1
|
Trujillano L, Valenzuela I, Costa-Roger M, Cuscó I, Fernandez-Alvarez P, Cueto-González A, Lasa-Aranzasti A, Masotto B, Abulí A, Codina-Solà M, Del Campo M, Ruiz Moreno JA, Pardo Domínguez C, Palma Milla C, Pérez de la Fuente R, Quesada-Espinosa JF, Núñez-Enamorado N, Gener B, Ballesta-Martínez MJ, Brea-Fernández AJ, Fernández-Prieto M, Trujillo-Quintero JP, Ruiz A, Santos-Simarro F, Rosello M, Orellana C, Martinez F, Martinez-Monseny AF, Casas-Alba D, Serrano M, Palomares-Bralo M, Rikeros-Orozco E, Gómez-Cano MÁ, Tirado-Requero P, Pié Juste J, Ramos FJ, García-Arumí E, Tizzano EF. Comprehensive Clinical and Genetic Characterization of a Spanish Cohort of 22 Patients With Bainbridge-Ropers Syndrome. Clin Genet 2025; 107:646-662. [PMID: 39833101 DOI: 10.1111/cge.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Bainbridge-Ropers Syndrome (BRPS) is a genetic condition resulting from truncating variants in the ASXL3 gene. The clinical features include neurodevelopmental and language impairments, behavioral issues, hypotonia, feeding difficulties, and distinctive facial features. In this retrospective study, we analyzed 22 Spanish individuals with BRPS, aiming to perform a detailed clinical and molecular description and establish a genotype-phenotype correlation. We identified 19 ASXL3 variants, nine of which are novel. We documented recurrence in nontwin siblings due to parental mosaicism. The predominant prenatal finding was intrauterine growth restriction (35%) followed, after birth, by feeding difficulties (90.5%), hypotonia (85.7%), and gastroesophageal reflux disease (82.4%). Later in life, intellectual disability, language impairment, autism spectrum disorder (75%), and joint laxity (73.7%) were noted. Individuals with variants in the 3' mutational cluster region (MCR) of exon 12 exhibited more perinatal feeding problems, and those with variants in the 5' MCR of exon 11 displayed lower percentiles in height and occipitofrontal circumference, as well as higher frequency of arched eyebrows. This study is the first characterization of a Spanish BRPS cohort, with more than 50 clinical features analyzed, representing the most detailed phenotypic analysis to date.
Collapse
Affiliation(s)
- Laura Trujillano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Irene Valenzuela
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mar Costa-Roger
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ivon Cuscó
- Genetics Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Anna Cueto-González
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Bárbara Masotto
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Anna Abulí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Marta Codina-Solà
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Miguel Del Campo
- Department of Clinical Pediatrics, University of California, San Diego, California, USA
| | | | | | - Carmen Palma Milla
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rubén Pérez de la Fuente
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Francisco Quesada-Espinosa
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Noemí Núñez-Enamorado
- Departamento de Neurología pediátrica, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Vizcaya, Spain
| | | | - Alejandro J Brea-Fernández
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Montse Fernández-Prieto
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Juan Pablo Trujillo-Quintero
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Fernando Santos-Simarro
- Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Idisba, Palma de Mallorca, Spain
| | - Mónica Rosello
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Francisco Martinez
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Dídac Casas-Alba
- Department of Genetics and Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - María Palomares-Bralo
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros-Orozco
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | - María Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | | | - Juan Pié Juste
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Feliciano J Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Unit of Clinical Genetics, Service of Paediatrics, University Hospital 'Lozano Blesa', University of Zaragoza Medical School, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Elena García-Arumí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Kim H, Kim AR, Byun S, Um SJ. Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival. Anim Cells Syst (Seoul) 2025; 29:241-250. [PMID: 40276524 PMCID: PMC12020147 DOI: 10.1080/19768354.2025.2481979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 04/26/2025] Open
Abstract
Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the ASXL1 gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as Epha7 and Osr1, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.
Collapse
Affiliation(s)
- Hyeju Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - A.-Reum Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sukyoung Byun
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| |
Collapse
|
3
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Karim A, Alromema N, Malebary SJ, Binzagr F, Ahmed A, Khan YD. eNSMBL-PASD: Spearheading early autism spectrum disorder detection through advanced genomic computational frameworks utilizing ensemble learning models. Digit Health 2025; 11:20552076241313407. [PMID: 39872002 PMCID: PMC11770729 DOI: 10.1177/20552076241313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental condition influenced by various genetic and environmental factors. Currently, there is no definitive clinical test, such as a blood analysis or brain scan, for early diagnosis. The objective of this study is to develop a computational model that predicts ASD driver genes in the early stages using genomic data, aiming to enhance early diagnosis and intervention. Methods This study utilized a benchmark genomic dataset, which was processed using feature extraction techniques to identify relevant genetic patterns. Several ensemble classification methods, including Extreme Gradient Boosting, Random Forest, Light Gradient Boosting Machine, ExtraTrees, and a stacked ensemble of classifiers, were applied to assess the predictive power of the genomic features. TheEnsemble Model Predictor for Autism Spectrum Disorder (eNSMBL-PASD) model was rigorously validated using multiple performance metrics such as accuracy, sensitivity, specificity, and Mathew's correlation coefficient. Results The proposed model demonstrated superior performance across various validation techniques. The self-consistency test achieved 100% accuracy, while the independent set and cross-validation tests yielded 91% and 87% accuracy, respectively. These results highlight the model's robustness and reliability in predicting ASD-related genes. Conclusion The eNSMBL-PASD model provides a promising tool for the early detection of ASD by identifying genetic markers associated with the disorder. In the future, this model has the potential to assist healthcare professionals, particularly doctors and psychologists, in diagnosing and formulating treatment plans for ASD at its earliest stages.
Collapse
Affiliation(s)
- Ayesha Karim
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Nashwan Alromema
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King AbdulAziz University, Rabigh, Saudi Arabia
| | - Faisal Binzagr
- Department of Computer Science, Faculty of Computing and Information Technology-Rabigh, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Amir Ahmed
- College of Information Technology, Information Systems and Security, United Arab Emirates University, Alain, United Arab Emirates
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
5
|
Chen JY, Li YF, Zhou Z, Jiang XM, Bi X, Yang MF, Zhao B. De novo mutations promote inflammation in children with STAT3 gain-of-function syndrome by affecting IL-1β expression. Int Immunopharmacol 2024; 140:112755. [PMID: 39098225 DOI: 10.1016/j.intimp.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
STAT3 gain-of-function syndrome, characterized by early-onset autoimmunity and primary immune regulatory disorder, remains poorly understood in terms of its immunological mechanisms. We employed whole-genome sequencing of familial trios to elucidate the pivotal role of de novo mutations in genetic diseases. We identified 37 high-risk pathogenic loci affecting 23 genes, including a novel STAT3 c.508G>A mutation. We also observed significant down-regulation of pathogenic genes in affected individuals, potentially associated with inflammatory responses regulated by PTPN14 via miR378c. These findings enhance our understanding of the pathogenesis of STAT3 gain-of-function syndrome and suggest potential therapeutic strategies. Notably, combined JAK inhibitors and IL-6R antagonists may offer promising treatment avenues for mitigating the severity of STAT3 gain-of-function syndrome.
