1
|
Argano C, Torres A, Orlando V, Cangialosi V, Maggio D, Pollicino C, Corrao S. Molecular Insight into the Role of Vitamin D in Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2025; 26:4798. [PMID: 40429939 DOI: 10.3390/ijms26104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
In the last decades, it has become increasingly evident that the role of vitamin D extends beyond the regulation of calcium homeostasis and the maintenance of bone health. A significant extraskeletal function of vitamin D is its role in modulating the immune system, particularly highlighted in the context of immune-mediated inflammatory diseases, where correlations between vitamin D status and genetic variations in the vitamin D receptor have been observed about the incidence and severity of these conditions. Additionally, different studies have reported the existence of immunomodulatory effects of vitamin D, particularly the effects of vitamin D on dendritic cell function, maturation, cytokine production, and antigen presentation, and that its deficiency may be associated with a sub-inflammatory state. In this sense, different clinical trials have been conducted to assess the therapeutic efficacy of vitamin D in different immune-mediated inflammatory disorders, including asthma, atopic dermatitis (AD), rheumatoid arthritis (RA), psoriasis, thyroid diseases, infectious diseases, and systemic lupus erythematosus (SLE). This review will provide a comprehensive overview of the current understanding of the molecular mechanisms underlying vitamin D's immunomodulatory properties, its role, and innovative therapeutic applications in patients with immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy
| | - Alessandra Torres
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Valentina Orlando
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Virginia Cangialosi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Dalila Maggio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Chiara Pollicino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
2
|
Wang WH, Xia MH, Liu XR, Lei SF, He P. A Bibliometric Analysis of GWAS on Rheumatoid Arthritis from 2002 to 2024. Hum Hered 2025; 90:18-32. [PMID: 40179854 DOI: 10.1159/000543947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/24/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) has become a serious threat to human health and quality of life worldwide. Previous studies have demonstrated that genetic factors play a crucial role in the onset and progression of RA. Due to the rapid development of genome-wide association study (GWAS) and large-scale genetic analysis, GWAS research on RA has received widespread attention in recent years. Therefore, we conducted a comprehensive visualization and bibliometric analysis of publications to identify hotspots and future trends in GWAS research on RA. METHODS Literature on RA and GWAS published between 2002 and 2024 was extracted from the Web of Science Core Collection database by strategic screening. Collected data were further analyzed by using VOSviewer, CiteSpace, and Excel. The collaborations networks of countries, authors, institutions, and the co-citation networks of publications were visualized. Finally, research hotspots and fronts were examined. RESULTS A total of 713 publications with 45,773 citations were identified. The number of publications and citations has had a significant surge since 2007. The United States contributed the most publications globally. Okada, Yukinori, was the most influential author. The most productive institution in this field was the University of Manchester. The analysis of keywords revealed that "mendelian randomization analysis", "association", "innate", "instruments", "bias", "pathogenesis", and "genome-wide association study" are likely to be the frontiers of research in this field. CONCLUSION This study can be used to predict future research advances in the fields of GWAS on RA and helps to promote academic collaboration among scholars.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China,
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China,
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China,
| | - Ming-Hui Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xin-Ru Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Barbosa DJ, Carvalho C, Costa I, Silva R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol Neurobiol 2025; 62:4705-4723. [PMID: 39477877 PMCID: PMC11880050 DOI: 10.1007/s12035-024-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
Molecular motors are cellular components involved in the intracellular transport of organelles and materials to ensure cell homeostasis. This is particularly relevant in neurons, where the synaptic components synthesized in the soma need to travel over long distances to their destination. They can walk on microtubules (kinesins and dyneins) or actin filaments (myosins), the major components of cell cytoskeleton. While kinesins mostly perform the anterograde transport of intracellular components toward the plus ends of microtubules located distally in cell processes, cytoplasmic dyneins allow the retrograde flux of intracellular cargo toward the minus ends of microtubules located at the cell soma. Axon myelination represents a major aspect of neuronal maturation and is essential for neuronal function, as it speeds up the transmission of electrical signals. Increasing evidence supports a role for molecular motors in the homeostatic control of myelination. This role includes the trafficking of myelin components along the processes of myelinating cells and local regulation of pathways that ensure axon wrapping. Dysfunctional control of the intracellular transport machinery has therefore been linked to several brain pathologies, including demyelinating diseases. These disorders include a broad spectrum of conditions characterized by pathological demyelination of axons within the nervous system, ultimately leading to axonal degeneration and neuronal death, with multiple sclerosis representing the most prevalent and studied condition. This review highlights the involvement of molecular motors in the homeostatic control of myelination. It also discusses studies that have yielded insights into the dysfunctional activity of molecular motors in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Daniel José Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Cátia Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Lin H, Liao F, Liu J, Yang Z, Zhang J, Cheng J, Zhou H, Li S, Li L, Li Y, Zhuo Z, He J. Neuroblastoma susceptibility and association of N7-methylguanosine modification gene polymorphisms: multi-center case-control study. Pediatr Res 2025; 97:153-159. [PMID: 38871802 DOI: 10.1038/s41390-024-03318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/02/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Neuroblastoma (NB) is a common extracranial solid malignancy in children. The N7-methylguanosine (m7G) modification gene METTL1/WDR4 polymorphisms may serve as promising molecular markers for identifying populations susceptible to NB. METHODS TaqMan probes was usded to genotype METTL1/WDR4 single nucleotide polymorphisms (SNPs) in 898 NB patients and 1734 healthy controls. A logistic regression model was utilized to calculate the odds ratio (OR) and 95% confidence interval (CI), evaluating the association between genotype polymorphisms and NB susceptibility. The analysis was also stratified by age, sex, tumor origin site, and clinical stage. RESULTS Individual polymorphism of the METTL1/WDR4 gene investigated in this study did not show significant associations with NB susceptibility. However, combined genotype analysis revealed that carrying all 5 WDR4 protective genotypes was associated with a significantly lower NB risk compared to having 0-4 protective genotypes (AOR = 0.82, 95% CI = 0.69-0.96, P = 0.014). Further stratified analyses revealed that carrying 1-3 METTL1 risk genotypes, the WDR4 rs2156316 CG/GG genotype, the WDR4 rs2248490 CG/GG genotype, and having all five WDR4 protective genotypes were all significantly correlated with NB susceptibility in distinct subpopulations. CONCLUSIONS In conclusion, our findings suggest significant associations between m7G modification gene METTL1/WDR4 SNPs and NB susceptibility in specific populations. IMPACT Genetic variation in m7G modification gene is associated with susceptibility to NB. Single nucleotide polymorphisms in METTL1/WDR4 are associated with susceptibility to NB. Single nucleotide polymorphisms of METTL1/WDR4 can be used as a biomarker for screening NB susceptible populations.
Collapse
Affiliation(s)
- Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Fan Liao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004, Hunan, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
5
|
Rosenstein I, Novakova L, Kvartsberg H, Nordin A, Rasch S, Rembeza E, Sandgren S, Malmeström C, Fruhwürth S, Axelsson M, Blennow K, Zetterberg H, Lycke J. Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. J Neuroinflammation 2024; 21:320. [PMID: 39673059 PMCID: PMC11645787 DOI: 10.1186/s12974-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The Gas6/TAM (Tyro3, Axl, and Mer) receptor system has been implicated in demyelination and delayed remyelination in experimental animal models, but data in humans are scarce. We aimed to investigate the role of Gas6/TAM in neurodegenerative processes in multiple sclerosis (MS). METHODS From a prospective 5-year follow-up study, soluble Gas6/TAM biomarkers were analyzed in cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay (ELISA) at baseline in patients with relapsing-remitting MS (RRMS) (n = 40), progressive MS (PMS) (n = 20), and healthy controls (HC) (n = 25). Brain volumes, including myelin content (MyC) and white matter (WM) were measured by synthetic magnetic resonance imaging at baseline, 12 months, and 60-month follow-up. Associations with brain volume changes were investigated in multivariable linear regression models. Gas6/TAM concentrations were also determined at 12 months follow-up in RRMS to assess treatment response. RESULTS Baseline concentrations of Tyro3, Axl, and Gas6 were significantly higher in PMS vs. RRMS and HC. Mer was higher in PMS vs. HC. Tyro3 and Gas6 were associated with reduced WM (β = 25.5, 95% confidence interval [CI] [6.11-44.96, p = 0.012; β = 11.4, 95% CI [0.42-22.4], p = 0.042, respectively) and MyC (β = 7.95, 95%CI [1.84-14.07], p = 0.012; β = 4.4, 95%CI [1.04-7.75], p = 0.012 respectively) at 60 months. Patients with evidence of remyelination at last follow-up had lower baseline soluble Tyro3 (p = 0.033) and Gas6 (p = 0.014). Except Mer, Gas6/TAM concentrations did not change with treatment in RRMS. DISCUSSION Our data indicate a potential role for the Gas6/TAM receptor system in neurodegenerative processes influencing demyelination and ineffective remyelination.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elzbieta Rembeza
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Bruner WS, Grant SFA. Translation of genome-wide association study: from genomic signals to biological insights. Front Genet 2024; 15:1375481. [PMID: 39421299 PMCID: PMC11484060 DOI: 10.3389/fgene.2024.1375481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Since the turn of the 21st century, genome-wide association study (GWAS) have successfully identified genetic signals associated with a myriad of common complex traits and diseases. As we transition from establishing robust genetic associations with diverse phenotypes, the central challenge is now focused on characterizing the underlying functional mechanisms driving these signals. Previous GWAS efforts have revealed multiple variants, each conferring relatively subtle susceptibility, collectively contributing to the pathogenesis of various common diseases. Such variants can further exhibit associations with multiple other traits and differ across ancestries, plus disentangling causal variants from non-causal due to linkage disequilibrium complexities can lead to challenges in drawing direct biological conclusions. Combined with cellular context considerations, such challenges can reduce the capacity to definitively elucidate the biological significance of GWAS signals, limiting the potential to define mechanistic insights. This review will detail current and anticipated approaches for functional interpretation of GWAS signals, both in terms of characterizing the underlying causal variants and the corresponding effector genes.
