ hybridization (FISH) showed no evidence of gain of 12p, and next-generation sequencing showed no alterations in genes known to be associated with GCT. Conclusion This case illustrates that pure mature teratomas lacking chromosome 12p abnormalities, GCNIS, and other dysgenetic features, occurring in postpubertal males, cannot invariably be classified into the benign prepubertal-type teratoma category. Contrary to current paradigm, in rare cases these may represent tumors with metastatic potential.
Collapse
Affiliation(s)
- Olivia C. Ghirardelli Smith
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Alexander K. Tsai
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Minghao Zhong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Pegah Dejban
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, United States
| | - Andrew C. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michelle Dolan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Emmanuel S. Antonarakis
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Benonisdottir S, Straub VJ, Kong A, Mills MC. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring. NATURE AGING 2024; 4:1745-1759. [PMID: 39672892 DOI: 10.1038/s43587-024-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Substantial shifts in reproductive behaviors have recently taken place in many high-income countries including earlier age at menarche, advanced age at childbearing, rising childlessness and a lower number of children. As reproduction shifts to later ages, genetic factors may become increasingly important. Although monogenic genetic effects are known, the genetics underlying human reproductive traits are complex, with both causal effects and statistical bias often confounded by socioeconomic factors. Here, we review genome-wide association studies (GWASs) of 44 reproductive traits of both female and male individuals from 2007 to early 2024, examining reproductive behavior, reproductive lifespan and aging, infertility and hormonal concentration. Using the GWAS Catalog as a basis, from 159 relevant studies, we isolate 37 genes that harbor association signals for four or more reproductive traits, more than half of which are linked to rare Mendelian disorders, including ten genes linked to reproductive-related disorders: FSHB, MCM8, DNAH2, WNT4, ESR1, IGSF1, THRB, BRWD1, CYP19A1 and PTPRF. We also review the relationship of reproductive genetics to related health and behavioral traits, aging and longevity and the effect of parental age on offspring outcomes as well as reflecting on limitations, open questions and challenges in this fast-moving field.
Collapse
Affiliation(s)
- Stefania Benonisdottir
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
- Institute of Physical Science, University of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vincent J Straub
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Augustine Kong
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Melinda C Mills
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK.
- Department of Genetics, University Medical Centre Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Scalia G, Ferini G, Shams Z, Graziano F, Ponzo G, Giurato E, Galasso MG, Pumo V, Caruso M, Galvano G, Marrone S, Naimo J, Nicoletti GF, Umana GE. Spinal Metastases in Non-Seminomatous Germ Cell Testicular Tumors: Prognosis and Integrated Therapeutic Approaches-A Systematic Review with an Institutional Case Illustration. Curr Oncol 2024; 31:7459-7475. [PMID: 39727674 DOI: 10.3390/curroncol31120551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
(1) Background: Testicular cancer, although accounting for only 0.5% to 1% of all solid male cancers, is the most common malignancy in males aged 15 to 35 years. Non-seminomatous germ cell tumors (NSGCT) represent nearly half of all testicular germ cell tumors and are associated with a more aggressive clinical course. Spinal metastases, while rare, pose significant challenges due to their potential to cause spinal cord compression, neurological deficits, and severe pain. This systematic review aims to evaluate prognosis and treatment approaches for spinal metastases in NSGCT, with a focus on multidisciplinary care and treatment outcomes. (2) Methods: A systematic review was conducted following PRISMA guidelines. PubMed, Scopus, and Embase were searched on 18 September 2024, using the Boolean search strategy [(Nonseminomatous germ cell tumor (NSGCT) AND (spinal OR vertebral metastases)]. Case reports, case series, and cohort studies providing detailed patient data were included. Data on patient demographics, tumor histology, metastatic site, treatments, and outcomes were extracted for analysis. (3) Results: A total of 164 cases of NSGCT with spinal metastases were analyzed, with patients aged 23 to 40 years (median: 31.5 years). The lumbar spine was involved in all cases, and spinal cord compression occurred in 59.8% of patients, often causing severe neurological symptoms such as cauda equina syndrome. Chemotherapy, primarily cisplatin-based, was administered in all cases, while surgical interventions, including laminectomy and vertebrectomy, were performed in cases of spinal compression and instability. Complete remission occurred in only 2.4% of patients. Progressive improvement was observed in 56.7% of cases, while 20.1% of patients died. Outcomes varied, highlighting the importance of individualized, multidisciplinary care to manage both systemic and localized disease. (4) Conclusions: Spinal metastases in NSGCT represent a complex clinical scenario, requiring a combination of chemotherapy, surgery, and in some cases, radiotherapy. Chemotherapy remains essential, but surgery is critical for addressing spinal compression and instability. A multidisciplinary approach is vital for optimizing outcomes, as prognosis is variable, with some patients achieving improvement while others face progressive disease or death. Further research is needed to refine the role of radiotherapy and improve long-term treatment strategies for this rare complication.
Collapse
Affiliation(s)
- Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95124 Catania, Italy
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Gianluca Ferini
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
- Department of Radiation Oncology, REM Radioterapia srl, 95029 Viagrande, Italy
| | - Zubayer Shams
- Brunel Medical School, Brunel University London, Uxbridge, London UB8 3PH, UK
| | - Francesca Graziano
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95124 Catania, Italy
| | - Giancarlo Ponzo
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95124 Catania, Italy
| | - Eliana Giurato
- Anatomic Pathology Unit, Garibaldi Hospital, 95124 Catania, Italy
| | | | | | | | - Gianluca Galvano
- Department of Diagnostic Imaging, Interventional Radiology and Neuroradiology, Garibaldi Hospital, 95124 Catania, Italy
| | - Salvatore Marrone
- Department of Neurosurgery, Sant' Elia Hospital, 93100 Caltanissetta, Italy
| | - Jessica Naimo
- Pain Therapy and Palliative Care Unit, ASP 7 Ragusa, 97100 Ragusa, Italy
| | | | - Giuseppe Emmanuele Umana
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy
| |
Collapse
|
6
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
7
|
McHugh DJ, Gleeson JP, Feldman DR. Testicular cancer in 2023: Current status and recent progress. CA Cancer J Clin 2024; 74:167-186. [PMID: 37947355 DOI: 10.3322/caac.21819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
Testicular germ cell tumor (GCT) is the most common solid tumor in adolescent and young adult men. Progress in the management of GCT has been made in the last 50 years, with a substantial improvement in cure rates for advanced disease, from 25% in the 1970s to nearly 80%. However, relapsed or platinum-refractory disease occurs in a proportion, 20% of whom will die from disease progression. This article reviews the current evidence-based treatments for extracranial GCT, the acute and chronic toxic effects that may result, and highlights contemporary advances and progress in the field.
Collapse
Affiliation(s)
- Deaglan J McHugh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Jack P Gleeson
- Cancer Research, College of Medicine and Health, University College Cork, Cork, Ireland
- Medical Oncology Department, Cork University Hospital, Cork, Ireland
| | - Darren R Feldman
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Yazici S, Del Biondo D, Napodano G, Grillo M, Calace FP, Prezioso D, Crocetto F, Barone B. Risk Factors for Testicular Cancer: Environment, Genes and Infections-Is It All? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040724. [PMID: 37109682 PMCID: PMC10145700 DOI: 10.3390/medicina59040724] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
The incidence of testicular cancer is steadily increasing over the past several decades in different developed countries. If on one side better diagnosis and treatment have shone a light on this disease, on the other side, differently from other malignant diseases, few risk factors have been identified. The reasons for the increase in testicular cancer are however unknown while risk factors are still poorly understood. Several studies have suggested that exposure to various factors in adolescence as well as in adulthood could be linked to the development of testicular cancer. Nevertheless, the role of environment, infections, and occupational exposure are undoubtedly associated with an increase or a decrease in this risk. The aim of this narrative review is to summarize the most recent evidence regarding the risk factors associated with testicular cancer, starting from the most commonly evaluated (cryptorchidism, family history, infections) to the newer identified and hypothesized risk factors.
Collapse
Affiliation(s)
- Sertac Yazici
- Department of Urology, Hacettepe University School of Medicine, 06230 Ankara, Turkey
| | - Dario Del Biondo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Giorgio Napodano
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
| | - Marco Grillo
- Department of Urology, ASL NA1 Centro Ospedale del Mare, 80147 Naples, Italy
- University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Paolo Calace
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Domenico Prezioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
9
|
Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Crit Rev Oncol Hematol 2023; 183:103928. [PMID: 36717007 DOI: 10.1016/j.critrevonc.2023.103928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.