Collapse
Affiliation(s)
- Ji-Yu Chen
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yan-Fang Li
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Zhu Zhou
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Yunnan Clinical Medical Research Center of Chronic Kidney Disease, Kunming 650032, Yunnan, China
| | - Xue-Mei Jiang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xin Bi
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Mi-Feng Yang
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Bo Zhao
- Department of Nephrology & Rheumatology, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| |
Collapse
|
6
|
Wang W, Zhang X, Li Y, Shen J, Li Y, Xing W, Bai J, Shi J, Zhou Y. Generation and Characterization of Induced Pluripotent Stem Cells Carrying An ASXL1 Mutation. Stem Cell Rev Rep 2024; 20:1889-1901. [PMID: 38884929 DOI: 10.1007/s12015-024-10737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Additional sex combs-like 1 (ASXL1) is an epigenetic modulator frequently mutated in myeloid malignancies, generally associated with poor prognosis. Current models for ASXL1-mutated diseases are mainly based on the complete deletion of Asxl1 or overexpression of C-terminal truncations in mice models. However, these models cannot fully recapitulate the pathogenesis of myeloid malignancies. Patient-derived induced pluripotent stem cells (iPSCs) provide valuable disease models that allow us to understand disease-related molecular pathways and develop novel targeted therapies. Here, we generated iPSCs from a patient with myeloproliferative neoplasm carrying a heterozygous ASXL1 mutation. The iPSCs we generated exhibited the morphology of pluripotent cells, highly expressed pluripotent markers, excellent differentiation potency in vivo, and normal karyotype. Subsequently, iPSCs with or without ASXL1 mutation were induced to differentiate into hematopoietic stem/progenitor cells, and we found that ASXL1 mutation led to myeloid-biased output and impaired erythroid differentiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that terms related to embryonic development, myeloid differentiation, and immune- and neural-related processes were most enriched in the differentially expressed genes. Western blot demonstrated that the global level of H2AK119ub was significantly decreased when mutant ASXL1 was present. Chromatin Immunoprecipitation Sequencing showed that most genes associated with stem cell maintenance were upregulated, whereas occupancies of H2AK119ub around these genes were significantly decreased. Thus, the iPSC model carrying ASXL1 mutation could serve as a potential tool to study the pathogenesis of myeloid malignancies and to screen targeted therapy for patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
8
|
Avagliano L, Castiglioni S, Lettieri A, Parodi C, Di Fede E, Taci E, Grazioli P, Colombo EA, Gervasini C, Massa V. Intrauterine growth in chromatinopathies: A long road for better understanding and for improving clinical management. Birth Defects Res 2024; 116:e2383. [PMID: 38984779 DOI: 10.1002/bdr2.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Chromatinopathies are a heterogeneous group of genetic disorders caused by pathogenic variants in genes coding for chromatin state balance proteins. Remarkably, many of these syndromes present unbalanced postnatal growth, both under- and over-, although little has been described in the literature. Fetal growth measurements are common practice in pregnancy management and values within normal ranges indicate proper intrauterine growth progression; on the contrary, abnormalities in intrauterine fetal growth open the discussion of possible pathogenesis affecting growth even in the postnatal period. METHODS Among the numerous chromatinopathies, we have selected six of the most documented in the literature offering evidence about two fetal overgrowth (Sotos and Weaver syndrome) and four fetal undergrowth syndromes (Bohring Opitz, Cornelia de Lange, Floating-Harbor, and Meier Gorlin syndrome), describing their molecular characteristics, maternal biochemical results and early pregnancy findings, prenatal ultrasound findings, and postnatal characteristics. RESULTS/CONCLUSION To date, the scarce data in the literature on prenatal findings are few and inconclusive, even though these parameters may contribute to a more rapid and accurate diagnosis, calling for a better and more detailed description of pregnancy findings.
Collapse
Affiliation(s)
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
10
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
11
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
12
|
Ghelichi-Ghojogh M, Golfiroozi S, Delavari S, Hosseini SA. PERCHING syndrome caused by variant gene KLHL7 in the first Iranian patient: a case report study. Ann Med Surg (Lond) 2024; 86:1048-1051. [PMID: 38333279 PMCID: PMC10849426 DOI: 10.1097/ms9.0000000000001429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction and importance PERCHING syndrome is a condition that affects many parts of the body and is caused by genes passed down from both parents. People with this syndrome have delays in their development, unusual facial features, trouble eating and breathing, slow overall growth, weak muscles, and stiff joints. Case presentation The child at the age of 6 months suffered from developmental delay, delayed walking, speech delay, and hypotonia and was referred to the Neurologist. Also, he has an abnormal phenotype. Whole-exome sequencing (WES) revealed a missense variant in the KLHL7 gene at a highly conserved genomic Chr7: 23124718T>G; NM_018846:exon3:c.110T>G:p.Val37Gly. Clinical discussion One way to explain the difference in physical characteristics caused by recessive KLHL7 mutations might be related to the person's genetic makeup. However, the genes someone has do not always accurately determine their physical traits. Conclusion This report will help us learn more about the different traits and characteristics of Perching syndrome. The authors need to do more research on how proteins work and study more about patients with different characteristics to fully understand this.
Collapse
Affiliation(s)
- Mousa Ghelichi-Ghojogh
- Neonatal and Children’s Health Research Center Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Golfiroozi
- Department of Emergency Medicine, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Delavari
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Keck School of Medicine at the University of Southern California, Los Angeles, CA
| | - Seyed Ahmad Hosseini
- Neonatal and Children’s Health Research Center Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
13
|
Altaf MT, Kandagaddala M, Selina A, Madhuri V. Perthes-Like Disorder in a Child with Atypical Bohring-Opitz Syndrome. JBJS Case Connect 2024; 14:01709767-202403000-00002. [PMID: 38181165 DOI: 10.2106/jbjs.cc.23.00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
CASE Bohring-Opitz syndrome is characterized by facial dysmorphism, intellectual disability, specific upper-limb posturing, and developmental delay. We report a case of 14-year-old girl with bilateral hip pain and loss of mobility. Clinical exome sequencing showed a proband with a heterozygous pathogenic nonsense variant in ASXL1 gene. CONCLUSION The Perthes-like clinical and radiological features in the hip and the absence of classical upper-limb features are a new phenotype and hence presented here.
Collapse
Affiliation(s)
- Mir Tariq Altaf
- Department of Paediatric Orthopaedic, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Agnes Selina
- Department of Paediatric Orthopaedic, Christian Medical College, Vellore, Tamil Nadu, India
- Centre for Stem Cell Research, Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedic, Christian Medical College, Vellore, Tamil Nadu, India
- Centre for Stem Cell Research, Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Yang L, Wei X, Gong Y. Prognosis and risk factors for ASXL1 mutations in patients with newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Cancer Med 2024; 13:e6871. [PMID: 38146893 PMCID: PMC10807681 DOI: 10.1002/cam4.6871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE The objective of the study was to determine the prognosis and risk factors for additional sex combs like 1 (ASXL1) mutations in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). POPULATION AND METHODS This retrospective study enrolled 219 adult patients with newly diagnosed AML and MDS, who were treated in West China Hospital from October 2018 to January 2022. The primary clinical outcome was evaluated by overall survival (OS) followed up to January 2023. Kaplan-Meier analysis and Cox multivariate regression analysis were performed to identify potential prognostic parameters in patients with ASXL1 mutations (mt). RESULTS A total of 34 (15.53%) ASXL1mt were detected, which occurred more frequently in the elderly and MDS cohorts (p < 0.001). Significantly lower blasts% (p < 0.001) and higher frequencies of mutant RUNX1, SRSF2, STAG2, EZH2, and SETBP1 (p < 0.02) were observed in the ASXL1mt cohort. Patients with ASXL1mt manifested with a worse complete remission rate (p = 0.011), and an inferior OS was shown in subgroups with MDS, co-mutations of RUNX1, SRSF2, or NRAS, as well as mutations in G646W (p < 0.05). Multivariate analysis considering age, diagnosis, co-mutations, and mutation site confirmed an independently adverse prognosis of mutations in G646W (HR = 4.302, 95% CI: 1.150-16.097) or RUNX1 co-mutations (HR = 4.620, 95% CI: 1.385-15.414) in the ASXL1mt cohort. CONCLUSION Our study indicated that mutations in G646W or RUNX1 co-mutations are closely associated with a dismal clinical outcome in patients with AML and MDS harboring ASXL1mt. Considering the poor prognosis and risk factors in patients with ASXL1mt, more available treatments should be pursued.