Collapse
Affiliation(s)
- Winter S. Bruner
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Struan F. A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
7
|
Zhou W, Hu W, Tang L, Ma X, Liao J, Yu Z, Qi M, Chen B, Li J. Meta-analysis of the Selected Genetic Variants in Immune-Related Genes and Multiple Sclerosis Risk. Mol Neurobiol 2024; 61:8175-8187. [PMID: 38478144 DOI: 10.1007/s12035-024-04095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 09/21/2024]
Abstract
Previous studies have suggested that certain variants in immune-related genes may participate in the pathogenesis of multiple sclerosis (MS), including rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, rs16944 in the IL-1β gene, rs2243250 in the IL-4 gene, and rs12722489 and rs2104286 in the IL-2Rα gene. However, the results remained inconclusive and conflicting. In view of this, a comprehensive meta-analysis including all eligible studies was conducted to investigate the association between these 8 selected genetic variants and MS risk. Up to June 2023, 64 related studies were finally included in this meta-analysis. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) calculated by the random-effects model were used to evaluate the strength of association. Publication bias test, sensitivity analyses, and trial sequential analysis (TSA) were conducted to examine the reliability of statistical results. Our results indicated that rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, and rs12722489 and rs2104286 in the IL-2Rα gene may serve as the susceptible factors for MS pathogenesis, while rs16944 in the IL-1β gene and rs2243250 in the IL-4 gene may not be associated with MS risk. However, the present findings need to be confirmed and reinforced in future studies.
Collapse
Affiliation(s)
- Weiguang Zhou
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiqiong Hu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Lingyu Tang
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaorui Ma
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaxi Liao
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyan Yu
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Meifang Qi
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jing Li
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
8
|
Jordan MA, Gresle MM, Gemiarto AT, Stanley D, Smith LD, Laverick L, Spelman T, Stankovich J, Willson AM, Dinh XT, Johnson L, Robertson K, Reid CA, Field J, Butzkueven H, Baxter AG. Transcriptional network analysis of peripheral blood leukocyte subsets in multiple sclerosis identifies a pathogenic role for a cytotoxicity-associated gene network in myeloid cells. Immunol Cell Biol 2024; 102:702-720. [PMID: 38877291 DOI: 10.1111/imcb.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system affecting predominantly adults. It is a complex disease associated with both environmental and genetic risk factors. Although over 230 risk single-nucleotide polymorphisms have been associated with MS, all are common human variants. The mechanisms by which they increase the risk of MS, however, remain elusive. We hypothesized that a complex genetic phenotype such as MS could be driven by coordinated expression of genes controlled by transcriptional regulatory networks. We, therefore, constructed a gene coexpression network from microarray expression analyses of five purified peripheral blood leukocyte subsets of 76 patients with relapsing remitting MS and 104 healthy controls. These analyses identified a major network (or module) of expressed genes associated with MS that play key roles in cell-mediated cytotoxicity which was downregulated in monocytes of patients with MS. Manipulation of the module gene expression was achieved in vitro through small interfering RNA gene knockdown of identified drivers. In a mouse model, network gene knockdown modulated the autoimmune inflammatory MS model disease-experimental autoimmune encephalomyelitis. This research implicates a cytotoxicity-associated gene network in myeloid cells in the pathogenesis of MS.
Collapse
Affiliation(s)
- Margaret A Jordan
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | - Melissa M Gresle
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Adrian T Gemiarto
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | | | - Letitia D Smith
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | - Louise Laverick
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Tim Spelman
- Burnett Institute, Melbourne, VIC, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Annie Ml Willson
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | - Xuyen T Dinh
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
- Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Laura Johnson
- The Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Kylie Robertson
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | - Christopher Ar Reid
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
| | | | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Alan G Baxter
- Biomedical Sciences & Molecular Biology, CPHMVS, James Cook University, Townsville, QLD, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Vermersch P, Granziera C, Mao-Draayer Y, Cutter G, Kalbus O, Staikov I, Dufek M, Saubadu S, Bejuit R, Truffinet P, Djukic B, Wallstroem E, Giovannoni G. Inhibition of CD40L with Frexalimab in Multiple Sclerosis. N Engl J Med 2024; 390:589-600. [PMID: 38354138 DOI: 10.1056/nejmoa2309439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis. METHODS In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab. RESULTS Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches. CONCLUSIONS In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).
Collapse
Affiliation(s)
- Patrick Vermersch
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Cristina Granziera
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Yang Mao-Draayer
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Gary Cutter
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Oleksandr Kalbus
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Ivan Staikov
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Michal Dufek
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Stephane Saubadu
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Raphael Bejuit
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Philippe Truffinet
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Biljana Djukic
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Erik Wallstroem
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| | - Gavin Giovannoni
- From the University of Lille, INSERM Unité 1172, Lille Neuroscience and Cognition, Lille University Hospital, University Hospital Federation Precise, Lille (P.V.), and Sanofi, Chilly-Mazarin (S.S., R.B., P.T.) - both in France; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, Faculty of Medicine, and the Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland (C.G.); the Department of Neurology, Autoimmunity Center of Excellence, University of Michigan Medical Center, Ann Arbor, and the Michigan Institute for Neurological Disorders, Farmington Hills (Y.M.-D.); the Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham (G.C.); the Department of Neurology, Dnipro State Medical University, Dnipro, Ukraine (O.K.); the Clinic of Neurology and Sleep Medicine, Acibadem City Clinic University Hospital Tokuda, Sofia, Bulgaria (I.S.); the First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic (M.D.); Sanofi, Cambridge, MA (B.D., E.W.); and Queen Mary University of London, London (G.G.)
| |
Collapse
|
10
|
Wang X, Zhu Z, Sun J, Jia L, Cai L, Chen Q, Yang W, Wang Y, Zhang Y, Guo S, Liu W, Yang Z, Zhao P, Wang Z, Lv H. Changes in iron load in specific brain areas lead to neurodegenerative diseases of the central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110903. [PMID: 38036035 DOI: 10.1016/j.pnpbp.2023.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The causes of neurodegenerative diseases remain largely elusive, increasing their personal and societal impacts. To reveal the causal effects of iron load on Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis and multiple sclerosis, we used Mendelian randomisation and brain imaging data from a UK Biobank genome-wide association study of 39,691 brain imaging samples (predominantly of European origin). Using susceptibility-weighted images, which reflect iron load, we analysed genetically significant brain regions. Inverse variance weighting was used as the main estimate, while MR Egger and weighted median were used to detect heterogeneity and pleiotropy. Nine clear associations were obtained. For AD and PD, an increased iron load was causative: the right pallidum for AD and the right caudate, left caudate and right accumbens for PD. However, a reduced iron load was identified in the right and left caudate for multiple sclerosis, the bilateral hippocampus for mixed vascular dementia and the left thalamus and bilateral accumbens for subcortical vascular dementia. Thus, changes in iron load in different brain regions have causal effects on neurodegenerative diseases. Our results are crucial for understanding the pathogenesis and investigating the treatment of these diseases.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zaimin Zhu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, People's Republic of China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Li Jia
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Linkun Cai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China; School of Biological Science and Medical Engineering, Beihang University, No.37 XueYuan Road, Beijing 100191, People's Republic of China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yufan Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Sihui Guo
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing, People's Republic of China; Peking University Aerospace School of Clinical Medicine, Beijing 100049, People's Republic of China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Deng C, Lin H, Zhang X, Zhu J, Zhou C, Wu H, He J. Genetic variants of m7G modification genes influence neuroblastoma susceptibility. Heliyon 2024; 10:e23658. [PMID: 38173492 PMCID: PMC10761801 DOI: 10.1016/j.heliyon.2023.e23658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Neuroblastoma is a life-threatening pediatric solid tumor whose etiology remains unclear. N7-methylguanosine (m7G) is one of the most important epigenetic modifications of RNA, which plays a crucial role in tumorigenesis. The m7G-mediated genes METTL1 and WDR4 also have been reported to be dysregulated in various cancers. However, the implications of METTL1 and WDR4 in neuroblastoma have not been clarified. Methods Given the oncogenic potential of m7G modification, we performed a case-control study to assess the association of METTL1 and WDR4 genes polymorphisms with neuroblastoma risk in a Chinese population consisting of 402 cases and 473 controls. Odds ratios (ORs) and 95 % confidence intervals (CIs) were applied to evaluate the associations between studied polymorphisms and neuroblastoma risk. The adjusted odds ratio (AOR) was adjusted for age and gender. Results Overall, four polymorphisms were significantly associated with neuroblastoma risk, including METTL1 rs2291617 (recessive model: adjusted OR = 1.59, 95 % CI = 1.08-2.34, P = 0.019), WDR4 rs2156316 (dominant model: adjusted OR = 0.74, 95 % CI = 0.57-0.97, P = 0.028), WDR4 rs6586250 (dominant model: adjusted OR = 0.59, 95 % CI = 0.42-0.84, P = 0.004) and WDR4 rs15736 (dominant model: adjusted OR = 0.60, 95 % CI = 0.42-0.85, P = 0.004). Stratified analysis showed stronger correlations between significant polymorphisms and neuroblastoma risk among subgroups divided by age, gender, tumor origin, and clinical stage. Furthermore, expression quantitative trait loci (eQTL) analysis revealed that significant polymorphisms were associated with the expression of the adjacent genes. Conclusions Our study indicated that four polymorphisms in m7G-mediated genes contribute to neuroblastoma susceptibility in the eastern Chinese population. However, our findings should be verified further by large-scale and well-designed studies.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China
| |
Collapse
|
12
|
Li W, Yao R, Yu N, Zhang W. Identification of a prognostic signature based on five ferroptosis-related genes for diffuse large B-cell lymphoma. Cancer Biomark 2024; 40:125-139. [PMID: 38517778 PMCID: PMC11191449 DOI: 10.3233/cbm-230325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Therapies for diffuse large B-cell lymphoma (DLBCL) are limited due to the diverse gene expression profiles and complicated immune microenvironments, making it an aggressive lymphoma. Beyond this, researches have shown that ferroptosis contributes to tumorigenesis, progression, and metastasis. We thus are interested to dissect the connection between ferroptosis and disease status of DLBCL. We aim at generating a valuable prognosis gene signature for predicting the status of patients of DLBCL, with focus on ferroptosis-related genes (FRGs). OBJECTIVE To examine the connection between ferroptosis-related genes (FRGs) and clinical outcomes in DLBCL patients based on public datasets. METHODS An expression profile dataset for DLBCL was downloaded from GSE32918 (https://www.ncbi.nlm.nih.gov/geo/ query/acc.cgi?acc=gse32918), and a ferroptosis-related gene cluster was obtained from the FerrDb database (http://www. zhounan.org/ferrdb/). A prognostic signature was developed from this gene cluster by applying a least absolute shrinkage and selection operator (LASSO) Cox regression analysis to GSE32918, followed by external validation. Its effectiveness as a biomarker and the prognostic value was determined by a receiver operator characteristic curve mono factor analysis. Finally, functional enrichment was evaluated by the package Cluster Profiler of R. RESULTS Five ferroptosis-related genes (FRGs) (GOP1, GPX2, SLC7A5, ATF4, and CXCL2) associated with DLBCL were obtained by a multivariate analysis. The prognostic power of these five FRGs was verified by TCGA (https://xenabrowser.net/datapages/?dataset=TCGA.DLBC.sampleMap%2FHiSeqV2_PANCAN&host=https%3A%2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A44) and GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse 32918) datasets, with ROC analyses. KEGG and GO analyses revealed that upregulated genes in the high-risk group based on the gene signature were enriched in receptor interactions and other cancer-related pathways, including pathways related to abnormal metabolism and cell differentiation. CONCLUSION The newly developed signature involving GOP1, GPX2, SLC7A5, ATF4, and CXCL2 has the potential to serve as a prognostic biomarker. Furthermore, our results provide additional support for the contribution of ferroptosis to DLBCL.