Collapse
|
10
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
11
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
12
|
A common deletion at BAK1 reduces enhancer activity and confers risk of intracranial germ cell tumors. Nat Commun 2022; 13:4478. [PMID: 35918310 PMCID: PMC9346128 DOI: 10.1038/s41467-022-32005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are rare brain neoplasms that mainly occur in children and adolescents with a particularly high incidence in East Asian populations. Here, we conduct a genome-wide association study (GWAS) of 133 patients with IGCTs and 762 controls of Japanese ancestry. A common 4-bp deletion polymorphism in an enhancer adjacent to BAK1 is significantly associated with the disease risk (rs3831846; P = 2.4 × 10−9, odds ratio = 2.46 [95% CI: 1.83–3.31], minor allele frequency = 0.43). Rs3831846 is in strong linkage disequilibrium with a testicular GCTs susceptibility variant rs210138. In-vitro reporter assays reveal rs3831846 to be a functional variant attenuating the enhancer activity, suggesting its contribution to IGCTs predisposition through altering BAK1 expression. Risk alleles of testicular GCTs derived from the European GWAS show significant positive correlations in the effect sizes with the Japanese IGCTs GWAS (P = 1.3 × 10−4, Spearman’s ρ = 0.48). These results suggest the shared genetic susceptibility of GCTs beyond ethnicity and primary sites. Intracranial germ cell tumors (IGCTs) are rare brain tumors mainly diagnosed in children and young adults. Here, the authors conduct a genome-wide association study for IGCTs, identify a risk locus at BAK1, and characterize its functional consequences.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Testicular germ cell tumours (TGCTs) are the most common solid malignant cancer diagnosed in young males and the incidence is increasing. Understanding the genetic basis of this disease will help us to navigate the challenges of early detection, diagnosis, treatment, surveillance, and long-term outcomes for patients. RECENT FINDINGS TGCTs are highly heritable. Current understanding of germline risk includes the identification of one moderate-penetrance predisposition gene, checkpoint kinase 2 (CHEK2), and 78 low-to-moderate-risk single nucleotide polymorphisms identified in genome-wide-associated studies, which account for 44% of familial risk. Biomarker research in TGCTs has been challenging for multiple reasons: oncogenesis is complex, actionable mutations are uncommon, clonal evolution unpredictable and tumours can be histologically and molecularly heterogeneous. Three somatic mutations have thus far been identified by DNA exome sequencing, exclusively in seminomas: KIT, KRAS and NRAS. Several genetic markers appear to be associated with risk of TGCT and treatment resistance. TP53 mutations appear to be associated with platinum resistance. MicroRNA expression may be a useful biomarker of residual disease and relapse in future. SUMMARY The biology of testicular germ cells tumours is complex, and further research is needed to fully explain the high heritability of these cancers, as well as the molecular signatures which may drive their biological behaviour.
Collapse
|
14
|
González-Barrios R, Alcaraz N, Montalvo-Casimiro M, Cervera A, Arriaga-Canon C, Munguia-Garza P, Hinojosa-Ugarte D, Sobrevilla-Moreno N, Torres-Arciga K, Mendoza-Perez J, Diaz-Chavez J, Cortes-González CC, Castro-Hernández C, Martínez-Cedillo J, Scavuzzo A, Pérez-Montiel D, Jiménez-Ríos MA, Herrera LA. Genomic Profile in a Non-Seminoma Testicular Germ-Cell Tumor Cohort Reveals a Potential Biomarker of Sensitivity to Platinum-Based Therapy. Cancers (Basel) 2022; 14:cancers14092065. [PMID: 35565196 PMCID: PMC9101377 DOI: 10.3390/cancers14092065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite having a favorable response to platinum-based chemotherapies, ~15% of Testicular Germ-Cell Tumor (TGCT) patients are platinum-resistant. Mortality rates among Latin American countries have remained constant over time, which makes the study of this population of particular interest. To gain insight into this phenomenon, we conducted whole-exome sequencing, microarray-based comparative genomic hybridization, and copy number analysis of 32 tumors from a Mexican cohort, of which 18 were platinum-sensitive and 14 were platinum-resistant. We incorporated analyses of mutational burden, driver mutations, and SNV and CNV signatures. DNA breakpoints in genes were also investigated and might represent an interesting research opportunity. We observed that sensitivity to chemotherapy does not seem to be explained by any of the mutations detected. Instead, we uncovered CNVs, particularly amplifications on segment 2q11.1 as a novel variant with chemosensitivity biomarker potential. Our data shed light into understanding platinum resistance in a Latin-origin population.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Nicolás Alcaraz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Diego Hinojosa-Ugarte
- Departamento de Cirugía, Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico;
| | - Nora Sobrevilla-Moreno
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Karla Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Julia Mendoza-Perez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - José Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Carlo Cesar Cortes-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
| | - Jorge Martínez-Cedillo
- Departamento de Oncología Médica, Clínica de Tumores Genitourinarios, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (N.S.-M.); (J.M.-C.)
| | - Ana Scavuzzo
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Delia Pérez-Montiel
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Miguel A. Jiménez-Ríos
- Departamento de Urología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (A.S.); (M.A.J.-R.)
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico; (R.G.-B.); (M.M.-C.); (C.A.-C.); (P.M.-G.); (K.T.-A.); (J.D.-C.); (C.C.C.-G.); (C.C.-H.)
- Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
- Correspondence: ; Tel.: +52-55-5350-1900
| |
Collapse
|
15
|
Reece AS, Hulse GK. Cannabinoid and substance relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. ENVIRONMENTAL EPIGENETICS 2022; 8:dvab015. [PMID: 35145760 PMCID: PMC8824558 DOI: 10.1093/eep/dvab015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
With reports from Australia, Canada, USA, Hawaii and Colorado documenting a link between cannabis and congenital anomalies (CAs), this relationship was investigated in Europe. Data on 90 CAs were accessed from Eurocat. Tobacco and alcohol consumption and median household income data were from the World Bank. Amphetamine, cocaine and last month and daily use of cannabis from the European Monitoring Centre for Drugs and Drug Addiction. Cannabis herb and resin Δ9-tetrahydrocannabinol concentrations were from published reports. Data were processed in R. Twelve thousand three hundred sixty CA rates were sourced across 16 nations of Europe. Nations with a higher or increasing rate of daily cannabis use had a 71.77% higher median CA rates than others [median ± interquartile range 2.13 (0.59, 6.30) v. 1.24 (0.15, 5.14)/10 000 live births (P = 4.74 × 10-17; minimum E-value (mEV) = 1.52]. Eighty-nine out of 90 CAs in bivariate association and 74/90 CAs in additive panel inverse probability weighted space-time regression were cannabis related. In inverse probability weighted interactive panel models lagged to zero, two, four and six years, 76, 31, 50 and 29 CAs had elevated mEVs (< 2.46 × 1039) for cannabis metrics. Cardiovascular, central nervous, gastrointestinal, genital, uronephrology, limb, face and chromosomalgenetic systems along with the multisystem VACTERL syndrome were particularly vulnerable targets. Data reveal that cannabis is related to many CAs and fulfil epidemiological criteria of causality. The triple convergence of rising cannabis use prevalence, intensity of daily use and Δ9-tetrahydrocannabinol concentration in herb and resin is powerfully implicated as a primary driver of European teratogenicity, confirming results from elsewhere.
Collapse
Affiliation(s)
- Albert Stuart Reece
- **Correspondence address. Department of Psychiatry, University of Western Australia, Stirling Hwy, Crawley, Western Australia 6009, Australia. Tel: (617) +3844-4000; Fax: (617) +3844-4015; E-mail:
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
16
|
Raos D, Abramović I, Tomić M, Vrtarić A, Kuliš T, Ćorić M, Ulamec M, Katušić Bojanac A, Ježek D, Sinčić N. CNV Hotspots in Testicular Seminoma Tissue and Seminal Plasma. Cancers (Basel) 2021; 14:189. [PMID: 35008352 PMCID: PMC8750740 DOI: 10.3390/cancers14010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Seminoma (SE) is the most frequent type of testicular tumour, affecting predominantly young men. Early detection and diagnosis of SE could significantly improve life quality and reproductive health after diagnosis and treatment. Copy number variation (CNV) has already been associated with various cancers as well as SE. In this study, we selected four genes (MAGEC2, NANOG, RASSF1A, and KITLG) for CNV analysis in genomic DNA (gDNA), which are located on chromosomes susceptible to gains, and whose aberrant expression was already detected in SE. Furthermore, CNV was analysed in cell-free DNA (cfDNA) from seminal plasma. Analysis was performed by droplet digital polymerase chain reaction (ddPCR) on gDNA from SE and nonmalignant testicular tissue. Seminal plasma cfDNA from SE patients before and after surgery was analysed, as well as from healthy volunteers. The CNV hotspot in gDNA from SE tissue was detected for the first time in all analysed genes, and for two genes, NANOG and KITLG it was reflected in cfDNA from seminal plasma. Although clinical value is yet to be determined, presented data emphasize a potential use of CNV as a potential SE biomarker from a liquid biopsy.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Irena Abramović
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Miroslav Tomić
- Department of Urology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Alen Vrtarić
- Department of Clinical Chemistry, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Tomislav Kuliš
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marijana Ćorić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Katušić Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.); (I.A.); (M.Ć.); (A.K.B.)