Collapse
Affiliation(s)
- Liqing Yang
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
- Department of HematologyFujian Medical University Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Xiaoyu Wei
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yuping Gong
- Department of Hematology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Ayoub MC, Anderson JT, Russell BE, Wilson RB. Examining the neurodevelopmental and motor phenotypes of Bohring-Opitz syndrome (ASXL1) and Bainbridge-Ropers syndrome (ASXL3). Front Neurosci 2023; 17:1244176. [PMID: 38027485 PMCID: PMC10657810 DOI: 10.3389/fnins.2023.1244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Chromatin Modifying Disorders (CMD) have emerged as one of the most rapidly expanding genetic disorders associated with autism spectrum disorders (ASD). Motor impairments are also prevalent in CMD and may play a role in the neurodevelopmental phenotype. Evidence indicates that neurodevelopmental outcomes in CMD may be treatable postnatally; thus deep phenotyping of these conditions can improve clinical screening while improving the development of treatment targets for pharmacology and for clinical trials. Here, we present developmental phenotyping data on individuals with Bohring-Optiz Syndrome (BOS - ASXL1) and Bainbridge-Ropers Syndrome (BRS - ASXL3) related disorders, two CMDs highly penetrant for motor and developmental delays. Objectives To phenotype the motor and neurodevelopmental profile of individuals with ASXL1 and ASXL3 related disorders (BOS and BRS). To provide a preliminary report on the association of motor impairments and ASD. Methods Neurodevelopmental and motor phenotyping was conducted on eight individuals with pathogenic ASXL1 variants and seven individuals with pathogenic ASXL3 variants, including medical and developmental background intake, movement and development questionnaires, neurological examination, and quantitative gait analysis. Results Average age of first developmental concerns was 4 months for individuals with BOS and 9 months in BRS. 100% of individuals who underwent the development questionnaire met a diagnosis of developmental coordination disorder. 71% of children with BOS and 0% of children with BRS noted movement difficulty greatly affected classroom learning. Participants with BRS and presumed diagnoses of ASD were reported to have more severe motor impairments in recreational activities compared to those without ASD. This was not the case for the individuals with BOS. Conclusion Motor impairments are prevalent and pervasive across the ASXL disorders with and without ASD, and these impairments negatively impact engagement in school-based activities. Unique neurodevelopmental and motor findings in our data include a mixed presentation of hypo and hypertonia in individuals with BOS across a lifespan. Individuals with BRS exhibited hypotonia and greater variability in motor skills. This deep phenotyping can aid in appropriate clinical diagnosis, referral to interventions, and serve as meaningful treatment targets in clinical trials.
Collapse
Affiliation(s)
- Maya C. Ayoub
- Division of Child Neurology, Department of Pediatrics, UCLA Health, Los Angeles, CA, United States
| | - Jeffrey T. Anderson
- Department of Medicine, UCLA Health, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Bianca E. Russell
- Division of Clinical Genetics, Department of Human Genetics, UCLA Health, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Rujuta B. Wilson
- Division of Child Psychiatry, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
16
|
Ogura Y, Mimura I. Epigenetic roles in clonal hematopoiesis and aging kidney-related chronic kidney disease. Front Cell Dev Biol 2023; 11:1281850. [PMID: 37928907 PMCID: PMC10623128 DOI: 10.3389/fcell.2023.1281850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Accumulation of somatic hematopoietic stem cell mutations with aging has been revealed by the recent genome-wide analysis. Clonal expansion, known as clonal hematopoiesis of indeterminate potential (CHIP), is a premalignant condition of hematological cancers. It is defined as the absence of definitive morphological evidence of a hematological neoplasm and occurrence of ≥2% of mutant allele fraction in the peripheral blood. In CHIP, the most frequently mutated genes are epigenetic regulators such as DNMT3A, TET2, and ASXL1. CHIP induces inflammation. CHIP is shown to be associated with not only hematological malignancy but also non-malignant disorders such as atherosclerosis, cardiovascular diseases and chronic liver disease. In addition, recent several large clinical trials have shown that CHIP is also the risk factor for developing chronic kidney disease (CKD). In this review article, we proposed novel findings about CHIP and CHIP related kidney disease based on the recent basic and clinical research. The possible mechanism of the kidney injury in CHIP is supposed to be due to the clonal expansion in both myeloid and lymphoid cell lines. In myeloid cell lines, the mutated macrophages increase the inflammatory cytokine level and induce chronic inflammation. It leads to epigenetic downregulation of kidney and macrophage klotho level. In lymphoid cell lines, CHIP might be related to monoclonal gammopathy of renal significance (MGRS). It describes any B cell or plasma cell clonal disorder that does not fulfill the criteria for cancer yet produces a nephrotoxic monoclonal immunoglobulin that leads to kidney injury or disease. MGRS causes M-protein related nephropathy frequently observed among aged CKD patients. It is important to consider the CHIP-related complications such as hematological malignancy, cardiovascular diseases and metabolic disorders in managing the elderly CKD patients. There are no established therapies for CHIP and CHIP-related CKD yet. However, recent studies have supported the development of effective CHIP therapies, such as blocking the expansion of aberrant HSCs and inhibiting chronic inflammation. In addition, drugs targeting the epigenetic regulation of Klotho in the kidney and macrophages might be therapeutic targets of CHIP in the kidney.
Collapse
Affiliation(s)
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Xu N, Shi W, Cao X, Zhou X, Jin L, Huang HF, Chen S, Xu C. Parental mosaicism detection and preimplantation genetic testing in families with multiple transmissions of de novo mutations. J Med Genet 2023; 60:910-917. [PMID: 36707240 PMCID: PMC10447385 DOI: 10.1136/jmg-2022-108920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND De novo mutations (DNMs) are linked with many severe early-onset disorders ranging from rare congenital malformation to intellectual disability. Conventionally, DNMs are considered to have an estimated recurrence rate of 1%. Recently, studies have revealed a higher prevalence of parental mosaicism, leading to a greater recurrence risk, resulting in a second child harbouring the same DNM as a previous child. METHODS In this study, we included 10 families with DNMs leading to adverse pregnancy outcomes. DNA was extracted from tissue samples, including parental peripheral blood, parental saliva and paternal sperm. High-throughput sequencing was used to screen for parental mosaicism with a depth of more than 5000× on average and a variant allele fraction (VAF) detection limit of 0.5%. RESULTS The presence of mosaicism was detected in sperms in two families, with VAFs of 2.8% and 2.5%, respectively. Both families have a history of multiple adverse pregnancies and DNMs shared by siblings. Preimplantation genetic testing (PGT) and prenatal diagnosis were performed in one family, thereby preventing the reoccurrence of DNMs. CONCLUSION This study is the first to report the successful implementation of PGT for monogenic/single gene defects in the parental mosaicism family. Our study suggests that mosaic detection of paternal sperm is warranted in families with recurrent DNMs leading to adverse pregnancy outcomes, and PGT can effectively block the transmission of the pathogenic mutation.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuanyou Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
19
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
20
|
Russell BE, Kianmahd RR, Munster C, Yu A, Ahad L, Tan WH. Clinical findings in 39 individuals with Bohring-Opitz syndrome from a global patient-driven registry with implications for tumor surveillance and recurrence risk. Am J Med Genet A 2023; 191:1050-1058. [PMID: 36751885 DOI: 10.1002/ajmg.a.63125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023]
Abstract
Bohring-Opitz syndrome (BOS) is a rare genetic condition caused by pathogenic variants in ASXL1, which is a gene involved in chromatin regulation. BOS is characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, facial nevus simplex, severe myopia, a typical posture in infancy, variable anomalies, and feeding issues. Wilms tumor has also been reported in two individuals. We report survey data from the largest known cohort of individuals with BOS with 34 participants from the ASXL Patient-Driven Registry and data on five additional individuals with notable findings. Important or novel findings include hepatoblastoma (n = 1), an additional individual with Wilms tumor, two families with a parent who is mosaic including a pair of siblings, birth weights within the normal range for the majority of participants, as well as presence of craniosynostosis and hernias. Data also include characterization of communication, motor skills, and care level including hospitalization frequency and surgical interventions. No phenotype-genotype correlation could be identified. The ASXL Registry is also presented as a crucial tool for furthering ASXL research and to support the ASXL community.
