1
|
Gao H, Yan H, Arai T, Aranyakanont C, Li S, Ijiri S. The Potential Role of Gonadotropic Hormones and Their Receptors in Sex Differentiation of Nile Tilapia, Oreochromis niloticus. Int J Mol Sci 2025; 26:5376. [PMID: 40508194 PMCID: PMC12156293 DOI: 10.3390/ijms26115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Revised: 05/30/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Nile tilapia, as an ideal model for studying sex differentiation, is a popular farmed fish worldwide with a stable XX/XY sex-determination system. In tilapia, ovarian differentiation is triggered by estradiol-17β (E2) production in undifferentiated gonads. In a previous study, we suggested that follicle-stimulating hormone (FSH) signaling might be involved in ovarian differentiation in Nile tilapia. In this study, we further investigated the role of FSH signaling in ovarian differentiation via aromatase expression, which converts testosterone to E2. Masculinization of XX fry by aromatase inhibitor or 17α-methyltestosterone leads to suppression of fshr expression. Feminization of XY fry by E2 treatment increased fshr expression from 15 days after hatching, when E2 treatment was terminated. XX tilapia developed ovaries harboring aromatase expression if fsh and fshr were double knockdowns by morpholino-oligo injections. Finally, the transcriptional activity in the upstream region of the aromatase gene (cyp19a1a) was further increased by FSH stimulation when HEK293T cells were co-transfected with foxl2 and ad4bp/sf1. Collectively, this study suggests that the role of FSH signaling is not critical in tilapia ovarian differentiation; however, FSH signaling may have a compensatory role in ovarian differentiation by increasing cyp19a1a transcription in cooperation with foxl2 and ad4bp/sf1 in Nile tilapia.
Collapse
Affiliation(s)
| | | | | | | | | | - Shigeho Ijiri
- Division of Marine Life Sciences, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan; (H.G.)
| |
Collapse
|
2
|
Shahbaz S, Sharif A, Akhtar B, Mobashar A, Shazly GA, Metouekel A, Bourhia M. Therapeutic potential of 3-acetyl coumarin against polycystic ovarian syndrome induced by letrozole using female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7057-7074. [PMID: 39715882 DOI: 10.1007/s00210-024-03720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Polycystic ovarian syndrome is a heterogeneous endocrine disorder characterized by ovarian cysts, anovulation, endocrine variations, which includes oligo-amenorrhea along with associated subfertility and hyperandrogenism manifested as acne, hirsutism, and male-pattern alopecia. Coumarins are fused benzene and pyrone ring systems that exhibit a wide spectrum of bioactivities. This study aimed to investigate the effects of 3-acetyl coumarin (3-AC) on polycystic ovarian syndrome in female rats. Acute oral toxicity conducted according to OECD guidelines 425 (a test conducted in scenarios where there is information indicating that the test material is non-toxic) exhibited no mortality. In vitro DPPH assay demonstrated anti-oxidant potential of 3-AC. Letrozole, a nonsteroidal aromatase inhibitor was used to induce PCOS (1 mg/kg-21 days). Normal and PCOS control rats were administered a vehicle solution (0.5% CMC), whereas 3-AC (10, 20, and 30 mg/kg) and metformin (300 mg/kg) was administered to treatment groups for 15 days. Vaginal smears were taken to assess estrous cycle. Rats were euthanized at day 37. In vivo analysis included measurement of fasting blood glucose, total-cholesterol, triglycerides, FSH, LH, and testosterone levels. ELISA was used for measurement of inflammatory markers (IL-1β, IL-6, and TNF-α). Oxidative stress markers (SOD, CAT, GSH, MDA, NO) were also evaluated. Expression levels of NF-κB and LHCGR were detected by RT-qPCR. Molecular docking was also performed. One-way analysis of variance was employed followed by Tukey's test for statistical analysis. Treatment with 3-AC led to favorable effects in PCOS rats. Specifically, inflammatory levels, antioxidant status, lipid profile, and glucose concentrations were all improved. These findings suggest that 3-acetyl coumarin (3-AC) may serve as a promising therapeutic agent for alleviating symptoms of PCOS in this animal model.
Collapse
Affiliation(s)
- Saliha Shahbaz
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan.
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amira Metouekel
- University of Technology of Compiègne, EA 4297 TIMR, 60205, Compiègne Cedex, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| |
Collapse
|
3
|
Pattarawat P, Zhan T, Fan Y, Zhang J, Yang H, Zhang Y, Moyd S, Douglas NC, Urbanek M, Buckley B, Burdette J, Zhang Q, Kim JYJ, Xiao S. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57024. [PMID: 40194260 PMCID: PMC12120842 DOI: 10.1289/ehp14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The extensive use of per- and polyfluoroalkyl substances (PFAS) has led to environmental contamination and bioaccumulation of these substances. Previous research linked PFAS exposure to female reproductive disorders, but the mechanism remains elusive. Further, most studies focused on legacy long-chain PFOA and PFOS, yet the reproductive impacts of other long-chain PFAS and short-chain alternatives are rarely explored. OBJECTIVES We investigated the effects of long- and short-chain PFAS on the mouse ovary and further evaluated the toxic mechanisms of long-chain perfluorononanoic acid (PFNA). METHODS A 3D in vitro mouse ovarian follicle culture system and an in vivo mouse model were used, together with approaches of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), RNA sequencing (RNA-seq), pharmacological treatments, in situ zymography, histology, in situ hybridization, analytical chemistry, and benchmark dose modeling (BMD). Using these approaches, a wide range of exposure levels (1 - 250 μ M ) of long-chain PFAS (PFOA, PFOS, PFNA) and short-chain PFAS (PFHpA, PFBS, GenX) were first tested in cultured follicles to examine their effects on follicle growth, hormone secretion, and ovulation. We identified 250 μ M as the most effective concentration for further investigation into the toxic mechanisms of PFNA, followed by an in vivo mouse exposure model to verify the accumulation of PFNA in the ovary and its ovarian-disrupting effects. RESULTS In vitro cultured ovarian follicles exposed to long- but not short-chain PFAS showed poorer gonadotropin-dependent follicle growth, ovulation, and hormone secretion in comparison with control follicles. RT-qPCR and RNA-seq analyses revealed significant alterations in the expression of genes involved in follicle-stimulating hormone (FSH)-dependent follicle growth, luteinizing hormone (LH)-stimulated ovulation, and associated regulatory pathways in the PFNA-exposed group in comparison with the control group. The PPAR agonist experiment demonstrated that a peroxisome proliferator-activated receptor gamma (PPAR γ ) antagonist could reverse both the phenotypic and genotypic effects of PFNA exposure, restoring them to levels comparable to the control group. Furthermore, in vivo experiments confirmed that PFNA could accumulate in ovarian tissues and validated the in vitro findings. The BMD, in vitro, and in vivo extrapolation analyses estimated follicular rupture as the most sensitive end point and that observed effects occurred in the range of human exposure to long-chain PFAS. DISCUSSION Our study demonstrates that long-chain PFAS, particularly PFNA, act as a PPAR γ agonist in granulosa cells to interfere with gonadotropin-dependent follicle growth, hormone secretion, and ovulation; and exposure to high levels of PFAS may cause adverse ovarian outcomes. https://doi.org/10.1289/EHP14876.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Yihan Fan
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Hilly Yang
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Sarahna Moyd
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, New Jersey, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, New Jersey, USA
| | - Margrit Urbanek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Joanna Burdette
- Department of Pharmaceutical Biosciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Bohaczuk SC, Tonsfeldt KJ, Slaiwa TI, Dunn GA, Gillette DLM, Yeo SE, Shi C, Cassin J, Thackray VG, Mellon PL. A Point Mutation in an Otherwise Dispensable Upstream Fshb Enhancer Moderately Impairs Fertility in Female Mice. Endocrinology 2025; 166:bqaf073. [PMID: 40237337 PMCID: PMC12038155 DOI: 10.1210/endocr/bqaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Follicle-stimulating hormone (FSH) is necessary for fertility in both sexes as a regulator of gametogenesis and hormone synthesis. Humans with loss-of-function mutations within the gene encoding the FSH beta subunit (FSHB) are infertile. Similarly, female Fshb knock-out mice are infertile and fail to ovulate, and males are subfertile. We recently reported the discovery and characterization of an upstream enhancer of FSHB located 26 Kb upstream of the transcriptional start site in humans (-17 Kb in mouse) that also amplifies activin and gonadotropin-releasing hormone induction of FSHB. Notably, the upstream enhancer contains a polymorphic, fertility-associated site in humans, rs11031006 (G/A), and the minor allele (A) increased enhancer activity in vitro as compared to the major allele (G), likely by increasing the affinity of an SF1 binding element. To investigate the role of the novel enhancer and rs11031006 variant in vivo, we created mouse models to assess deletion of the upstream enhancer and the impact of the G>A point mutation at the rs11031006-equivalent base. A full characterization of the -17 Kb enhancer deletion model revealed no apparent differences in fertility or serum FSH/LH levels, nor did a larger deletion that also included an additional putative regulatory element. In contrast, female mice homozygous for the mutated A allele at the rs11031006-equivalent position had fewer litters over a 120-day fertility assay, abnormal estrous cycling at 10 months, and reduced pituitary Lhb transcript abundance. Overall, while the mouse -17 Kb Fshb enhancer is dispensable for fertility, the rs11031006-equivalent G>A mutation results in subfertility in females.
