1
|
Tzikas AK, Holmberg E, Parris TZ, Kovács A, Lovmar L, Karlsson P. Survival outcomes in hormone receptor-negative breast cancer among BRCA carriers versus noncarriers in western Sweden. Acta Oncol 2025; 64:550-557. [PMID: 40235390 PMCID: PMC12016662 DOI: 10.2340/1651-226x.2025.43109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND AND PURPOSE BRCA-related hormone receptor (HR)-negative breast cancers (BC) are reported to have aggressive tumor biology but also exhibit chemosensitivity. However, the impact of BRCA1/2 pathogenetic variants (PV) on BC outcomes remains unclear. This study compares survival outcomes for HR-negative BC between BRCA carriers and noncarriers. PATIENTS/MATERIAL AND METHODS From 489 female BRCA-carriers prospectively registered in western Sweden (1996-2017), those with primary HR-negative BC who underwent breast surgery until 2019 were included in the BRCA cohort. For each BRCA-carrier, three BRCA-noncarriers with HR-negative BC were matched based on age, time of diagnosis, and follow-up duration. Overall survival (OS) was analyzed using Kaplan‑Meier estimates and Cox proportional hazard ratios after adjustment for stage, chemotherapy, and surgical technique. A sensitivity analysis was performed to investigate the effect of HER2 status on HR-negative BC diagnosed after 2007. RESULTS Among the 106 BRCA carriers, 101 (95%) had a BRCA1 and 5 (5%) a BRCA2 PV. Most of the BRCA-carriers (89/106, 84%) were diagnosed with BC prior to genetic screening. Surgical techniques were similar between BRCA-carriers (n = 106) and noncarriers (n = 318). Chemotherapy was more common among BRCA-carriers (87% vs. 72%, p < 0.001). No significant difference in OS was found between BRCA-carriers and noncarriers among patients with HR-negative BC (adjusted HR: 0.81 [95% confidence interval [CI]: 0.43-1.53], p = 0.51) or considering HER2 status (adjusted HR 0.95 [95% CI: 0.43-2.07], p = 0.89). INTERPRETATION This study suggests that BRCA1/2 pathogenic variants do not independently impact survival outcomes in HR-negative BC. However, a moderate association between BRCA status and OS cannot be ruled out.
Collapse
Affiliation(s)
- Anna-Karin Tzikas
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, NU hospital group, Department of Oncology, Uddevalla, Sweden.
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- d. Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Pathology, Gothenburg, Sweden
| | - Lovisa Lovmar
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Oncology, Gothenburg, Sweden
| |
Collapse
|
2
|
Barash I. Mammalian Species-Specific Resistance to Mammary Cancer. J Mammary Gland Biol Neoplasia 2025; 30:3. [PMID: 40048007 PMCID: PMC11885404 DOI: 10.1007/s10911-025-09578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Tumorigenesis in mammals is driven by inherited genetic variants, environmental factors and random errors during normal DNA replication that lead to cancer-causing mutations. These factors initiate uncontrolled cellular proliferation and disrupt the regulation of critical checkpoints. A few mammalian species possess unique protective mechanisms that enable them to resist widespread cancer development and achieve longevity. Tissue-specific tumor protection adds another layer of complexity to this diversity. Breast cancer is a leading cause of human mortality, particularly among females. Driven by the need for new strategies in treatment and prevention, this opinion article explores and supports the idea that herbivores are more resistant to mammary cancer than carnivores and omnivores. This diversity has occurred despite the remarkably similar basic mammary biology. Herbivores' meatless diet cannot explain the differences in cancer resistance, which have accompanied species segregation since the Jurassic era. To investigate the causes of this diversity, the characteristics of tumorigenesis in the human breast-and to a lesser extent in other carnivores-have been compared with data from retrospective analyses of bovine mammary tumor development across various locations over the past century. Well-established genomic, cellular, and systemic triggers of breast cancer exhibit different, or less pronounced tissue-specific activity in the bovine mammary gland, accompanied by novel bovine-specific protective mechanisms. Together, these factors contribute to the near absence of breast cancer in bovines and offer a basis for developing future anticancer strategies.
Collapse
Affiliation(s)
- Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
3
|
Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, Rao T, Tecleab YA, Pesaran T, Lyra PCM, Karam R, Yadav S, Nathanson KL, Domchek SM, de la Hoya M, Robson M, Mehine M, Bandlamudi C, Mandelker D, Monteiro ANA, Iversen ES, Boddicker N, Chen W, Richardson ME, Couch FJ. Functional evaluation and clinical classification of BRCA2 variants. Nature 2025; 638:528-537. [PMID: 39779857 PMCID: PMC11821525 DOI: 10.1038/s41586-024-08388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers1-5. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants. Here we analysed all possible single-nucleotide variants from exons 15 to 26 that encode the BRCA2 DNA-binding domain hotspot for pathogenic missense variants. To enable this, we used saturation genome editing CRISPR-Cas9-based knock-in endogenous targeting of human haploid HAP1 cells6. The assay was calibrated relative to nonsense and silent variants and was validated using pathogenic and benign standards from ClinVar and results from a homology-directed repair functional assay7. Variants (6,959 out of 6,960 evaluated) were assigned to seven categories of pathogenicity based on a VarCall Bayesian model8. Single-nucleotide variants that encode loss-of-function missense variants were associated with increased risks of breast cancer and ovarian cancer. The functional assay results were integrated into models from ClinGen, the American College of Medical Genetics and Genomics, and the Association for Molecular Pathology9 for clinical classification of BRCA2 variants. Using this approach, 91% were classified as pathogenic or likely pathogenic or as benign or likely benign. These classified variants can be used to improve clinical management of individuals with a BRCA2 variant.
Collapse
Affiliation(s)
- Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Steven N Hart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tara Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yohannes A Tecleab
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Katherine L Nathanson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Domchek
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Raleigh Durham, NC, USA
| | - Nicholas Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Wenan Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Gupta A, Lechpammer M, Brossier NM. Germline BRCA2 pathogenic variants in pediatric ganglioglioma: Case report and review of the literature. Childs Nerv Syst 2024; 40:1609-1612. [PMID: 38168858 DOI: 10.1007/s00381-023-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND BRCA1 and BRCA2 are tumor suppressor genes associated with increased risk of breast and ovarian cancer in adulthood. Patients with germline pathogenic variants in these genes have also been reported to develop brain tumors, although it is unclear whether these syndromes are associated with significant increased risk of brain tumor formation. RESULTS Here, we report a case of a child with germline BRCA2 pathogenic variant presenting with a symptomatic ganglioglioma. To our knowledge, this is the first such patient to be reported. We discuss prior cases of brain tumors in BRCA1/2 patients and evidence for a potential role for BRCA1/2 pathogenic variants in brain tumor formation. CONCLUSION BRCA2 germline variants may increase the risk of developing some types of pediatric brain tumors, but further study is needed to determine its effect on low-grade glioma formation.
Collapse
Affiliation(s)
- Anya Gupta
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | | | - Nicole M Brossier
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Nepomuceno TC, Lyra P, Zhu J, Yi F, Martin RH, Lupu D, Peterson L, Peres LC, Berry A, Iversen ES, Couch FJ, Mo Q, Monteiro AN. Assessment of BRCA1 and BRCA2 Germline Variant Data From Patients With Breast Cancer in a Real-World Data Registry. JCO Clin Cancer Inform 2024; 8:e2300251. [PMID: 38709234 PMCID: PMC11161245 DOI: 10.1200/cci.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
PURPOSE The emergence of large real-world clinical databases and tools to mine electronic medical records has allowed for an unprecedented look at large data sets with clinical and epidemiologic correlates. In clinical cancer genetics, real-world databases allow for the investigation of prevalence and effectiveness of prevention strategies and targeted treatments and for the identification of barriers to better outcomes. However, real-world data sets have inherent biases and problems (eg, selection bias, incomplete data, measurement error) that may hamper adequate analysis and affect statistical power. METHODS Here, we leverage a real-world clinical data set from a large health network for patients with breast cancer tested for variants in BRCA1 and BRCA2 (N = 12,423). We conducted data cleaning and harmonization, cross-referenced with publicly available databases, performed variant reassessment and functional assays, and used functional data to inform a variant's clinical significance applying American College of Medical Geneticists and the Association of Molecular Pathology guidelines. RESULTS In the cohort, White and Black patients were over-represented, whereas non-White Hispanic and Asian patients were under-represented. Incorrect or missing variant designations were the most significant contributor to data loss. While manual curation corrected many incorrect designations, a sizable fraction of patient carriers remained with incorrect or missing variant designations. Despite the large number of patients with clinical significance not reported, original reported clinical significance assessments were accurate. Reassessment of variants in which clinical significance was not reported led to a marked improvement in data quality. CONCLUSION We identify the most common issues with BRCA1 and BRCA2 testing data entry and suggest approaches to minimize data loss and keep interpretation of clinical significance of variants up to date.