Collapse
Affiliation(s)
- Wuping Li
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ruizhe Yao
- Queen Mary College of Nanchang University, Nanchang, Jiangxi, China
| | - Nasha Yu
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Weiming Zhang
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Freitag-Wolf S, Schupp JC, Frye BC, Fischer A, Anwar R, Kieszko R, Mihailović-Vučinić V, Milanowski J, Jovanovic D, Zissel G, Bargagli E, Rottoli P, Bumbacea D, Jonkers R, Ho LP, Gaede KI, Dubaniewicz A, Marshall BG, Günther A, Petrek M, Keane MP, Haraldsdottir SO, Bonella F, Grah C, Peroš-Golubičić T, Kadija Z, Pabst S, Grohé C, Strausz J, Safrankova M, Millar A, Homolka J, Wuyts WA, Spencer LG, Pfeifer M, Valeyre D, Poletti V, Wirtz H, Prasse A, Schreiber S, Dempfle A, Müller-Quernheim J. Genetic and geographic influence on phenotypic variation in European sarcoidosis patients. Front Med (Lausanne) 2023; 10:1218106. [PMID: 37621457 PMCID: PMC10446882 DOI: 10.3389/fmed.2023.1218106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Sarcoidosis is a highly variable disease in terms of organ involvement, type of onset and course. Associations of genetic polymorphisms with sarcoidosis phenotypes have been observed and suggest genetic signatures. Methods After obtaining a positive vote of the competent ethics committee we genotyped 1909 patients of the deeply phenotyped Genetic-Phenotype Relationship in Sarcoidosis (GenPhenReSa) cohort of 31 European centers in 12 countries with 116 potentially disease-relevant single-nucleotide polymorphisms (SNPs). Using a meta-analysis, we investigated the association of relevant phenotypes (acute vs. sub-acute onset, phenotypes of organ involvement, specific organ involvements, and specific symptoms) with genetic markers. Subgroups were built on the basis of geographical, clinical and hospital provision considerations. Results In the meta-analysis of the full cohort, there was no significant genetic association with any considered phenotype after correcting for multiple testing. In the largest sub-cohort (Serbia), we confirmed the known association of acute onset with TNF and reported a new association of acute onset an HLA polymorphism. Multi-locus models with sets of three SNPs in different genes showed strong associations with the acute onset phenotype in Serbia and Lublin (Poland) demonstrating potential region-specific genetic links with clinical features, including recently described phenotypes of organ involvement. Discussion The observed associations between genetic variants and sarcoidosis phenotypes in subgroups suggest that gene-environment-interactions may influence the clinical phenotype. In addition, we show that two different sets of genetic variants are permissive for the same phenotype of acute disease only in two geographic subcohorts pointing to interactions of genetic signatures with different local environmental factors. Our results represent an important step towards understanding the genetic architecture of sarcoidosis.
Collapse
Affiliation(s)
- Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Jonas C. Schupp
- Department of Pneumology, Faculty of Medicine, University Medical Centre, Freiburg, Germany
- Department of Respiratory Medicine, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover Medical School (MHH), German Center for Lung Research (DZL), Hannover, Germany
| | - Björn C. Frye
- Department of Pneumology, Faculty of Medicine, University Medical Centre, Freiburg, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Raihanatul Anwar
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | | | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | | | - Gernot Zissel
- Department of Pneumology, Faculty of Medicine, University Medical Centre, Freiburg, Germany
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, University Hospital, Siena, Italy
| | - Paola Rottoli
- Respiratory Diseases and Lung Transplant Unit, University Hospital, Siena, Italy
| | - Dragos Bumbacea
- Department of Cardio-Thoracic Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - René Jonkers
- Pulmonology Department, Academic Medical Center Amsterdam, Amsterdam, Netherlands
| | - Ling-Pei Ho
- Oxford Sarcoidosis Service, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, Gdansk, Poland
| | - Ben G. Marshall
- Department of Respiratory Medicine, University Hospital, Southampton, United Kingdom
| | - Andreas Günther
- Department of Pneumology and Intensive Care, University Hospital, Giessen, Germany
| | - Martin Petrek
- Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czechia
| | - Michael P. Keane
- Division of Pulmonary and Critical Care Medicine, University College Dublin and St Vincent’s University Hospital, Dublin, Ireland
| | | | - Francesco Bonella
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Universitätsklinik Essen, Essen, Germany
| | | | | | - Zamir Kadija
- Foundation IRCCS Policlinico San Matteo - Pulmonology Unit, Pavia, Italy
| | - Stefan Pabst
- Department of Pneumology, University Hospital, Bonn, Germany
| | | | | | - Martina Safrankova
- Thomayer Hospital and 1st Faculty of Medicine, Charles University, Praha, Czechia
| | - Ann Millar
- Pulmonary Department, University Hospital, Bristol, United Kingdom
| | - Jiří Homolka
- Prague General Hospital, Charles University, Prague, Czechia
| | - Wim A. Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), University Hospital, Leuven, Belgium
| | - Lisa G. Spencer
- Liverpool Interstitial Lung Disease Service, Aintree Chest Centre, Liverpool University Hospitals NHS FT, Liverpool, United Kingdom
| | - Michael Pfeifer
- Department of Pneumology, University Hospital Regensburg, Regensburg, Germany
| | - Dominique Valeyre
- Groupe Hospitalier Avicenne-Jean Verdier-René Muret, Service de Pneumologie, Bobigny, France
| | - Venerino Poletti
- Pulmonary Unit, Department of Thoracic Diseases, Azienda USL Romagna, GB Morgagni-L-Pierantoni Hospital, Forlì, Italy
| | - Hubertus Wirtz
- Department of Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Antje Prasse
- Department of Pneumology, Faculty of Medicine, University Medical Centre, Freiburg, Germany
- Department of Respiratory Medicine, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | | |
Collapse
|
15
|
Li Y, Noto D, Hoshino Y, Mizuno M, Yoshikawa S, Miyake S. Immunoglobulin directly enhances differentiation of oligodendrocyte-precursor cells and remyelination. Sci Rep 2023; 13:9394. [PMID: 37296298 PMCID: PMC10256778 DOI: 10.1038/s41598-023-36532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease characterized by multiple lesions in the central nervous system. Although the role of B cells in MS pathogenesis has attracted much attention, but the detailed mechanisms remain unclear. To investigate the effects of B cells on demyelination, we analyzed a cuprizone-induced demyelination model, and found that demyelination was significantly exacerbated in B cell-deficient mice. We next investigated whether immunoglobulin affected the myelin formation process using organotypic brain slice cultures and revealed that remyelination was improved in immunoglobulin-treated groups compared with the control group. Analysis of oligodendrocyte-precursor cell (OPC) monocultures showed that immunoglobulins directly affected on OPCs and promoted their differentiation and myelination. Furthermore, OPCs expressed FcγRI and FcγRIII, two receptors that were revealed to mediate the effects of IgG. To the best of our knowledge, this is the first study to demonstrate that B cells act in an inhibitory manner against cuprizone-induced demyelination, while immunoglobulins enhance remyelination following demyelination. Analysis of the culture system revealed that immunoglobulins directly act on OPCs to promote their differentiation and myelination. Future studies to elucidate the effects of immunoglobulins on OPCs in vivo and the detailed mechanisms of these effects may lead to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Yaguang Li
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasunobu Hoshino
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miho Mizuno
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Soichiro Yoshikawa
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
16
|
Rebelos E, Tentolouris N, Jude E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023; 83:665-685. [PMID: 37148471 PMCID: PMC10163584 DOI: 10.1007/s40265-023-01875-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Vitamin D insufficiency or deficiency (VDD) is a very prevalent condition in the general population. Vitamin D is necessary for optimal bone mineralization, but apart from the bone effects, preclinical and observational studies have suggested that vitamin D may have pleiotropic actions, whereas VDD has been linked to several diseases and higher all-cause mortality. Thus, supplementing vitamin D has been considered a safe and inexpensive approach to generate better health outcomes-and especially so in frail populations. Whereas it is generally accepted that prescribing of vitamin D in VDD subjects has demonstrable health benefits, most randomized clinical trials, although with design constraints, assessing the effects of vitamin D supplementation on a variety of diseases have failed to demonstrate any positive effects of vitamin D supplementation. In this narrative review, we first describe mechanisms through which vitamin D may exert an important role in the pathophysiology of the discussed disorder, and then provide studies that have addressed the impact of VDD and of vitamin D supplementation on each disorder, focusing especially on randomized clinical trials and meta-analyses. Despite there already being vast literature on the pleiotropic actions of vitamin D, future research approaches that consider and circumvent the inherent difficulties in studying the effects of vitamin D supplementation on health outcomes are needed to assess the potential beneficial effects of vitamin D. The evaluation of the whole vitamin D endocrine system, rather than only of 25-hydroxyvitamin D levels before and after treatment, use of adequate and physiologic vitamin D dosing, grouping based on the achieved vitamin D levels rather than the amount of vitamin D supplementation subjects may receive, and sufficiently long follow-up are some of the aspects that need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Nikolaos Tentolouris
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Edward Jude
- Department of Medicine, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne , England.
- University of Manchester, Manchester, UK.
- Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
17
|
Marañón-Vásquez G, Küchler EC, Hermann S, Paddenberg E, Schröder A, Baratto-Filho F, Flores-Mir C, Proff P, Kirschneck C. Association between genetic variants in key vitamin-D-pathway genes and external apical root resorption linked to orthodontic treatment. Eur J Oral Sci 2023; 131:e12916. [PMID: 36683003 DOI: 10.1111/eos.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023]
Abstract
This study evaluated the association between single-nucleotide polymorphisms (SNPs) in vitamin-D-related genes and the amount of external apical root resorption linked to orthodontic treatment. One hundred and forty-three individuals were assessed. The amount of external apical root resorption of upper central incisors (EARRinc ) and lower first molars (EARRmol ) were evaluated in radiographs. Seven SNPs were genotyped across four genes including the vitamin D receptor [VDR], group-specific component [GC], cytochrome P450 family 27 subfamily B member 1 [CYP27B1], and cytochrome P450 family 24 subfamily A member 1 [CYP24A1]. Linear regressions were implemented to determine allele-effects on external apical root resorption. Individuals carrying the AA genotype in VDR rs2228570 had a 21% higher EARRmol than those having AG and GG genotypes (95% CI: 1.03,1.40). EARRmol in heterozygous rs2228570, was 12% lower than for homozygotes (95%CI: 0.78,0.99). Participants with the CCG haplotype (rs1544410-rs7975232-rs731236) in VDR had an EARRmol 16% lower than those who did not carry this haplotype. Regarding CYP27B1 rs4646536, EARRinc in participants who had at least one G allele was 42% lower than for homozygotes AA (95%CI: 0.37,0.93). Although these results did not remain significant after multiple testing adjustment, potential associations may still be suggested. Further replication studies are needed to confirm or refute these findings.
Collapse
Affiliation(s)
- G Marañón-Vásquez
- Department of Pediatric Dentistry, and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - E C Küchler
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - S Hermann
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - E Paddenberg
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - A Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - F Baratto-Filho
- Department of Dentistry, School of Dentistry, Univille - University of the Joinville Region, Joinville, Santa Catarina, Brazil
| | - C Flores-Mir
- Division of Orthodontics, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - P Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - C Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| |
Collapse
|
18
|
Association of RNA m 7G Modification Gene Polymorphisms with Pediatric Glioma Risk. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3678327. [PMID: 36733406 PMCID: PMC9889142 DOI: 10.1155/2023/3678327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Glioma stemming from glial cells of the central nervous system (CNS) is one of the leading causes of cancer death in childhood. The genetic predisposition of glioma is not fully understood. METTL1-WDR4 methyltransferase complex is implicated in tumorigenesis by catalyzing N7-methylguanosine (m7G) modification of RNA. This study is aimed at determining the association of glioma risk with three polymorphisms (rs2291617, rs10877013, and rs10877012) in METTL1 and five polymorphisms (rs2156315 rs2156316, rs6586250, rs15736, and rs2248490) in WDR4 gene in children of Chinese Han. We enrolled 314 cases and 380 controls from three independent hospitals. Genotypes of these polymorphisms were determined using the TaqMan assay. We found the WDR4 gene rs15736 was significantly associated with reduced glioma risk (GA/AA vs. GG: adjusted odds ratio = 0.63, 95%confidence interval = 0.42 - 0.94, P = 0.023) out of the eight studied polymorphisms. Stratified analyses showed that the association of rs15736 with the risk of glioma remained significant in children aged 60 months or older, girls, the subgroups with astrocytic tumors, or grade I + II glioma. We also found the combined effects of five WDR4 gene polymorphisms on glioma risk. Finally, expression quantitative trait locus (eQTL) analyses elucidated that the rs15736 polymorphism was related to the expression level of WDR4 and neighboring gene cystathionine-beta-synthase (CBS). Our finding provided evidence of a causal association between WDR4 gene polymorphisms and glioma susceptibility in Chinese Han children.
Collapse
|
19
|
Xia X, Wang Y, Zheng JC. Internal m7G methylation: A novel epitranscriptomic contributor in brain development and diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:295-308. [PMID: 36726408 PMCID: PMC9883147 DOI: 10.1016/j.omtn.2023.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, N7-methylguanosine (m7G) methylation, originally considered as messenger RNA (mRNA) 5' caps modifications, has been identified at defined internal positions within multiple types of RNAs, including transfer RNAs, ribosomal RNAs, miRNA, and mRNAs. Scientists have put substantial efforts to discover m7G methyltransferases and methylated sites in RNAs to unveil the essential roles of m7G modifications in the regulation of gene expression and determine the association of m7G dysregulation in various diseases, including neurological disorders. Here, we review recent findings regarding the distribution, abundance, biogenesis, modifiers, and functions of m7G modifications. We also provide an up-to-date summary of m7G detection and profile mapping techniques, databases for validated and predicted m7G RNA sites, and web servers for m7G methylation prediction. Furthermore, we discuss the pathological roles of METTL1/WDR-driven m7G methylation in neurological disorders. Last, we outline a roadmap for future directions and trends of m7G modification research, particularly in the central nervous system.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Xiaohuan Xia, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai 201613, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai 200331, China,Corresponding author: Jialin C. Zheng, Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
20
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
21
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
22
|
IgA Vasculitis: Influence of CD40, BLK and BANK1 Gene Polymorphisms. J Clin Med 2022; 11:jcm11195577. [PMID: 36233442 PMCID: PMC9572210 DOI: 10.3390/jcm11195577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
CD40, BLK and BANK1 genes involved in the development and signaling of B-cells are identified as susceptibility loci for numerous inflammatory diseases. Accordingly, we assessed the potential influence of CD40, BLK and BANK1 on the pathogenesis of immunoglobulin-A vasculitis (IgAV), predominantly a B-lymphocyte inflammatory condition. Three genetic variants within CD40 (rs1883832, rs1535045, rs4813003) and BLK (rs2254546, rs2736340, rs2618476) as well as two BANK1 polymorphisms (rs10516487, rs3733197), previously associated with inflammatory diseases, were genotyped in 382 Caucasian patients with IgAV and 955 sex- and ethnically matched healthy controls. No statistically significant differences were observed in the genotype and allele frequencies of CD40, BLK and BANK1 when IgAV patients and healthy controls were compared. Similar results were found when CD40, BLK and BANK1 genotypes or alleles frequencies were compared between patients with IgAV stratified according to the age at disease onset or to the presence/absence of gastrointestinal or renal manifestations. Moreover, no CD40, BLK and BANK1 haplotype differences were disclosed between patients with IgAV and healthy controls and between patients with IgAV stratified according to the clinical characteristics mentioned above. Our findings indicate that CD40, BLK and BANK1 do not contribute to the genetic background of IgAV.
Collapse
|
23
|
RNA methylation in immune cells. Adv Immunol 2022; 155:39-94. [PMID: 36357012 DOI: 10.1016/bs.ai.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Dadyar M, Hussen BM, Eslami S, Taheri M, Emadi F, Ghafouri-Fard S, Sayad A. Expression of T cell-related lncRNAs in multiple sclerosis. Front Genet 2022; 13:967157. [PMID: 36092928 PMCID: PMC9461285 DOI: 10.3389/fgene.2022.967157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to in the pathophysiology of multiple sclerosis (MS). In order to appraise the role of T cell-related lncRNAs in this disorder, we assessed expressions of NEST, RMRP, TH2-LCR, MAFTRR and FLICR in MS patients and healthy individuals. We detected significant difference in the expression of RMRP and FLICR between cases and controls. There were substantial correlations between expressions of NEST, RMRP, TH2-LCR, MAFTRR and FLICR lncRNAs among patients, but not controls. The strongest correlations were found between RMRP and TH2-LCR, and between MAFTRR and RMRP with correlation coefficients of 0.69 and 0.59, respectively. ROC curve analysis revealed appropriate power of FLICR in differentiating between MS patients and healthy controls (AUC value = 0.84). Expression of NEST lncRNA was positively correlated with disease duration in MS patients, but negatively correlated with age at onset. In brief, we reported dysregulation of two T cell-related lncRNAs in MS patients and proposed FLICR as a putative marker for this disorder.
Collapse
Affiliation(s)
- Maryam Dadyar
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Farhad Emadi
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard, ; Arezou Sayad,
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard, ; Arezou Sayad,
| |
Collapse
|
25
|
Ge L, Zhu J, Liu J, Li L, Zhang J, Cheng J, Li Y, Yang Z, Li S, He J, Zhang X. METTL1 gene polymorphisms synergistically confer hepatoblastoma susceptibility. Discov Oncol 2022; 13:77. [PMID: 35986847 PMCID: PMC9392666 DOI: 10.1007/s12672-022-00545-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Hepatoblastoma is a rare but devastating pediatric liver malignancy. Overexpressed methyltransferase-like 1 (METTL1) is a methyltransferase that catalyzes essential N7-methylguanosine (m7G) modification of eukaryotic mRNA. Accumulating evidence has revealed the oncogenic potential of METTL1. However, whether METTL1 gene polymorphisms confer susceptibility to hepatoblastoma has not been reported. This study aimed to identify causal relationships between genetic variants of this gene and susceptibility to hepatoblastoma. MATERIALS AND METHODS Using the TaqMan assay, we genotyped three METTL1 polymorphisms (rs2291617 G > T, rs10877013 T > C, rs10877012 T > G) in germline DNA samples from 1759 Chinese children of Han ethnicity (313 cases vs. 1446 controls). RESULTS None of these polymorphisms were associated with hepatoblastoma risk. However, combination analysis showed that children with 1 to 3 risk genotypes were associated with increased hepatoblastoma risk (adjusted odds ratio = 1.47, 95% confidence interval 1.07-2.02; P = 0.018). Stratified analyses revealed significant effects of combined polymorphisms mainly among young children (< 17 months of age), boys, and those with advanced hepatoblastoma. CONCLUSION We identified some potential functional METTL1 gene polymorphisms that work together to increase the risk of hepatoblastoma among Chinese Han children; single polymorphism showed only weak effects. These METTL1 polymorphisms may be promising biomarkers for screening high-risk individuals for hepatoblastoma. These findings are inspiring and deserve to be validated among individuals of different ethnicities.