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.U.)
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
17
|
Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoid Leukaemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021; 21:984. [PMID: 34479489 PMCID: PMC8414697 DOI: 10.1186/s12885-021-08598-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Acute lymphoid leukaemia (ALL) is the commonest childhood cancer whose incidence is rising in many nations. In the USA, between 1975 and 2016, ALL rates (ALLRs) rose 93.51% from 1.91 to 3.70/100,000 < 20 years. ALL is more common in Caucasian-Americans than amongst minorities. The cause of both the rise and the ethnic differential is unclear, however, prenatal cannabis exposure was previously linked with elevated childhood leukaemia rates. We investigated epidemiologically if cannabis use impacted nationally on ALLRs, its ethnic effects, and if the relationship was causal. METHODS State data on overall, and ethnic ALLR from the Surveillance Epidemiology and End Results databank of the Centre for Disease Control (CDC) and National Cancer Institute (NCI) were combined with drug (cigarettes, alcoholism, cannabis, analgesics, cocaine) use data from the National Survey of Drug Use and Health; 74.1% response rate. Income and ethnicity data was from the US Census bureau. Cannabinoid concentration was from the Drug Enforcement Agency Data. Data was analyzed in R by robust and spatiotemporal regression. RESULTS In bivariate analyses a dose-response relationship was demonstrated between ALLR and Alcohol Use Disorder (AUD), cocaine and cannabis exposure, with the effect of cannabis being strongest (β-estimate = 3.33(95%C.I. 1.97, 4.68), P = 1.92 × 10- 6). A strong effect of cannabis use quintile on ALLR was noted (Chi.Sq. = 613.79, P = 3.04 × 10- 70). In inverse probability weighted robust regression adjusted for other substances, income and ethnicity, cannabis was independently significant (β-estimate = 4.75(0.48, 9.02), P = 0.0389). In a spatiotemporal model adjusted for all drugs, income, and ethnicity, cannabigerol exposure was significant (β-estimate = 0.26(0.01, 0.52), P = 0.0444), an effect increased by spatial lagging (THC: β-estimate = 0.47(0.12, 0.82), P = 0.0083). After missing data imputation ethnic cannabis exposure was significant (β-estimate = 0.64(0.55, 0.72), P = 3.1 × 10- 40). 33/35 minimum e-Values ranged from 1.25 to 3.94 × 1036 indicative of a causal relationship. Relaxation of cannabis legal paradigms had higher ALLR (Chi.Squ.Trend = 775.12, P = 2.14 × 10- 112). Cannabis legal states had higher ALLR (2.395 ± 0.039 v. 2.127 ± 0.008 / 100,000, P = 5.05 × 10- 10). CONCLUSIONS Data show that ALLR is associated with cannabis consumption across space-time, is associated with the cannabinoids, THC, cannabigerol, cannabinol, cannabichromene, and cannabidiol, contributes to ethnic differentials, demonstrates prominent quintile effects, satisfies criteria for causality and is exacerbated by cannabis legalization.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
18
|
Pluta J, Pyle LC, Nead KT, Wilf R, Li M, Mitra N, Weathers B, D'Andrea K, Almstrup K, Anson-Cartwright L, Benitez J, Brown CD, Chanock S, Chen C, Cortessis VK, Ferlin A, Foresta C, Gamulin M, Gietema JA, Grasso C, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Hildebrandt MAT, Johnson ME, Karlsson R, Kiemeney LA, Lessel D, Lothe RA, Loud JT, Loveday C, Martin-Gimeno P, Meijer C, Nsengimana J, Quinn DI, Rafnar T, Ramdas S, Richiardi L, Skotheim RI, Stefansson K, Turnbull C, Vaughn DJ, Wiklund F, Wu X, Yang D, Zheng T, Wells AD, Grant SFA, Rajpert-De Meyts E, Schwartz SM, Bishop DT, McGlynn KA, Kanetsky PA, Nathanson KL. Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nat Commun 2021; 12:4487. [PMID: 34301922 PMCID: PMC8302763 DOI: 10.1038/s41467-021-24334-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.
Collapse
Affiliation(s)
- John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louise C Pyle
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin T Nead
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rona Wilf
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K Cortessis
- Departments of Preventive Medicine and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Endocrinology and Metabolism, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Marija Gamulin
- Department of Oncology, Division of Medical Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B Haugen
- Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Matthew E Johnson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - David I Quinn
- Division of Oncology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | | | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Clare Turnbull
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- William Harvey Research Institute, Queen Mary University, London, UK
| | - David J Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xifeng Wu
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Daphne Yang
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Stephen M Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - D Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Reece AS, Hulse GK. Causal inference multiple imputation investigation of the impact of cannabinoids and other substances on ethnic differentials in US testicular cancer incidence. BMC Pharmacol Toxicol 2021; 22:40. [PMID: 34246312 PMCID: PMC8272900 DOI: 10.1186/s40360-021-00505-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Ethnic differences in testicular cancer rates (TCRs) are recognized internationally. Cannabis is a known risk factor for testicular cancer (TC) in multiple studies with dose-response effects demonstrated, however the interaction between ancestral and environmental mutagenic effects has not been characterized. We examined the effects of this presumed gene-environment interaction across US states. Methods State based TCR was downloaded from the Surveillance Epidemiology and End Results (SEER) website via SEERStat. Drug use data for cigarettes, alcohol use disorder, analgesics, cannabis and cocaine was taken from the National Survey of Drug Use and Health a nationally representative study conducted annually by the Substance Abuse and Mental Health Services Administration (SAMHSA) with a 74.1% response rate. Cannabinoid concentrations derived from Drug Enforcement Agency publications. Median household income and ethnicity data (Caucasian-American, African-American, Hispanic-American, Asian-American, American-Indian-Alaska-Native-American, Native-Hawaiian-Pacific-Islander-American) was from the US Census Bureau. Data were processed in R using instrumental regression, causal inference and multiple imputation. Results 1975–2017 TCR rose 41% in African-Americans and 78.1% in Caucasian-Americans; 2003–2017 TCR rose 36.1% in Hispanic-Americans and 102.9% in Asian-Pacific-Islander-Americans. Ethnicity-based scatterplot-time and boxplots for cannabis use and TCR closely mirrored each other. At inverse probability-weighted interactive robust regression including drugs, income and ethnicity, ethnic THC exposure was the most significant factor and was independently significant (β-estimate = 4.72 (2.04, 7.41), P = 0.0018). In a similar model THC, and cannabigerol were also significant (both β-estimate = 13.87 (6.33, 21.41), P = 0.0017). In additive instrumental models the interaction of ethnic THC exposure with Asian-American, Hispanic-American, and Native-Hawaiian-Pacific-Islander-American ethnicities was significant (β-estimate = − 0.63 (− 0.74, − 0.52), P = 3.6 × 10− 29, β-estimate = − 0.25 (− 0.32, − 0.18), P = 4.2 × 10− 13, β-estimate = − 0.19 (− 0.25, − 0.13), P = 3.4 × 10− 9). After multiple imputation, ethnic THC exposure became more significant (β-estimate = 0.68 (0.62, 0.74), P = 1.80 × 10− 92). 25/33 e-Values > 1.25 ranging up to 1.07 × 105. Liberalization of cannabis laws was linked with higher TCR’s in Caucasian-Americans (β-estimate = 0.09 (0.06, 0.12), P = 6.5 × 10− 10) and African-Americans (β-estimate = 0.22 (0.12, 0.32), P = 4.4 × 10− 5) and when dichotomized to illegal v. others (t = 6.195, P = 1.18 × 10− 9 and t = 4.50, P = 3.33 × 10− 5). Conclusion Cannabis is shown to be a TC risk factor for all ethnicities including Caucasian-American and African-American ancestries, albeit at different rates. For both ancestries cannabis legalization elevated TCR. Dose-response and causal relationships are demonstrated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
20
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
21
|
Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers (Basel) 2021; 13:cancers13071506. [PMID: 33805941 PMCID: PMC8036638 DOI: 10.3390/cancers13071506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This minireview focuses on the role of epigenetics in testicular cancer. A working model is developed that postulates that epigenetic features that drive testicular cancer malignancy also enable these tumors to be cured at a high rate with chemotherapy. Chemoresistance may occur by epigenetic uncoupling of malignancy and chemosensitivity, a scenario that may be amenable to epigenetic-based therapies. Abstract Compared to many common solid tumors, the main genetic drivers of most testicular germ cell tumors (TGCTs) are unknown. Decades of focus on genomic alterations in TGCTs including awareness of a near universal increase in copies of chromosome 12p have failed to uncover exceptional driver genes, especially in genes that can be targeted therapeutically. Thus far, TGCT patients have missed out on the benefits of targeted therapies available to treat most other malignancies. In the past decade there has been a greater appreciation that epigenetics may play an especially prominent role in TGCT etiology, progression, and hypersensitivity to conventional chemotherapy. While genetics undoubtedly plays a role in TGCT biology, this mini-review will focus on the epigenetic “states” or features of testicular cancer, with an emphasis on DNA methylation, histone modifications, and miRNAs associated with TGCT susceptibility, initiation, progression, and response to chemotherapy. In addition, we comment on the current status of epigenetic-based therapy and epigenetic biomarker development for TGCTs. Finally, we suggest a unifying “rock and a hard place” or “differentiate or die” model where the tumorigenicity and curability of TGCTs are both dependent on common but still ill-defined epigenetic states.