Collapse
Affiliation(s)
- Thales C. Nepomuceno
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Paulo Lyra
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jianbin Zhu
- AdventHealth Research Institute, Orlando, FL
| | - Fanchao Yi
- AdventHealth Research Institute, Orlando, FL
| | - Rachael H. Martin
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - Lauren C. Peres
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Anna Berry
- AdventHealth Cancer Institute, Orlando, FL
| | | | | | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
8
|
Palihati M, Iwasaki H, Tsubouchi H. Analysis of the indispensable RAD51 cofactor BRCA2 in Naganishia liquefaciens, a Basidiomycota yeast. Life Sci Alliance 2024; 7:e202302342. [PMID: 38016757 PMCID: PMC10684384 DOI: 10.26508/lsa.202302342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The BRCA2 tumor suppressor plays a critical role in homologous recombination by regulating RAD51, the eukaryotic homologous recombinase. We identified the BRCA2 homolog in a Basidiomycota yeast, Naganishia liquefaciens BRCA2 homologs are found in many Basidiomycota species but not in Ascomycota species. Naganishia BRCA2 (Brh2, for BRCA2 homolog) is about one-third the size of human BRCA2. Brh2 carries three potential BRC repeats with two oligonucleotide/oligosaccharide-binding domains. The homolog of DSS1, a small acidic protein serving as an essential partner of BRCA2 was also identified. The yeast two-hybrid assay shows the interaction of Brh2 with both Rad51 and Dss1. Unlike human BRCA2, Brh2 is not required for normal cell growth, whereas loss of Dss1 results in slow growth. The loss of Brh2 caused pronounced sensitivity to UV and ionizing radiation, and their HR ability, as assayed by gene-targeting efficiency, is compromised. These phenotypes are indistinguishable from those of the rad51 mutant, and the rad51 brh2 double mutant. Naganishia Brh2 is likely the BRCA2 ortholog that functions as an indispensable auxiliary factor for Rad51.
Collapse
Affiliation(s)
- Maierdan Palihati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
9
|
Lim PX, Zaman M, Feng W, Jasin M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol Cell 2024; 84:447-462.e10. [PMID: 38244544 PMCID: PMC11188060 DOI: 10.1016/j.molcel.2023.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.
Collapse
Affiliation(s)
- Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mahdia Zaman
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Schäffer AA, Chung Y, Kammula AV, Ruppin E, Lee JS. A systematic analysis of the landscape of synthetic lethality-driven precision oncology. MED 2024; 5:73-89.e9. [PMID: 38218178 DOI: 10.1016/j.medj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Synthetic lethality (SL) denotes a genetic interaction between two genes whose co-inactivation is detrimental to cells. Because more than 25 years have passed since SL was proposed as a promising way to selectively target cancer vulnerabilities, it is timely to comprehensively assess its impact so far and discuss its future. METHODS We systematically analyzed the literature and clinical trial data from the PubMed and Trialtrove databases to portray the preclinical and clinical landscape of SL oncology. FINDINGS We identified 235 preclinically validated SL pairs and found 1,207 pertinent clinical trials, and the number keeps increasing over time. About one-third of these SL clinical trials go beyond the typically studied DNA damage response (DDR) pathway, testifying to the recently broadening scope of SL applications in clinical oncology. We find that SL oncology trials have a greater success rate than non-SL-based trials. However, about 75% of the preclinically validated SL interactions have not yet been tested in clinical trials. CONCLUSIONS Dissecting the recent efforts harnessing SL to identify predictive biomarkers, novel therapeutic targets, and effective combination therapy, our systematic analysis reinforces the hope that SL may serve as a key driver of precision oncology going forward. FUNDING Funded by the Samsung Research Funding & Incubation Center of Samsung Electronics, the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Republic of Korea government (MSIT), the Kwanjeong Educational Foundation, the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), and Center for Cancer Research (CCR).
Collapse
Affiliation(s)
- Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youngmin Chung
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ashwin V Kammula
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Joo Sang Lee
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Digital Health & Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
11
|
Cannon-Albright LA, Stevens J, Teerlink CC, Facelli JC, Allen-Brady K, Welm AL. A Rare Variant in MDH2 (rs111879470) Is Associated with Predisposition to Recurrent Breast Cancer in an Extended High-Risk Pedigree. Cancers (Basel) 2023; 15:5851. [PMID: 38136396 PMCID: PMC10741671 DOI: 10.3390/cancers15245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A significant fraction of breast cancer recurs, with lethal outcome, but specific genetic variants responsible have yet to be identified. Five cousin pairs with recurrent breast cancer from pedigrees with a statistical excess of recurrent breast cancer were sequenced to identify rare, shared candidate predisposition variants. The candidates were tested for association with breast cancer risk with UKBiobank data. Additional breast cancer cases were assayed for a subset of candidate variants to test for co-segregation. Three-dimensional protein structure prediction methods were used to investigate how the mutation under consideration is predicted to change structural and electrostatic properties in the mutated protein. One hundred and eighty-one rare candidate predisposition variants were shared in at least one cousin pair from a high-risk pedigree. A rare variant in MDH2 was found to segregate with breast-cancer-affected relatives in one extended pedigree. MDH2 is an estrogen-stimulated gene encoding the protein malate dehydrogenase, which catalyzes the reversible oxidation of malate to oxaloacetate. The molecular simulation results strongly suggest that the mutation changes the NAD+ binding pocket electrostatics of MDH2. This small sequencing study, using a powerful approach based on recurrent breast cancer cases from high-risk pedigrees, identified a set of strong candidate variants for inherited predisposition for breast cancer recurrence, including MDH2, which should be pursued in other resources.
Collapse
Affiliation(s)
- Lisa A. Cannon-Albright
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA;
| | - Jeff Stevens
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
| | - Craig C. Teerlink
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics and Utah Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kristina Allen-Brady
- Genetic Epidemiology Group, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA (C.C.T.); (K.A.-B.)
| | - Alana L. Welm
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA;
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
13
|
Huang H, Hu C, Na J, Hart SN, Gnanaolivu RD, Abozaid M, Rao T, Tecleab YA, Pesaran T, Lyra PCM, Karam R, Yadav S, Domchek SM, de la Hoya M, Robson M, Mehine M, Bandlamudi C, Mandelker D, Monteiro ANA, Boddicker N, Chen W, Richardson ME, Couch FJ. Saturation genome editing-based functional evaluation and clinical classification of BRCA2 single nucleotide variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571597. [PMID: 38168194 PMCID: PMC10760149 DOI: 10.1101/2023.12.14.571597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.
Collapse
|
14
|
Glotzbach JP, Hanson HA, Tonna JE, Horns JJ, Allen CM, Presson AP, Griffin CL, Zak M, Sharma V, Tristani-Firouzi M, Selzman CH. Familial Associations of Prevalence and Cause-Specific Mortality for Thoracic Aortic Disease and Bicuspid Aortic Valve in a Large-Population Database. Circulation 2023; 148:637-647. [PMID: 37317837 PMCID: PMC10527074 DOI: 10.1161/circulationaha.122.060439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Thoracic aortic disease and bicuspid aortic valve (BAV) likely have a heritable component, but large population-based studies are lacking. This study characterizes familial associations of thoracic aortic disease and BAV, as well as cardiovascular and aortic-specific mortality, among relatives of these individuals in a large-population database. METHODS In this observational case-control study of the Utah Population Database, we identified probands with a diagnosis of BAV, thoracic aortic aneurysm, or thoracic aortic dissection. Age- and sex-matched controls (10:1 ratio) were identified for each proband. First-degree relatives, second-degree relatives, and first cousins of probands and controls were identified through linked genealogical information. Cox proportional hazard models were used to quantify the familial associations for each diagnosis. We used a competing-risk model to determine the risk of cardiovascular-specific and aortic-specific mortality for relatives of probands. RESULTS The study population included 3 812 588 unique individuals. Familial hazard risk of a concordant diagnosis was elevated in the following populations compared with controls: first-degree relatives of patients with BAV (hazard ratio [HR], 6.88 [95% CI, 5.62-8.43]); first-degree relatives of patients with thoracic aortic aneurysm (HR, 5.09 [95% CI, 3.80-6.82]); and first-degree relatives of patients with thoracic aortic dissection (HR, 4.15 [95% CI, 3.25-5.31]). In addition, the risk of aortic dissection was higher in first-degree relatives of patients with BAV (HR, 3.63 [95% CI, 2.68-4.91]) and in first-degree relatives of patients with thoracic aneurysm (HR, 3.89 [95% CI, 2.93-5.18]) compared with controls. Dissection risk was highest in first-degree relatives of patients who carried a diagnosis of both BAV and aneurysm (HR, 6.13 [95% CI, 2.82-13.33]). First-degree relatives of patients with BAV, thoracic aneurysm, or aortic dissection had a higher risk of aortic-specific mortality (HR, 2.83 [95% CI, 2.44-3.29]) compared with controls. CONCLUSIONS Our results indicate that BAV and thoracic aortic disease carry a significant familial association for concordant disease and aortic dissection. The pattern of familiality is consistent with a genetic cause of disease. Furthermore, we observed higher risk of aortic-specific mortality in relatives of individuals with these diagnoses. This study provides supportive evidence for screening in relatives of patients with BAV, thoracic aneurysm, or dissection.