Collapse
Affiliation(s)
- Bianca E Russell
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rebecca R Kianmahd
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Chelsea Munster
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Department of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Anna Yu
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Leena Ahad
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Department of Biological Sciences, Department of Neuroscience, University of Cincinnati College of Arts & Sciences, Cincinnati, Ohio, USA
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
22
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
23
|
Vitsios D, Dhindsa RS, Matelska D, Mitchell J, Zou X, Armenia J, Hu F, Wang Q, Sidders B, Harper AR, Petrovski S. Cancer-driving mutations are enriched in genic regions intolerant to germline variation. SCIENCE ADVANCES 2022; 8:eabo6371. [PMID: 36026442 PMCID: PMC9417173 DOI: 10.1126/sciadv.abo6371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Large reference datasets of protein-coding variation in human populations have allowed us to determine which genes and genic subregions are intolerant to germline genetic variation. There is also a growing number of genes implicated in severe Mendelian diseases that overlap with genes implicated in cancer. We hypothesized that cancer-driving mutations might be enriched in genic subregions that are depleted of germline variation relative to somatic variation. We introduce a new metric, OncMTR (oncology missense tolerance ratio), which uses 125,748 exomes in the Genome Aggregation Database (gnomAD) to identify these genic subregions. We demonstrate that OncMTR can significantly predict driver mutations implicated in hematologic malignancies. Divergent OncMTR regions were enriched for cancer-relevant protein domains, and overlaying OncMTR scores on protein structures identified functionally important protein residues. Last, we performed a rare variant, gene-based collapsing analysis on an independent set of 394,694 exomes from the UK Biobank and find that OncMTR markedly improves genetic signals for hematologic malignancies.
Collapse
Affiliation(s)
- Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Corresponding author. (D.V.), (R.S.D.), (S.P.)
| | - Ryan S. Dhindsa
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Corresponding author. (D.V.), (R.S.D.), (S.P.)
| | - Dorota Matelska
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Xuequing Zou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joshua Armenia
- Bioinformatics and Data Science, Research, and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Ben Sidders
- Bioinformatics and Data Science, Research, and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andrew R. Harper
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Corresponding author. (D.V.), (R.S.D.), (S.P.)
| |
Collapse
|
24
|
Germline Abnormalities in DNA Methylation and Histone Modification and Associated Cancer Risk. Curr Hematol Malig Rep 2022; 17:82-93. [PMID: 35653077 DOI: 10.1007/s11899-022-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Somatic mutations in DNA methyltransferases and other DNA methylation associated genes have been found in a wide variety of cancers. Germline mutations in these genes have been associated with several rare hereditary disorders. Among the described germline/congenital disorders, neurological dysfunction and/or growth abnormalities appear to be a common phenotype. Here, we outline known germline abnormalities and examine the cancer risks associated with these mutations. RECENT FINDINGS The increased use and availability of sequencing techniques in the clinical setting has expanded the identification of germline abnormalities involving DNA methylation machinery. This has provided additional cases to study these rare hereditary disorders and their predisposition to cancer. Studying these syndromes may offer an opportunity to better understand the contribution of these genes in cancer development.
Collapse
|
25
|
Awamleh Z, Chater-Diehl E, Choufani S, Wei E, Kianmahd RR, Yu A, Chad L, Costain G, Tan WH, Scherer SW, Arboleda VA, Russell BE, Weksberg R. DNA methylation signature associated with Bohring-Opitz syndrome: a new tool for functional classification of variants in ASXL genes. Eur J Hum Genet 2022; 30:695-702. [PMID: 35361921 PMCID: PMC9177544 DOI: 10.1038/s41431-022-01083-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
The additional sex combs-like (ASXL) gene family-encoded by ASXL1, ASXL2, and ASXL3-is crucial for mammalian development. Pathogenic variants in the ASXL gene family are associated with three phenotypically distinct neurodevelopmental syndromes. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show consistent patterns of genome-wide DNA methylation (DNAm) alterations, i.e., DNAm signatures in peripheral blood. Given the role of ASXL1 in chromatin modification, we hypothesized that pathogenic ASXL1 variants underlying Bohring-Opitz syndrome (BOS) have a unique DNAm signature. We profiled whole-blood DNAm for 17 ASXL1 variants, and 35 sex- and age-matched typically developing individuals, using Illumina's Infinium EPIC array. We identified 763 differentially methylated CpG sites in individuals with BOS. Differentially methylated sites overlapped 323 unique genes, including HOXA5 and HOXB4, supporting the functional relevance of DNAm signatures. We used a machine-learning classification model based on the BOS DNAm signature to classify variants of uncertain significance in ASXL1, as well as pathogenic ASXL2 and ASXL3 variants. The DNAm profile of one individual with the ASXL2 variant was BOS-like, whereas the DNAm profiles of three individuals with ASXL3 variants were control-like. We also used Horvath's epigenetic clock, which showed acceleration in DNAm age in individuals with pathogenic ASXL1 variants, and the individual with the pathogenic ASXL2 variant, but not in individuals with ASXL3 variants. These studies enhance our understanding of the epigenetic dysregulation underpinning ASXL gene family-associated syndromes.