Collapse
|
22
|
Lakpour N, Saliminejad K, Ghods R, Reza Sadeghi M, Pilatz A, Khosravi F, Madjd Z. Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia 2021; 53:e13998. [PMID: 33534171 DOI: 10.1111/and.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is considered a relatively rare malignancy usually occurring in young men between 15 and 35 years of age, and both genetic and environmental factors contribute to its development. The majority of patients are diagnosed in an early-stage of TGCTs with an elevated 5-year survival rate after therapy. However, approximately 25% of patients show an incomplete response to chemotherapy or tumours relapse. The current therapies are accompanied by several adverse effects, including infertility. Aside from classical serum biomarker, many studies reported novel biomarkers for TGCTs, but without proper validation. Cancer cells share many similarities with embryonic stem cells (ESCs), and since ESC genes are not transcribed in most adult tissues, they could be considered ideal candidate targets for cancer-specific diagnosis and treatment. Added to this, several microRNAs (miRNA) including miRNA-371-3p can be further investigated as a molecular biomarker for diagnosis and monitoring of TGCTs. In this review, we will illustrate the findings of recent investigations in novel TGCTs biomarkers applicable for risk assessment, screening, diagnosis, prognosis, prediction and monitoring of the relapse.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Burton J, Umu SU, Langseth H, Grotmol T, Grimsrud TK, Haugen TB, Rounge TB. Serum RNA Profiling in the 10-Years Period Prior to Diagnosis of Testicular Germ Cell Tumor. Front Oncol 2020; 10:574977. [PMID: 33251139 PMCID: PMC7673397 DOI: 10.3389/fonc.2020.574977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although testicular germ cell tumor (TGCT) overall is highly curable, patients may experience late effects after treatment. An increased understanding of the mechanisms behind the development of TGCT may pave the way for better outcome for patients. To elucidate molecular changes prior to TGCT diagnosis we sequenced small RNAs in serum from 69 patients who were later diagnosed with TGCT and 111 matched controls. The deep RNA profiles, with on average 18 million sequences per sample, comprised of nine classes of RNA, including microRNA. We found that circulating RNA signals differed significantly between cases and controls regardless of time to diagnosis. Different levels of TSIX related to X-chromosome inactivation and TEX101 involved in spermatozoa production are among the interesting findings. The RNA signals differed between seminoma and non-seminoma TGCT subtypes, with seminoma cases showing lower levels of RNAs and non-seminoma cases showing higher levels of RNAs, compared with controls. The differentially expressed RNAs were typically associated with cancer related pathways. Our results indicate that circulating RNA profiles change during TGCT development according to histology and may be useful for early detection of this tumor type.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Lifesciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Sinan U. Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Tom K. Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B. Haugen
- Department of Lifesciences and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Slowikowska-Hilczer J, Szarras-Czapnik M, Duranteau L, Rapp M, Walczak-Jedrzejowska R, Marchlewska K, Oszukowska E, Nordenstrom A. Risk of gonadal neoplasia in patients with disorders/differences of sex development. Cancer Epidemiol 2020; 69:101800. [PMID: 32905884 DOI: 10.1016/j.canep.2020.101800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with disorders/differences of sex development (DSD), especially those possessing the Y chromosome, have a higher risk of gonadal germ-cell tumours (GCTs). We aimed to examine the incidence of different types of gonadal neoplasia and associated risk factors. METHODS A total of 1040 DSD patients aged ≥16 years participated in a cross-sectional multicentre European study (dsd-LIFE). Data on medical history were gathered from the patients' archival medical documents. A web-based questionnaire was filled out individually by the participants. A physical examination was performed in all, while ultrasonography of gonads was carried out in 214 and semen analysis was performed for 53 patients. RESULTS Germ-cell neoplasia was present in 12 % of patients with DSD and in 14 % of those with XY DSD. The highest risk (36 %) was observed in 46,XY patients with gonadal dysgenesis (GD): complete GD (33 %) and partial GD (23 %), but also in mixed GD (8 %) and complete androgen insensitivity syndrome (AIS) (6%). It was not reported in partial AIS, XX male, 46,XX DSD and congenital adrenal hyperplasia, Turner and Klinefelter syndromes, or in androgen biosynthesis defects. Benign sex cord-stromal tumours (Sertoli- and Leydig-cell tumours) were noted only in patients with complete AIS (3.1 %) and Klinefelter syndrome (14.3 %). A relationship between risk factors for GCT and gonadal neoplasia appearance, other than the Y chromosome, was not found. CONCLUSION Adult patients with GD and the Y chromosome have the highest risk of GCT and should be kept under thorough medical control and receive special medical follow-up to prevent the development of gonadal tumours.
Collapse
Affiliation(s)
- Jolanta Slowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Maria Szarras-Czapnik
- Department of Endocrinology and Diabetology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Lise Duranteau
- Adolescent and Young Adult Gynaecology Unit and DSD Reference Centre, Bicêtre Hospital, AP.HP Université Paris Saclay, France
| | - Marion Rapp
- Clinic for Paediatric and Adolescent Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lubeck, Germany
| | - Renata Walczak-Jedrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Elzbieta Oszukowska
- II Clinic of Urology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Anna Nordenstrom
- Department of Paediatric Endocrinology, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
25
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Ghazarian AA, McGlynn KA. Increasing Incidence of Testicular Germ Cell Tumors among Racial/Ethnic Minorities in the United States. Cancer Epidemiol Biomarkers Prev 2020; 29:1237-1245. [PMID: 32385118 DOI: 10.1158/1055-9965.epi-20-0107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The incidence of testicular germ cell tumors (TGCT) has been rising in the United States and is notably higher among white men. Previously, our group reported that rates were rising among Hispanic men in certain areas. This study sought to determine whether the patterns noted in our prior publication remained evident in more recent years and to determine whether any new patterns have emerged. METHODS Data from 51 U.S. cancer registries were examined. Racial/ethnic-specific incidence rates per 100,000 man-years were calculated overall and by census region. Annual percent changes (APC) were estimated, and joinpoint models were fit. Differences in regional incidence were examined using the Wald test. RESULTS During the time period 2001 to 2016, 126,575 TGCTs were recorded. TGCT incidence was highest among non-Hispanic whites (NHW; 6.63/100,000), followed by Hispanics (4.20), American Indian/Alaska Natives (AI/AN; 3.27), Asian/Pacific Islanders (A/PI; 1.72), and non-Hispanic blacks (NHB; 1.27). TGCT incidence increased significantly among all men; the greatest increase was experienced by A/PIs (APC: 2.47), followed in order by Hispanics (2.10), AI/ANs (1.71), NHBs (1.28), and NHWs (0.41). Significant differences in rates by region were seen for all men except NHBs, with the highest rates among Hispanics (5.38/100,000), AI/ANs (4.47), and A/PIs (2.37) found in the West, and among NHWs (7.60) and NHBs (1.51) found in the Northeast. CONCLUSIONS Although TGCT incidence remained highest among NHWs between 2001 and 2016, the greatest increase was experienced by A/PI men. IMPACT Rising rates of TGCTs among men of all racial/ethnic backgrounds in the United States suggest that future attention is warranted.