Collapse
Affiliation(s)
- Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, Henan, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004, Hunan, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Xianwei Zhang
- Department of Pediatric Oncologic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, 33 Longhu Waihuan East Road, Zhengzhou, 450018, Henan, China.
| |
Collapse
|
26
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
27
|
Marsh‐Wakefield F, Juillard P, Ashhurst TM, Juillard A, Shinko D, Putri GH, Read MN, McGuire HM, Byrne SN, Hawke S, Grau GE. Peripheral B-cell dysregulation is associated with relapse after long-term quiescence in patients with multiple sclerosis. Immunol Cell Biol 2022; 100:453-467. [PMID: 35416319 PMCID: PMC9322415 DOI: 10.1111/imcb.12552] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteSydneyNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Annette Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Diana Shinko
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
| | - Givanna H Putri
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Mark N Read
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology Group, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchThe Westmead Institute for Medical ResearchWestmeadNSWAustralia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
28
|
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front Neurol 2022; 13:796933. [PMID: 35651353 PMCID: PMC9149265 DOI: 10.3389/fneur.2022.796933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Vitamin D insufficiency during childhood has been linked to the development of multiple sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central nervous system (CNS). Since vitamin D was known to have immunoregulatory properties on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in aberrant immune responses and the development of MS. However, vitamin D receptors are present on many cell types, including neurons, oligodendrocytes, astrocytes and microglia, and vitamin D has profound effects on development and function of the CNS. This leads to the possibility that low vitamin D may alter the CNS in a manner that makes it vulnerable to inflammation and the development of MS. This review analysis the role of vitamin D in the immune and nervous system, and how vitamin D insufficiency in children may contribute to the development of MS.
Collapse
Affiliation(s)
- Sara E Gombash
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Sawdai
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Amy E Lovett-Racke
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Parray Z, Zargar MH, Asimi R, Dar WR, Yaqoob A, Raina A, Ganie H, Wani M, Shah ZA. Interleukin 32 gene promoter polymorphism: A genetic risk factor for multiple sclerosis in Kashmiri population. Gene X 2022; 824:146261. [PMID: 35131367 DOI: 10.1016/j.gene.2022.146261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Although the exact cause of multiple sclerosis is not known, there are a number of factors involved mainly environmental and genetic factors. The present study was done to determine association between IL-32 gene promoter polymorphism and IL-32 levels with multiple sclerosis. METHODS 48 relapsing remitting multiple sclerosis patients and 60 healthy controls were compared for IL-32 gene promoter polymorphism and IL-32 levels. RESULTS There was no significant difference in genotype CT between the MS patients and healthy controls (p 0.130) where as a significant difference in genotype (CC) frequencies among MS patients and healthy controls (p 0.039) was observed. The difference in C allele frequency was also statistically significant between two study groups (p 0.01). Multivariate regression analysis revealed that the CC genotype might impact the risk of disease susceptibility up to 3.71 times and the presence of C allele might increase the risk of susceptibility to multiple sclerosis by 2.26 fold. The serum IL-32 levels were not statistically different multiple sclerosis patients and healthy controls and between wild and mutant genotypes. CONCLUSIONS IL-32 gene promoter polymorphism is a genetic risk factor for multiple sclerosis patients particularly women.
Collapse
Affiliation(s)
- Zahoor Parray
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Mahrukh H Zargar
- Department of Advanced Human Genetics, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India.
| | - Ravouf Asimi
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Waseem R Dar
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Arjimand Yaqoob
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Adnan Raina
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Hilal Ganie
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Maqbool Wani
- Department of Neurology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| | - Zafar A Shah
- Department of Immunology, Sheri Kashmir Institute of Medical Sciences, J & K 190011, India
| |
Collapse
|
30
|
Lu M, Shi H, Taylor BV, Körner H. Alterations of subset and cytokine profile of peripheral T helper cells in PBMCs from Multiple Sclerosis patients or from individuals with MS risk SNPs near genes CYP27B1 and CYP24A1. Cytokine 2022; 153:155866. [PMID: 35339045 DOI: 10.1016/j.cyto.2022.155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
T helper cells play an important role in the aetiology of Multiple Sclerosis (MS). Vitamin D has an anti-inflammatory effect on T helper cells and can affect onset and pathogenesis of MS. Two genes of the metabolic Vitamin D pathway expressed by activated T helper (Th) cells have been identified as MS risk genes by genome-wide association studies, CYP27B1 (25(OH)D3 1-alpha-hydroxylase) and CYP24A1 (1,25(OH)2D3 24-alpha-hydroxylase). Therefore, we hypothesize that the MS risk alleles around gene CYP27B1 and CYP24A1 are associated with the altered inflammatory profile of peripheral Th cells in PBMCs both ex vivo and in vitro potentially influencing the pathogenesis of MS. PBMCs from MS patients (41 RRMS patients in their remitting stage and 4 SPMS patients) and 12 healthy controls were collected, subpopulation of Th cells in PBMCs and cytokine profile were tested by Flow cytometry and Cytometric Bead Array (CBA), respectively. MS risk SNPs were genotyped by allele-specific PCR analysis. Data were analysed using nonparametric tests and linear regression for adjusting multiple factors. The proportion of Th17.1, Th17 and Th1 cells were all associated with MS while the proportions of Th2 (significant) and Th17 (near significant) cells were correlated with the expanded disability scale score of MS patients. Additionally, we found a MS-specific dysregulation in the IL-6 and TNF production of Th cells in Concanavalin A-stimulated PBMCs. Furthermore, the risk allele rs2248359-C (near gene CYP24A1) showed a consistent inhibitory effect on the proportions of Th1 and Th17.1 cells, and the presence of the homozygous risk allele rs703842-AA (near gene CYP27B1) reduced the production of IL-2. In conclusion, both MS disease and its risk alleles near Vitamin D metabolism genes influence the inflammatory profile of T helper cells in PBMCs.
Collapse
Affiliation(s)
- Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, China.
| |
Collapse
|
31
|
Arneth B, Kraus J. Experimental laboratory biomarkers in multiple sclerosis. Wien Med Wochenschr 2022; 172:346-358. [PMID: 35254566 DOI: 10.1007/s10354-022-00920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system; the cause of this condition remains unknown. Researchers have analyzed different biomarkers related to MS. Here, experimental laboratory biomarkers for MS are identified and analyzed. METHODS The current study examined articles investigating biomarkers for MS. Records were obtained from the PubMed, LILACS, and EBSCO databases using an identical search strategy and terms that included "multiple sclerosis," "MS," and "biomarkers." In the current review, we also focus on lesser known biomarkers that have not yet been established for use in clinical practice. RESULTS Previous studies have explored molecular substances that may help diagnose MS and manage its adverse effects. Commonly studied factors include neurofilaments, sCD163, CXCL13, NEO, NF‑L, OPN, B cells, T cells, and integrin-binding proteins. CONCLUSIONS Interactions between environmental and genetic factors have been implicated in the development of MS. Previous investigations have identified a wide range of biomarkers that can be used for diagnosis and disease management. These molecules and their associated studies provide vital insight and data to help primary physicians improve clinical and health outcomes for MS patients.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria.,Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
32
|
Timasheva Y, Nasibullin TR, Tuktarova IA, Erdman VV, Galiullin TR, Zaplakhova OV, Bakhtiiarova KZ. Multilocus evaluation of genetic predictors of multiple sclerosis. Gene 2022; 809:146008. [PMID: 34656742 DOI: 10.1016/j.gene.2021.146008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genome-wide association studies identified numerous susceptibility loci for multiple sclerosis in populations of European ancestry, but the associations are not always reproducible in other populations due to admixture and different linkage disequilibrium patterns obscuring true association signals. OBJECTIVE Our aim was to identify genetic predictors of multiple sclerosis in three ethnically homogenous populations from the Volga-Ural region of Russian Federation. METHODS In the largest to date study of multiple sclerosis in Russian population, involving 2048 participants from the Republic of Bashkortostan, Russian Federation (641 patients with multiple sclerosis and 1407 unaffected individuals), we performed replication analysis of previously identified genome-wide signals for multiple sclerosis. Associations were tested using logistic regression analysis under additive genetic model adjusted for sex. Meta-analysis of the study results in three populations was performed under fixed effects and random effects models. RESULTS We demonstrate the association with multiple sclerosis of the five variants (INAVA rs7522462, EOMES rs11129295, C6orf10 rs3129934, CD86 rs9282641, and GPR65 rs2119704). The strongest association (OR = 2.16, CI:1.85-2.74, P = 2.53x10-13) was detected for rs3129934 polymorphism in the major histocompatibility region. Multilocus analysis has revealed 322 and 27 allelic patterns associated with multiple sclerosis in women and men, respectively. In women, the highest risk of MS was conferred by C6orf10 rs3129934*T/T + STAT3 rs744166*T combination (OR = 11.87), in men - by C6orf10 rs3129934*T + EOMES rs11129295*C + RPS6KB1 rs180515*C combination (OR = 3.25). CONCLUSION We confirm five associations with multiple sclerosis previously reported in genome-wide scans in Europeans in three ethnic groups from the Volga-Ural region of Russia.
Collapse
Affiliation(s)
- Yanina Timasheva
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russia; Section of Genomics of Common Disease, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom; Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia.
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russia
| | - Ilsiyar A Tuktarova
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russia
| | - Vera V Erdman
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russia
| | - Timur R Galiullin
- G.G. Kuvatov Republic Clinical Hospital, 132 Dostoevsky Street, 450005 Ufa, Russia
| | - Oksana V Zaplakhova
- Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia; G.G. Kuvatov Republic Clinical Hospital, 132 Dostoevsky Street, 450005 Ufa, Russia
| | | |
Collapse
|
33
|
Genetics and functional genomics of multiple sclerosis. Semin Immunopathol 2022; 44:63-79. [PMID: 35022889 DOI: 10.1007/s00281-021-00907-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease with genetic predisposition. Over the last decade, genome-wide association studies with increasing sample size led to the discovery of robustly associated genetic variants at an exponential rate. More than 200 genetic loci have been associated with MS susceptibility and almost half of its heritability can be accounted for. However, many challenges and unknowns remain. Definitive studies of disease progression and endophenotypes are yet to be performed, whereas the majority of the identified MS variants are not yet functionally characterized. Despite these shortcomings, the unraveling of MS genetics has opened up a new chapter on our understanding MS causal mechanisms.