Collapse
Affiliation(s)
- Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Wei
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebecca R Kianmahd
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anna Yu
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren Chad
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Stephen W Scherer
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Bianca E Russell
- Department of Pediatrics, Division of Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Ontario, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Kanduła Z, Kroll‐Balcerzak R, Lewandowski K. Rapid progression of myelofibrosis in polycythemia vera patient carrying SRSF2 c.284C>A p.(Pro95His) and unique ASXL1 splice site c.1720-2A>G variant. J Clin Lab Anal 2022; 36:e24388. [PMID: 35435261 PMCID: PMC9102755 DOI: 10.1002/jcla.24388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The prognosis in polycythemia vera (PV) is comparatively favorable, but individual myelofibrosis/leukemic progression risk is heterogeneous. About a quarter of patients progress to the fibrotic phase after 20 years. METHODS Multiplex PCR, allele-specific qPCR, high-resolution melt analysis, and Sanger sequencing were used to detect BCR-ABL, JAK2, ASXL1, SRSF2, U2AF1, and IDH1/2 variants. RESULTS Herein, we present a PV patient with rapid progression to secondary myelofibrosis probably due to the coexistence of homozygous JAK2 V617F mutation, SRSF2 c.284C>A p.(Pro95His) and splice site variant of ASXL1 c.1720-2A>G. The detected ASXL1 variant was first described in Bohring-Opitz syndrome and has not been reported in hematological malignancies so far. In the presented case, the ASXL1 VAF was stable (50%) during the 4-year follow-up, despite an evident increase in the JAK2 V617F VAF. Family history revealed cerebral palsy in the patient's grandson; however, germline character of the ASXL1 variant was excluded. CONCLUSION The biological consequences of the variant acquisition by hematopoietic stem cells (HSC) seem to be similar to other mutations of ASXL1 responsible for the truncation of ASXL1 protein, formation of hyperactive ASXL1-BAP1 (BRCA1-associated protein-1) complexes, and finally, the promotion of aberrant myeloid differentiation of HSC. Our report supports the hypothesis that ASXL1 alteration cooperates with JAK2 V617F leading to biased lineage skewing, favoring erythroid and megakaryocytic differentiation, accelerating the progression of PV to the fibrotic phase.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow TransplantationPoznań University of Medical SciencesPoznańPoland
| | - Renata Kroll‐Balcerzak
- Department of Hematology and Bone Marrow TransplantationPoznań University of Medical SciencesPoznańPoland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow TransplantationPoznań University of Medical SciencesPoznańPoland
| |
Collapse
|
27
|
Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet 2022; 18:e1010159. [PMID: 35500025 PMCID: PMC9140282 DOI: 10.1371/journal.pgen.1010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/27/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.
Collapse
Affiliation(s)
- Michaela Fenckova
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ignacy Czajewski
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura E. R. Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew T. Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. F. van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
28
|
Carvalho J, Rolim S, Novo A, Proença E, Mota C, Carvalho C. Preterm Infant with Craniofacial Dysmorphic Features and Posture. Neoreviews 2022; 23:e208-e211. [PMID: 35229138 DOI: 10.1542/neo.23-3-e208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Joana Carvalho
- Pediatrics Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Sara Rolim
- Pediatrics Department, Centro Hospitalar do Médio Ave, Famalicão, Portugal
| | - Ana Novo
- Neonatal Intensive Care Unit, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elisa Proença
- Neonatal Intensive Care Unit, Centro Materno Infantil do Norte, Porto, Portugal
| | - Céu Mota
- Neonatal Intensive Care Unit, Centro Materno Infantil do Norte, Porto, Portugal
| | - Carmen Carvalho
- Neonatal Intensive Care Unit, Centro Materno Infantil do Norte, Porto, Portugal
| |
Collapse
|
29
|
Brunet T, Berutti R, Dill V, Hecker JS, Choukair D, Andres S, Deschauer M, Diehl-Schmid J, Krenn M, Eckstein G, Graf E, Gasser T, Strom TM, Hoefele J, Götze KS, Meitinger T, Wagner M. Clonal Hematopoiesis as a pitfall in germline variant interpretation in the context of Mendelian disorders. Hum Mol Genet 2022; 31:2386-2395. [PMID: 35179199 DOI: 10.1093/hmg/ddac034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
Clonal hematopoiesis due to somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations.
Collapse
Affiliation(s)
- Theresa Brunet
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronika Dill
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Judith S Hecker
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetology, University Children's Hospital, Heidelberg, Germany
| | - Stephanie Andres
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Janine Diehl-Schmid
- Technical University of Munich, School of Medicine, Department of Psychiatry and Psychotherapy, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Krenn
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gertrud Eckstein
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Katharina S Götze
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
30
|
Jiao Z, Zhao X, Wang Y, Wei E, Mei S, Liu N, Kong X, Shi H. A de novo and novel nonsense variants in ASXL2 gene is associated with Shashi-Pena syndrome. Eur J Med Genet 2022; 65:104454. [PMID: 35182806 DOI: 10.1016/j.ejmg.2022.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
This ASXL2 gene encodes a member of a family of epigenetic regulators that bind various histone-modifying enzymes and are involved in the assembly of transcription factors at specific genomic loci. Recent research has found that pathogenic variants in ASXL2 gene can lead to Shashi-Pena syndrome. However, clinical reports of individuals with damaging ASXL2 variants were limited and clinical phenotypic information may also be incomplete at present. Here, we reported a patient from Chinese family presenting with Shashi-Pena syndrome duo to a nonsense variant c.2485C > T; p. (Gln829*) in ASXL2 and analyzed the clinical phenotypes of the patient. In addition to the typical facial appearance, feeding difficulty, cardiac dysfunction and developmental delay, the patient also demonstrated multiple clinical problems not reported in other published cases, including granulocytopenia, thrombocytopenia and "simian line". Additionally, this is also the first case of premature death associated to Shashi-Pena syndrome induced by ASXL2 variants in a Chinese population. Our results provided important information for genetic counseling of the family and broaden the spectrum of phenotypes and genetic variations of the syndrome.
Collapse
Affiliation(s)
- Zhihui Jiao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China; The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| | - Xuechao Zhao
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Yanhong Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Erhu Wei
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, He Nan Province, China, No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Ning Liu
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, China.
| | - Huirong Shi
- The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
31
|
Wang Y, Tan J, Wang Y, Liu A, Qiao F, Huang M, Zhang C, Zhou J, Hu P, Xu Z. Diagnosis of Shashi-Pena Syndrome Caused by Chromosomal Rearrangement Using Nanopore Sequencing. Neurol Genet 2021; 7:e635. [PMID: 34841066 PMCID: PMC8611502 DOI: 10.1212/nxg.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022]
Abstract
Background and Objectives The aim of this study was to uncover the genetic cause of delayed psychomotor development and variable intellectual disability in a proband whose previous genetic analyses, including chromosome microarray and whole exome sequencing, had been negative. Methods Long-read sequencing Oxford Nanopore Technology and RNA-seq analysis were performed on peripheral blood mononuclear cells. Genes with a fold change ≥ 1.5 and p ≤ 0.05 were identified as differentially expressed. Results Clinical examinations showed that the proband's features were similar to a rare autosomal-dominant neurodevelopmental syndrome, Shashi-Pena syndrome (MIM #617190). Karyotyping showed that a chromosomal balanced translocation t(2; 11) (p23; q23) was detected in the proband, her father, and her grandmother. Meanwhile, long-read sequencing identified 102 balanced translocations and 145 inversions affecting ASXL2 at an average of 15×. Combined with the family's RNA-seq results, the average mRNA expression of ASXL2 decreased in the patients. Discussion We identified a complex chromosomal rearrangement affecting ASXL2 as a pathogenic mechanism of Shashi-Pena syndrome in a Chinese family. This case study suggests that nanopore sequencing is suitable for pathogenic analysis of complex rearrangements, providing new avenues for the diagnosis of genetic diseases.
Collapse
Affiliation(s)
- Ya Wang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - An Liu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Cuiping Zhang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jing Zhou
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
32
|
Oncogenic Truncations of ASXL1 Enhance a Motif for BRD4 ET-Domain Binding. J Mol Biol 2021; 433:167242. [PMID: 34536441 DOI: 10.1016/j.jmb.2021.167242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Proper regulation of gene-expression relies on specific protein-protein interactions between a myriad of epigenetic regulators. As such, mutation of genes encoding epigenetic regulators often drive cancer and developmental disorders. Additional sex combs-like protein 1 (ASXL1) is a key example, where mutations frequently drive haematological cancers and can cause developmental disorders. It has been reported that nonsense mutations in ASXL1 promote an interaction with BRD4, another central epigenetic regulator. Here we provide a molecular mechanism for the BRD4-ASXL1 interaction, demonstrating that a motif near to common truncation breakpoints of ASXL1 contains an epitope that binds the ET domain within BRD4. Binding-studies show that this interaction is analogous to common ET-binding modes of BRD4-interactors, and that all three ASX-like protein orthologs (ASXL1-3) contain a functional ET domain-binding epitope. Crucially, we observe that BRD4-ASXL1 binding is markedly increased in the prevalent ASXL1Y591X truncation that maintains the BRD4-binding epitope, relative to full-length ASXL1 or truncated proteins that delete the epitope. Together, these results show that ASXL1 truncation enhances BRD4 recruitment to transcriptional complexes via its ET domain, which could misdirect regulatory activity of either BRD4 or ASXL1 and may inform potential therapeutic interventions.