Collapse
Affiliation(s)
- Stephanie C Bohaczuk
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Theresa I Slaiwa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Geneva A Dunn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominique L M Gillette
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seung E Yeo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chengxian Shi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
He J, Wang Z, Yang L, Jiang Y, Yan G, Pan Y, Gao F, Yuan J, Gao Y. Unveiling the role of FOXL2 in female differentiation and disease: a comprehensive review†. Biol Reprod 2025; 112:600-613. [PMID: 39976382 DOI: 10.1093/biolre/ioaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 02/21/2025] Open
Abstract
Ovarian differentiation relies on the accurate and orderly expression of numerous related genes. Forkhead box protein L2 (FOXL2) is one of the earliest ovarian differentiation markers and transcription factors. In sex determination, FOXL2 maintains the differentiation of the female pathway by inhibiting male differentiation genes, including SOX9 and SF1. In addition, FOXL2 promotes the synthesis of follicle-stimulating hormone and anti-Müllerian hormone to support follicle development. Mutations in FOXL2 are associated with numerous female reproductive diseases. A comprehensive and in-depth study of FOXL2 provides novel strategies for the diagnosis and treatment of such diseases. This review discusses the mechanism of FOXL2 in female sex differentiation and maintenance, hormone synthesis, and disease occurrence and reveals the role of FOXL2 as a central factor in female sex development and fertility maintenance. This review will serve as a reference for identifying novel targets of other regulatory factors interacting with FOXL2 in female sex determination and follicle development and for the diagnosis and treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Jia He
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Zican Wang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lici Yang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongjian Jiang
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Ge Yan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yongwei Pan
- College of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China
| | - Yang Gao
- College of Basic Medicine, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
Lin YF, Buddle ERS, Schultz H, Zhou X, Ongaro L, Loka M, Alonso CAI, Boehm U, Duggavathi R, Bernard DJ. Gonadotropin-releasing hormone regulates transcription of the inhibin B co-receptor, TGFBR3L, via early growth response one. J Biol Chem 2025; 301:108405. [PMID: 40090584 PMCID: PMC12018112 DOI: 10.1016/j.jbc.2025.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Follicle-stimulating hormone (FSH), a product of pituitary gonadotrope cells, regulates gonadal function and fertility. FSH production is stimulated by gonadotropin-releasing hormone (GnRH) and activin-class ligands of the TGFβ family. Inhibin A and B are TGFβ proteins that suppress FSH synthesis by competitively binding activin type II receptors in concert with the co-receptors betaglycan (TGFBR3) and TGFBR3L. Betaglycan mediates the actions of both inhibins and is broadly expressed. In contrast, TGFBR3L is inhibin B-specific and selectively expressed in gonadotropes. This cell-restricted expression is driven, in part, by steroidogenic factor 1 (SF-1, NR5A1), which stimulates Tgfbr3l/TGFBR3L transcription via two conserved promoter elements. Tgfbr3l expression is lost in mice lacking SF-1 in gonadotropes. However, SF-1 alone is unlikely to fully explain gonadotrope-restricted Tgfbr3l/TGFBR3L expression. Here, we report that GnRH induces binding of the transcription factor, early growth response 1 (EGR1), to the murine Tgfbr3l and human TGFBR3L promoters at a conserved cis-element between the two SF-1 binding sites. In homologous LβT2 cells, GnRH stimulation of Tgfbr3l/TGFBR3L promoter-reporters depends on EGR1 binding to this cis-element. In heterologous cells, over-expressed EGR1 independently and synergistically with SF-1 activates Tgfbr3l/TGFBR3L promoter-reporter activities. In vivo, Tgfbr3l mRNA expression is reduced in the pituitaries of: 1) GnRH-deficient mice, 2) wild-type mice treated with a GnRH receptor antagonist, and 3) gonadotrope-specific Egr1 knockout mice. Gonadectomy, which increases GnRH pulse frequency, enhances Tgfbr3l expression in control but not gonadotrope-specific Egr1 knockouts. Collectively, these data indicate that GnRH stimulates Tgfbr3l/TGFBR3L transcription via EGR1, which acts with SF-1 through conserved promoter elements.
Collapse
Affiliation(s)
- Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada.
| |
Collapse
|
7
|
Albertini DF. From complex to oversimplified-broadening the scope of the reproductive axis. J Assist Reprod Genet 2025; 42:1035-1036. [PMID: 40261461 PMCID: PMC12055734 DOI: 10.1007/s10815-025-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
|
8
|
Jinno M. Ovarian stimulation by promoting basal follicular growth. Reprod Biol Endocrinol 2025; 23:35. [PMID: 40050948 PMCID: PMC11884117 DOI: 10.1186/s12958-025-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it. METHODS Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment. RESULTS While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures. CONCLUSION Basal follicular growth modulation can increase live birth rates.
Collapse
Affiliation(s)
- Masao Jinno
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan.
| |
Collapse
|
9
|
Głód P, Smoleniec J, Marynowicz W, Gogola-Mruk J, Ptak A. The Ovary as a Target Organ for New Generation Bisphenols Toxicity. TOXICS 2025; 13:164. [PMID: 40137491 PMCID: PMC11946734 DOI: 10.3390/toxics13030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Bisphenols (BPs) are a group of organic compounds used extensively in plastics, coatings, and epoxy resins; they have been of concern recently due to their endocrine-disrupting effects. Among these, bisphenol A (BPA) is the most studied. Regulatory measures, such as the ban on BPA use in baby bottles by the European Union and its restricted use in thermal paper, reflect the growing awareness of the health risks of BPA. To mitigate these risks, analogs such as bisphenol S (BPS), bisphenol F (BPF), and others (BPAF, BPAP, BPB, BPP, BPZ) have been developed as alternatives. Despite their intended safety, these analogs have been detected in environmental media, including indoor dust and thermal receipt paper, as well as in human biological samples. Studies report their presence in urine at levels comparable to BPA, with BPS and BPF found in 78% and 55% of samples, respectively. In addition, BPs have been found in human follicular fluid (FF) at concentrations that could exert some paracrine effects on ovarian function and reproductive health. With the increased global production of BPs, occupational exposure and environmental contamination also increase. This review summarizes what is currently known about the effects of BPs on the ovary and the mechanisms by which PBs exert ovarian toxicity, with a particular focus on oogenesis, folliculogenesis, and steroidogenesis. Further, this review emphasizes their influence on reproductive functions and the need for further biosafety evaluations.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Joanna Smoleniec
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, PL30348 Cracow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30387 Cracow, Poland; (P.G.); (J.S.); (W.M.); (J.G.-M.)
| |
Collapse
|
10
|
Walters K, Baldwin A, Liu Z, Larsen M, Mukherjee N, Kumar TR. Identification of FSH-regulated and estrous stage-specific transcriptional networks in mouse ovaries. Proc Natl Acad Sci U S A 2025; 122:e2411977122. [PMID: 39928863 PMCID: PMC11848299 DOI: 10.1073/pnas.2411977122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 02/12/2025] Open
Abstract
Follicle-stimulating hormone (FSH) acts by binding to FSHRs expressed on ovarian granulosa cells and produces estradiol. FSH is essential for female fertility because mice lacking FSH (Fshb KO) are anestrous and infertile. Although several in vitro cell culture and ex vivo approaches combined with pharmacological hormone treatment were used to identify FSH-regulated genes, how FSH orchestrates ovarian gene networks in vivo has not been investigated. Whether FSH-regulated genes display estrous stage-specific expression changes has also not been studied. Here, we functionally rescued Fshb null mice with a gonadotrope-targeted HFSHB transgene and performed RNA-Seq analysis on ovarian RNAs obtained from FSH-intact (WT), FSH-deficient (Fshb KO), and FSH-rescue (HFSHB+ rescue) mice. By comparing WT vs. Fshb KO and Fshb KO vs. HFSHB+ rescue ovarian gene expression datasets, we identified FSH-responsive genes in vivo. Cross interrogation of these datasets further allowed us to identify several transcription factors (TFs) and RNA-binding proteins specific to FSH-regulated genes. In an independent set of experiments, we performed RNA-Seq analysis on ovarian RNAs from mice in diestrous (DE), proestrous (PE), and estrous (E) and identified estrous stage-specific ovarian gene expression patterns. Interestingly, many of the FSH-regulated TFs themselves were estrous-stage specifically expressed. We found that ESR2 and GATA6, two known FSH-responsive TFs, and their target genes are reciprocally regulated with distinct patterns of expression in estrous stages. Together, our in vivo models and RNA-Seq analyses identify FSH-regulated ovarian genes in specific estrous stages that are under transcriptional and posttranscriptional control.
Collapse
Affiliation(s)
- Kathryn Walters
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Amber Baldwin
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| |
Collapse
|
11
|
Ireland JJ, Karl KR, Latham KE. Unraveling the Clinical FSH Conundrum: Insights From the Small Ovarian Reserve Heifer Model. Mol Reprod Dev 2025; 92:e70007. [PMID: 39935023 PMCID: PMC11814505 DOI: 10.1002/mrd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 02/13/2025]
Abstract
High doses of follicle stimulating hormone (FSH) are used during ovarian stimulation to maximize the number of oocytes recovered for in vitro fertilization (IVF) during assisted reproductive technology (ART) in women. Whether high FSH doses are detrimental to embryo viability remains controversial. Evidence from many clinical studies revealed that FSH dose is inversely correlated with live birth rate in women. The mechanistic basis for this effect has been elusive. This review summarizes over 20 years of work using a unique biomedical model, the small ovarian reserve heifer (SORH). Those studies revealed that excessive FSH doses can disrupt gene expression via multiple cell-signaling pathways in ovarian cells, resulting in follicular hyperstimulation dysgenesis (FHD). This compromises the capacity of ovulatory-size follicles to respond to gonadotropins, produce estradiol and ovulate, causes premature cumulus expansion and oocyte maturation, and impairs the fertilizability of oocytes. The SORH model has thus provided new insights into the nature and mechanisms of the deleterious effects of excessive FSH doses during ovarian stimulation. The SORH model has been and remains valuable for basic research and for the discovery of ways to optimize FSH dosing clinically to improve IVF success and ART outcomes.