Collapse
Affiliation(s)
- Armen A Ghazarian
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Katherine A McGlynn
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
27
|
Li Y, Lu Q, Wang Y, Ma S. Racial differences in testicular cancer in the United States: descriptive epidemiology. BMC Cancer 2020; 20:284. [PMID: 32252689 PMCID: PMC7137202 DOI: 10.1186/s12885-020-06789-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Testicular cancer (TC) is the most common malignancy in young adult men, and in many countries the incidence rates of testicular cancer have been increasing since the middle of the twentieth century. Since disease presentation and tumor progression patterns are often heterogeneous across racial groups, there may be important racial differences in recent TC trends. METHODS In this study, Surveillance, Epidemiology, and End Results (SEER) data on TC patients diagnosed between 1973 and 2015 were analyzed, including the following racial/ethnic groups: non-Hispanic whites (NHW), Hispanic whites (HW), blacks, and Asians and Pacific Islanders (API). Patient characteristics, age-adjusted incidence rates, and survival were compared across racial groups. A multivariate Cox model was used to analyze the survival data of TC patients, in order to evaluate racial differences across several relevant factors, including marital status, age group, histologic type, treatment, stage, and tumor location. RESULTS NHWs had the highest incidence rates, followed by blacks, HWs, and APIs. There were significant survival differences among the racial groups, with NHWs having the highest survival rates and blacks having the lowest. CONCLUSION An analysis of SEER data showed that racial differences existed among TC patients in the United States with respect to patient characteristics, incidence, and survival. The results can be useful to stakeholders interested in reducing the burden of TC morbidity and mortality.
Collapse
Affiliation(s)
- Yang Li
- Center for Applied Statistics, Renmin University of China, Beijing, China
- School of Statistics, Renmin University of China, Beijing, China
| | - Qi Lu
- School of Statistics, Renmin University of China, Beijing, China
| | - Yu Wang
- Center for Applied Statistics, Renmin University of China, Beijing, China.
- School of Statistics, Renmin University of China, Beijing, China.
| | - Shuangge Ma
- School of Statistics, Renmin University of China, Beijing, China
- School of Public Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Understanding the molecular basis underlying testicular germ cell tumors (TGCTs) may help improve patient outcomes, particularly for patients with poorer risk or chemoresistant disease. Here, we review the major contemporary advances in elucidating TGCT genetics by discussing patterns of TGCT inheritance, recent genomic and transcriptomic discoveries in TGCT, and the role of genetics in predicting therapeutic resistance and in guiding treatment. RECENT FINDINGS In the absence of a major high-penetrance TGCT susceptibility gene, inheritance is likely driven by a complex polygenic model with considerable variation. The most common genomic alterations found in TGCTs include gains in chromosome 12p and mutations in KIT, KRAS, and NRAS, particularly in seminomas. Sensitivity to cisplatin-based chemotherapy likely relies on intact TP53, reciprocal loss of heterozygosity, and high mitochondrial priming. Targetable mutations are uncommon in TGCTs, however, posing a challenge for the development of effective personalized therapies. Consistent with the characteristically low tumor mutational burden, immune checkpoint inhibitors do not appear to be effective for most TGCTs. SUMMARY Refinements in next-generation sequencing techniques over the last few years have enabled considerable advances in elucidating the genomic, transcriptomic, and epigenetic landscape of TGCTs. Future efforts focused on developing novel treatment modalities are needed.
Collapse
|
29
|
Yang Z, Shi H, Ma P, Zhao S, Kong Q, Bian T, Gong C, Zhao Q, Liu Y, Qi X, Zhang X, Han Y, Liu J, Li Q, Chen H, Su B. Darwinian Positive Selection on the Pleiotropic Effects of KITLG Explain Skin Pigmentation and Winter Temperature Adaptation in Eurasians. Mol Biol Evol 2020; 35:2272-2283. [PMID: 29961894 DOI: 10.1093/molbev/msy136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human skin color diversity is considered an adaptation to environmental conditions such as UV radiation. Investigations into the genetic bases of such adaptation have identified a group of pigmentation genes contributing to skin color diversity in African and non-African populations. Here, we present a population analysis of the pigmentation gene KITLG with previously reported signal of Darwinian positive selection in both European and East Asian populations. We demonstrated that there had been recurrent selective events in the upstream and the downstream regions of KITLG in Eurasian populations. More importantly, besides the expected selection on the KITLG variants favoring light skin in coping with the weak UV radiation at high latitude, we observed a KITLG variant showing adaptation to winter temperature. In particular, compared with UV radiation, winter temperature showed a much stronger correlation with the prevalence of the presumably adaptive KITLG allele in Asian populations. This observation was further supported by the in vitro functional test at low temperature. Consequently, the pleiotropic effects of KITLG, that is, pigmentation and thermogenesis were both targeted by natural selection that acted on different KITLG sequence variants, contributing to the adaptation of Eurasians to both UV radiation and winter temperature at high latitude areas.
Collapse
Affiliation(s)
- Zhaohui Yang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Hong Shi
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shilei Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qinghong Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tianhao Bian
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Chao Gong
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Qi Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.,Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
30
|
Chevalier N, Hinault C, Clavel S, Paul-Bellon R, Fenichel P. GPER and Testicular Germ Cell Cancer. Front Endocrinol (Lausanne) 2020; 11:600404. [PMID: 33574796 PMCID: PMC7870790 DOI: 10.3389/fendo.2020.600404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17β-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERβ). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17β-estradiol (E2) inhibits in vitro cell proliferation through an ERβ-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERβ-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- *Correspondence: Nicolas Chevalier, ;
| | - Charlotte Hinault
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | | | | | - Patrick Fenichel
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| |
Collapse
|
31
|
Qin J, Yang Y, Zhuang X, Xing J. Association Between BAK1 Gene rs210138 Polymorphisms and Testicular Germ Cell Tumors: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:2. [PMID: 32038496 PMCID: PMC6989409 DOI: 10.3389/fendo.2020.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Several studies including some genome-wide association studies (GWAS) had shown that BAK1 gene rs210138 polymorphisms might be associated with testicular germ cell tumors (TGCT). Here we tried to sum up the association through a systematic review and meta-analysis. Methods: Studies associated with BAK1 rs210138 and TGCT was systematically searched in databases. The effect size was pooled according to ORs and 95% CIs. Results: Our systematic review and meta-analysis comprised 14 articles. Significantly increased risk of TGCT was found in eligible GWAS and follow-up studies, in overall group and its Caucasian subgroup. Conclusions: Compared with adenine (A), BAK1 rs210138 guanine (G) is associated with increased risk of TGCT. Well-planned studies with larger sample size and more subgroups are needed to verify the risk identified in our systematic review and meta-analysis.
Collapse
Affiliation(s)
- Jiaxuan Qin
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- *Correspondence: Jiaxuan Qin
| | - Yufeng Yang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xuan Zhuang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinchun Xing
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Center of Diagnosis and Treatment of Urinary System Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Key Laboratory of Urinary Tract Tumors and Calculi of Xiamen City, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Jinchun Xing
| |
Collapse
|
32
|
Nicholls PK, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA, Dobrinski I, Watson AL, Carlson DF, Fahrenkrug SC, Page DC. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 2019; 116:25677-25687. [PMID: 31754036 PMCID: PMC6925976 DOI: 10.1073/pnas.1910733116] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.