Collapse
Affiliation(s)
- Jason P. Glotzbach
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Heidi A. Hanson
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Joseph E. Tonna
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Joshua J. Horns
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Chelsea McCarty Allen
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Division of Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Angela P. Presson
- Surgical Population Analysis Research Core (SPARC), Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Division of Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Claire L. Griffin
- Division of Vascular Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Megan Zak
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Vikas Sharma
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
15
|
Cannon-Albright LA, Teerlink CC, Stevens J, Facelli JC, Carr SR, Allen-Brady K, Puri S, Bailey-Wilson JE, Musolf AM, Akerley W. A rare FGF5 candidate variant (rs112475347) for predisposition to nonsquamous, nonsmall-cell lung cancer. Int J Cancer 2023; 153:364-372. [PMID: 36916144 PMCID: PMC10182245 DOI: 10.1002/ijc.34510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio C Facelli
- Department of BioMedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shamus R Carr
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Wallace Akerley
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Friedman E. Insights from 25 years of oncogenetics: one person's perspective. Front Genet 2023; 14:1180879. [PMID: 37252658 PMCID: PMC10213307 DOI: 10.3389/fgene.2023.1180879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
In early 1995, I established the oncogenetics service at the Genetics Institute of the Sheba Medical Center in Israel. The purpose of this article is to describe the key points and issues that were raised throughout my personal journey since then: physician and public awareness; ethical and legal issues; guidelines for oncogenetic counseling; the development of oncogenetic testing within the unique Israeli reality of the limited spectrum of BRCA1 and BRCA2 mutations; high-risk vs. population screening; and the definition and implementation of guidelines for surveillance of asymptomatic mutation carriers. Since 1995, oncogenetics has been transformed from a rare oddity to a pivotal player, and it represents a successful example of implementing personalized preventive medicine by identifying and providing care and by offering means for early detection and risk reduction for adults who are genetically predisposed to develop a potentially life-threatening disease-cancer in this case. Lastly, I outline my personal vision for the possible way forward for oncogenetics.
Collapse
|
17
|
Daly MB, Rosenthal E, Cummings S, Bernhisel R, Kidd J, Hughes E, Gutin A, Meek S, Slavin TP, Kurian AW. The association between age at breast cancer diagnosis and prevalence of pathogenic variants. Breast Cancer Res Treat 2023; 199:617-626. [PMID: 37084156 PMCID: PMC10175307 DOI: 10.1007/s10549-023-06946-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Young age at breast cancer (BC) diagnosis and family history of BC are strongly associated with high prevalence of pathogenic variants (PVs) in BRCA1 and BRCA2 genes. There is limited evidence for such associations with moderate/high penetrance BC-risk genes such as ATM, CHEK2, and PALB2. METHODS We analyzed multi-gene panel testing results (09/2013-12/2019) for women unaffected by any cancer (N = 371,594) and those affected with BC (N = 130,151) ascertained for suspicion of hereditary breast and/or ovarian cancer. Multivariable logistic regression was used to test association between PV status and age at BC diagnosis (≤ 45 vs. > 45 years) or family history of BC after controlling for personal/family non-BC histories and self-reported ancestry. RESULTS An association between young age (≤ 45 years) at diagnosis and presence of PVs was strong for BRCA1 (OR 3.95, 95% CI 3.64-4.29) and moderate for BRCA2 (OR 1.98, 95% CI 1.84-2.14). Modest associations were observed between PVs and young age at diagnosis for ATM (OR 1.22, 95% CI 1.08-1.37) and CHEK2 (OR 1.34, 95% CI 1.21-1.47) genes, but not for PALB2 (OR 1.12, 95% CI 0.98-1.27). For women with BC, earliest age of familial BC diagnosis followed a similar pattern. For unaffected women, earliest age of family cancer diagnosis was significantly associated with PV status only for BRCA1 (OR 2.34, 95% CI 2.13-2.56) and BRCA2 (OR 1.25, 95% CI 1.16-1.35). CONCLUSIONS Young age at BC diagnosis is not a strong risk factor for carrying PVs in BC-associated genes ATM, CHEK2, or PALB2.
Collapse
Affiliation(s)
- Mary B Daly
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| | | | | | | | - John Kidd
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
18
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
19
|
Lim PX, Zaman M, Jasin M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536470. [PMID: 37090587 PMCID: PMC10120702 DOI: 10.1101/2023.04.11.536470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Highlights Gap suppression requires BRCA2 C-terminal RAD51 binding in mouse and human cells Brca2 heterozygosity in mice results in fork protection and gap suppression defects Gap suppression mitigates sensitivity to hmdU, but only when HDR is unperturbedHDR deficiency is the primary driver of chemotherapeutic sensitivity. eTOC blurb Lim et al . report that gap suppression as well as fork protection require BRCA2 stabilization of RAD51 filaments in human and mouse cells but have minimal impact on genome integrity, oncogenesis, and drug resistance. BRCA2 suppression of PRIMPOL-mediated replication gaps confers resistance to the nucleotide hmdU, incorporation of which leads to cytotoxic abasic sites.This effect is diminished when HDR is abrogated. Summary Tumor suppressor BRCA2 functions in homology-directed repair (HDR), protection of stalled replication forks, and suppression of replicative gaps. The relative contributions of these pathways to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for both fork protection and gap suppression, but not HDR. Loss of fork protection and gap suppression do not compromise genome instability or shorten tumor latency in mice or cause replication stress in human mammary cells. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection and gap suppression defects are also observed in Brca2 heterozygous mouse cells, likely due to reduced RAD51 stabilization at stalled forks and gaps. Gaps arise from PRIMPOL activity, which is associated with sensitivity to 5-hydroxymethyl-2’-deoxyuridine due to the formation of abasic sites by SMUG1 glycosylase and is exacerbated by poly(ADP-ribose) polymerase inhibition. However, HDR deficiency ultimately modulates sensitivity to chemotherapeutics, including PARP inhibitors.
Collapse
|
20
|
Cannon-Albright LA, Stevens J, Facelli JC, Teerlink CC, Allen-Brady K, Agarwal N. High-Risk Pedigree Study Identifies LRBA (rs62346982) as a Likely Predisposition Variant for Prostate Cancer. Cancers (Basel) 2023; 15:2085. [PMID: 37046747 PMCID: PMC10092952 DOI: 10.3390/cancers15072085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
There is evidence for contribution of inherited factors to prostate cancer, and more specifically to lethal prostate cancer, but few responsible genes/variants have been identified. We examined genetic sequence data for 51 affected cousin pairs who each died from prostate cancer and who were members of high-risk prostate cancer pedigrees in order to identify rare variants shared by the cousins as candidate predisposition variants. Candidate variants were tested for association with prostate cancer risk in UK Biobank data. Candidate variants were also assayed in 1195 additional sampled Utah prostate cancer cases. We used 3D protein structure prediction methods to analyze structural changes and provide insights into mechanisms of pathogenicity. Almost 4000 rare (<0.005) variants were identified as shared in the 51 affected cousin pairs. One candidate variant was also significantly associated with prostate cancer risk among the 840 variants with data in UK Biobank, in the gene LRBA (p = 3.2 × 10-5; OR = 2.09). The rare risk variant in LRBA was observed to segregate in five pedigrees. The overall predicted structures of the mutant protein do not show any significant overall changes upon mutation, but the mutated structure loses a helical structure for the two residues after the mutation. This unique analysis of closely related individuals with lethal prostate cancer, who were members of high-risk prostate cancer pedigrees, has identified a strong set of candidate predisposition variants which should be pursued in independent studies. Validation data for a subset of the candidates identified are presented, with strong evidence for a rare variant in LRBA.