Collapse
Affiliation(s)
- James J. Ireland
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Kaitlin R. Karl
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Keith E. Latham
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Reproductive and Developmental Sciences Program, Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of Obstetrics, Gynecology, and Reproductive ScienceMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
12
|
Hsueh AJW, Li J. Hormonology: A kaleidoscopic tale of dedication, serendipity, and ingenuity. Gen Comp Endocrinol 2025; 363:114676. [PMID: 39938725 DOI: 10.1016/j.ygcen.2025.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
This article delves into stories of hormone discovery, characterization, clinical application, and the scientists themselves. Our journey begins with Arnold Berthod's rooster castration experiments, laying the groundwork for understanding testosterone, and Ernest Starling's 1902 revelation that secretin wasn't neuron-released. We'll explore the origins of kisspeptin and its role in Gonadotropin-releasing hormone pulsatile secretion by KNDY neurons. Discussions will then include the isolation of Growth hormone-releasing hormone from pancreatic tumors and growth hormone therapy's surprising link to Creutzfeldt-Jakob disease. We'll also delve into the design of long-acting follicle stimulating hormone for infertility treatment, alongside discoveries of five inhibin and activin hormones. Further, we'll uncover the discovery of receptors for relaxin family ligands and diverse chemokines, highlighting scientists' use of evolutionary genomics. We'll touch on parabiotic animal experiments leading to leptin's discovery and polarized ligand-receptor expression for receptor activation. The narrative will include instances such as a Nobel laureate who presented a rejection letter received prior to their award ceremony and a researcher pursuing receptor structure despite funding setbacks, both eventually rewarded. Through the diligent efforts of researchers and unexpected discoveries, the mechanisms of more than a hundred hormones have been elucidated. The endocrinological research domain is currently embracing the application of artificial intelligence to analyze extensive genomic and protein structure databases.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, PR China; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
13
|
Ongaro L, Zhou X, Wang Y, Schultz H, Zhou Z, Buddle ERS, Brûlé E, Lin YF, Schang G, Hagg A, Castonguay R, Liu Y, Su GH, Seidah NG, Ray KC, Karp SJ, Boehm U, Ruf-Zamojski F, Sealfon SC, Walton KL, Lee SJ, Bernard DJ. Muscle-derived myostatin is a major endocrine driver of follicle-stimulating hormone synthesis. Science 2025; 387:329-336. [PMID: 39818879 DOI: 10.1126/science.adi4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins. Our results both challenge activin's eponymous role in FSH synthesis and establish an unexpected endocrine axis between skeletal muscle and the pituitary gland. Our data also suggest that efforts to antagonize myostatin to increase muscle mass may have unintended consequences on fertility.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Ziyue Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adam Hagg
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM)-University of Montreal, Montreal, Quebec, Canada
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Frederique Ruf-Zamojski
- Cedars-Sinai Medical Center, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Los Angeles, CA, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Wang M, Li Z, Xiong Y, Yuan R, Zhu X, Chen X, Wang T, Li Z, Wu J. Acupuncture Increased the Number of Retrieved Oocytes in a Mouse Model of POR: The Involvement of DNA Methylation in the Oocytes. Comb Chem High Throughput Screen 2025; 28:132-145. [PMID: 39957304 DOI: 10.2174/0113862073264460231113052942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND Poor ovarian response (POR) reduces the success rate of in vitro fertilization mainly because of fewer oocytes retrieved. Acupuncture (Ac) therapy can improve the number of retrieved oocytes in the controlled ovarian stimulation program. The role of Ac in the corresponding epigenetic mechanism of POR has not been studied. OBJECTIVE This study was conducted to determine the effect of Ac on the number of retrieved oocytes and its role in DNA methylation in a mouse model of POR. METHODS Forty C57BL/6N female mice with normal estrous cycles were randomly classified into 4 groups of 10 each: control (Con) group, Ac-Con group, POR group, and Ac-POR group. Mice in POR and Ac-POR groups received a gastric gavage of Tripterygium wilfordii polyglycoside suspension of 50 mg/kg-1 once a day for 14 consecutive days. Ac was applied at "Shenting" (DU 24), "Guanyuan" (CV 4), "Zusanli" (ST 36), and "Shenshu" (BL 23) in the Ac-POR group for 10 min per session, once a day for 14 consecutive days. All four groups were stimulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and the number of retrieved oocytes and proportion of mature oocytes were recorded. The DNA methylation level in a single mouse oocyte in each group was analyzed using single-cell genome-wide bisulfite sequencing (scBSseq), and key pathways were identified using GO and KEGG enrichment analyses. RESULTS A dissecting microscope revealed that the Ac therapy improved the number of retrieved oocytes compared with the POR group (p < 0.05). ScBS-seq showed that there was no significant change in global DNA methylation levels between the POR model and control group mice. However, differences were primarily observed in the differentially methylated regions (DMRs) of each chromosome, and Ac decreased global DNA methylation. DMR analysis identified 13 genes that may be associated with Ac treatment. Cdk5rap2 and Igf1r, which mediate germ cell apoptosis, growth, and development, maybe most closely related to the Ac treatment of POR. KEGG analysis revealed that differentially expressed genes were mainly enriched in Wnt, GnRH, and calcium signaling pathways. The genes were closely related to the regulation of POR via Ac. CONCLUSION The results suggest that DNA methylation in oocytes is related to the development of POR and that the role of Ac in affecting DNA methylation in oocytes is associated with the Wnt, GnRH, and calcium signaling pathways as well as Cdk5rap2 and Igf1r in POR mice.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Zimeng Li
- Department of Pain Medicine, The Third People's Hospital of Chengdu, No.19, YangShi Street, QingYang District, Chengdu, Sichuan, 610031, P. R. China
| | - Yueheng Xiong
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Rongli Yuan
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Xinyun Zhu
- Traditional Chinese Medicine Department, People's Hospital of Leshan, No. 238, Baita Street, Shizhong District, Leshan city, Sichuan, 614000, P.R. China
| | - Xin Chen
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Tianyu Wang
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Zhi Li
- Department of Acupuncture and Moxibustion, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610032, P. R. China
| | - Jie Wu
- Hospital of Chengdu University of Traditional Chinese Medicine. No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
15
|
Anazawa M, Ashibe S, Nagao Y. Gene expression levels in cumulus cells are correlated with developmental competence of bovine oocytes. Theriogenology 2025; 231:11-20. [PMID: 39389001 DOI: 10.1016/j.theriogenology.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The generation of mammalian embryos by in vitro culture is hampered by the failure of many of the embryos to develop to the blastocyst stage. This problem occurs even when cumulus-oocyte complexes (COCs) with good morphology are visually selected and used for culture. Because cumulus cells are important for oocyte maturation and subsequent embryo development, here we compared gene expression patterns in cumulus cells of COCs that developed in vitro to the blastocyst stage with those of COCs that failed to develop. Cumulus cells were aspirated from bovine COCs selected for in vitro culture. Oocyte developmental competence was evaluated by screening for cleavage and development to the blastocyst stage. The collected cumulus cells were used to quantify mRNA levels of FSH receptor (FSHR), insulin-like growth factor-1 receptor (IGF-1R), anti-Müllerian hormone (AMH), AMH receptor II (AMHRII), epidermal growth factor receptor (EGFR), estrogen receptor β (ERβ), B cell lymphoma/leukemia-2 associated X (Bax), and cysteine-aspartic acid protease-3 (Caspase-3). We found that the expression levels of FSHR, IGF-1R, AMH, and EGFR were higher in cumulus cells from COCs that developed to blastocysts as compared with those that failed to develop, whereas expression levels of Bax and Caspase-3 were lower in cumulus cells of COCs that matured to the blastocyst stage. Positive correlations were found between FSHR and IGF-1R expression (r = 0.59) and between ERβ and EGFR expression (r = 0.43) in cumulus cells from COCs that developed to the blastocyst stage. Our findings indicate that gene expression levels in cumulus cells are correlated with the developmental competence of bovine oocytes. Measurement of gene expression in cumulus cells therefore offers a non-invasive means of predicting oocyte developmental competence.
Collapse
Affiliation(s)
- Mayuko Anazawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
16
|
Zhou Z, Lv Y, Li L, Yuan X, Zhou X, Li J. FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals (Basel) 2024; 14:3514. [PMID: 39682478 DOI: 10.3390/ani14233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is well known that the function of granulosa cells (GCs) is closely related to follicular development, and FoxO1 and histone methylation have been implicated in follicular development. However, the specific mechanisms by which FoxO1 and histone methylation regulate follicular development are still largely unknown. To explore the specific mechanism of FoxO1 in regulating follicular development, in this study, we showed that the expression of FoxO1 in immature ovaries and small follicles was significantly higher than in mature ovaries and large follicles of sows, respectively. FoxO1 was found to inhibit the secretion of testosterone and proliferation of porcine GCs and promote the secretion of progesterone and apoptosis of porcine GCs. Furthermore, H3K27me3, as a transcriptional inhibitor, can inhibit the transcription of FoxO1. FoxO1 could promote the transcription of CYP1A1, and CYP1A1 was found to inhibit the proliferation and facilitate the ferroptosis of porcine GCs. Collectively, our results revealed that the H3K27me3-FoxO1-CYP1A1 pathway might participate in follicular development, and these findings could provide potential targets for improving follicular development in sows.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Lv
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liying Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Grudet F, Martinot E, Godin P, Bérubé M, Chédotal A, Boerboom D. Slit1 inhibits ovarian follicle development and female fertility in mice†. Biol Reprod 2024; 111:834-844. [PMID: 38943353 PMCID: PMC11473917 DOI: 10.1093/biolre/ioae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Previous in vitro studies have suggested that SLIT ligands could play roles in regulating ovarian granulosa cell proliferation and gene expression, as well as luteolysis. However, no in vivo study of Slit gene function has been conducted to date. Here, we investigated the potential role of Slit1 in ovarian biology using a Slit1-null mouse model. Female Slit1-null mice were found to produce larger litters than their wild-type counterparts due to increased ovulation rates. Increased ovarian weights in Slit1-null animals were found to be due to the presence of greater numbers of healthy antral follicles with similar numbers of atretic ones, suggesting both an increased rate of follicle recruitment and a decreased rate of atresia. Consistent with this, treatment of cultured granulosa cells with exogenous SLIT1 induced apoptosis in presence or absence of follicle-stimulating hormone, but had no effect on cell proliferation. Although few alterations in the messenger RNA levels of follicle-stimulating hormone-responsive genes were noted in granulosa cells of Slit1-null mice, luteinizing hormone target gene mRNA levels were greatly increased. Finally, increased phospho-AKT levels were found in granulosa cells isolated from Slit1-null mice, and SLIT1 pretreatment of cultured granulosa cells inhibited the ability of both follicle-stimulating hormone and luteinizing hormone to increase AKT phosphorylation, suggesting a mechanism whereby SLIT1 could antagonize gonadotropin signaling. These findings therefore represent the first evidence for a physiological role of a SLIT ligand in the ovary, and define Slit1 as a novel autocrine/paracrine regulator of follicle development.