Collapse
|
34
|
Lim CK, Bronson PG, Varade J, Behrens TW, Hammarström L. STXBP6 and B3GNT6 Genes are Associated With Selective IgA Deficiency. Front Genet 2022; 12:736235. [PMID: 34976003 PMCID: PMC8718598 DOI: 10.3389/fgene.2021.736235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Immunoglobulin A Deficiency (IgAD) is a polygenic primary immune deficiency, with a strong genetic association to the human leukocyte antigen (HLA) region. Previous genome-wide association studies (GWAS) have identified five non-HLA risk loci (IFIH1, PVT1, ATG13-AMBRA1, AHI1 and CLEC16A). In this study, we investigated the genetic interactions between different HLA susceptibility haplotypes and non-MHC genes in IgAD. To do this, we stratified IgAD subjects and healthy controls based on HLA haplotypes (N = 10,993), and then performed GWAS to identify novel genetic regions contributing to IgAD susceptibility. After replicating previously published HLA risk haplotypes, we compared individuals carrying at least one HLA risk allele (HLA-B*08:01-DRB1*03:01-DQB1*02:01 or HLA-DRB1*07:01-DQB1*02:02 or HLA-DRB1*01-DQB1*05:01) with individuals lacking an HLA risk allele. Subsequently, we stratified subjects based on the susceptibility alleles/haplotypes and performed gene-based association analysis using 572,856 SNPs and 24,125 genes. A significant genome-wide association in STXBP6 (rs4097492; p = 7.63 × 10-9) was observed in the cohort carrying at least one MHC risk allele. We also identified a significant gene-based association for B3GNT6 (P Gene = 2.1 × 10-6) in patients not carrying known HLA susceptibility alleles. Our findings indicate that the etiology of IgAD differs depending on the genetic background of HLA susceptibility haplotypes.
Collapse
Affiliation(s)
- Che Kang Lim
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University, Hospital Huddinge, Stockholm, Sweden.,Department Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Paola G Bronson
- RED OMNI Human Genetics, Genentech, South San Francisco, CA, United States
| | - Jezabel Varade
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University, Hospital Huddinge, Stockholm, Sweden.,Biomedical Research Center (CINBIO) Singular Research Center, University of Vigo, Vigo, Spain
| | | | - Lennart Hammarström
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University, Hospital Huddinge, Stockholm, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
35
|
Capturing SNP Association across the NK Receptor and HLA Gene Regions in Multiple Sclerosis by Targeted Penalised Regression Models. Genes (Basel) 2021; 13:genes13010087. [PMID: 35052430 PMCID: PMC8774935 DOI: 10.3390/genes13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Conventional genome-wide association studies (GWASs) of complex traits, such as Multiple Sclerosis (MS), are reliant on per-SNP p-values and are therefore heavily burdened by multiple testing correction. Thus, in order to detect more subtle alterations, ever increasing sample sizes are required, while ignoring potentially valuable information that is readily available in existing datasets. To overcome this, we used penalised regression incorporating elastic net with a stability selection method by iterative subsampling to detect the potential interaction of loci with MS risk. Through re-analysis of the ANZgene dataset (1617 cases and 1988 controls) and an IMSGC dataset as a replication cohort (1313 cases and 1458 controls), we identified new association signals for MS predisposition, including SNPs above and below conventional significance thresholds while targeting two natural killer receptor loci and the well-established HLA loci. For example, rs2844482 (98.1% iterations), otherwise ignored by conventional statistics (p = 0.673) in the same dataset, was independently strongly associated with MS in another GWAS that required more than 40 times the number of cases (~45 K). Further comparison of our hits to those present in a large-scale meta-analysis, confirmed that the majority of SNPs identified by the elastic net model reached conventional statistical GWAS thresholds (p < 5 × 10−8) in this much larger dataset. Moreover, we found that gene variants involved in oxidative stress, in addition to innate immunity, were associated with MS. Overall, this study highlights the benefit of using more advanced statistical methods to (re-)analyse subtle genetic variation among loci that have a biological basis for their contribution to disease risk.
Collapse
|
36
|
Saadi F, Chakravarty D, Kumar S, Kamble M, Saha B, Shindler KS, Das Sarma J. CD40L protects against mouse hepatitis virus-induced neuroinflammatory demyelination. PLoS Pathog 2021; 17:e1010059. [PMID: 34898656 PMCID: PMC8699621 DOI: 10.1371/journal.ppat.1010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/23/2021] [Accepted: 10/23/2021] [Indexed: 11/19/2022] Open
Abstract
Neurotropic mouse hepatitis virus (MHV-A59/RSA59) infection in mice induces acute neuroinflammation due to direct neural cell dystrophy, which proceeds with demyelination with or without axonal loss, the pathological hallmarks of human neurological disease, Multiple sclerosis (MS). Recent studies in the RSA59-induced neuroinflammation model of MS showed a protective role of CNS-infiltrating CD4+ T cells compared to their pathogenic role in the autoimmune model. The current study further investigated the molecular nexus between CD4+ T cell-expressed CD40Ligand and microglia/macrophage-expressed CD40 using CD40L-/- mice. Results demonstrate CD40L expression in the CNS is modulated upon RSA59 infection. We show evidence that CD40L-/- mice are more susceptible to RSA59 induced disease due to reduced microglia/macrophage activation and significantly dampened effector CD4+ T recruitment to the CNS on day 10 p.i. Additionally, CD40L-/- mice exhibited severe demyelination mediated by phagocytic microglia/macrophages, axonal loss, and persistent poliomyelitis during chronic infection, indicating CD40-CD40L as host-protective against RSA59-induced demyelination. This suggests a novel target in designing prophylaxis for virus-induced demyelination and axonal degeneration, in contrast to immunosuppression which holds only for autoimmune mechanisms of inflammatory demyelination. MS is primarily considered an autoimmune CNS disease, but its potential viral etiology cannot be ignored. Myelin-specific CD40L+CD4+ T cells migration into the CNS and resultant neuroinflammation is considered pathogenic in autoimmune MS. In contrast, CD40L+CD4+ T infiltration into the MHV-induced inflamed CNS and their interaction with CD40+ microglia/macrophages are shown to be protective in our study. Considering differential etiology but comparable demyelination and axonal loss, immunosuppressive treatments may not necessarily ameliorate MS in all patients. MHV-induced demyelination in this study indicates that the interaction between CD40L on CD4+T cells and CD40 on microglia/macrophage plays an important protective role against MHV-induced chronic progressive demyelination.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Saurav Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Mithila Kamble
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Kenneth S. Shindler
- Departments of Ophthalmology and
- Neurology University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, United States of America
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Departments of Ophthalmology and
- * E-mail:
| |
Collapse
|
37
|
Barnes CLK, Hayward C, Porteous DJ, Campbell H, Joshi PK, Wilson JF. Contribution of common risk variants to multiple sclerosis in Orkney and Shetland. Eur J Hum Genet 2021; 29:1701-1709. [PMID: 34088990 PMCID: PMC8560837 DOI: 10.1038/s41431-021-00914-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Orkney and Shetland, the population isolates that make up the Northern Isles of Scotland, are of particular interest to multiple sclerosis (MS) research. While MS prevalence is high in Scotland, Orkney has the highest global prevalence, higher than more northerly Shetland. Many hypotheses for the excess of MS cases in Orkney have been investigated, including vitamin D deficiency and homozygosity: neither was found to cause the high prevalence of MS. It is possible that this excess prevalence may be explained through unique genetics. We used polygenic risk scores (PRS) to look at the contribution of common risk variants to MS. Analyses were conducted using ORCADES (97/2118 cases/controls), VIKING (15/2000 cases/controls) and Generation Scotland (30/8708 cases/controls) data sets. However, no evidence of a difference in MS-associated common variant frequencies was found between the three control populations, aside from HLA-DRB1*15:01 tag SNP rs9271069. This SNP had a significantly higher risk allele frequency in Orkney (0.23, p value = 8 × 10-13) and Shetland (0.21, p value = 2.3 × 10-6) than mainland Scotland (0.17). This difference in frequency is estimated to account for 6 (95% CI 3, 8) out of 150 observed excess cases per 100,000 individuals in Shetland and 9 (95% CI 8, 11) of the observed 257 excess cases per 100,000 individuals in Orkney, compared with mainland Scotland. Common variants therefore appear to account for little of the excess burden of MS in the Northern Isles of Scotland.
Collapse
Affiliation(s)
- Catriona L K Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland.
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.
| |
Collapse
|
38
|
Fazia T, Marzanati D, Carotenuto AL, Beecham A, Hadjixenofontos A, McCauley JL, Saddi V, Piras M, Bernardinelli L, Gentilini D. Homozygosity Haplotype and Whole-Exome Sequencing Analysis to Identify Potentially Functional Rare Variants Involved in Multiple Sclerosis among Sardinian Families. Curr Issues Mol Biol 2021; 43:1778-1793. [PMID: 34889895 PMCID: PMC8929092 DOI: 10.3390/cimb43030125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex multifactorial autoimmune disease, whose sex- and age-adjusted prevalence in Sardinia (Italy) is among the highest worldwide. To date, 233 loci were associated with MS and almost 20% of risk heritability is attributable to common genetic variants, but many low-frequency and rare variants remain to be discovered. Here, we aimed to contribute to the understanding of the genetic basis of MS by investigating potentially functional rare variants. To this end, we analyzed thirteen multiplex Sardinian families with Immunochip genotyping data. For five families, Whole Exome Sequencing (WES) data were also available. Firstly, we performed a non-parametric Homozygosity Haplotype analysis for identifying the Region from Common Ancestor (RCA). Then, on these potential disease-linked RCA, we searched for the presence of rare variants shared by the affected individuals by analyzing WES data. We found: (i) a variant (43181034 T > G) in the splicing region on exon 27 of CUL9; (ii) a variant (50245517 A > C) in the splicing region on exon 16 of ATP9A; (iii) a non-synonymous variant (43223539 A > C), on exon 9 of TTBK1; (iv) a non-synonymous variant (42976917 A > C) on exon 9 of PPP2R5D; and v) a variant (109859349-109859354) in 3'UTR of MYO16.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (D.M.); (A.L.C.); (L.B.); (D.G.)
| | - Daria Marzanati
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (D.M.); (A.L.C.); (L.B.); (D.G.)
| | - Anna Laura Carotenuto
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (D.M.); (A.L.C.); (L.B.); (D.G.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.B.); (A.H.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Athena Hadjixenofontos
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.B.); (A.H.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.B.); (A.H.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (D.M.); (A.L.C.); (L.B.); (D.G.)
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (D.M.); (A.L.C.); (L.B.); (D.G.)