Collapse
Affiliation(s)
- Lisa A. Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Julio C. Facelli
- Department of Biomedical Informatics and Clinical and Translational Science Institute, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Craig C. Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
Chitra Veena S, Vajagathali M, Ramakrishnan V. A systematic review on the association between ovarian and prostate cancer with <I>BRCA1</I> and <I>BRCA2</I> gene. SIBERIAN JOURNAL OF ONCOLOGY 2023; 21:145-155. [DOI: 10.21294/1814-4861-2022-21-6-145-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Background. BRCA1 and BRCA2 were discussed as the basis of inherited adenocarcinoma and breast and ovarian malignancy. Ovarian cancer is uncommon in women below 40 years of age, and prostate cancer mainly occurs in older men cause 90 % in those above sixty-fve.Objective. The main objective of this paper is to investigate the relationship between ovarian and prostate cancer with the BRCA1 and BRCA2 genes.Material and Methods. The ovarian and prostate cancer mechanism is discussed in detail, and their preventive measures with screening techniques are also demonstrated. This systematic review collected the related articles from online databases using the key terms ovarian cancer, prostate cancer, BRCA genes, mutation, polymorphism, carcinoma, sarcoma, and genetic association.Results. Based on the obtained information, it is found that the BRCA genes are highly associated with prostate cancer in men, and in women, it is significantly linked with breast cancer than ovarian cancer.Conclusion. Therefore, early diagnosis and genetic testing for BRCA1&BRCA2 genes in both men and women are necessary. In some cases, these genes might even cause different types of cancer like pancreatic cancers. Identifying individuals with tumour-HRD through mutations in the homologous repair pathway and determining this gene expression is essential to improve treatment techniques developed during the previous decade and rapidly make their way into clinical trials practice. However, the safe introduction of these medicines into everyday practice will require a thorough understanding of treatment targets and associated adverse effects.
Collapse
Affiliation(s)
- Sarpparajan Chitra Veena
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam
| | - Mohammed Vajagathali
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam
| | - Veerabathiran Ramakrishnan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam
| |
Collapse
|
22
|
Gurgel RK, Couldwell WT, Patel NS, Cannon-Albright LA. Is There an Inherited Contribution to Risk for Sporadic Unilateral Vestibular Schwannoma? Evidence of Familial Clustering. Otol Neurotol 2022; 43:e1157-e1163. [PMID: 36113461 DOI: 10.1097/mao.0000000000003686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECT Unlike the autosomal dominant inheritance of neurofibromatosis 2, there are no known inherited risk factors for sporadic, unilateral vestibular schwannoma (VS), which comprise most VS cases. The authors tested a hypothesis positing a genetic contribution to predisposition to these lesions by analyzing familial clustering of cases. METHODS Familial clustering of individuals with unilateral VS was analyzed in two independent genealogical resources with linked diagnosis data: the Veterans Health Administration Genealogy Resource and the Utah Population Database. Tests for excess relatedness, estimation of relative risks (RRs) in close and distant relatives, and identification of pedigrees with a significant excess of unilateral VS among descendants were performed. RESULTS The average pairwise relatedness of the Veterans Health Administration Genealogy Resource VS cases significantly exceeded the expected relatedness ( p = 0.016), even when close relationships were ignored ( p = 0.002). RR for third- and fifth-degree relatives developing VS were significantly elevated (RR, 60.83; p = 0.0005; 95% confidence interval [CI], 7.37-219.73) and (RR, 11.88; p = 0.013; 95% CI, 1.44-42.90), respectively. No VS-affected first-, second-, or fourth-degree relatives were observed. In the Utah Population Database population, no first- or second-degree relatives with VS were observed. RR for fifth-degree relatives developing VS was significantly elevated (RR, 2.23; p = 0.009; 95% CI, 1.15-3.90). CONCLUSION These results provide strong evidence for an inherited predisposition to sporadic, unilateral VS. This study exhibits the value of genealogical resources with linked medical data for examining hypotheses regarding inherited predisposition. The high-risk unilateral VS pedigrees identified in two independent resources provide a powerful means of pursuing predisposition gene identification.
Collapse
Affiliation(s)
- Richard K Gurgel
- Division of Otolaryngology, University of Utah School of Medicine
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah
| | - Neil S Patel
- Division of Otolaryngology, University of Utah School of Medicine
| | | |
Collapse
|
23
|
Lund Johansen E, Fribert Thusgaard C, Thomassen M, Eriksen Boonen S, Marie Jochumsen K. Germline Pathogenic Variants Associated with Ovarian Cancer: A Historical Overview. Gynecol Oncol Rep 2022; 44:101105. [DOI: 10.1016/j.gore.2022.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
24
|
Library adaptors with integrated reference controls improve the accuracy and reliability of nanopore sequencing. Nat Commun 2022; 13:6437. [PMID: 36307482 PMCID: PMC9616880 DOI: 10.1038/s41467-022-34028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Library adaptors are short oligonucleotides that are attached to RNA and DNA samples in preparation for next-generation sequencing (NGS). Adaptors can also include additional functional elements, such as sample indexes and unique molecular identifiers, to improve library analysis. Here, we describe Control Library Adaptors, termed CAPTORs, that measure the accuracy and reliability of NGS. CAPTORs can be integrated within the library preparation of RNA and DNA samples, and their encoded information is retrieved during sequencing. We show how CAPTORs can measure the accuracy of nanopore sequencing, evaluate the quantitative performance of metagenomic and RNA sequencing, and improve normalisation between samples. CAPTORs can also be customised for clinical diagnoses, correcting systematic sequencing errors and improving the diagnosis of pathogenic BRCA1/2 variants in breast cancer. CAPTORs are a simple and effective method to increase the accuracy and reliability of NGS, enabling comparisons between samples, reagents and laboratories, and supporting the use of nanopore sequencing for clinical diagnosis.
Collapse
|
25
|
Oranratnachai S, Yamkaew W, Tunteeratum A, Sukarayothin T, Iemwimangsa N, Panvichien R. Characteristics of breast cancer patients tested for germline BRCA1/2 mutations by next-generation sequencing in Ramathibodi Hospital, Mahidol University. Cancer Rep (Hoboken) 2022; 6:e1664. [PMID: 35778884 PMCID: PMC9875646 DOI: 10.1002/cnr2.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Germline mutations in BRCA1/2 are the most common cause of hereditary breast and ovarian cancer (HBOC) syndrome. Few studies published during the past decade reported the prevalence of germline BRCA mutations in Asian patients with breast cancer. We aimed to assess the prevalence and characteristics of Thai patients with breast cancer with germline BRCA1/2 mutations. METHODS We retrospectively reviewed all breast cancer patients who were tested for germline BRCA1/2 mutations during 2014-2018. BRCA mutations were detected using next-generation sequencing and confirmed using Sanger sequencing. We analyzed the characteristics of patients with or without BRCA mutations. Disease-free survival (DFS) and the associated factors were determined. RESULTS Among 67 patients, 12 (18%) were BRCA1/2 carriers (6 each), 4 (6%) harbored variants of uncertain significance, and 51 (76%) were non-carriers. We discovered two novel BRCA2 frameshift mutations (c.2380delA and c.8855dupT). Mean ages at breast cancer diagnosis of BRCA1, BRCA2, and non-carriers were 39.8, 46.2, and 42.0 years, respectively. The 12 tumors of BRCA carriers were mainly the luminal-B subtype. Two of these tumors were HER2-positive luminal-B, and the triple-negative subtype was not detected. After adjusting for stages and luminal subtypes, BRCA carriers experienced worse 3-year DFS than non-carriers (81.5% vs. 90.3%, HR 2.04 [0.64-6.49], p = .229). The stage at diagnosis was the sole factor significantly associated with 3-year DFS (100%, 84.8%, and 72.7%; stages I, II, and III, respectively). CONCLUSION Thai patients with breast cancer with BRCA1/2 mutations were mainly the luminal-B subtypes with worse prognosis than those without mutations.