Collapse
Affiliation(s)
- Florine Grudet
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Emmanuelle Martinot
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Godin
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Michael Bérubé
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
18
|
Zhou J, Fu C, Shen M, Tao J, Liu H. Sulforaphane Promotes Proliferation of Porcine Granulosa Cells via the H3K27ac-Mediated GDF8-ALK5-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21635-21649. [PMID: 39294897 DOI: 10.1021/acs.jafc.4c06178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Follicle development, a crucial process in reproductive biology, hinges upon the dynamic proliferation of granulosa cells (GCs). Growth differentiation factor-8 (GDF8) is well-known as myostatin for inhibiting skeletal muscle growth, and it also exists in ovarian GCs and follicle fluid. However, the relationship between GCs proliferation and GDF8 remains elusive. Sulforaphane (SFN) is a potent bioactive compound, which in our study has been demonstrated to induce the expression of GDF8 in GCs. Meanwhile, we discover a novel role of SFN in promoting the proliferation of porcine GCs. Specifically, SFN enhances GCs proliferation by accelerating the progression of the cell cycle through the G1 phase to the S phase. By performing gene expression profiling, we showed that the promoting proliferative effects of SFN are highly correlated with the TGF-β signaling pathways and cell cycle. Among the ligand factors of TGF-β signaling, we identify GDF8 as a critical downstream effector of SFN, which acts through ALK5 to mediate SFN-induced proliferation and G1/S transition. In addition, we identify a noncanonical downstream pathway by which GDF8 induces the activation of MAPK/ERK to facilitate the cell cycle progression in GCs. Moreover, we reveal that the expression of GDF8 is regulated by SFN through epigenetic modifications of H3K27 acetylation. These findings not only provide mechanistic insights into the regulation of GCs proliferation but also establish a previously unrecognized role of GDF8 in follicle development, which have significant implications for developing strategies to improve female fertility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Xu Q, Ye M, Su Y, Feng L, Zhou L, Xu J, Wang D. Hypogonadotropic hypogonadism in male tilapia lacking a functional rln3b gene. Int J Biol Macromol 2024; 270:132165. [PMID: 38729472 DOI: 10.1016/j.ijbiomac.2024.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Relaxin 3 is a neuropeptide that plays a crucial role in reproductive functions of mammals. Previous studies have confirmed that rln3a plays an important role in the male reproduction of tilapia. To further understand the significance of its paralogous gene rln3b in male fertility, we generated a homozygous mutant line of rln3b in Nile tilapia. Our findings indicated that rln3b mutation delayed spermatogenesis and led to abnormal testes structure. Knocking out rln3b gene resulted in a decrease in sperm count, sperm motility and male fish fertility. TUNEL detection revealed a small amount of apoptosis in the testes of rln3b-/- male fish at 390 days after hatching (dah). RT-qPCR analysis demonstrated that mutation of rln3b gene caused a significant downregulation of steroid synthesis-related genes such as cyp17a1, cyp11b2, germ cell marker gene, Vasa, and gonadal somatic cell marker genes of amh and amhr2. Furthermore, we found a significant down-regulation of hypothalamic-pituitary-gonadal (HPG) axis-related genes, while a significantly up-regulation of the dopamine synthetase gene in the rln3b-/- male fish. Taken together, our data strongly suggested that Rln3b played a crucial role in the fertility of XY tilapia by regulating HPG axis genes.
Collapse
Affiliation(s)
- Qinglei Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yun Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Jian Xu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Zhan T, Zhang J, Zhang Y, Zhao Q, Chemerinski A, Douglas NC, Zhang Q, Xiao S. A Dose-Response Study on Functional and Transcriptomic Effects of FSH on Ex Vivo Mouse Folliculogenesis. Endocrinology 2024; 165:bqae054. [PMID: 38735763 PMCID: PMC11129714 DOI: 10.1210/endocr/bqae054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.
Collapse
Affiliation(s)
- Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Nataki C Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Fakhro KA, Awwad J, Garibova S, Saraiva LR, Avella M. Conserved genes regulating human sex differentiation, gametogenesis and fertilization. J Transl Med 2024; 22:473. [PMID: 38764035 PMCID: PMC11103854 DOI: 10.1186/s12967-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024] Open
Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple's ability to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated genome editing technologies have facilitated the identification and characterization of genes and mechanisms that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology and highlight the importance of studying human consanguineous populations to discover novel monogenic causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human reproductive tissues.
Collapse
Affiliation(s)
- Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Obstetrics & Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
- Vincent Memorial Obstetrics & Gynecology Service, The Massachusetts General Hospital, Boston, MA, USA
| | | | - Luis R Saraiva
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Matteo Avella
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
- Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Anima B, Gurusubramanian G, Roy VK. Possible role of apelin on the ovarian steroidogenesis and uterine apoptosis of infantile mice: An in vitro study. J Steroid Biochem Mol Biol 2024; 238:106463. [PMID: 38246202 DOI: 10.1016/j.jsbmb.2024.106463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The expression of adipokines is well-known in the ovary and uterus. Recently we have shown that apelin and its receptor, APJ are developmentally regulated in the ovary and uterus of mice with elevation at postnatal day 14 (PND14). However, its role in the ovary and uterus of PND14 has not been investigated. Thus, we aimed to unravel the role of the apelin system (by APJ antagonist, ML221) on ovarian steroid secretion, proliferation, and apoptosis along with its role in uterine apoptosis in PND14 mice by in vitro approaches. The treatment of ML221 decreased estrogen, testosterone, and androstenedione secretion while increasing the progesterone secretion from the infantile ovary. These results suggest that apelin signaling would be important for ovarian estrogen synthesis in infantile mice (PND14). The abundance of 3β-HSD, 17β-HSD, aromatase, and active caspase3 increased in the infantile ovary after ML221 treatment. The expression of ERs and BCL2 were also down-regulated by ML221 treatment. The decreased BCL2 and increased active caspase3 by ML221 suggest the suppressive role of apelin on ovarian apoptosis. The APJ antagonist treatment also down-regulated the ER expression in the uterus along with increased active caspase3 and decreased BCL2 expression. In conclusion, apelin signaling inhibits the ovarian and uterine apoptosis via estrogen signaling in the ovary and uterus.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
24
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
25
|
Duivenvoorden WC, Margel D, Subramony Gayathri V, Duceppe E, Yousef S, Naeim M, Khajehei M, Hopmans S, Popovic S, Ber Y, Heels-Ansdell D, Devereaux PJ, Pinthus JH. Follicle-Stimulating Hormone Exacerbates Cardiovascular Disease in the Presence of Low or Castrate Testosterone Levels. JACC Basic Transl Sci 2024; 9:364-379. [PMID: 38559622 PMCID: PMC10978407 DOI: 10.1016/j.jacbts.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 04/04/2024]
Abstract
Low testosterone (T), common in aging men, associates with cardiovascular disease. We investigated whether follicle-stimulating hormone (FSH), which is affected by T, modulates the cardiovascular effects associated with low T or castration. FSHβ-/-:low-density lipoprotein receptor (LDLR)-/- mice, untreated or castrated (orchiectomy, gonadotropin-releasing hormone agonist or antagonist), demonstrated significantly less atherogenesis compared with similarly treated LDLR-/- mice, but not following FSH delivery. Smaller plaque burden in LDLR-/- mice receiving gonadotropin-releasing hormone antagonists vs agonists were nullified in FSHβ-/-:LDLR-/- mice. Atherosclerotic and necrotic plaque size and macrophage infiltration correlated with serum FSH/T. In patients with prostate cancer, FSH/T following androgen-deprivation therapy initiation predicted cardiovascular events. FSH facilitates cardiovascular disease when T is low or eliminated.
Collapse
Affiliation(s)
- Wilhelmina C.M. Duivenvoorden
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - David Margel
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Emmanuelle Duceppe
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Centre Hospitalier de l'Universite de Montréal, Montréal, Québec, Canada
| | - Sadiya Yousef
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Magda Naeim
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Mohammad Khajehei
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sarah Hopmans
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- Department of Pathology and Molecular Medicine, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yaara Ber
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Diane Heels-Ansdell
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Philip J. Devereaux
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Centre Hospitalier de l'Universite de Montréal, Montréal, Québec, Canada
| | - Jehonathan H. Pinthus
- Department of Surgery, Division of Urology, Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
- Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Ogawa T, Matsumura T, Yao T, Kimura H, Hashimoto K, Ishikawa-Yamauchi Y, Sato T. Improvements in in vitro spermatogenesis: oxygen concentration, antioxidants, tissue-form design, and space control. J Reprod Dev 2024; 70:1-9. [PMID: 38143077 PMCID: PMC10902634 DOI: 10.1262/jrd.2023-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Incorporation of bovine serum-derived albumin formulation (AlbuMAX) into a basic culture medium, MEMα, enables the completion of in vitro spermatogenesis through testicular tissue culture in mice. However, this medium was not effective in other animals. Therefore, we sought an alternative approach for in vitro spermatogenesis using a synthetic medium without AlbuMAX and aimed to identify its essential components. In addition to factors known to be important for spermatogenesis, such as retinoic acid and reproductive hormones, we found that antioxidants (vitamin E, vitamin C, and glutathione) and lysophospholipids are vital for in vitro spermatogenesis. Moreover, based on our experience with microfluidic devices (MFD), we developed an alternative approach, the PDMS-ceiling method (PC method), which involves simply covering the tissue with a flat chip made of PDMS, a silicone resin material used in MFD. The PC method, while straightforward, integrates the advantages of MFD, enabling improved and uniform oxygen and nutrient supply via tissue flattening. Furthermore, our studies underscored the significance of lowering the oxygen concentration to 10-15%. Using an integrated cultivation method based on these findings, we successfully achieved in vitro spermatogenesis in rats, which has been a long-standing challenge. Further improvements in culture conditions would pave the way for spermatogenesis completion in diverse animal species.