Collapse
|
33
|
Carneiro VF, Barbosa MC, Martelli DRB, Bonan PR, Aguiar MJB, Martelli Júnior H. A review of genetic syndromes associated with hypertrichosis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2021; 67:1508-1514. [PMID: 35018984 DOI: 10.1590/1806-9282.20210666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Affiliation(s)
| | - Mauro Costa Barbosa
- Universidade Estadual de Montes Claros, Oral Pathology and Oral Medicine, - Montes Claros (MG), Brazil
| | - Daniella Reis B Martelli
- Universidade Estadual de Montes Claros, Primary Care Postgraduate Program - Montes Claros (MG), Brazil
- Universidade Estadual de Montes Claros, Oral Pathology and Oral Medicine, - Montes Claros (MG), Brazil
| | - Paulo Rogério Bonan
- Universidade Federal de Alfenas, Center for Rehabilitation of Craniofacial Anomalies, Dental School - Alfenas (MG), Brazil
| | - Marcos José Burle Aguiar
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Special Genetics Service - Belo Horizonte (MG), Brazil
| | - Hercílio Martelli Júnior
- Universidade Estadual de Montes Claros, Primary Care Postgraduate Program - Montes Claros (MG), Brazil
- Universidade Estadual de Montes Claros, Oral Pathology and Oral Medicine, - Montes Claros (MG), Brazil
- Universidade Federal de Alfenas, Center for Rehabilitation of Craniofacial Anomalies, Dental School - Alfenas (MG), Brazil
| |
Collapse
|
34
|
Ebian HF, Elshorbagy S, Mohamed H, Embaby A, Khamis T, Sameh R, Sabbah NA, Hussein S. Clinical implication and prognostic significance of FLT3-ITD and ASXL1 mutations in Egyptian AML patients: A single-center study. Cancer Biomark 2021; 32:379-389. [PMID: 34487021 DOI: 10.3233/cbm-210024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Both Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and Additional Sex Comb-like 1 (ASXL1) mutations are frequent and early genetic alteration events in acute myeloid leukemia (AML) patients. These genetic alterations may be associated with an unfavorable prognosis. OBJECTIVE Up to our knowledge, this is the first study performed to evaluate the clinical implication and prognostic significance of FLT3-ITD and ASXL1 mutations and their coexistence on the outcome of Egyptian AML patients. METHODS Our study included 83 patients with AML who were subjected to immunophenotyping and detection of FLT3-ITD and ASXL1 gene mutation by polymerase chain reaction (PCR) and real-time PCR, respectively. RESULTS FLT3-ITD and ASXL1 mutations were detected in 20.5% and 18.1% of AML patients respectively. Seven patients (8.4%) had co-expression of both genes' mutations. FLT3-ITD mutation was significantly higher in younger age, higher WBCs count and poor cytogenetic risk patients (P= 0.01, < 0.001 and 0.008 respectively). ASXL1 mutation was significantly higher in intermediate cytogenetic risk patients (P= 0.2). The mean period of survival and relapse-free survival (RFS) were significantly reduced in FLT3-ITD and ASXL1 mutations compared with their non-mutant types (P= 0.01 and 0.03 respectively). Both mutations were independent risk factors for overall survival (OS) and (RFS) in univariate and multivariate analysis in AML patients. CONCLUSION FLT3-ITD and ASXL1 gene mutations or their coexistence can predict a poor prognosis in AML patients.
Collapse
Affiliation(s)
- Huda F Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherin Elshorbagy
- Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haitham Mohamed
- Hematology Oncology Unit/Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmad Embaby
- Hematology Oncology Unit/Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham Sameh
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan A Sabbah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Conway E, Rossi F, Fernandez-Perez D, Ponzo E, Ferrari KJ, Zanotti M, Manganaro D, Rodighiero S, Tamburri S, Pasini D. BAP1 enhances Polycomb repression by counteracting widespread H2AK119ub1 deposition and chromatin condensation. Mol Cell 2021; 81:3526-3541.e8. [PMID: 34186021 PMCID: PMC8428331 DOI: 10.1016/j.molcel.2021.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.
Collapse
Affiliation(s)
- Eric Conway
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Federico Rossi
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Daniel Fernandez-Perez
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Eleonora Ponzo
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Karin Johanna Ferrari
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marika Zanotti
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Daria Manganaro
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Rodighiero
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy.
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy.
| |
Collapse
|
36
|
Balis F, Green DM, Anderson C, Cook S, Dhillon J, Gow K, Hiniker S, Jasty-Rao R, Lin C, Lovvorn H, MacEwan I, Martinez-Agosto J, Mullen E, Murphy ES, Ranalli M, Rhee D, Rokitka D, Tracy EL, Vern-Gross T, Walsh MF, Walz A, Wickiser J, Zapala M, Berardi RA, Hughes M. Wilms Tumor (Nephroblastoma), Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:945-977. [PMID: 34416707 DOI: 10.6004/jnccn.2021.0037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Wilms Tumor focus on the screening, diagnosis, staging, treatment, and management of Wilms tumor (WT, also known as nephroblastoma). WT is the most common primary renal tumor in children. Five-year survival is more than 90% for children with all stages of favorable histology WT who receive appropriate treatment. All patients with WT should be managed by a multidisciplinary team with experience in managing renal tumors; consulting a pediatric oncologist is strongly encouraged. Treatment of WT includes surgery, neoadjuvant or adjuvant chemotherapy, and radiation therapy (RT) if needed. Careful use of available therapies is necessary to maximize cure and minimize long-term toxicities. This article discusses the NCCN Guidelines recommendations for favorable histology WT.