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy
| |
Collapse
|
39
|
Windsor R, Stewart SD, Talboom J, Lewis C, Naymik M, Piras IS, Keller S, Borjesson DL, Clark G, Khanna C, Huentelman M. Leukocyte and cytokine variables in asymptomatic Pugs at genetic risk of necrotizing meningoencephalitis. J Vet Intern Med 2021; 35:2846-2852. [PMID: 34687084 PMCID: PMC8692191 DOI: 10.1111/jvim.16293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Necrotizing meningoencephalitis (NME, aka Pug dog encephalitis) is an inflammatory brain condition associated with advanced disease at initial presentation, rapid progression, and poor response to conventional immunomodulatory therapy. HYPOTHESIS/OBJECTIVES That genetic risk for NME, defined by a common germline DNA haplotype located on chromosome 12, is associated with altered blood cytokine concentrations and leukocyte subsets in asymptomatic Pugs. ANIMALS Forty Pug dogs asymptomatic for NME from a hospital sample. METHODS Prospective observational cohort study, including germline genome-wide genotyping, plasma cytokine determination by multiplexed profiling, and leukocyte subset characterization by flow cytometric analysis. RESULTS Seven (18%) dogs were high risk, 10 (25%) medium risk, and 23 (58%) low risk for NME, giving a risk haplotype frequency of 30%. High and medium risk Pugs had significantly lower proportion of CD4+ T cells (median 22% [range, 7.3%-38%] vs 29% [range, 16%-41%], P = .03) and higher plasma IL-10 concentrations than low-risk Pugs (median 14.11 pg/mL [range, 9.66-344.19 pg/mL] vs 12.21 pg/mL [range, 2.59-18.53 pg/mL], P = .001). No other variables were significantly associated with the NME haplotype-based risk. CONCLUSIONS AND CLINICAL IMPORTANCE These data suggest an immunological underpinning to NME and a biologic rationale for future clinical trials that investigate novel diagnostic, preventative, and therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Rebecca Windsor
- Ethos Veterinary Health, Woburn, Massachusetts, USA.,Ethos Discovery (501c3), San Diego, California, USA
| | - Samuel D Stewart
- Ethos Veterinary Health, Woburn, Massachusetts, USA.,Ethos Discovery (501c3), San Diego, California, USA
| | - Joshua Talboom
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Candace Lewis
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marcus Naymik
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Stefan Keller
- Department of Pathology, Microbiology, Immunology, University of California, Davis, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, Immunology, University of California, Davis, Davis, California, USA
| | - Gary Clark
- Gary Clark Statistical Consulting LLC, Superior, Colorado, USA
| | - Chand Khanna
- Ethos Veterinary Health, Woburn, Massachusetts, USA.,Ethos Discovery (501c3), San Diego, California, USA
| | - Matthew Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| |
Collapse
|
40
|
Eriksson AM, Leikfoss IS, Abrahamsen G, Sundvold V, Isom MM, Keshari PK, Rognes T, Landsverk OJB, Bos SD, Harbo HF, Spurkland A, Berge T. Exploring the role of the multiple sclerosis susceptibility gene CLEC16A in T cells. Scand J Immunol 2021; 94:e13050. [PMID: 34643957 DOI: 10.1111/sji.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
C-type lectin-like domain family 16 member A (CLEC16A) is associated with autoimmune disorders, including multiple sclerosis (MS), but its functional relevance is not completely understood. CLEC16A is expressed in several immune cells, where it affects autophagic processes and receptor expression. Recently, we reported that the risk genotype of an MS-associated single nucleotide polymorphism in CLEC16A intron 19 is associated with higher expression of CLEC16A in CD4+ T cells. Here, we show that CLEC16A expression is induced in CD4+ T cells upon T cell activation. By the use of imaging flow cytometry and confocal microscopy, we demonstrate that CLEC16A is located in Rab4a-positive recycling endosomes in Jurkat TAg T cells. CLEC16A knock-down in Jurkat cells resulted in lower cell surface expression of the T cell receptor, however, this did not have a major impact on T cell activation response in vitro in Jurkat nor in human, primary CD4+ T cells.
Collapse
Affiliation(s)
- Anna M Eriksson
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Sørum Leikfoss
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Neuroscience Research Unit, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Pankaj K Keshari
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Steffan D Bos
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hanne F Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tone Berge
- Neuroscience Research Unit, Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.,Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
41
|
Hrastelj J, Andrews R, Loveless S, Morgan J, Bishop SM, Bray NJ, Williams NM, Robertson NP. CSF-resident CD4 + T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun 2021; 3:fcab155. [PMID: 34761221 PMCID: PMC8574295 DOI: 10.1093/braincomms/fcab155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The CNS has traditionally been considered an immune privileged site, but is now understood to have a system of immune surveillance, predominantly involving CD4+ T-cells. Identifying functional differences between CNS and blood CD4+ T-cells, therefore, have relevance to CNS immune surveillance as well as to neurological conditions, such as multiple sclerosis, in which CD4+ T-cells play a central role. Here, CD4+ T-cells were purified from CSF and blood from 21 patients with newly diagnosed treatment-naïve multiple sclerosis and 20 individuals with non-inflammatory disorders using fluorescence-activated cell sorting, and their transcriptomes were profiled by RNA sequencing. Paired comparisons between CD4+ T-cells from CSF and blood identified 5156 differentially expressed genes in controls and 4263 differentially expressed in multiple sclerosis patients at false discovery rate <5%. Differential expression analysis of CD4+ T-cells collected from the CSF highlighted genes involved in migration, activation, cholesterol biosynthesis and signalling, including those with known relevance to multiple sclerosis pathogenesis and treatment. Expression of markers of CD4+ T-cell subtypes suggested an increased proportion of Th1 and Th17 cells in CSF. Gene ontology terms significant only in multiple sclerosis were predominantly those involved in cellular proliferation. A two-way comparison of CSF versus blood CD4+ T-cells in multiple sclerosis compared with non-inflammatory disorder controls identified four significant genes at false discovery rate <5% (CYP51A1, LRRD1, YES1 and PASK), further implicating cholesterol biosynthesis and migration mechanisms. Analysis of CSF CD4+ T-cells in an extended cohort of multiple sclerosis cases (total N = 41) compared with non-inflammatory disorder controls (total N = 38) identified 140 differentially expressed genes at false discovery rate < 5%, many of which have known relevance to multiple sclerosis, including XBP1, BHLHE40, CD40LG, DPP4 and ITGB1. This study provides the largest transcriptomic analysis of purified cell subpopulations in CSF to date and has relevance for the understanding of CNS immune surveillance, as well as multiple sclerosis pathogenesis and treatment discovery.
Collapse
Affiliation(s)
- James Hrastelj
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Robert Andrews
- School of Medicine, Cardiff
University, Cardiff CF14 4XW, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Joanne Morgan
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Stefan Mark Bishop
- European Cancer Stem Cell Research Institute,
Cardiff University, Cardiff CF24 4HQ, UK
| | - Nicholas J Bray
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Nigel M Williams
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical
Neuroscience, Cardiff University, Cardiff CF14 4XW, UK
| |
Collapse
|
42
|
Manian M, Sohrabi E, Eskandari N, Assarehzadegan MA, Ferns GA, Nourbakhsh M, Jazayeri MH, Nedaeinia R. An Integrated Bioinformatics Analysis of the Potential Regulatory Effects of miR-21 on T-cell Related Target Genes in Multiple Sclerosis. Avicenna J Med Biotechnol 2021; 13:149-165. [PMID: 34484645 PMCID: PMC8377402 DOI: 10.18502/ajmb.v13i3.6364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Overexpression of miR-21 is a characteristic feature of patients with Multiple Sclerosis (MS) and is involved in gene regulation and the expression enhancement of pro-inflammatory factors including IFNγ and TNF-α following stimulation of T-cells via the T Cell Receptor (TCR). In this study, a novel integrated bioinformatics analysis was used to obtain a better understanding of the involvement of miR-21 in the development of MS, its protein biomarker signatures, RNA levels, and drug interactions through existing microarray and RNA-seq datasets of MS. METHODS In order to obtain data on the Differentially Expressed Genes (DEGs) in patients with MS and normal controls, the GEO2R web tool was used to analyze the Gene Expression Omnibus (GEO) datasets, and then Protein-Protein Interaction (PPI) networks of co-expressed DEGs were designed using STRING. A molecular network of miRNA-genes and drugs based on differentially expressed genes was created for T-cells of MS patients to identify the targets of miR-21, that may act as important regulators and potential biomarkers for early diagnosis, prognosis and, potential therapeutic targets for MS. RESULTS It found that seven genes (NRIP1, ARNT, KDM7A, S100A10, AK2, TGFβR2, and IL-6R) are regulated by drugs used in MS and miR-21. Finally, three overlapping genes (S100A10, NRIP1, KDM7A) were identified between miRNA-gene-drug network and nineteen genes as hub genes which can reflect the pathophysiology of MS. CONCLUSION Our findings suggest that miR-21 and MS-related drugs can act synergistically to regulate several genes in the existing datasets, and miR-21 inhibitors have the potential to be used in MS treatment.
Collapse
Affiliation(s)
- Mostafa Manian
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Ali Assarehzadegan
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon A. Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Mitra Nourbakhsh
- Department of Biochemistry and Nutrition, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Exome sequencing reveals novel rare variants in Iranian familial multiple sclerosis: The importance of POLD2 in the disease pathogenesis. Genomics 2021; 113:2645-2655. [PMID: 34116171 DOI: 10.1016/j.ygeno.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/20/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
The prevalence of familial multiple sclerosis (FMS) is increasing worldwide which endorses the heritability of the disease. Given that many genome variations are ethnicity-specific and consanguineous marriage could affect genetic diseases, hereditary disease gene analysis among FMS patients from Iran, a country with high rates of parental consanguinity, could be highly effective in finding mutations underlying disease pathogenesis. To examine rare genetic mutations, we selected three Iranian FMS cases with ≥3 MS patients in more than one generation and performed whole exome sequencing. We identified a homozygous rare missense variant in POLD2 (p. Arg141Cys; rs372336011). Molecular dynamics analysis showed reduced polar dehydration energy and conformational changes in POLD2 mutant. Further, we found a heterozygote rare missense variant in NBFP1 (p. Gly487Asp; rs778806175). Our study revealed the possible role of novel rare variants in FMS. Molecular dynamic simulation provided the initial evidence of the structural changes behind POLD2 mutant.