Collapse
Affiliation(s)
- Songporn Oranratnachai
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Watchalawalee Yamkaew
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Atchara Tunteeratum
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Thongchai Sukarayothin
- Breast and Endocrine Surgery Unit, Department of Surgery, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | | | - Ravat Panvichien
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
26
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
27
|
Kluźniak W, Szymiczek A, Rodrigue A, Wokołorczyk D, Rusak B, Stempa K, Huzarski T, Gronwald J, Lubiński J, Zamani N, Zhang S, Masson JY, Narod SA, Cybulski C, Akbari MR. Common Variant in ALDH2 Modifies the Risk of Breast Cancer Among Carriers of the p.K3326* Variant in BRCA2. JCO Precis Oncol 2022; 6:e2100450. [PMID: 35442721 DOI: 10.1200/po.21.00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The BRCA2 p.K3326* variant is considered a low-penetrance variant for breast cancer. Aldehydes that accumulate in cells under insufficient aldehyde oxidation were most recently shown to trigger carcinogenesis by promoting depletion of BRCA2 protein. Allele T of the common variant rs10744777 in the ALDH2 gene was associated with reduced expression of aldehyde dehydrogenase, the main enzyme in aldehyde oxidation. We hypothesized that this allele could modify breast cancer risk in women with the BRCA2 p.K3326* low-penetrance variant through reduced function of ALDH2, increased accumulation of cellular aldehydes, and depletion of BRCA2 protein. MATERIALS AND METHODS We genotyped 11,873 Polish women diagnosed with breast cancer and 7,615 ethnically matched controls for these two variants. Next, we extended our analysis of rs10744777 to 231 carriers of pathogenic BRCA2 mutations. RESULTS BRCA2 p.K3326* variant was associated with significant increase in breast cancer risk only in those who were homozygous for the T allele of the ALDH2 rs10744777 variant (odds ratio = 1.72; 95% CI, 1.19 to 2.48; P = .003). The BRCA2 p.K3326* variant did not increase the risk of breast cancer among those who were heterozygous or homozygous for the C allele of the ALDH2 rs10744777 variant (odds ratio = 1.05; 95% CI, 0.73 to 1.51; P = .81). In the carriers of high-risk BRCA2 mutations, the TT genotype of rs10744777 conferred a modest (18%) and not significant increase in breast cancer risk. CONCLUSION Our results suggest that BRCA2 p.K3326* variant, which is low-penetrance by itself, confers increased breast cancer risk on the background of the TT genotype of the ALDH2 rs10744777 variant in the Polish population.
Collapse
Affiliation(s)
- Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Agata Szymiczek
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Amelie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogna Rusak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Huzarski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Poland
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Neda Zamani
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shiyu Zhang
- Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, Toronto, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Fanale D, Pivetti A, Cancelliere D, Spera A, Bono M, Fiorino A, Pedone E, Barraco N, Brando C, Perez A, Guarneri MF, Russo TDB, Vieni S, Guarneri G, Russo A, Bazan V. BRCA1/2 variants of unknown significance in hereditary breast and ovarian cancer (HBOC) syndrome: looking for the hidden meaning. Crit Rev Oncol Hematol 2022; 172:103626. [PMID: 35150867 DOI: 10.1016/j.critrevonc.2022.103626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome is caused by germline mutations in BRCA1/2 genes. These genes are very large and their mutations are heterogeneous and scattered throughout the coding sequence. In addition to the above-mentioned mutations, variants of uncertain/unknown significance (VUSs) have been identified in BRCA genes, which make more difficult the clinical management of the patient and risk assessment. In the last decades, several laboratories have developed different databases that contain more than 2000 variants for the two genes and integrated strategies which include multifactorial prediction models based on direct and indirect genetic evidence, to classify the VUS and attribute them a clinical significance associated with a deleterious, high-low or neutral risk. This review provides a comprehensive overview of literature studies concerning the VUSs, in order to assess their impact on the population and provide new insight for the appropriate patient management in clinical practice.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Spera
- Department of Radiotherapy, San Giovanni di Dio Hospital, ASP of Agrigento, Agrigento, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | | | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Italy
| | - Girolamo Guarneri
- Gynecology Section, Mother - Child Department, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
29
|
Le TNN, Tran VK, Nguyen TT, Vo NS, Hoang TH, Vo HL, Nguyen THT, Nguyen PD, Nguyen VT, Ta TV, Tran HT. BRCA1/2 Mutations in Vietnamese Patients with Hereditary Breast and Ovarian Cancer Syndrome. Genes (Basel) 2022; 13:genes13020268. [PMID: 35205313 PMCID: PMC8872259 DOI: 10.3390/genes13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Individuals with BRCA1/2 gene mutations are at increased risk of breast and ovarian cancer. The prevalence of BRCA1/2 mutations varies by race and ethnicity, and the prevalence and the risks associated with most BRCA1/2 mutations has not been unknown in the Vietnamese population. We herein screen the entire BRCA1 and BRCA2 genes for breast and ovarian cancer patients with a family history of breast cancer and ovarian cancer, thereby, suggesting a risk score associated with carrier status and history for aiding personalized treatment; (2) Methods: Between December 2017 and December 2019, Vietnamese patients who had a pathological diagnosis of breast and epithelial ovarian cancer were followed up, prospectively, after treatment from two large institutions in Vietnam. Blood samples from 33 Vietnamese patients with hereditary breast and ovarian cancers (HBOC) syndrome were collected and analyzed using Next Generation Sequencing; (3) Results: Eleven types of mutations in both BRCA1 (in nine patients) and BRCA2 (in three patients) were detected, two of which (BRCA1:p.Tyr1666Ter and BRCA2:p.Ser1341Ter) have not been previously documented in the literature. Seven out of 19 patient’s relatives had BRCA1/2 gene mutations. All selected patients were counselled about the likelihood of cancer rising and prophylactic screening and procedures. The study established a risk score associated with the cohorts based on carrier status and family history; (4) Conclusions: Our findings suggested the implications for the planning of a screening programme for BRCA1 and BRCA2 genes testing in breast and ovarian cancer patients and genetic screening in their relatives. BRCA1/2 mutation carriers without cancer should have early and regular cancer screening, and prophylactic measures. This study could be beneficial for a diverse group in a large population-specific cohort, related to HBOC Syndrome.
Collapse
Affiliation(s)
- Trong-Nhan N. Le
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Van-Khanh Tran
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thu-Thuy Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi 100000, Vietnam; (N.S.V.); (T.H.H.)
| | - Tham H. Hoang
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi 100000, Vietnam; (N.S.V.); (T.H.H.)
| | - Hoang-Long Vo
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thanh-Hai T. Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Phuoc-Dung Nguyen
- National Institute of Hematology and Blood Transfusion, Hanoi 100000, Vietnam;
| | - Viet-Tien Nguyen
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
| | - Thanh-Van Ta
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Huy-Thinh Tran
- Hanoi Medical University, Hanoi 100000, Vietnam; (T.-N.N.L.); (V.-K.T.); (T.-T.N.); (H.-L.V.); (T.-H.T.N.); (V.-T.N.); (T.-V.T.)
- Hanoi Medical University Hospital, Hanoi Medical University, Hanoi 100000, Vietnam
- Correspondence: ; Tel.: +84-243-852-3798/244; Fax: +84-24-3852-5115
| |
Collapse
|
30
|
Ghadirkhomi E, Angaji SA, Khosravi M, Mashayekhi MR. Association of Novel Single Nucleotide Polymorphisms of Genes Involved in Cell Functions with Male Infertility: A Study of Male Cases in Northwest Iran. J Reprod Infertil 2022; 22:258-266. [PMID: 34987987 PMCID: PMC8669412 DOI: 10.18502/jri.v22i4.7651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Infertility is a global health problem caused by various environmental and genetic factors. Male infertility accounts for 40-50% of all cases of infertility and approximately half of them are grouped as idiopathic with no definitive causes. Previous studies have suggested an association between some SNPs and infertility in men. In this study, an attempt was made to investigate the association of 7 different SNPs of 4 genes involved in common cell functions with male infertility. Methods MTHFR rs1801131 (T>G), MTHFR rs2274976 (G>A), FASLG rs80358238 (A>G), FASLG rs12079514 (A>C), GSTM1 rs1192077068 (G>A), BRCA2 rs4987117 (C>T), and BRCA2 rs11571833 (A>T) were genotyped in 120 infertile men with idiopathic azoospermia or severe oligospermia and 120 proven fertile controls using ARMS-PCR methods. Next, 30% of SNPs were regenotyped to confirm the results. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using SPSS statistical software to evaluate the strength of association. The p<0.05 were considered statistically significant. Results Statistical analysis revealed significant association between MTHFR rs-2274976 AA variant (OR: 10.00, CI: 3.203-31.225), FASLG rs12079514 AC variant (OR: 0.412, CI: 0.212-0.800), and BRCA2 rs11571833 TT variant OR: 6.233, CI: 3.211-12.101) with male infertility, but there was no significant difference between case and control groups in MTHFR rs1801131 (p= 0.111), GSTM1 rs1192077068 (p=0.272), BRCA2 rs4987117 (p=0.221), and FASLG rs80358238 (p=0.161). Conclusion Our findings suggested that some novel polymorphisms including MTHFR rs2274976, FASLG rs12079514, and BRCA2 rs11571833 might be the possible predisposing risk factors for male infertility in cases with idiopathic azoospermia.