Collapse
Affiliation(s)
- Frank Balis
- Abramson Cancer Center at the University of Pennsylvania
| | - Daniel M Green
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | - Shelly Cook
- University of Wisconsin Carbone Cancer Center
| | | | - Kenneth Gow
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | - Chi Lin
- Fred & Pamela Buffett Cancer Center
| | | | | | | | | | - Erin S Murphy
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Mark Ranalli
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Daniel Rhee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Amy Walz
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Matthew Zapala
- UCSF Helen Diller Family Comprehensive Cancer Center; and
| | | | | |
Collapse
|
37
|
Hol JA, Jewell R, Chowdhury T, Duncan C, Nakata K, Oue T, Gauthier-Villars M, Littooij AS, Kaneko Y, Graf N, Bourdeaut F, van den Heuvel-Eibrink MM, Pritchard-Jones K, Maher ER, Kratz CP, Jongmans MCJ. Wilms tumour surveillance in at-risk children: Literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur J Cancer 2021; 153:51-63. [PMID: 34134020 DOI: 10.1016/j.ejca.2021.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Since previous consensus-based Wilms tumour (WT) surveillance guidelines were published, novel genes and syndromes associated with WT risk have been identified, and diagnostic molecular tests for previously known syndromes have improved. In view of this, the International Society of Pediatric Oncology (SIOP)-Europe Host Genome Working Group and SIOP Renal Tumour Study Group hereby present updated WT surveillance guidelines after an extensive literature review and international consensus meetings. These guidelines are for use by clinical geneticists, pediatricians, pediatric oncologists and radiologists involved in the care of children at risk of WT. Additionally, we emphasise the need to register all patients with a cancer predisposition syndrome in national or international databases, to enable the development of better tumour risk estimates and tumour surveillance programs in the future.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Catriona Duncan
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Hyōgo College of Medicine, Nishinomiya, Hyōgo, Japan
| | | | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | - Franck Bourdeaut
- SIREDO Pediatric Oncology Center, Institut Curie Hospital, Paris, France
| | | | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology & Rare Disease Program, Hannover Medical School, Center for Pediatrics and Adolescent Medicine, Hannover, Germany
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht / Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| |
Collapse
|
38
|
Hanes M, Rahman EZ, Wong RW, Harper CA. Self-Induced Bilateral Retinal Detachments and Traumatic Cataracts in a Patient With Bohring-Opitz Syndrome. Ophthalmic Surg Lasers Imaging Retina 2021; 52:400-402. [PMID: 34309433 DOI: 10.3928/23258160-20210628-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 9-year-old female with a history of Bohring-Opitz syndrome (BOS), Down syndrome, and autism initially presented with bilateral cataracts and a total retinal detachment in her left eye secondary to chronic self-injurious behavior. The authors report the first case of self-induced retinal detachment and traumatic cataracts in a patient with BOS. For patients who present with self-injurious behavior, the authors advocate for behavioral modifications at home, including the use of "no-no's," supplemental medication if necessary, and behavioral therapy to reduce the risk of self-induced visual injury. The authors also suggest the use of 25-gauge vitrectomy with silicone oil for retinal detachment repair. Finally, given the high risk of irreversible vision loss from amblyopia and recurrent retinal detachments in children with BOS and self-injurious behavior, the authors recommend regular 2-month interval ophthalmic follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:400-402.].
Collapse
|
39
|
Goetzinger L, Starks RD, Dillahunt K, Major H, Nagy JM, Sidhu A. Interstitial duplication of 20q11.22q13.11: A case report and review of literature. Mol Genet Genomic Med 2021; 9:e1755. [PMID: 34268909 PMCID: PMC8404222 DOI: 10.1002/mgg3.1755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/07/2021] [Accepted: 07/08/2021] [Indexed: 11/07/2022] Open
Abstract
Background Reports of interstitial duplication of chromosome 20q11 are rare with only nine published patients to date. Methods We performed karyotype and chromosomal microarray analysis on a peripheral blood sample for our patient and reviewed the genes in the region to provide genotype–phenotype correlation. Results Clinical features of the patient include minor dysmorphic facial features, shorthands and feet, bilateral conductive hearing loss, global developmental delay, and behavioral issues with attention deficit hyperactivity disorder. Together with previously published cases of 20q11 duplication, we show that patients with overlapping duplications share a similar clinical phenotype of dysmorphic craniofacial features and developmental delay. Conclusion We report an 8‐year‐old girl with a 9.1 Mb interstitial duplication of chromosome 20q11.22q13.11. Our observations suggest that a novel duplication syndrome and documentation of similar cases will further help clarify the phenotype.
Collapse
Affiliation(s)
- Logan Goetzinger
- Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Rachel D Starks
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Kyle Dillahunt
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Heather Major
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jaime M Nagy
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Alpa Sidhu
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
40
|
Luo X, Schoch K, Jangam SV, Bhavana VH, Graves HK, Kansagra S, Jasien JM, Stong N, Keren B, Mignot C, Ravelli C, Bellen HJ, Wangler MF, Shashi V, Yamamoto S. Rare deleterious de novo missense variants in Rnf2/Ring2 are associated with a neurodevelopmental disorder with unique clinical features. Hum Mol Genet 2021; 30:1283-1292. [PMID: 33864376 PMCID: PMC8255132 DOI: 10.1093/hmg/ddab110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 01/16/2023] Open
Abstract
The Polycomb group (PcG) gene RNF2 (RING2) encodes a catalytic subunit of the Polycomb repressive complex 1 (PRC1), an evolutionarily conserved machinery that post-translationally modifies chromatin to maintain epigenetic transcriptional repressive states of target genes including Hox genes. Here, we describe two individuals, each with rare de novo missense variants in RNF2. Their phenotypes include intrauterine growth retardation, severe intellectual disabilities, behavioral problems, seizures, feeding difficulties and dysmorphic features. Population genomics data suggest that RNF2 is highly constrained for loss-of-function (LoF) and missense variants, and both p.R70H and p.S82R variants have not been reported to date. Structural analyses of the two alleles indicate that these changes likely impact the interaction between RNF2 and BMI1, another PRC1 subunit or its substrate Histone H2A, respectively. Finally, we provide functional data in Drosophila that these two missense variants behave as LoF alleles in vivo. The evidence provide support for deleterious alleles in RNF2 being associated with a new and recognizable genetic disorder. This tentative gene-disease association in addition to the 12 previously identified disorders caused by PcG genes attests to the importance of these chromatin regulators in Mendelian disorders.
Collapse
Affiliation(s)
- Xi Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Venkata Hemanjani Bhavana
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Joan M Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Boris Keren
- Département de Génétique, Hospitalier Pitié-Salpêtrière, APHP, Paris 75013, France
- Sorbonne Université, Paris 75006, France
| | - Cyril Mignot
- Sorbonne Université, Paris 75006, France
- APHP, Sorbonne Université, Département de Génétique et Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière et Hôpital Trousseau, Paris 75013, France
| | - Claudia Ravelli
- Sorbonne Université, Paris 75006, France
- Département de Neuropédiatrie, Hôpital Armand Trousseau, APHP, Paris 75012, France
| | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
| |
Collapse
|
41
|
Anaesthesia and orphan diseases: Bohring-Opitz syndrome. Eur J Anaesthesiol 2021; 38:788-790. [PMID: 34101642 DOI: 10.1097/eja.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Chao EC, Astbury C, Deignan JL, Pronold M, Reddi HV, Weitzel JN. Incidental detection of acquired variants in germline genetic and genomic testing: a points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1179-1184. [PMID: 33864022 DOI: 10.1038/s41436-021-01138-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elizabeth C Chao
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, USA.,Ambry Genetics, Aliso Viejo, CA, USA
| | - Caroline Astbury
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Honey V Reddi
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
43
|
Peng H, Cassel J, McCracken DS, Prokop JW, Sementino E, Cheung M, Collop PR, Polo A, Joshi S, Mandell JP, Ayyanathan K, Hinds D, Malkowicz SB, Harbour JW, Bowcock AM, Salvino J, Kennedy EJ, Testa JR, Rauscher FJ. Kinetic Characterization of ASXL1/2-Mediated Allosteric Regulation of the BAP1 Deubiquitinase. Mol Cancer Res 2021; 19:1099-1112. [PMID: 33731362 DOI: 10.1158/1541-7786.mcr-20-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/22/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
BAP1 is an ubiquitin hydrolase whose deubiquitinase activity is mediated by polycomb group-like protein ASXL2. Cancer-related BAP1 mutations/deletions lead to loss-of-function by targeting the catalytic ubiquitin C-terminal hydrolase (UCH) or UCH37-like domain (ULD) domains of BAP1, and the latter disrupts binding to ASXL2, an obligate partner for BAP1 enzymatic activity. However, the biochemical and biophysical properties of domains involved in forming the enzymatically active complex are unknown. Here, we report the molecular dynamics, kinetics, and stoichiometry of these interactions. We demonstrate that interactions between BAP1 and ASXL2 are direct, specific, and stable to biochemical and biophysical manipulations as detected by isothermal titration calorimetry (ITC), GST association, and optical biosensor assays. Association of the ASXL2-AB box greatly stimulates BAP1 activity. A stable ternary complex is formed, comprised of the BAP1-UCH, BAP1-ULD, and ASXL2-AB domains. Stoichiometric analysis revealed that one molecule of the ULD domain directly interacts with one molecule of the AB box. Real-time kinetic analysis of the ULD/AB protein complex to the BAP1-UCH domain, based on surface plasmon resonance, indicated that formation of the ULD/AB complex with the UCH domain is a single-step event with fast association and slow dissociation rates. In vitro experiments validated in cells that the ASXL-AB box directly regulates BAP1 activity. IMPLICATIONS: Collectively, these data elucidate molecular interactions between specific protein domains regulating BAP1 deubiquitinase activity, thus establishing a foundation for small-molecule approaches to reactivate latent wild-type BAP1 catalytic activity in BAP1-mutant cancers.