Collapse
Affiliation(s)
| | - Hubert Schorle
- Whitehead Institute, Cambridge, MA 02142
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yueh-Chiang Hu
- Whitehead Institute, Cambridge, MA 02142
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yuting Fan
- Whitehead Institute, Cambridge, MA 02142
- Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, 510655 Guangzhou, China
| | | | - Ina Dobrinski
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142
| |
Collapse
|
33
|
Fénichel P, Chevalier N. Is Testicular Germ Cell Cancer Estrogen Dependent? The Role of Endocrine Disrupting Chemicals. Endocrinology 2019; 160:2981-2989. [PMID: 31617897 DOI: 10.1210/en.2019-00486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
Testicular germ cell cancer (TGCC) is the most frequent cancer of the young male, with an increasing incidence worldwide. The pathogenesis and reasons for this increase remain unknown. However, epidemiological and experimental data have suggested that, similar to genital malformations and sperm impairment, it could result from the interaction of genetic and environmental factors including fetal exposure to endocrine-disrupting chemicals (EDCs) with estrogenic effects. In this review, we analyze the expression of classic and nonclassic estrogen receptors by TGCC cells, the way they may influence germ cell proliferation induced by EDCs, and discuss how this estrogen dependency supports the developmental and environmental hypothesis.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| | - Nicolas Chevalier
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| |
Collapse
|
34
|
Dantsev IS, Ivkin EV, Tryakin AA, Godlevski DN, Latyshev OY, Rudenko VV, Mikhaylenko DS, Chernykh VB, Volodko EA, Okulov AB, Loran OB, Nemtsova MV. Genes associated with testicular germ cell tumors and testicular dysgenesis in patients with testicular microlithiasis. Asian J Androl 2019; 20:593-599. [PMID: 30027931 PMCID: PMC6219295 DOI: 10.4103/aja.aja_54_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Testicular microlithiasis (TM) is one of the symptoms of testicular dysgenesis syndrome (TDS). TM is particularly interesting as an informative marker of testicular germ cell tumors (TGCTs). KIT ligand gene (KITLG), BCL2 antagonist/killer 1 (BAK1), and sprouty RTK signaling antagonist 4 (SPRY4) genes are associated with a high risk of TGCTs, whereas bone morphogenetic protein 7 gene (BMP7), transforming growth factor beta receptor 3 gene (TGFBR3), and homeobox D cluster genes (HOXD) are related to TDS. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, we investigated allele and genotype frequencies for KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), BAK1 (rs210138), BMP7 (rs388286), TGFBR3 (rs12082710), and HOXD (rs17198432) in 142 TGCT patients, 137 TM patients, and 153 fertile men (control group). We found significant differences in the KITLG GG_rs995030 genotype in TM (P = 0.01) and TGCT patients (P = 0.0005) compared with the control. We also revealed strong associations between KITLG_rs1508595 and TM (G allele, P = 0.003; GG genotype, P = 0.01) and between KITLG_rs1508595 and TGCTs (G allele, P = 0.0001; GG genotype, P = 0.0007). Moreover, there was a significant difference in BMP7_rs388286 between the TGCT group and the control (T allele, P = 0.00004; TT genotype, P = 0.00006) and between the TM group and the control (T allele, P = 0.04). HOXD also demonstrated a strong association with TGCTs (rs17198432 A allele, P = 0.0001; AA genotype, P = 0.001). Furthermore, significant differences were found between the TGCT group and the control in the BAK1_rs210138 G allele (P = 0.03) and the GG genotype (P = 0.01). KITLG and BMP7 genes, associated with the development of TGCTs, may also be related to TM. In summary, the KITLG GG_rs995030, GG_rs1508595, BMP7 TT_rs388286, HOXD AA_rs17198432, and BAK1 GG_rs210138 genotypes were associated with a high risk of TGCT development.
Collapse
Affiliation(s)
- Ilya S Dantsev
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Evgeniy V Ivkin
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | | | | | - Oleg Yu Latyshev
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | | | | | - Vyacheslav B Chernykh
- Research Centre of Medical Genetics, Moscow 115478, Russia.,N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elena A Volodko
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Aleksey B Okulov
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Oleg B Loran
- Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
| | - Marina V Nemtsova
- Research Centre of Medical Genetics, Moscow 115478, Russia.,I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
35
|
Abstract
Human germ cell tumours (GCTs) are derived from stem cells of the early embryo and the germ line. They occur in the gonads (ovaries and testes) and also in extragonadal sites, where migrating primordial germ cells are located during embryogenesis. This group of heterogeneous neoplasms is unique in that their developmental potential is in effect determined by the latent potency state of their cells of origin, which are reprogrammed to omnipotent, totipotent or pluripotent stem cells. Seven GCT types, defined according to their developmental potential, have been identified, each with distinct epidemiological and (epi)genomic features. Heritable predisposition factors affecting the cells of origin and their niches likely explain bilateral, multiple and familial occurrences of the different types of GCTs. Unlike most other tumour types, GCTs are rarely caused by somatic driver mutations, but arise through failure to control the latent developmental potential of their cells of origin, resulting in their reprogramming. Consistent with their non-mutational origin, even the malignant tumours of the group are characterized by wild-type TP53 and high sensitivity for DNA damage. However, tumour progression and the rare occurrence of treatment resistance are driven by embryonic epigenetic state, specific (sub)chromosomal imbalances and somatic mutations. Thus, recent progress in understanding GCT biology supports a comprehensive developmental pathogenetic model for the origin of all GCTs, and provides new biomarkers, as well as potential targets for treatment of resistant disease.
Collapse
Affiliation(s)
- J Wolter Oosterhuis
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| | - Leendert H J Looijenga
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
36
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
37
|
Loveday C, Sud A, Litchfield K, Levy M, Holroyd A, Broderick P, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Reid A, Huddart RA, Houlston RS, Turnbull C. Runs of homozygosity and testicular cancer risk. Andrology 2019; 7:555-564. [PMID: 31310061 DOI: 10.1111/andr.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. OBJECTIVE To examine whether RoH are associated with TGCT risk. METHODS We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. RESULTS Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p < 0.01. Intriguingly, RoH200 at 11p13-11p14.3 encompasses Wilms tumour 1 (WT1), a recognized cancer susceptibility gene with roles in sex determination and developmental transcriptional regulation, processes repeatedly implicated in TGCT aetiology. DISCUSSION AND CONCLUSION Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls.
Collapse
Affiliation(s)
- C Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Sud
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - K Litchfield
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - M Levy
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A Holroyd
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - P Broderick
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Z Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - K Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - J Peto
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - R Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - D F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - D Dudakia
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - N Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - N Pashayan
- Department of Applied Health Research, University College London, London, UK
| | - A Reid
- Academic Uro-oncology Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, UK
| | - R S Houlston
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - C Turnbull
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- William Harvey Research Institute, Queen Mary University, London, UK
- Guys and St Thomas' NHS Foundation Trust, London, UK
- Public Health England, National Cancer Registration and Analysis Service, London, UK
| |
Collapse
|
38
|
Das MK, Evensen HSF, Furu K, Haugen TB. miRNA-302s may act as oncogenes in human testicular germ cell tumours. Sci Rep 2019; 9:9189. [PMID: 31235829 PMCID: PMC6591358 DOI: 10.1038/s41598-019-45573-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Testicular germ cell tumour (TGCT) represents the most common malignancy in young men in large parts of the world, but the aetiology is yet unclear. Multiple TGCT susceptibility loci have been identified, and we have shown that one of these, SPRY4, may act as a TGCT oncogene. Furthermore, many of the loci are in non-coding regions of the genome. miRNAs, a class of non-coding RNAs may play a crucial role in cell proliferation, differentiation, and apoptosis, and alteration in their expression may lead to oncogenesis. Differential expression of miRNAs in TGCT and normal testis has been reported in previous studies. In this study, we used qPCR to analyse, in normal and malignant testis tissue, the expression of the ten miRNAs that we had previously identified by sequencing to be the most upregulated in TGCT. We found high expression of these miRNAs also by qPCR analysis. The levels of miR-302a-3p, miR-302b-3p, and miR-302c-3p were downregulated after treatment of the TGCT cell lines NT2-D1 and 833 K with the chemotherapy drug cisplatin. By using miRNA inhibitor-mediated transient transfection, we inhibited the expression of the three members of miR-302 family (miR-302s). Inhibition of miR-302s resulted in a decreased cell proliferation in NT2-D1 cells, but not in 833 K cells. In both cell lines, inhibition of miR-302s resulted in decreased expression of SPRY4, which we have previously shown to regulate MAPK/ERK and PI3K/Akt signalling pathways in these cells. Inhibition of miR-302b-3p and miR-302c-3p decreased phosphorylation of ERK1/2, whereas inhibition of miR-302a-3p and miR-302b-3p led to decreased expression of the apoptosis inhibitor, survivin. Our findings suggest that miR-302s act as TGCT oncogenes by inducing the expression of SPRY4 and activating MAPK/ERK pathway while inhibiting apoptosis via increased survivin expression.
Collapse
Affiliation(s)
- Mrinal K Das
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| | - Herman S F Evensen
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Kari Furu
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.,Cancer Registry, Oslo, Norway
| | - Trine B Haugen
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
39
|
Sanchez A, Xu L, Pierce JL, Lafin JT, Abe D, Bagrodia A, Frazier AL, Amatruda JF. Identification of testicular cancer driver genes by a cross-species comparative oncology approach. Andrology 2019; 7:545-554. [PMID: 31087453 DOI: 10.1111/andr.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Germ cell tumors arise in the testis, ovary, or extragonadal locations and have a wide range of histopathological and clinical presentations. The relative lack of animal models of germ cell tumors has impeded functional assessment of candidate driver genes. Previously, we described the development of testicular germ cell tumors in zebrafish carrying a mutation in bmpr1bb, a BMP family receptor, and demonstrated that human germ cell tumors have defects in BMP signaling. OBJECTIVE To further credential the zebrafish model for studies of human germ cell tumor, and to elucidate conserved genetic programs underlying the development of germ cell tumor. MATERIALS AND METHODS We used genetic techniques to ablate the germ cell lineage in developing fish and tested tumors for loss-of-heterozygosity of the wild-type allele of bmpr1bb. We performed comparative gene expression profiling of zebrafish and human germ cell tumors and carried out functional studies of selected genes. RESULTS Ablation of germ cells completely prevents testis tumor formation in the fish, definitively establishing the germ cell origin of the tumors. Germ cell tumors in bmpr1bb heterozygous mutants retain the wild-type allele, indicating haploinsufficiency of bmpr1bb as the mechanism of tumor formation. Comparison of RNA-Seq and microarray data from human and zebrafish germ cell tumors revealed a unique overlapping signature shared by the zebrafish tumors with human seminomas, yolk sac tumors, and embryonal carcinomas. The most highly conserved gene set in this cross-species analysis included potential driver genes such as JUP, which we show to be essential for germ cell tumor cell growth. CONCLUSION Our findings highlight the value of cross-species comparative oncology for the identification of candidate human cancer genes.