Collapse
Affiliation(s)
- Elham Ghadirkhomi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Khosravi
- Biology Department, Faculty of Bio Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Mashayekhi
- Department of Genetics, Faculty of Biological Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
31
|
Shen L, Zhang S, Wang K, Wang X. Familial Breast Cancer: Disease Related Gene Mutations and Screening Strategies for Chinese Population. Front Oncol 2021; 11:740227. [PMID: 34926254 PMCID: PMC8671637 DOI: 10.3389/fonc.2021.740227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND About 5%-10% of the breast cancer cases have a hereditary background, and this subset is referred to as familial breast cancer (FBC). In this review, we summarize the susceptibility genes and genetic syndromes associated with FBC and discuss the FBC screening and high-risk patient consulting strategies for the Chinese population. METHODS We searched the PubMed database for articles published between January 2000 and August 2021. Finally, 380 pieces of literature addressing the genes and genetic syndromes related to FBC were included and reviewed. RESULTS We identified 16 FBC-related genes and divided them into three types (high-, medium-, and low-penetrance) of genes according to their relative risk ratios. In addition, six genetic syndromes were found to be associated with FBC. We then summarized the currently available screening strategies for FBC and discussed those available for high-risk Chinese populations. CONCLUSION Multiple gene mutations and genetic disorders are closely related to FBC. The National Comprehensive Cancer Network (NCCN) guidelines recommend corresponding screening strategies for these genetic diseases. However, such guidelines for the Chinese population are still lacking. For screening high-risk groups in the Chinese population, genetic testing is recommended after genetic counseling.
Collapse
Affiliation(s)
| | | | | | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Arancibia T, Morales-Pison S, Maldonado E, Jara L. Association between single-nucleotide polymorphisms in miRNA and breast cancer risk: an updated review. Biol Res 2021; 54:26. [PMID: 34454612 PMCID: PMC8401249 DOI: 10.1186/s40659-021-00349-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC), a heterogeneous, aggressive illness with high mortality, is essentially a genomic disease. While the high-penetrance genes BRCA1 and BRCA2 play important roles in tumorigenesis, moderate- and low-penetrance genes are also involved. Single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes have recently been identified as BC risk factors. miRNA genes are currently classified as low-penetrance. SNPs are the most common variations in the human genome. While the role of miRNA SNPs in BC susceptibility has been studied extensively, results have been inconsistent. This review analyzes the results of association studies between miRNA SNPs and BC risk from countries around the world. We conclude that: (a) By continent, the largest proportion of studies to date were conducted in Asia (65.0 %) and the smallest proportion in Africa (1.8 %); (b) Association studies have been completed for 67 different SNPs; (c) 146a, 196a2, 499, 27a, and 423 are the most-studied miRNAs; (d) The SNPs rs2910164 (miRNA-146a), rs11614913 (miRNA-196a2), rs3746444 (miRNA-499) and rs6505162 (miRNA-423) were the most widely associated with increased BC risk; (e) The majority of studies had small samples, which may affect the precision and power of the results; and (f) The effect of an SNP on BC risk depends on the ethnicity of the population. This review also discusses potential explanations for controversial findings.
Collapse
Affiliation(s)
- Trinidad Arancibia
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Sebastian Morales-Pison
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Edio Maldonado
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Lilian Jara
- Programa de Genética Humana, Instituto de Ciencia Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.
| |
Collapse
|
33
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
34
|
No Association of Early-Onset Breast or Ovarian Cancer with Early-Onset Cancer in Relatives in BRCA1 or BRCA2 Mutation Families. Genes (Basel) 2021; 12:genes12071100. [PMID: 34356116 PMCID: PMC8305427 DOI: 10.3390/genes12071100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
According to clinical guidelines, the occurrence of very early-onset breast cancer (VEO-BC) (diagnosed ≤ age 30 years) or VEO ovarian cancer (VEO-OC) (diagnosed ≤ age 40 years) in families with BRCA1 or BRCA2 mutation (BRCAm) prompts advancing the age of risk-reducing strategies in relatives. This study aimed to assess the relation between the occurrence of VEO-BC or VEO-OC in families with BRCAm and age at BC or OC diagnosis in relatives. We conducted a retrospective multicenter study of 448 consecutive families with BRCAm from 2003 to 2018. Mean age and 5-year–span distribution of age at BC or OC in relatives were compared in families with or without VEO-BC or VEO-OC. Conditional probability calculation and Cochran–Mantel–Haenszel chi-square tests were used to investigate early-onset cancer occurrence in relatives of VEO-BC and VEO-OC cases. Overall, 15% (19/245) of families with BRCA1m and 9% (19/203) with BRCA2m featured at least one case of VEO-BC; 8% (37/245) and 2% (2/203) featured at least one case of VEO-OC, respectively. The cumulative prevalence of VEO-BC was 5.1% (95% CI 3.6–6.6) and 2.5% (95% CI 1.4–3.6) for families with BRCA1m and BRCA2m, respectively. The distribution of age and mean age at BC diagnosis in relatives did not differ by occurrence of VEO-BC for families with BRCA1m or BRCA2m. Conditional probability calculations did not show an increase of early-onset BC in VEO-BC families with BRCA1m or BRCA2m. Conversely, the probability of VEO-BC was not increased in families with early-onset BC. VEO-BC or VEO-OC occurrence may not be related to young age at BC or OC onset in relatives in families with BRCAm. This finding—together with a relatively high VEO-BC risk for women with BRCAm—advocates for MRI breast screening from age 25 regardless of family history.
Collapse
|
35
|
Pawłowski B, Żelaźniewicz A. The evolution of perennially enlarged breasts in women: a critical review and a novel hypothesis. Biol Rev Camb Philos Soc 2021; 96:2794-2809. [PMID: 34254729 DOI: 10.1111/brv.12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
The possession of permanent, adipose breasts in women is a uniquely human trait that develops during puberty, well in advance of the first pregnancy. The adaptive role and developmental pattern of this breast morphology, unusual among primates, remains an unresolved conundrum. The evolutionary origins of this trait have been the focus of many hypotheses, which variously suggest that breasts are a product of sexual selection or of natural selection due to their putative role in assisting in nursing or as a thermoregulatory organ. Alternative hypotheses assume that permanent breasts are a by-product of other evolutionary changes. We review and evaluate these hypotheses in the light of recent literature on breast morphology, physiology, phylogeny, ontogeny, sex differences, and genetics in order to highlight their strengths and flaws and to propose a coherent perspective and a new hypothesis on the evolutionary origins of perennially enlarged breasts in women. We propose that breasts appeared as early as Homo ergaster, originally as a by-product of other coincident evolutionary processes of adaptive significance. These included an increase in subcutaneous fat tissue (SFT) in response to the demands of thermoregulatory and energy storage, and of the ontogenetic development of the evolving brain. An increase in SFT triggered an increase in oestradiol levels (E2). An increase in meat in the diet of early Homo allowed for further hormonal changes, such as greater dehydroepiandrosterone (DHEA/S) synthesis, which were crucial for brain evolution. DHEA/S is also easily converted to E2 in E2-sensitive body parts, such as breasts and gluteofemoral regions, causing fat accumulation in these regions, enabling the evolution of perennially enlarged breasts. Furthermore, it is also plausible that after enlarged breasts appeared, they were co-opted for other functions, such as attracting mates and indicating biological condition. Finally, we argue that the multifold adaptive benefits of SFT increase and hormonal changes outweighed the possible costs of perennially enlarged breasts, enabling their further development.