Collapse
|
44
|
Genomic and functional evaluation of TNFSF14 in multiple sclerosis susceptibility. J Genet Genomics 2021; 48:497-507. [PMID: 34353742 DOI: 10.1016/j.jgg.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
Among multiple sclerosis (MS) susceptibility genes, the strongest non-human leukocyte antigen (HLA) signal in the Italian population maps to the TNFSF14 gene encoding LIGHT, a glycoprotein involved in dendritic cell (DC) maturation. Through fine-mapping in a large Italian dataset (4,198 patients with MS and 3,903 controls), we show that the TNFSF14 intronic SNP rs1077667 is the primarily MS-associated variant in the region. Expression quantitative trait locus (eQTL) analysis indicates that the MS risk allele is significantly associated with reduced TNFSF14 messenger RNA levels in blood cells, which is consistent with the allelic imbalance in RNA-Seq reads (P < 0.0001). The MS risk allele is associated with reduced levels of TNFSF14 gene expression (P < 0.01) in blood cells from 84 Italian patients with MS and 80 healthy controls (HCs). Interestingly, patients with MS are lower expressors of TNFSF14 compared to HC (P < 0.007). Individuals homozygous for the MS risk allele display an increased percentage of LIGHT-positive peripheral blood myeloid DCs (CD11c+, P = 0.035) in 37 HCs, as well as in in vitro monocyte-derived DCs from 22 HCs (P = 0.04). Our findings suggest that the intronic variant rs1077667 alters the expression of TNFSF14 in immune cells, which may play a role in MS pathogenesis.
Collapse
|
45
|
Multiple sclerosis patients have reduced resting and increased activated CD4 +CD25 +FOXP3 +T regulatory cells. Sci Rep 2021; 11:10476. [PMID: 34006899 PMCID: PMC8131694 DOI: 10.1038/s41598-021-88448-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Resting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.
Collapse
|
46
|
Huang Q, Xu WD, Su LC, Liu XY, Huang AF. Association of CD40 Gene Polymorphisms With Systemic Lupus Erythematosus and Rheumatoid Arthritis in a Chinese Han Population. Front Immunol 2021; 12:642929. [PMID: 33968033 PMCID: PMC8100582 DOI: 10.3389/fimmu.2021.642929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are complex autoimmune diseases. CD40 participates in inflammatory response, and promotes fibroblast proliferation, leading to occurrence and progression of SLE, RA. This study explores CD40 gene polymorphisms in SLE and RA patients from a Chinese Han population. Two hundred SLE patients, 340 RA patients, and 900 healthy controls were enrolled. Genomic DNA was extracted from peripheral blood, and six polymorphisms of CD40 gene (rs3765456, rs1569723, rs73115010, rs13040307, rs1883832, and rs4810485) were detected by KASP method. Frequencies of rs1569723 genotypes AA, AC, AA+AC were significantly higher in RA patients as compared to those in healthy controls (P = 0.049, P = 0.024, P = 0.022). Frequencies of genotypes CT, CC+CT of rs1883832, and GT, GG+GT of rs4810485 were significantly higher in RA patients as compared to those in healthy controls (P = 0.012, P = 0.018, P = 0.009, P = 0.015). RA patients carrying rs13040307 C allele and rs73115010 T allele showed increased number of swollen joints. Moreover, frequency of allele T of rs13040307 was lower in SLE patients with positive anti-dsDNA and hematuria as compared to that in patients without these parameters (P = 0.038, P = 0.045). There were increased frequencies of genotype TT, allele T for rs13040307 and lower frequencies of genotype TT, allele T for rs73115010 in lupus patients with myositis (all P<0.05). Interestingly, frequencies of rs1569723 A allele, rs4810485 T allele were higher in SLE patients with myositis, and frequencies of rs3765456 A allele, rs1883832 T allele were lower in SLE patients with myositis (All P<0.05). In conclusion, CD40 gene polymorphisms may associate with susceptibility to SLE and RA.
Collapse
Affiliation(s)
- Qi Huang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Xiao-Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
47
|
Paramonova N, Kalnina J, Dokane K, Dislere K, Trapina I, Sjakste T, Sjakste N. Genetic variations in the PSMA6 and PSMC6 proteasome genes are associated with multiple sclerosis and response to interferon-β therapy in Latvians. Exp Ther Med 2021; 21:478. [PMID: 33767773 PMCID: PMC7976443 DOI: 10.3892/etm.2021.9909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Several polymorphisms in genes related to the ubiquitin-proteasome system exhibit an association with pathogenesis and prognosis of various human autoimmune diseases. Our previous study reported the association between multiple sclerosis (MS) and the PSMA3-rs2348071 polymorphism in the Latvian population. The current study aimed to evaluate the PSMA6 and PSMC6 genetic variations, their interaction between each other and with the rs2348071, on the susceptibility to MS risk and response to therapy in the Latvian population. PSMA6-rs2277460, -rs1048990 and PSMC6-rs2295826, -rs2295827 were genotyped in the MS case/control study and analysed in terms of genotype-protein correlation network. The possible association with the disease and alleles, single- and multi-locus genotypes and haplotypes of the studied loci was assessed. Response to therapy was evaluated in terms of 'no evidence of disease activity'. To the best of our knowledge, the present study was the first to report that single- and multi-loci variations in the PSMA6, PSMC6 and PSMA3 proteasome genes may have contributed to the risk of MS in the Latvian population. The results of the current study suggested a potential for the PSMA6-rs1048990 to be an independent marker for the prognosis of interferon-β therapy response. The genotype-phenotype network presented in the current study provided a new insight into the pathogenesis of MS and perspectives for future pharmaceutical interventions.
Collapse
Affiliation(s)
- Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Dokane
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Dislere
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Ilva Trapina
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Tatjana Sjakste
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia
| | - Nikolajs Sjakste
- Genomics and Bioinformatics, Institute of Biology of The University of Latvia, LV-1004 Riga, Latvia.,Department of Medical Biochemistry of The University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
48
|
Scazzone C, Agnello L, Bivona G, Lo Sasso B, Ciaccio M. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochem Genet 2021; 59:1-30. [PMID: 33159645 DOI: 10.1007/s10528-020-10010-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS), resulting from the interaction among genetic, epigenetic, and environmental factors. Vitamin D is a secosteroid, and its circulating levels are influenced by environment and genetics. In the last decades, research data on the association between MS and vitamin D status led to hypothesize a possible role for hypovitaminosis D as a risk factor for MS. Some gene variants encoding proteins involved in vitamin D metabolism, transport, and function, which are responsible for vitamin D status alterations, have been related to MS susceptibility. This review explores the current literature on the influence of vitamin D-related genes in MS susceptibility, reporting all single-nucleotide polymorphisms (SNPs) investigated to date in 12 vitamin D pathway genes. Among all, the gene codifying vitamin D receptor (VDR) is the most studied. The association between VDR SNPs and MS risk has been reported by many Authors, with a few studies producing opposite results. Other vitamin D-related genes (including DHCR7/NADSYN1, CYP2R1, CYP27A1, CYP3A4, CYP27B1, CYP24A1, Megalin-DAB2-Cubilin, FGF-23, and Klotho) have been less investigated and achieved more conflicting evidence. Taken together, findings from the studies reviewed cannot clarify whether and to what extent vitamin D-related gene variants can influence MS risk.
Collapse
Affiliation(s)
- Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy.
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy.
| |
Collapse
|
49
|
Hares K, Kemp K, Loveless S, Rice CM, Scolding N, Tallantyre E, Robertson N, Wilkins A. KIF5A and the contribution of susceptibility genotypes as a predictive biomarker for multiple sclerosis. J Neurol 2021; 268:2175-2184. [PMID: 33484325 PMCID: PMC8179895 DOI: 10.1007/s00415-020-10373-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/01/2022]
Abstract
There is increasing interest in the development of multiple sclerosis (MS) biomarkers that reflect central nervous system tissue injury to determine prognosis. We aimed to assess the prognostic value of kinesin superfamily motor protein KIF5A in MS by measuring levels of KIF5A in cerebrospinal fluid (CSF) combined with analysis of single nucleotide polymorphisms (SNPs; rs12368653 and rs703842) located within a MS susceptibility gene locus at chromosome 12q13-14 region. Enzyme-linked immunosorbent assay was used to measure KIF5A in CSF obtained from two independent biobanks comprising non-inflammatory neurological disease controls (NINDC), clinically isolated syndrome (CIS) and MS cases. CSF KIF5A expression was significantly elevated in progressive MS cases compared with NINDCs, CIS and relapsing-remitting MS (RRMS). In addition, levels of KIF5A positively correlated with change in MS disease severity scores (EDSS, MSSS and ARMSSS), in RRMS patients who had documented disease progression at 2-year clinical follow-up. Copies of adenine risk alleles (AG/AA; rs12368653 and rs703842) corresponded with a higher proportion of individuals in relapse at the time of lumbar puncture (LP), higher use of disease-modifying therapies post LP and shorter MS duration. Our study suggests that CSF KIF5A has potential as a predictive biomarker in MS and further studies into the potential prognostic value of analysing MS susceptibility SNPs should be considered.
Collapse
Affiliation(s)
- Kelly Hares
- MS and Stem Cell Group, Institute of Clinical Neurosciences, Bristol Medical School: Translational Health Sciences, University of Bristol, Clinical Neurosciences Office, 1st Floor, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - K Kemp
- MS and Stem Cell Group, Institute of Clinical Neurosciences, Bristol Medical School: Translational Health Sciences, University of Bristol, Clinical Neurosciences Office, 1st Floor, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - S Loveless
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - C M Rice
- MS and Stem Cell Group, Institute of Clinical Neurosciences, Bristol Medical School: Translational Health Sciences, University of Bristol, Clinical Neurosciences Office, 1st Floor, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - N Scolding
- MS and Stem Cell Group, Institute of Clinical Neurosciences, Bristol Medical School: Translational Health Sciences, University of Bristol, Clinical Neurosciences Office, 1st Floor, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - E Tallantyre
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - N Robertson
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - A Wilkins
- MS and Stem Cell Group, Institute of Clinical Neurosciences, Bristol Medical School: Translational Health Sciences, University of Bristol, Clinical Neurosciences Office, 1st Floor, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
50
|
Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules 2021; 26:448. [PMID: 33467029 PMCID: PMC7831024 DOI: 10.3390/molecules26020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Michael N. Alexis
- Molecular Endocrinology Team, Inst of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|