Collapse
Affiliation(s)
- A Sanchez
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - L Xu
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA.,Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J L Pierce
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - J T Lafin
- Department of Urology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - D Abe
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - A Bagrodia
- Department of Urology, University of Texas Southwestern Medical, Dallas, TX, USA
| | - A L Frazier
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J F Amatruda
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical, Dallas, TX, USA
| |
Collapse
|
40
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
41
|
Ghazarian AA, Rusner C, Trabert B, Braunlin M, McGlynn KA, Stang A. Testicular cancer among US men aged 50 years and older. Cancer Epidemiol 2019; 55:68-72. [PMID: 29807233 DOI: 10.1016/j.canep.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND The incidence of testicular cancer in the United States (US) has substantially increased in recent decades. The majority of testicular cancers are germ cell tumors (TGCT), which are the most commonly occurring malignancies among men aged 15-44 years in the US. To date, few studies have focused on testicular cancer among men aged ≥ 50 years. Thus, we sought to examine detailed descriptive features, including incidence rates and age patterns, of tumors that arise in the testes among men aged ≥ 50 years. METHODS Data from forty-one US cancer registries were included for the years 1999-2014. Incidence rates per 100,000 person-years and their 95% confidence intervals (CI) were calculated by race/ethnicity, histology, and age at diagnosis. Estimates of annual percent change (APC) were also calculated. RESULTS Age-specific incidence rates of spermatocytic tumors, sex cord stromal tumors and lymphomas rose with age, while age-specific incidence rates of seminomas and nonseminomas declined. Between 1999 and 2014, the incidence of nonseminoma (APC = 3.26, 95% CI: 2.27-4.25) increased more than any other tumor type. The incidence of seminoma (APC: 1.15, 95% CI: 0.59-1.71) also increased, while rates of testicular lymphoma (APC: -0.66, 95% CI: -1.16 to -0.16), spermatocytic tumors (APC: 0.42, 95% CI: -1.42 to 2.29), and sex cord stromal tumors (APC: 0.60, 95% CI: -3.21 to 4.55) remained relatively unchanged. CONCLUSION Given the distinct time-trends and age-specific patterns of testicular cancer in men aged ≥50 years, additional investigation of risk factors for these tumors is warranted.
Collapse
Affiliation(s)
- Armen A Ghazarian
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA; Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Carsten Rusner
- Department of Radiology, St. Elisabeth and St. Barbara Hospital, Halle (Saale), Germany
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Megan Braunlin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | - Andreas Stang
- Center of Clinical Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA; German Consortium of Translational Cancer Research (DKTK), Partner Site University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Jones CC, Bradford Y, Amos CI, Blot WJ, Chanock SJ, Harris CC, Schwartz AG, Spitz MR, Wiencke JK, Wrensch MR, Wu X, Aldrich MC. Cross-Cancer Pleiotropic Associations with Lung Cancer Risk in African Americans. Cancer Epidemiol Biomarkers Prev 2019; 28:715-723. [PMID: 30894353 PMCID: PMC6449205 DOI: 10.1158/1055-9965.epi-18-0935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identifying genetic variants with pleiotropic associations across multiple cancers can reveal shared biologic pathways. Prior pleiotropic studies have primarily focused on European-descent individuals. Yet population-specific genetic variation can occur, and potential pleiotropic associations among diverse racial/ethnic populations could be missed. We examined cross-cancer pleiotropic associations with lung cancer risk in African Americans. METHODS We conducted a pleiotropic analysis among 1,410 African American lung cancer cases and 2,843 controls. We examined 36,958 variants previously associated (or in linkage disequilibrium) with cancer in prior genome-wide association studies. Logistic regression analyses were conducted, adjusting for age, sex, global ancestry, study site, and smoking status. RESULTS We identified three novel genomic regions significantly associated (FDR-corrected P <0.10) with lung cancer risk (rs336958 on 5q14.3, rs7186207 on 16q22.2, and rs11658063 on 17q12). On chromosome16q22.2, rs7186207 was significantly associated with reduced risk [OR = 0.43; 95% confidence interval (CI), 0.73-0.89], and functional annotation using GTEx showed rs7186207 modifies DHODH gene expression. The minor allele at rs336958 on 5q14.3 was associated with increased lung cancer risk (OR = 1.47; 95% CI, 1.22-1.78), whereas the minor allele at rs11658063 on 17q12 was associated with reduced risk (OR = 0.80; 95% CI, 0.72-0.90). CONCLUSIONS We identified novel associations on chromosomes 5q14.3, 16q22.2, and 17q12, which contain HNF1B, DHODH, and HAPLN1 genes, respectively. SNPs within these regions have been previously associated with multiple cancers. This is the first study to examine cross-cancer pleiotropic associations for lung cancer in African Americans. IMPACT Our findings demonstrate novel cross-cancer pleiotropic associations with lung cancer risk in African Americans.
Collapse
Affiliation(s)
- Carissa C Jones
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuki Bradford
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | | | - Ann G Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Margaret R Spitz
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute of Human Genetics, University of California San Francisco, San Francisco, California
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
43
|
Statistical methods for genome-wide association studies. Semin Cancer Biol 2019; 55:53-60. [DOI: 10.1016/j.semcancer.2018.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
|
44
|
Gurney JK. The puzzling incidence of testicular cancer in New Zealand: what can we learn? Andrology 2019; 7:394-401. [PMID: 30663250 DOI: 10.1111/andr.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular germ cell tumour is the most common cancer to be diagnosed among young men. In New Zealand, we have observed some puzzling trends in the epidemiology of this disease. METHODS We have conducted a narrative review of available evidence regarding the puzzling epidemiology of testicular germ cell tumour in New Zealand and discussed the possible drivers of these trends. RESULTS AND DISCUSSION Whereas testicular cancer is most commonly a disease of White men, in New Zealand it is the indigenous Māori population that suffer by far the greatest rate of disease (age-adjusted relative risk: 1.80, 95% CI 1.58-2.05). Even more curiously, the rate of testicular germ cell tumour among Māori men aged 15-44 (28/100,000) is substantially greater than for Pacific Island men (9/100,000), a rare example of divergence between these two populations in terms of the incidence of any disease (cancer or otherwise). Our observations beg the following questions: first, why are rates of testicular germ cell tumour so much higher among Māori New Zealanders compared to the already high rates observed among European/Other New Zealanders? Second, why are rates of testicular germ cell tumour so completely divergent between Māori and Pacific New Zealanders, when these two groups typically move in parallel with respect to the incidence of given diseases? Finally, what might we learn about the factors that cause testicular germ cell tumour in general by answering these questions? CONCLUSION This review examines the possible drivers of our observed disparity, discusses their feasibility, and highlights new work that is underway to further understand these drivers.
Collapse
Affiliation(s)
- J K Gurney
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
45
|
Molecular Basics on Genitourinary Malignancies. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Abstract
This review describes the germ cell neoplasms that are malignant and most commonly associated with several types of gonadal dysgenesis. The most common neoplasm is gonadoblastoma, while others including dysgerminomas, yolk-sac tumors and teratomas are rare but can occur. The purpose of this review is to evaluate the incidences of these abnormalities and the circumstances surrounding these specific tumors.According to well-established methods, a PubMed systematic review was performed, to obtain relevant studies published in English and select those with the highest-quality data.Initially, the first search was performed using gonadal dysgenesis as the search term, resulting in 12,887 PubMed papers, published, from 1945 to 2017. A second search using ovarian germ cell tumors as the search term resulted in 10,473 papers, published from 1960 to 2017. Another search was performed in Medline, using germ cell neoplasia as the search term, and this search resulted in 7,560 papers that were published between 2003 to 2016, with 245 new papers assessing gonadoblastomas.The higher incidence of germ cell tumors in gonadal dysgenesis is associated with a chromosomal anomaly that leads to the absence of germ cells in these gonads and, consequently, a higher incidence of neoplasms when these tumors are located inside the abdomen. Several hypotheses suggest that increased incidence of germ cell tumors involves all or part of the Y chromosome or different genes.