Collapse
Affiliation(s)
- Bogusław Pawłowski
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| | - Agnieszka Żelaźniewicz
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| |
Collapse
|
36
|
Teerlink CC, Miller JB, Vance EL, Staley LA, Stevens J, Tavana JP, Cloward ME, Page ML, Dayton L, Cannon-Albright LA, Kauwe JSK. Analysis of high-risk pedigrees identifies 11 candidate variants for Alzheimer's disease. Alzheimers Dement 2021; 18:307-317. [PMID: 34151536 PMCID: PMC9291865 DOI: 10.1002/alz.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022]
Abstract
Introduction Analysis of sequence data in high‐risk pedigrees is a powerful approach to detect rare predisposition variants. Methods Rare, shared candidate predisposition variants were identified from exome sequencing 19 Alzheimer's disease (AD)‐affected cousin pairs selected from high‐risk pedigrees. Variants were further prioritized by risk association in various external datasets. Candidate variants emerging from these analyses were tested for co‐segregation to additional affected relatives of the original sequenced pedigree members. Results AD‐affected high‐risk cousin pairs contained 564 shared rare variants. Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195 (ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology; rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported; rs200290640 (PIDD1) and rs199752248 (PIDD1) were present in more than one cousin pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178 (MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and rs147599881 (FCHO1) approached significance from analysis of AD‐related phenotypes. Three variants were validated via evidence of co‐segregation to additional relatives (PELI3, ABCA7, and SNAP91). Discussion These analyses support ABCA7 and TTR as AD risk genes, expand on previously reported NOTCH3 variant identification, and prioritize seven additional candidate variants.
Collapse
Affiliation(s)
- Craig C Teerlink
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Justin B Miller
- Department of Biomedical Informatics, University of Kentucky Sanders-Brown Center on Aging, Lexington, Kentucky, USA
| | | | - Lyndsay A Staley
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - Jeffrey Stevens
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Justina P Tavana
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | | | - Madeline L Page
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - Louisa Dayton
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | | | - Lisa A Cannon-Albright
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
37
|
Park MS, Weissman SM, Postula KJV, Williams CS, Mauer CB, O'Neill SM. Utilization of breast cancer risk prediction models by cancer genetic counselors in clinical practice predominantly in the United States. J Genet Couns 2021; 30:1737-1747. [PMID: 34076301 DOI: 10.1002/jgc4.1442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023]
Abstract
Risk assessment in cancer genetic counseling is essential in identifying individuals at high risk for developing breast cancer to recommend appropriate screening and management options. Historically, many breast cancer risk prediction models were developed to calculate an individual's risk to develop breast cancer or to carry a pathogenic variant in the BRCA1 or BRCA2 genes. However, how or when genetic counselors use these models in clinical settings is currently unknown. We explored genetic counselors' breast cancer risk model usage patterns including frequency of use, reasons for using or not using models, and change in usage since the adoption of multi-gene panel testing. An online survey was developed and sent to members of the National Society of Genetic Counselors; board-certified genetic counselors whose practice included cancer genetic counseling were eligible to participate in the study. The response rate was estimated at 23% (243/1,058), and respondents were predominantly working in the United States. The results showed that 93% of all respondents use at least one breast cancer risk prediction model in their clinical practice. Among the six risk models selected for the study, the Tyrer-Cuzick (IBIS) model was used most frequently (95%), and the BOADICEA model was used least (40%). Determining increased or decreased surveillance and breast MRI eligibility were the two most common reasons for most model usage, while time consumption and difficulty in navigation were the two most common reasons for not using models. This study provides insight into perceived benefits and limitations of risk models in clinical use in the United States, which may be useful information for software developers, genetic counseling program curriculum developers, and currently practicing cancer genetic counselors.
Collapse
Affiliation(s)
- Min Seon Park
- Northwestern Medical Group, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| | | | | | - Carmen S Williams
- Northwestern Medical Group, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| | | | - Suzanne M O'Neill
- Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| |
Collapse
|
38
|
Teerlink CC, Stevens J, Hernandez R, Facelli JC, Cannon-Albright LA. An intronic variant in the CELF4 gene is associated with risk for colorectal cancer. Cancer Epidemiol 2021; 72:101941. [PMID: 33930674 PMCID: PMC8158787 DOI: 10.1016/j.canep.2021.101941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/17/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Germline predisposition variants associated with colorectal cancer (CRC) have been identified but all are not yet identified. We sought to identify the responsible predisposition germline variant in an extended high-risk CRC pedigree that exhibited evidence of linkage to the 18q12.2 region (TLOD = +2.81). METHODS DNA from two distantly related carriers of the hypothesized predisposition haplotype on 18q12.2 was sequenced to identify candidate variants. The candidate rare variants shared by the related sequenced subjects were screened in 3,094 CRC cases and 5x population-matched controls from UKBiobank to test for association. Further segregation of the variant was tested via Taqman assay in other sampled individuals in the pedigree. RESULTS Analysis of whole genome sequence data for the two related hypothesized predisposition haplotype carriers, restricted to the shared haplotype boundaries, identified multiple (n = 6) rare candidate non-coding variants that were tested for association with CRC risk in UKBiobank. A rare intronic variant ofCELF4 gene, rs568643870, was significantly associated with CRC (p = 0.004, OR = 5.0), and segregated with CRC in other members of the linked pedigree. CONCLUSION Evidence of segregation in a high-risk pedigree, case-control association in an external dataset, and identification of additional CRC-affected carriers in the linked pedigree support a role for a rareCELF4 intronic variant in CRC risk.
Collapse
Affiliation(s)
- Craig C Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Jeff Stevens
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Rolando Hernandez
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Center for Clinical and Translational Science, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Lisa A Cannon-Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA; Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
A Rare Variant in ERF (rs144812092) Predisposes to Prostate and Bladder Cancers in an Extended Pedigree. Cancers (Basel) 2021; 13:cancers13102399. [PMID: 34063511 PMCID: PMC8156789 DOI: 10.3390/cancers13102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Here we applied a powerful predisposition candidate gene identification strategy to identify rare variants shared by two related bladder cancer cases who were members of pedigrees exhibiting a significant excess of bladder cancers. We sequenced the exomes of pairs of related bladder cancer cases belonging to high-risk bladder cancer pedigrees to identify rare, shared variants shared as candidates for predisposition. A rare, shared variant in ERF was also found to show significant association with bladder cancer risk in an independent population, was present in other prostate cancer-affected members in the pedigree, and showed evidence for altering the function of the associated protein. This evidence supports ERF (ETS2 Repressor Factor) as a bladder and prostate cancer predisposition gene. Abstract Pairs of related bladder cancer cases who belong to pedigrees with an excess of bladder cancer were sequenced to identify rare, shared variants as candidate predisposition variants. Candidate variants were tested for association with bladder cancer risk. A validated variant was assayed for segregation to other related cancer cases, and the predicted protein structure of this variant was analyzed. This study of affected bladder cancer relative pairs from high-risk pedigrees identified 152 bladder cancer predisposition candidate variants. One variant in ERF (ETS Repressing Factor) was significantly associated with bladder cancer risk in an independent population, was observed to segregate with bladder and prostate cancer in relatives, and showed evidence for altering the function of the associated protein. This finding of a rare variant in ERF that is strongly associated with bladder and prostate cancer risk in an extended pedigree both validates ERF as a cancer predisposition gene and shows the continuing value of analyzing affected members of high-risk pedigrees to identify and validate rare cancer predisposition variants.