Collapse
Affiliation(s)
- Takehiko Ogawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takafumi Matsumura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| | - Kiyoshi Hashimoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yu Ishikawa-Yamauchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Sato
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
27
|
Fink J, Ide H, Horie S. Management of Male Fertility in Hypogonadal Patients on Testosterone Replacement Therapy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:275. [PMID: 38399562 PMCID: PMC10890669 DOI: 10.3390/medicina60020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Testosterone is crucial in regulating several body functions in men, including metabolic, sexual, and cardiovascular functions, bone and muscle mass, and mental health. Therefore, optimizing testosterone levels in men is an important step to maintaining a healthy body and mind, especially as we age. However, traditional testosterone replacement therapy has been shown to lead to male infertility, caused by negative feedback in the hypothalamic-pituitary-gonadal (HPG) axis. Recent advances in research have led to the discovery of many new methods of administration, which can have more or less suppressive effects on the HPG axis. Also, the usage of ancillary medications instead of or after testosterone administration might help maintain fertility in hypogonadal patients. The goal of this narrative review is to summarize the newest methods for optimizing fertility parameters in patients undergoing treatment for hypogonadism and to provide the necessary information for healthcare providers to make the right treatment choices.
Collapse
Affiliation(s)
- Julius Fink
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hisamitsu Ide
- Department of Urology, Digital Therapeutics, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Shigeo Horie
- Department of Urology, Advanced Informatics of Genetic Diseases, Digital Therapeutics, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| |
Collapse
|
28
|
Li C, Fu C, He T, Liu Z, Zhou J, Wu G, Liu H, Shen M. FSH preserves the viability of hypoxic granulosa cells via activating the HIF-1α-GAS6-Axl-Akt pathway. J Cell Physiol 2024; 239:e31162. [PMID: 37994152 DOI: 10.1002/jcp.31162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong He
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Zhou
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gang Wu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetic, Breeding and Reproduction Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Richard S, Zhou Y, Jasoni CL, Pankhurst MW. Ovarian follicle size or growth rate can both be determinants of ovulatory follicle selection in mice†. Biol Reprod 2024; 110:130-139. [PMID: 37801701 PMCID: PMC10790341 DOI: 10.1093/biolre/ioad134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
The endocrinology regulating ovulation of the desired number of oocytes in the ovarian cycle is well described, particularly in mono-ovulatory species. Less is known about the characteristics that make one follicle suitable for ovulation while most other follicles die by atresia. Bromodeoxyuridine (BrdU) injection was used to characterize granulosa cell proliferation rates in developing ovarian follicles in the estrous cycle of mice. This methodology allowed identification of follicle diameters of secondary (80-130 μm), follicle-stimulating hormone (FSH)-sensitive (130-170 μm), FSH-dependent (170-350 μm), and preovulatory (>350 μm) follicles. Few preovulatory-sized follicles were present in the ovaries of mice at estrus, the beginning of the cycle. Progressive increases were seen at metestrus and diestrus, when full accumulation of the preovulatory cohort (~10 follicles) occurred. BrdU pulse-chase studies determined granulosa cell proliferation rates in the 24-48 h before the follicle reached the preovulatory stage. This showed that slow-growing follicles were not able to survive to the preovulatory stage. Mathematical modeling of follicle growth rates determined that the largest follicles at the beginning of the cycle had the greatest chance of becoming preovulatory. However, smaller follicles could enter the preovulatory follicle pool if low numbers of large antral follicles were present at the beginning of the cycle. In this instance, rapidly growing follicles had a clear selection advantage. The developing follicle pool displays heterogeneity in granulosa cell proliferation rates, even among follicles at the same stage of development. This parameter appears to influence whether a follicle can ovulate or become atretic.
Collapse
Affiliation(s)
- Sharon Richard
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yiran Zhou
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
31
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
32
|
Jiang Y, Gao X, Liu Y, Yan X, Shi H, Zhao R, Chen ZJ, Gao F, Zhao H, Zhao S. Cellular atlases of ovarian microenvironment alterations by diet and genetically-induced obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:51-66. [PMID: 37721638 DOI: 10.1007/s11427-023-2360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023]
Abstract
Obesity, which can arise from genetic or environmental factors, has been shown to cause serious damages to the reproductive system. The ovary, as one of the primary regulators of female fertility, is a complex organ comprised of heterogeneous cell types that work together to maintain a normal ovarian microenvironment (OME). Despite its importance, the effect of obesity on the entire ovary remains poorly documented. In this study, we performed ovary single-cell and nanoscale spatial RNA sequencing to investigate how the OME changed under different kinds of obesity, including high-fat diet (HFD) induced obesity and Leptin ablation induced obesity (OB). Our results demonstrate that OB, but not HFD, dramatically altered the proportion of ovarian granulosa cells, theca-interstitial cells, luteal cells, and endothelial cells. Furthermore, based on the spatial dynamics of follicular development, we defined four subpopulations of granulosa cell and found that obesity drastically disrupted the differentiation of mural granulosa cells from small to large antral follicles. Functionally, HFD enhanced follicle-stimulating hormone (FSH) sensitivity and hormone conversion, while OB caused decreased sensitivity, inadequate steroid hormone conversion, and impaired follicular development. These differences can be explained by the differential expression pattern of the transcription factor Foxo1. Overall, our study provides a powerful and high-resolution resource for profiling obesity-induced OME and offers insights into the diverse effects of obesity on female reproductive disorders.
Collapse
Affiliation(s)
- Yonghui Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Xueying Gao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Center for reproductive medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
| | - Yue Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xueqi Yan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Huangcong Shi
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Center for reproductive medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China.
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center of Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
Chen J, Lin X, Bhattacharya S, Wiesehöfer C, Wennemuth G, Müller K, Montag D. Neuroplastin Expression in Male Mice Is Essential for Fertility, Mating, and Adult Testosterone Levels. Int J Mol Sci 2023; 25:177. [PMID: 38203350 PMCID: PMC10779036 DOI: 10.3390/ijms25010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Male reproduction depends on hormonally driven behaviors and numerous genes for testis development and spermatogenesis. Neuroplastin-deficient (Nptn-/-) male mice cannot sire offspring. By immunohistochemistry, we characterized neuroplastin expression in the testis. Breeding, mating behavior, hormonal regulation, testicular development, and spermatogenesis were analyzed in cell-type specific neuroplastin mutant mice. Leydig, Sertoli, peritubular myoid, and germ cells express Np, but spermatogenesis and sperm number are not affected in Nptn-/- males. Neuroplastin lack from CNS neurons or restricted to spermatogonia or Sertoli cells permitted reproduction. Normal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) blood levels in Nptn-/- males support undisturbed hormonal regulation in the brain. However, Nptn-/- males lack mounting behavior accompanied by low testosterone blood levels. Testosterone rise from juvenile to adult blood levels is absent in Nptn-/- males. LH-receptor stimulation raising intracellular Ca2+ in Leydig cells triggers testosterone production. Reduced Plasma Membrane Ca2+ ATPase 1 (PMCA1) in Nptn-/- Leydig cells suggests that Nptn-/- Leydig cells produce sufficient testosterone for testis and sperm development, but a lack of PMCA-Np complexes prevents the increase from reaching adult blood levels. Behavioral immaturity with low testosterone blood levels underlies infertility of Nptn-/- males, revealing that Np is essential for reproduction.
Collapse
Affiliation(s)
- Juanjuan Chen
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Xiao Lin
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Soumee Bhattacharya
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany; (C.W.); (G.W.)
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany; (C.W.); (G.W.)
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research IZW, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany;
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| |
Collapse
|
34
|
La Marca A, Longo M, Sighinolfi G, Grisendi V, Imbrogno MG, Giulini S. New insights into the role of LH in early ovarian follicular growth: a possible tool to optimize follicular recruitment. Reprod Biomed Online 2023; 47:103369. [PMID: 37918055 DOI: 10.1016/j.rbmo.2023.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 11/04/2023]
Abstract
Evidence shows that LH participates in enhancing transition from the early stage to the antral stage of folliculogenesis. It has been demonstrated that functional LH receptors are expressed, albeit at a very low level and even in smaller follicles, during the phase that was traditionally considered to be gonadotrophin independent, suggesting a role for LH in accelerating the rate of progression of non-growing and primary follicles to the preantral/antral stage. Hypogonadotropic hypogonadism, together with other clinical conditions of pituitary suppression, has been associated with reduced functional ovarian reserve. The reduction in LH serum concentration is associated with a low concentration of anti-Müllerian hormone. This is the case in hypothalamic amenorrhoea, pregnancy, long-term GnRH-analogue therapy and hormonal contraception. The effect seems to be reversible, such that after pregnancy and after discontinuation of drugs, the functional ovarian reserve returns to the baseline level. Evidence suggests that women with similar primordial follicle reserves could present with different numbers of antral follicles, and that gonadotrophins may play a fundamental role in permitting a normal rate of progression of follicles through non-cyclic folliculogenesis. The precise role of gonadotrophins in early folliculogenesis, as well as their use to modify the functional ovarian reserve, must be investigated.