Collapse
Affiliation(s)
- Mauri José Piazza
- Departamento de TocoGinecologia, Universidade Federal do Parana, Curitiba, PR, BR
- Corresponding author. E-mail:
| | | |
Collapse
|
47
|
Saifullah, Tsukahara T. Genotyping of single nucleotide polymorphisms using the SNP-RFLP method. Biosci Trends 2018; 12:240-246. [PMID: 30012914 DOI: 10.5582/bst.2018.01102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic polymorphisms, including single nucleotide polymorphisms (SNPs), are responsible for inter-individual variability in susceptibility to cancer and other disorders. Both environmental factors (e.g., smoking or carcinogen exposure) and genetic variation underlie the development of cancer; however, studies of twins suggest that genetic variation is more important. Hence, the identification of SNPs makes an important contribution to cancer research. In this study, 13 SNPs in 12 genes were genotyped in HEK 293 and HeLa cells using the simple and inexpensive SNP-RFLP method. Sanger sequencing was performed for one SNP to validate the SNP-RFLP results. Of the 13 SNPs, 10 were homozygous and three were heterozygous (rs10937405, rs12296850, and rs3814113) in HEK 293 cells, while 12 were homozygous and one was heterozygous (rs995030) in HeLa cells. The cells carried eight disease-associated risk alleles (32% of typed alleles), including rs2853677, rs995030, rs2736100, and rs6010620 in HEK 293 cells, and rs10937405, rs3814113, rs4767364, and rs6010620 in HeLa cells. Four SNP loci were homozygous for different alleles in each cell line, with HEK 293 cells having a CC genotype at rs2853677, GG at rs2736100 and rs4767364, and TT at rs3819197, while HeLa cells had TT genotypes at rs2853677 and rs2736100, AA at rs4767364, and CC at rs3819197. In conclusion, these results are potentially applicable for testing of novel gene therapeutic approaches in future experiments where the non-risk alleles of the eight identified risk alleles are substituted into HEK 293 or HeLa cells.
Collapse
Affiliation(s)
- Saifullah
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
48
|
Abstract
Testicular cancer is the most common malignancy among men between 14 and 44 years of age, and its incidence has risen over the past two decades in Western countries. Both genetic and environmental factors contribute to the development of testicular cancer, for which cryptorchidism is the most common risk factor. Progress has been made in our understanding of the disease since the initial description of carcinoma in situ of the testis in 1972 (now referred to as germ cell neoplasia in situ), which has led to improved treatment options. The combination of surgery and cisplatin-based chemotherapy has resulted in a cure rate of >90% in patients with testicular cancer, although some patients become refractory to chemotherapy or have a late relapse; an improved understanding of the molecular determinants underlying tumour sensitivity and resistance may lead to the development of novel therapies for these patients. This Primer provides an overview of the biology, epidemiology, diagnosis and current treatment guidelines for testicular cancer, with a focus on germ cell tumours. We also outline areas for future research and what to expect in the next decade for testicular cancer.
Collapse
|
49
|
Paumard‐Hernández B, Calvete O, Inglada Pérez L, Tejero H, Al‐Shahrour F, Pita G, Barroso A, Carlos Triviño J, Urioste M, Valverde C, González Billalabeitia E, Quiroga V, Francisco Rodríguez Moreno J, Fernández Aramburo A, López C, Maroto P, Sastre J, José Juan Fita M, Duran I, Lorenzo‐Lorenzo I, Iranzo P, García del Muro X, Ros S, Zambrana F, María Autran A, Benítez J. Whole exome sequencing identifies
PLEC
,
EXO5
and
DNAH7
as novel susceptibility genes in testicular cancer. Int J Cancer 2018; 143:1954-1962. [DOI: 10.1002/ijc.31604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Oriol Calvete
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
| | - Lucia Inglada Pérez
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO)Madrid Spain
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Fátima Al‐Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Guillermo Pita
- Human Genotyping‐CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| | - Alicia Barroso
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Juan Carlos Triviño
- Bioinformatic Unit, Sistemas Genómicos, Valencia Spain, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| | - Miguel Urioste
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO)Madrid Spain
| | - Claudia Valverde
- Department of Medical OncologyVall d'Hebron Institute of Oncology, Vall d'Hebron University HospitalBarcelona Spain
- Spanish Germ Cell Group (SGCCG)
| | - Enrique González Billalabeitia
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology‐Haematology DepartmentHospital Universitario Morales MeseguerMurcia Spain
| | - Vanesa Quiroga
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentHospital Universitari Germans Trias i Pujol, Institut Català d'Oncologia‐BadalonaBarcelona Spain
| | | | - Antonio Fernández Aramburo
- Spanish Germ Cell Group (SGCCG)
- Department of OncologyComplejo Hospitalario Universitario AlbaceteAlbacete Spain
| | - Cristina López
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentInstituto de Investigación Sanitaria Gregorio MarañónMadrid Spain
| | - Pablo Maroto
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology and Biochemistry DepartmentsHospital de la Santa Creu i Sant PauBarcelona Spain
| | - Javier Sastre
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyHospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid Spain
| | - María José Juan Fita
- Spanish Germ Cell Group (SGCCG)
- Medical OncologyFundación Instituto Valenciano de OncologíaValencia Spain
| | - Ignacio Duran
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyInstituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilla Spain
| | | | - Patricia Iranzo
- Spanish Germ Cell Group (SGCCG)
- Department of Medical OncologyHospital Clinico Universitario Lozano BlesaZaragoza Spain
| | - Xavier García del Muro
- Spanish Germ Cell Group (SGCCG)
- Sarcoma Multidisciplinary Unit and Medical Oncology DepartmentInstitut Català d'Oncologia Hospitalet, IDIBELLBarcelona Spain
| | - Silverio Ros
- Department of Clinical OncologyHospital Universitario Virgen ArrixacaMurcia Spain
| | - Francisco Zambrana
- Spanish Germ Cell Group (SGCCG)
- Medical Oncology DepartmentHospital Universitario Infanta Sofía, San Sebastián De Los Reyes Spain
| | - Ana María Autran
- Spanish Germ Cell Group (SGCCG)
- Medical Urology departmentFundación Jiménez DíazMadrid Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO)Madrid Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER)Madrid Spain
- Human Genotyping‐CEGEN Unit, Human Cancer Genetic Program, Spanish National Cancer Research Centre (CNIO)Madrid Spain
| |
Collapse
|
50
|
Gurney JK, Stanley J, McGlynn K, Richiardi L, Shaw C, Edwards R, Merriman TR, Robson B, Koea J, McLeod M, Kennedy MA, Sarfati D. Testicular Cancer in New Zealand (TCNZ) study: protocol for a national case-control study. BMJ Open 2018; 8:e025212. [PMID: 30082371 PMCID: PMC6078234 DOI: 10.1136/bmjopen-2018-025212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Testicular cancer (TC) is by far the most common cancer to affect young men; however, the exposures that cause this disease are still poorly understood. Our own research has shown that Māori men have the highest rates of this disease in New Zealand-a puzzling observation, since internationally TC is most commonly a disease of men of European ancestry. These trends provide us with a unique opportunity: to learn more about the currently unknown exposures that cause TC, and to explain why Māori have the highest rates of this disease in New Zealand. Using epidemiology and genetics, our experienced research team will conduct a nationwide study which aims to answer these internationally important questions. AIM OF STUDY The overall aim of the current national case-control study is to identify the key exposures in the development of TC in New Zealand, and explore which factors might explain the difference in the incidence of TC between Māori and non-Māori. METHODS AND ANALYSIS Outside of our own investigations into cryptorchidism, we still do not know which exposures are driving the significant incidence disparity between ethnic groups in NZ. The aim of the proposed research is to use a population-based case-control study to identify the key exposures in the development of TC in New Zealand. We will recruit 410 TC cases and 410 controls, and collect (1) environmental exposure data, via interview and (2) genetic information, via genome-wide genotyping. ETHICS AND DISSEMINATION Ethical approval for this study was sought and received from the New Zealand Ministry of Health's Health and Disability Ethics Committee (reference # 17/NTA/248). Following a careful data interpretation process, we will disseminate the findings of this study to a wide and varied audience ranging from general academia, community groups and clinical settings, as well as to the participants themselves.
Collapse
Affiliation(s)
- Jason K Gurney
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - James Stanley
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| | - Katherine McGlynn
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Maryland, USA
| | | | - Caroline Shaw
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Richard Edwards
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Bridget Robson
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jonathan Koea
- Department of Surgery, Waitemata District Health Board, Auckland, New Zealand
| | - Melissa McLeod
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Diana Sarfati
- Cancer and Chronic Conditions (C3) Research Group, Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|