Collapse
Affiliation(s)
| | - Joel Cassel
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel S McCracken
- The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | | | | | - Paul R Collop
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | | | - Surbhi Joshi
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - S Bruce Malkowicz
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Anne M Bowcock
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | | | | |
Collapse
|
44
|
Cuddapah VA, Dubbs HA, Adang L, Kugler SL, McCormick EM, Zolkipli-Cunningham Z, Ortiz-González XR, McCormack S, Zackai E, Licht DJ, Falk MJ, Marsh ED. Understanding the phenotypic spectrum of ASXL-related disease: Ten cases and a review of the literature. Am J Med Genet A 2021; 185:1700-1711. [PMID: 33751773 DOI: 10.1002/ajmg.a.62156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Over the past decade, pathogenic variants in all members of the ASXL family of genes, ASXL1, ASXL2, and ASXL3, have been found to lead to clinically distinct but overlapping syndromes. Bohring-Opitz syndrome (BOPS) was first described as a clinical syndrome and later found to be associated with pathogenic variants in ASXL1. This syndrome is characterized by developmental delay, microcephaly, characteristic facies, hypotonia, and feeding difficulties. Subsequently, pathogenic variants in ASXL2 were found to lead to Shashi-Pena syndrome (SHAPNS) and in ASXL3 to lead to Bainbridge-Ropers syndrome (BRPS). While SHAPNS and BRPS share many core features with BOPS, there also seem to be emerging clear differences. Here, we present five cases of BOPS, one case of SHAPNS, and four cases of BRPS. By adding our cohort to the limited number of previously published patients, we review the overlapping features of ASXL-related diseases that bind them together, while focusing on the characteristics that make each neurodevelopmental syndrome unique. This will assist in diagnosis of these overlapping conditions and allow clinicians to more comprehensively counsel affected families.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven L Kugler
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xilma R Ortiz-González
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine Zackai
- Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Dumas G, Malesys S, Bourgeron T. Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition. Genome Res 2021; 31:484-496. [PMID: 33441416 PMCID: PMC7919455 DOI: 10.1101/gr.262113.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
- Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal H3T 1C5, Quebec, Canada
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| |
Collapse
|
46
|
Zhao J, Hou Y, Fang F, Ding C, Yang X, Li J, Cui D, Cao Z, Zhang H. Novel truncating mutations in ASXL1 identified in two boys with Bohring-Opitz syndrome. Eur J Med Genet 2021; 64:104155. [PMID: 33529703 DOI: 10.1016/j.ejmg.2021.104155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 01/04/2023]
Abstract
Bohring-Opitz syndrome (BOS, or BOPS) is a rare congenital genetic disorder with multisystem abnormalities characterized by significant craniofacial dysmorphism, feeding difficulties, severe developmental delay, profound intellectual disability, flexion of elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints. Here, we report two Chinese BOS patients with distinctive phenotypes caused by novel truncating mutations. One was a boy aged 5 years 9 months who had a novel c.1049G>A/p.Trp350* mutation in ASXL1 and displayed relatively mild BOS symptoms with autism features. The other was a 16-month-old boy who carried a novel c.2689delC/p.His897Ilefs*11 mutation and displayed typical BOS symptoms. New cases with novel mutations, along with a detailed clinical and molecular analysis are important for a better diagnosis and understanding of BOS.
Collapse
Affiliation(s)
- Jianbo Zhao
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| | - Yanqi Hou
- Running Gene Inc., Beijing, 100083, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xinying Yang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Di Cui
- Running Gene Inc., Beijing, 100083, China
| | | | - Hao Zhang
- Running Gene Inc., Beijing, 100083, China
| |
Collapse
|
47
|
Zhao W, Hu X, Liu Y, Wang X, Chen Y, Wang Y, Zhou H. A de novo Variant of ASXL1 Is Associated With an Atypical Phenotype of Bohring-Opitz Syndrome: Case Report and Literature Review. Front Pediatr 2021; 9:678615. [PMID: 34527642 PMCID: PMC8435705 DOI: 10.3389/fped.2021.678615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Bohring-Opitz syndrome (BOS) is a rare genetic disease first reported by Bohring et al. in 1999. With the recent development of exome sequencing (ES), de novo truncating mutations in the additional sex-combs-like 1 (ASXL1) gene have been causally implicated in BOS. Herein, we describe a 7-month-old girl with intrauterine growth restriction, severe pulmonary infection, seizures, and craniofacial abnormalities (microcephaly, micro/retrognathia, hypertelorism, depressed nasal bridge, low-set ears and hypertrichosis) at birth. At a later stage, the patient developed global developmental delay. We performed ES and identified a de novo heterozygous mutation in ASXL1, namely, c.1210C>T/p.R404*. However, this case did not have trigonocephaly, facial hemangioma, prominent eyes, myopia, BOS posture, or brain abnormalities (enlarged subarachnoid spaces, agenesis of the corpus callosum, moderately enlarged cerebral ventricles, or prominent frontal subarachnoid spaces), which are common characteristics in most patients with BOS-harboring ASXL1 mutations. These new data expand the phenotype of BOS driven by ASXL1 and may assist in more accurately delineating the phenotypes caused by variants of this gene.
Collapse
Affiliation(s)
- Weiqing Zhao
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ye Liu
- Department of Otolaryngology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xike Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yun Chen
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yangyang Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
48
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
49
|
Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Int J Mol Sci 2020; 21:ijms21228515. [PMID: 33198194 PMCID: PMC7697007 DOI: 10.3390/ijms21228515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Thyroid hormone Receptor Interacting Protein 12 (TRIP12) protein belongs to the 28-member Homologous to the E6-AP C-Terminus (HECT) E3 ubiquitin ligase family. First described as an interactor of the thyroid hormone receptor, TRIP12’s biological importance was revealed by the embryonic lethality of a murine model bearing an inactivating mutation in the TRIP12 gene. Further studies showed the participation of TRIP12 in the regulation of major biological processes such as cell cycle progression, DNA damage repair, chromatin remodeling, and cell differentiation by an ubiquitination-mediated degradation of key protein substrates. Moreover, alterations of TRIP12 expression have been reported in cancers that can serve as predictive markers of therapeutic response. The TRIP12 gene is also referenced as a causative gene associated to intellectual disorders such as Clark–Baraitser syndrome and is clearly implicated in Autism Spectrum Disorder. The aim of the review is to provide an exhaustive and integrated overview of the different aspects of TRIP12 ranging from its regulation, molecular functions and physio-pathological implications.
Collapse
Affiliation(s)
- Manon Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Claire Vargas
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Dorian Larrieu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Jérôme Torrisani
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| | - Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| |
Collapse
|
50
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|