Collapse
Affiliation(s)
- Antonio La Marca
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy.
| | - Maria Longo
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy
| | - Giovanna Sighinolfi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy
| | - Valentina Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy
| | - Maria Giovanna Imbrogno
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy
| | - Simone Giulini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Policlinico di Modena, via del Pozzo, 41124 Modena, Italy
| |
Collapse
|
35
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Converse A, Liu Z, Patel JC, Shakyawar S, Guda C, Bousfield GR, Kumar TR, Duncan FE. Oocyte quality is enhanced by hypoglycosylated FSH through increased cell-to-cell interaction during mouse follicle development. Development 2023; 150:dev202170. [PMID: 37870089 PMCID: PMC10651093 DOI: 10.1242/dev.202170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Macroheterogeneity in follicle-stimulating hormone (FSH) β-subunit N-glycosylation results in distinct FSH glycoforms. Hypoglycosylated FSH21 is the abundant and more bioactive form in pituitaries of females under 35 years of age, whereas fully glycosylated FSH24 is less bioactive and increases with age. To investigate whether the shift in FSH glycoform abundance contributes to the age-dependent decline in oocyte quality, the direct effects of FSH glycoforms on folliculogenesis and oocyte quality were determined using an encapsulated in vitro mouse follicle growth system. Long-term culture (10-12 days) with FSH21 (10 ng/ml) enhanced follicle growth, estradiol secretion and oocyte quality compared with FSH24 (10 ng/ml) treatment. FSH21 enhanced establishment of transzonal projections, gap junctions and cell-to-cell communication within 24 h in culture. Transient inhibition of FSH21-mediated bidirectional communication abrogated the positive effects of FSH21 on follicle growth, estradiol secretion and oocyte quality. Our data indicate that FSH21 promotes folliculogenesis and oocyte quality in vitro by increasing cell-to-cell communication early in folliculogenesis, and that the shift in in vivo abundance from FSH21 to FSH24 with reproductive aging may contribute to the age-dependent decline in oocyte quality.
Collapse
Affiliation(s)
- Aubrey Converse
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhenghui Liu
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jai C. Patel
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T. Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Core binding factor subunit β plays diverse and essential roles in the male germline. Front Cell Dev Biol 2023; 11:1284184. [PMID: 38020932 PMCID: PMC10653448 DOI: 10.3389/fcell.2023.1284184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFβ in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFβ regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFβ also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFβ modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
Collapse
Affiliation(s)
- Mustika Rahmawati
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kassie M. Stadler
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Blanca Lopez-Biladeau
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Tia M. Hoisington
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Nathan C. Law
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
38
|
El-Helaly A, Abou-El-Naga AM, Alshehri KM, El-Dein MA. Miracle Tree ( Moringa oleifera) Attuned GFAP and Synaptophysin Levels, Oxidative Stress and Biomarkers in Cerebellar Fluorosis of Pregnant Rats. Pak J Biol Sci 2023; 26:628-650. [PMID: 38334155 DOI: 10.3923/pjbs.2023.628.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
<b>Background and Objective:</b> Cerebellar fluorosis is a health issue associated with excessive exposure to fluoride (F) either in direct or indirect ways as pesticides, drinking water and caries preventing prescriptions. It is characterized by elevation in oxidative stress, inflammation, demyelination and Purkinje cell loss. <i>Moringa oleifera</i> (M), is a widely cultivated plant used as a health-booster agent in modulating various disorders because of its high content of vitamins and minerals. The beneficial effect of moringa against fluoride-induced cerebellar toxicity in pregnant rats was investigated in this study. <b>Materials and Methods:</b> Twenty pregnant rats were administered daily 300 mg kg<sup></sup><sup>1</sup> <i>M. oleifera</i> aqueous extract incorporated with 10 mg kg<sup></sup><sup>1</sup> of F intoxication from the 1st day of gestation until the 20th day. Following the termination of the trial, sera were collected and cerebellar tissue was removed for further examinations, along with the assessment of maternity. <b>Results:</b> The <i>M. oleifera</i> significantly normalized serum FSH, LH, progesterone, dopamine and serotonin levels of F-intoxicated mothers. Additionally, <i>M. oleifera</i> markedly prevented the lipid peroxidation and DNA fragmentation indicated by the tail length and moment in comet assay (-34.4 and -75.3%, respectively, when compared to the fluoride intoxicated group), while sustaining the levels of SOD and CAT revealing its antioxidant activity. The <i>M. oleifera</i> regressed the cerebellar α-amylase (-25.4%) and acetylcholinesterase activity (-40.6%), also attenuated GFAP (-73.4%, p<0.0001), synaptophysin level (216.6%, p<0.0001) and IL-6 expression (-91.2%) comparing to fluoride only treated mothers. <b>Conclusion:</b> Histological and ultrastructural examinations confirmed the recuperating effects of <i>M. oleifera</i> on mothers' cerebellar tissue intoxicated with fluoride indicated by intact folia and restored Purkinje cells number and architecture. The maternal study emphasized the anti-abortifacient activity of moringa against fluoride induced-fetotoxicity.
Collapse
|
39
|
Xiong J, Kang SS, Wang M, Wang Z, Xia Y, Liao J, Liu X, Yu SP, Zhang Z, Ryu V, Yuen T, Zaidi M, Ye K. FSH and ApoE4 contribute to Alzheimer's disease-like pathogenesis via C/EBPβ/δ-secretase in female mice. Nat Commun 2023; 14:6577. [PMID: 37852961 PMCID: PMC10584868 DOI: 10.1038/s41467-023-42282-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia. It is known that women with one ApoE4 allele display greater risk and earlier onset of AD compared with men. In mice, we previously showed that follicle-stimulating hormone (FSH), a gonadotropin that rises in post-menopausal females, activates its receptor FSHR in the hippocampus, to drive AD-like pathology and cognitive impairment. Here we show in mice that ApoE4 and FSH jointly trigger AD-like pathogenesis by activating C/EBPβ/δ-secretase signaling. ApoE4 and FSH additively activate C/EBPβ/δ-secretase pathway that mediates APP and Tau proteolytic fragmentation, stimulating Aβ and neurofibrillary tangles. Ovariectomy-provoked AD-like pathologies and cognitive defects in female ApoE4-TR mice are ameliorated by anti-FSH antibody treatment. FSH administration facilitates AD-like pathologies in both young male and female ApoE4-TR mice. Furthermore, FSH stimulates AD-like pathologies and cognitive defects in ApoE4-TR mice, but not ApoE3-TR mice. Our findings suggest that in mice, augmented FSH in females with ApoE4 but not ApoE3 genotype increases vulnerability to AD-like process by activating C/EBPβ/δ-secretase signalling.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mengmeng Wang
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan-Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Vitaly Ryu
- Mount Sinai Bone Program, Department of Medicine and Department of Orthopedics, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Tony Yuen
- Mount Sinai Bone Program, Department of Medicine and Department of Orthopedics, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Mone Zaidi
- Mount Sinai Bone Program, Department of Medicine and Department of Orthopedics, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
40
|
Montes-Garrido R, Anel-Lopez L, Riesco MF, Neila-Montero M, Palacin-Martinez C, Soriano-Úbeda C, Boixo JC, de Paz P, Anel L, Alvarez M. Does Size Matter? Testicular Volume and Its Predictive Ability of Sperm Production in Rams. Animals (Basel) 2023; 13:3204. [PMID: 37893928 PMCID: PMC10603633 DOI: 10.3390/ani13203204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Over the years, testicular volume has been used to evaluate the reproductive capacity of rams and the effects of different factors related to reproductive performance. The aim of this study was to determine the most suitable tool and formula to calculate testicular volume under field conditions to guarantee a more accurate determination of sperm production. First, testicles from 25 rams (n = 50) were measured in vivo and postmortem using calipers and ultrasonography during the breeding season (BS). The accurate testicular volume (ATV) was calculated through water displacement. In addition, the sexual status of donor rams was evaluated during a period of four years in a reproduction center, and the three most crucial groups in terms of genetic value and seminal collections were studied in the second part of this experiment: ER-NBS (Elite rams during the non-breeding season), ER-BS-S (Elite rams with a standard frequency of seminal collection), and ER-BS-O (Elite rams with a high frequency of seminal collection). The total testicular volume (TTV), testosterone (T), and total spermatozoa obtained from two consecutive ejaculates in the same day (SPERM) were measured, and the relationship between SPERM and TTV and T was analyzed to predict SPERM. Although all published formulas revealed statistically significant differences (p ≤ 0.05) from the ATV, our proposed formula (ItraULE) (Testicular volume = L × W × D × 0.61) did not show significant differences. In the second part of the study, in the ER as a model donor ram for its high genetic value and high demand from farmers, TTV and T showed strong positive correlations with SPERM (r = 0.587, p = 0.007 NBS; r = 0.684, p = 0.001 BS-S; r = 0.773, p < 0.0001 BS-O). Moreover, formulas were established to predict SPERM in these practical scenarios. In conclusion, the use of ultrasonography and a new formula adapted to rams could improve the prediction of SPERM considering crucial factors such as season and semen collection frequency.
Collapse
Affiliation(s)
- Rafael Montes-Garrido
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Luis Anel-Lopez
- ITRAULE, Anatomy, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain
| | - Marta F. Riesco
- ITRAULE, Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain; (M.F.R.); (P.d.P.)
| | - Marta Neila-Montero
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Cristina Palacin-Martinez
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Cristina Soriano-Úbeda
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Juan Carlos Boixo
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Paulino de Paz
- ITRAULE, Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain; (M.F.R.); (P.d.P.)
| | - Luis Anel
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Mercedes Alvarez
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| |
Collapse
|
41
|
Bernstein LR, Mackenzie ACL, Durkin K, Kraemer DC, Chaffin CL, Merchenthaler I. Maternal age and gonadotrophin elevation cooperatively decrease viable ovulated oocytes and increase ootoxicity, chromosome-, and spindle-misalignments: '2-Hit' and 'FSH-OoToxicity' mechanisms as new reproductive aging hypotheses. Mol Hum Reprod 2023; 29:gaad030. [PMID: 37643633 DOI: 10.1093/molehr/gaad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
While there is consensus that advanced maternal age (AMA) reduces oocyte yield and quality, the notion that high FSH reduces oocyte quality and causes aneuploidy remains controversial, perhaps due to difficulties controlling the confounding variables of age and FSH levels. Here, contributions of age and gonadotrophin elevation were separately controlled using a mouse model of human female reproductive aging. Ovulated oocytes were collected from young and midlife mice after 0-, 2.6-, or 17-day treatment with the FSH analog equine chorionic gonadotrophin (eCG), to model both exogenous FSH elevation within a single treatment cycle (as in controlled ovarian stimulation (COS)), and chronic endogenous FSH elevation during multiple cycles (as in diminished ovarian reserve). After 17-day eCG, fewer total oocytes/mouse are ovulated in midlife than young mice, and a precipitous decline in viable oocytes/mouse is observed in midlife but not young mice throughout eCG treatment. eCG is potently ootoxic to ovulatory oocytes and strongly induces chromosome- and spindle-misalignments within 2.6 days of eCG in midlife, but only after 17 days in young mice. These data indicate that AMA increases susceptibility to multiple adverse effects of elevated FSH activity in ovulated oocytes, including declines in total and viable oocytes/mouse, and induction of ootoxicity and aneuploidy. Two hypotheses are proposed for underlying causes of infertility in women. The FSH OOToxicity Hypothesis ('FOOT Hypothesis') posits that high FSH is ootoxic to ovulatory oocytes and that FSH ootoxicity is a root cause of low pregnancy success rates in naturally cycling women with high FSH and IUI patients undergoing COS. The '2-Hit Hypothesis' posits that AMA increases susceptibility to FSH-induced ootoxicity and aneuploidy.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama LLC, Gaithersburg, MD, USA
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine, College Station, TX, USA
| | - Amelia C L Mackenzie
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keith Durkin
- Department of Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine, College Station, TX, USA
| | - Duane C Kraemer
- Department of Veterinary Physiology and Pharmacology, Texas A & M College of Veterinary Medicine, College Station, TX, USA
| | - Charles L Chaffin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Kaur M, Singh S, Kaur A. Polymorphisms in FSHR modulating susceptibility to polycystic ovary syndrome: an updated meta-analysis. J Ovarian Res 2023; 16:183. [PMID: 37653412 PMCID: PMC10472705 DOI: 10.1186/s13048-023-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Two polymorphisms, rs6165 and rs6166 located in the intracellular domain of FSHR has been reported to affect folliculogenesis, steroidogenesis and oocyte maturation. Several studies have highlighted the role of FSHR polymorphisms in PCOS but the findings are conflicting. A meta-analysis was carried out to decipher the emerging perspectives. METHODOLOGY A comprehensive literature search was made using PubMed, PCOSkb, and Google Scholar. New Ottawa Scale has been utilized to evaluate the quality of each article. To evaluate the strength of association under different genetic models of rs6165 and rs6166 polymorphisms, odds ratio with a 95% confidence interval (CI) was calculated. RESULTS A total of 20 articles were selected for the present study. In pooled analysis and after the stratification by ethnicity, polymorphism rs6165 remains unrelated to the onset of PCOS. Besides, rs6166 exhibits significant protection in the Indian population under recessive, additive, and allele models (OR = 0.7, CI: 0.54-0.9, p = 0.006, OR = 0.65, CI: 0.48-0.89, p = 0.006, OR = 0.82, CI: 0.7-0.95, p = 0.01, respectively) and low to moderate risk in the Caucasian population under allele model (OR = 1.17, CI: 1.04-1.32, p = 0.01). CONCLUSION This meta-analysis suggests that GG genotype of rs6166 provides protection against PCOS, in a population-specific manner.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sukhjashanpreet Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anupam Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
43
|
Prévot V, Duittoz A. A role for GnRH in olfaction and cognition: Implications for veterinary medicine. Reprod Domest Anim 2023; 58 Suppl 2:109-124. [PMID: 37329313 DOI: 10.1111/rda.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for the activation and maintenance of the function of the hypothalamic-pituitary-gonadal (HPG) axis, which controls the onset of puberty and fertility. Two provocative recent studies suggest that, in addition to control reproduction, the neurons in the brain that produce GnRH are also involved in the control postnatal brain maturation, odour discrimination and adult cognition. Long-acting GnRH antagonists and agonists are commonly used to control fertility and behaviour in veterinary medicine, primarily in males. This review puts into perspective the potential risks of these androgen deprivation therapies and immunization on olfactory and cognitive performances and well-aging in domestic animals, including pets. We will also discuss the results reporting beneficial effects of pharmacological interventions restoring physiological GnRH levels on olfactory and cognitive alterations in preclinical models of Alzheimer's disease, which shares many pathophysiological and behavioural hallmarks with canine cognitive dysfunction. These novel findings raise the intriguing possibility that pulsatile GnRH therapy holds therapeutic potential for the management of this behavioural syndrome affecting older dogs.
Collapse
Affiliation(s)
- Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
| | - Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAE Val de Loire, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
44
|
Cai Q, Jin S, Zong H, Pei L, Cao K, Qu L, Li Z. A Quadruplex Ultrasensitive Immunoassay for Simultaneous Assessment of Human Reproductive Hormone Proteins in Multiple Biofluid Samples. Anal Chem 2023; 95:11641-11648. [PMID: 37489999 DOI: 10.1021/acs.analchem.3c01399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Reproductive hormones play vital roles in reproductive health and can be used to assess a woman's ovarian function and diagnose diseases associated with reproductive endocrine disorders. As these hormones are important biomarkers for reproductive health monitoring and diagnosis, a rapid, high-throughput, and low-invasive detection and simultaneous assessment of the levels of multiple reproductive hormones has important clinical applications. In this work, a quadruplex ultrasensitive immunoassay was developed for simultaneous assessment of 4 human reproductive hormone proteins (follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and anti-Müllerian hormone (AMH)) in a variety of human biofluid samples. This assay takes advantage of single-molecule imaging of microwell arrays and capture antibody beads as a reaction interface to construct multiplex bead array immunoassays. The analyte-bound beads can easily be parsed to individual wells and detected via fluorophores, emitting distinct wavelengths associated to the beads. As a result, this proposed quadruplex immunoassay exhibits four good 4-parameter logistic calibration curves ranging from 2.7 to 2000, 1.6 to 1200, 1.8 to 1300, and 0.3 to 220 pg/mL with limits of detection of 0.32, 0.28, 0.14, and 0.02 pg/mL for FSH, LH, PRL, and AMH, respectively. Furthermore, the developed quadruplex immunoassay was used to test clinical venous serum samples where it showed remarkable consistency with clinical test results in methodological comparison and the diagnosis of polycystic ovary syndrome. In addition, we successfully applied the ultrasensitive capability of this assay to the simultaneous testing and evaluation of four proteins in fingertip blood as well as urine samples, in which the urinary AMH level (1.42-156 pg/mL) was measured and assessed quantitatively for the first time.
Collapse
Affiliation(s)
- Qiyong Cai
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shuiling Jin
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hong Zong
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lu Pei
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Ke Cao
- Department of Laboratory Medicine, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou 450006, People's Republic of China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
45
|
Wang X, Zhou S, Wu Z, Liu R, Ran Z, Liao J, Shi H, Wang F, Chen J, Liu G, Liang A, Yang L, Zhang S, Li X, He C. The FSH-mTOR-CNP signaling axis initiates follicular antrum formation by regulating tight junction, ion pumps, and aquaporins. J Biol Chem 2023; 299:105015. [PMID: 37414146 PMCID: PMC10424218 DOI: 10.1016/j.jbc.2023.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
The initial formation of the follicular antrum (iFFA) serves as a dividing line between gonadotropin-independent and gonadotropin-dependent folliculogenesis, enabling the follicle to sensitively respond to gonadotropins for its further development. However, the mechanism underlying iFFA remains elusive. Herein, we reported that iFFA is characterized by enhanced fluid absorption, energy consumption, secretion, and proliferation and shares a regulatory mechanism with blastula cavity formation. By use of bioinformatics analysis, follicular culture, RNA interference, and other techniques, we further demonstrated that the tight junction, ion pumps, and aquaporins are essential for follicular fluid accumulation during iFFA, as a deficiency of any one of these negatively impacts fluid accumulation and antrum formation. The intraovarian mammalian target of rapamycin-C-type natriuretic peptide pathway, activated by follicle-stimulating hormone, initiated iFFA by activating tight junction, ion pumps, and aquaporins. Building on this, we promoted iFFA by transiently activating mammalian target of rapamycin in cultured follicles and significantly increased oocyte yield. These findings represent a significant advancement in iFFA research, further enhancing our understanding of folliculogenesis in mammals.
Collapse
Affiliation(s)
- Xiaodong Wang
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Zhou
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zian Wu
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruiyan Liu
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zaohong Ran
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianning Liao
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongru Shi
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - Jianguo Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujun Zhang
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiang Li
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changjiu He
- National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
46
|
Femi-Olabisi JF, Ishola AA, Olujimi FO. Effect of Parquetina nigrescens (Afzel.) Leaves on Letrozole-Induced PCOS in Rats: a Molecular Insight into Its Phytoconstituents. Appl Biochem Biotechnol 2023; 195:4744-4774. [PMID: 37171758 DOI: 10.1007/s12010-023-04537-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is one of the common causes of female infertility in women of reproductive age. P. nigrescens is a plant used in the treatment of various diseases including menstrual disorders. This study investigated the effect of ethanolic extracts of P. nigrescens leaves on the estrous cycle, fasting blood glucose, and hormonal and lipid profile in letrozole-induced PCOS rats and also evaluated the molecular mechanism of the active constituents using computational methods. After the induction of PCOS with letrozole, rats were treated orally for 14 days with distilled water (1 mg/kg/day), clomiphene citrate (2 mg/kg/day), metformin (7.14 mg/kg/day), and ethanolic extract of P. nigrescens (50 and 100 mg). Thereafter, selected biochemical parameters were assayed to determine the extract's effect on the estrous cycle. Molecular docking and molecular dynamics simulation (MDS) were carried out to determine the binding affinity and relative stability of the ligand-receptor complexes. Letrozole-induced PCOS rats showed irregular estrous cyclicity, elevated (p > 0.05) triglycerides, low-density lipoprotein cholesterol (LDL), total cholesterol, insulin, testosterone, and luteinizing hormone (LH) concentration, low (p > 0.05) progesterone, low follicle-stimulating hormone (FSH), high-density lipoprotein cholesterol (HDL), and high fasting blood glucose concentration compared to that of the control group. The reproductive, biochemical, and structural alterations were reversed by the administration of ethanolic extract of P. nigrescens leaves (50 mg/kg) which restored the estrous cycle after 14 days of treatment. However, the ethanolic extracts of P. nigrescens (100 mg/kg) significantly increased (p > 0.05) FSH, HDL, and progesterone concentrations but decreased the LH, progesterone, and total cholesterol. Of all 44 compounds identified in GCMS analysis of an ethanolic extract of P. nigrescens leaves, only 2-ethylbutyl heptyl ester (CID 91705405) had a higher binding affinity for hormonal receptors and enzymes responsible for hepatic gluconeogenesis compared to standard drugs used in the study. CID 91705405 was also relatively stable over 100 ns of MDS. This compound is therefore revealed to have the potential to modulate both endocrine and metabolic pathways involved in PCOS. The ethanolic extract of P. nigrescens leaves can therefore be considered in the management/treatment of the reproductive and metabolic disorders related to PCOS subject to further experimental validation.
Collapse
Affiliation(s)
- Joy Fehintoluwa Femi-Olabisi
- Department of Biochemistry, College of Basic & Applied Sciences, Mountain Top University, Makogi Oba, Ogun State, Nigeria.
| | - Ahmed Adebayo Ishola
- Central Research Laboratory, 132B, University Road, Tanke, Ilorin, Kwara State, Nigeria
| | - Folakemi Omolara Olujimi
- Department of Biochemistry, College of Basic & Applied Sciences, Mountain Top University, Makogi Oba, Ogun State, Nigeria
| |
Collapse
|
47
|
Nguyen HD. Exposure to mixed chemicals elevated triiodothyronine (T3) and follicle-stimulating hormone (FSH) levels: epidemiology and in silico toxicogenomic involvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88803-88823. [PMID: 37442928 DOI: 10.1007/s11356-023-28704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
There is a dearth of evidence on the effects of a mixture of numerous different types of chemicals on hormone functions. We hypothesized that exposure to mixed chemicals may alter hormone levels. Thus, this study was to identify an association between the mixed chemicals (25 chemicals) and hormone levels (thyroxine (T4) and triiodothyronine (T3), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH)) among 5687 Korean adults using four different statistical approaches. Furthermore, we elucidate the effects of the key chemicals on thyroid disease and infertility based on the findings from epidemiology data. The positive associations between mixed chemicals and T3 and between mixed chemicals and FSH were observed across different methods after adjusting for all possible confounders. In the weighted quantile sum regression models, there were positive associations between mixed chemicals and T3 (β = 4.43, 95%CI: 2.81-5.88) and ln-transformed FSH (lnFSH) (β = 0.15, 95%CI: 0.10-0.20). In the quantile g-computation models, positive associations were found between mixed chemicals and T3 (β=2.15, 95%CI: 0.17-4.14) and lnFSH (β=0.15, 95%CI: 0.07-0.22). In the Bayesian kernel machine regression models, culminative effects of mixed chemicals showed positive associations with T3 and lnFSH; mercury (group posterior inclusion probabilities (PIPs) = 0.557 and conditional PPI = 0.556) and lead (group PIP group = 0.815 and conditional PPI = 0.951) were the most important chemicals for T3 and FSH, respectively. The results obtained were partially robust when subjected to in silico toxicogenomic data. We identified several molecular mechanisms that were implicated in Hg-induced thyroid disease, including the selenium micronutrient network, oxidative stress response, IL-17 signaling pathway, poorly differentiated thyroid carcinoma, and primary hyperthyroidism. The molecular processes implicated in Pb-induced infertility were "response to nutrient levels," "gonad development," "male infertility," "female infertility," and "intrinsic pathway for apoptosis," with a particular focus on FSH. The present study investigated the threshold levels of the studied chemicals and their potential impact on the disruption of T3 and FSH hormones. Future research is warranted to determine the effects of mixed chemicals on various hormones because there have been few studies on the disruption of hormones caused by such mixed chemicals.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
48
|
Miao X, Guo R, Williams A, Lee C, Ma J, Wang PJ, Cui W. Replication Protein A1 is essential for DNA damage repair during mammalian oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547725. [PMID: 37461444 PMCID: PMC10349974 DOI: 10.1101/2023.07.04.547725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Persistence of unrepaired DNA damage in oocytes is detrimental and may cause genetic aberrations, miscarriage, and infertility. RPA, an ssDNA-binding complex, is essential for various DNA-related processes. Here we report that RPA plays a novel role in DNA damage repair during postnatal oocyte development after meiotic recombination. To investigate the role of RPA during oogenesis, we inactivated RPA1 (replication protein A1), the largest subunit of the heterotrimeric RPA complex, specifically in oocytes using two germline-specific Cre drivers (Ddx4-Cre and Zp3-Cre). We find that depletion of RPA1 leads to the disassembly of the RPA complex, as evidenced by the absence of RPA2 and RPA3 in RPA1-deficient oocytes. Strikingly, severe DNA damage occurs in RPA1-deficient GV-stage oocytes. Loss of RPA in oocytes triggered the canonical DNA damage response mechanisms and pathways, such as activation of ATM, ATR, DNA-PK, and p53. In addition, the RPA deficiency causes chromosome misalignment at metaphase I and metaphase II stages of oocytes, which is consistent with altered transcript levels of genes involved in cytoskeleton organization in RPA1-deficient oocytes. Absence of the RPA complex in oocytes severely impairs folliculogenesis and leads to a significant reduction in oocyte number and female infertility. Our results demonstrate that RPA plays an unexpected role in DNA damage repair during mammalian folliculogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Catherine Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
49
|
Wang H, Liu Z, Larsen M, Hastings R, Gunewardena S, Kumar TR. Identification of follicle-stimulating hormone-responsive genes in Sertoli cells during early postnatal mouse testis development. Andrology 2023; 11:860-871. [PMID: 37208854 DOI: 10.1111/andr.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND In the mouse testis, Sertoli cells rapidly divide during a narrow window of time pre-pubertally and differentiate thereafter. The number of Sertoli cells determines the testis size and germ cell-carrying capacity. Follicle-stimulating hormone (FSH) binds its cognate FSH-receptors expressed on Sertoli cells and acts as a mitogen to regulate their proliferation. Fshb-/- mutant adult male mice have reduced Sertoli cell number and testis size and reduced sperm number and motility. However, FSH-responsive genes in early postnatal mouse Sertoli cells are unknown. OBJECTIVES To identify FSH-responsive genes in early postnatal mouse Sertoli cells. MATERIALS AND METHODS A fluorescence-activated cell sorting method was developed to rapidly purify Sertoli cells from control and Fshb-/- mice carrying a Sox9 GfpKI allele. These pure Sertoli cells were used for large-scale gene expression analyses. RESULTS We show that mouse Sertoli cells rarely divide beyond postnatal day 7. Our in vivo BrdU labeling studies indicate loss of FSH results in a 30% reduction in Sertoli cell proliferation in mice at 5 days of age. Flowsorted GFP+ Sertoli cells with maximal Fshr expression were 97%-98% pure and mostly devoid of Leydig and germ cells as assessed by Taqman qPCR quantification of gene expression and immunolabeling of the corresponding cell-specific markers. Large-scale gene expression analysis identified several differentially regulated genes in flow-sorted GFP+ Sertoli cells obtained from testis of control and Fshb-/- mice at 5 days of age. The top 25 networks identified by pathway analysis include those related to the cell cycle, cell survival and most importantly, carbohydrate and lipid metabolism and molecular transport. DISCUSSION Several of the FSH-responsive genes identified in this study could serve as useful markers for Sertoli cell proliferation in normal physiology, toxicant-induced Sertoli cell/testis injury, and other pathological conditions. CONCLUSION Our studies reveal that FSH-regulates macromolecular metabolism and molecular transport networks of genes in early postnatal Sertoli cells most likely in preparation for establishment of functional associations with germ cells to successfully coordinate spermatogenesis.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Hastings
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
50
|
Xiong J, Zhang Z, Ye K. C/EBPβ/AEP Signaling Drives Alzheimer's Disease Pathogenesis. Neurosci Bull 2023; 39:1173-1185. [PMID: 36735152 PMCID: PMC10313643 DOI: 10.1007/s12264-023-01025-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Almost two-thirds of patients with AD are female. The reason for the higher susceptibility to AD onset in women is unclear. However, hormone changes during the menopausal transition are known to be associated with AD. Most recently, we reported that follicle-stimulating hormone (FSH) promotes AD pathology and enhances cognitive dysfunctions via activating the CCAAT-enhancer-binding protein (C/EBPβ)/asparagine endopeptidase (AEP) pathway. This review summarizes our current understanding of the crucial role of the C/EBPβ/AEP pathway in driving AD pathogenesis by cleaving multiple critical AD players, including APP and Tau, explaining the roles and the mechanisms of FSH in increasing the susceptibility to AD in postmenopausal females. The FSH-C/EBPβ/AEP pathway may serve as a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, 518034, China.
| |
Collapse
|