Collapse
|
40
|
Cannon-Albright LA, Farnham JM, Stevens J, Teerlink CC, Palmer CA, Rowe K, Cessna MH, Blumenthal DT. Genome-wide analysis of high-risk primary brain cancer pedigrees identifies PDXDC1 as a candidate brain cancer predisposition gene. Neuro Oncol 2021; 23:277-283. [PMID: 32644145 PMCID: PMC7906047 DOI: 10.1093/neuonc/noaa161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is evidence for an inherited contribution to primary brain cancer. Linkage analysis of high-risk brain cancer pedigrees has identified candidate regions of interest in which brain cancer predisposition genes are likely to reside. METHODS Genome-wide linkage analysis was performed in a unique set of 11 informative, extended, high-risk primary brain cancer pedigrees identified in a population genealogy database, which include from 2 to 6 sampled, related primary brain cancer cases. Access to formalin-fixed paraffin embedded tissue samples archived in a biorepository allowed analysis of extended pedigrees. RESULTS Individual high-risk pedigrees were singly informative for linkage at multiple regions. Suggestive evidence for linkage was observed on chromosomes 2, 3, 14, and 16. The chromosome 16 region in particular contains a promising candidate gene, pyridoxal-dependent decarboxylase domain-containing 1 (PDXDC1), with prior evidence for involvement with glioblastoma from other previously reported experimental settings, and contains the lead single nucleotide polymorphism (rs3198697) from the linkage analysis of the chromosome 16 region. CONCLUSIONS Pedigrees with a statistical excess of primary brain cancers have been identified in a unique genealogy resource representing the homogeneous Utah population. Genome-wide linkage analysis of these pedigrees has identified a potential candidate predisposition gene, as well as multiple candidate regions that could harbor predisposition loci, and for which further analysis is suggested.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - James M Farnham
- Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jeffrey Stevens
- Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Craig C Teerlink
- Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Cheryl A Palmer
- Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA.,ARUP Laboratories, Salt Lake City, Utah, USA
| | - Kerry Rowe
- Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Melissa H Cessna
- Intermountain Healthcare, Salt Lake City, Utah, USA.,Intermountain Biorepository and Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | | |
Collapse
|
41
|
Kazmers NH, Meeks HD, Novak KA, Yu Z, Fulde GL, Thomas JL, Barker T, Jurynec MJ. Familial Clustering of Erosive Hand Osteoarthritis in a Large Statewide Cohort. Arthritis Rheumatol 2021; 73:440-447. [PMID: 32940959 PMCID: PMC7914133 DOI: 10.1002/art.41520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Erosive hand osteoarthritis (OA) is a severe and rapidly progressing subset of hand OA. Its etiology remains largely unknown, which has hindered development of successful treatments. This study was undertaken to test the hypothesis that erosive hand OA demonstrates familial clustering in a large statewide population linked to genealogical records, and to determine the association of potential risk factors with erosive hand OA. METHODS Patients diagnosed as having erosive hand OA were identified by searching 4,741,840 unique medical records from a comprehensive statewide database, the Utah Population Database (UPDB). Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of erosive hand OA as defined by a familial standardized incidence ratio (FSIR) of ≥2.0. The magnitude of familial risk of erosive hand OA in related individuals was calculated using Cox regression models. Association of potential erosive hand OA risk factors was analyzed using multivariate conditional logistic regression and logistic regression models. RESULTS We identified 703 affected individuals linked to 240 unrelated high-risk pedigrees with excess clustering of erosive hand OA (FSIR ≥2.0, P < 0.05). The relative risk of developing erosive hand OA was significantly elevated in first-degree relatives (P < 0.001). There were significant associations between a diagnosis of erosive hand OA and age, sex, diabetes, and obesity (all P < 0.05). CONCLUSION Familial clustering of erosive hand OA observed in a statewide database indicates a potential genetic contribution to the etiology of the disease. Age, sex, diabetes, and obesity are risk factors for erosive hand OA. Identification of causal gene variants in these high-risk families may provide insight into the genes and pathways that contribute to erosive hand OA onset and progression.
Collapse
Affiliation(s)
- Nikolas H. Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| | - Huong D. Meeks
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT 84112
| | - Kendra A. Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| | - Zhe Yu
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT 84112
| | - Gail L. Fulde
- Intermountain Healthcare, Precision Genomics, St. George, UT 84790
| | - Joy L. Thomas
- Intermountain Healthcare, Precision Genomics, St. George, UT 84790
| | - Tyler Barker
- Intermountain Healthcare, Precision Genomics, Murray, UT 84107
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Michael J. Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| |
Collapse
|
42
|
Baughan S, Tainsky MA. K3326X and Other C-Terminal BRCA2 Variants Implicated in Hereditary Cancer Syndromes: A Review. Cancers (Basel) 2021; 13:447. [PMID: 33503928 PMCID: PMC7865497 DOI: 10.3390/cancers13030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Whole genome analysis and the search for mutations in germline and tumor DNAs is becoming a major tool in the evaluation of risk as well as the management of hereditary cancer syndromes. Because of the identification of cancer predisposition gene panels, thousands of such variants have been catalogued yet many remain unclassified, presenting a clinical challenge for the management of hereditary cancer syndromes. Although algorithms exist to estimate the likelihood of a variant being deleterious, these tools are rarely used for clinical decision-making. Here, we review the progress in classifying K3326X, a rare truncating variant on the C-terminus of BRCA2 and review recent literature on other novel single nucleotide polymorphisms, SNPs, on the C-terminus of the protein, defined in this review as the portion after the final BRC repeat (amino acids 2058-3418).
Collapse
Affiliation(s)
- Scott Baughan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
43
|
Ariyannur P, Srinivasalu VK. Molecular Mechanisms of Early Breast Cancer. MANAGEMENT OF EARLY STAGE BREAST CANCER 2021:59-83. [DOI: 10.1007/978-981-15-6171-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Cannon-Albright LA, Stevens J, Teerlink CC, Agarwal N. The HOXB13 p.Gly84Glu variant observed in an extended five generation high-risk prostate cancer pedigree supports risk association for multiple cancer sites. Cancer Epidemiol 2020; 69:101834. [PMID: 33099213 DOI: 10.1016/j.canep.2020.101834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022]
Abstract
HOXB13 p.Gly84Glu is recognized as a rare variant associated with increased risk for prostate cancer; risk association for other cancers is uncertain. This HOXB13 variant was originally reported in several 3-generation prostate cancer pedigrees and has been reported to be associated with increased risk for bladder and colorectal cancer and leukemia in GWAS. A HOXB13 pGly84Glu variant carrier was identified in a set of Utah individuals born more than 100 years ago who were members of high-risk cancer pedigrees. The proband carrier was diagnosed with colon cancer and is a member of a high-risk prostate cancer pedigree. The HOXB13 pGLY84Glu variant was assayed in other sampled relatives in the pedigree and was observed to segregate in relatives of the proband carrier in the extended pedigree; this pedigree showed significant excess of prostate cancer, cervical cancer, leukemia, colorectal cancer, and gastric cancer among descendants. Multiple additional variant carriers were identified, diagnosed with prostate, bladder, and colon cancers in the 5-generation high-risk cancer pedigree. This study shows the power and efficiency of a biorepository of samples with known genealogy from extended high-risk pedigrees for definition of cancer-associated risks. Association of HOXB13 p.Gly84Glu with risk of colon and bladder cancers in this extended pedigree confirms previous reports for risk association for both cancers.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, United States; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States.
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States; Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, United States
| |
Collapse
|
45
|
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer 2020; 20:555-572. [PMID: 32778778 DOI: 10.1038/s41568-020-0290-x] [Citation(s) in RCA: 677] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Deu-Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Bonet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hanna Kranas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
46
|
El Ansari FZ, Jouali F, Marchoudi N, Bennani MM, Ghailani NN, Barakat A, Fekkak J. Screening of BRCA1/2 genes mutations and copy number variations in patients with high risk for hereditary breast and ovarian cancer syndrome (HBOC). BMC Cancer 2020; 20:747. [PMID: 32778078 PMCID: PMC7418307 DOI: 10.1186/s12885-020-07250-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hereditary breast and ovarian cancer (HBOC) is an autosomal dominant inherited cancer susceptibility disorder. Both BRCA1 and BRCA2 genes are considered as high penetrance genes of this syndrome. The identification of BRCA1/2 genetic alterations before cancer development, grant patients the chance to benefit from various medical cancer prevention approaches. Therefore, the appearance of recent advanced technologies in molecular analysis such as next generation sequencing has simplified full BRCA1/2 analysis. Many attempts took place in hope of understanding the molecular germline spectrum of these two genes in Moroccan HBOC patients. However, most of the past projects focused only on young breast cancer cases, lacked ovarian cancer cases in their cohort and only a limited number of these studies were able to analyze the entire exons or copy number variations for both genes. In attempt of gaining more information regarding the molecular profile of BRCA1/2 in HBOC, we conducted a study in which we analyze their molecular profile on selected Moroccan patients suspected of having HBOC syndrome. Methods In this study we obtained blood samples from 64 selected Moroccan patients, who suffered from Breast and/or ovarian cancer and had a strong family history for cancer. To analyze BRCA1/2 punctual variants and copy number variations, we used the Ion Personal Genome Machine (PGM) and Oncomine BRCA1/2 research assay panel. Afterward, we correlated the molecular results with the clinic-pathologic data using IBM SPSS Statistics ver 2. Results From the 64 selected cases, Forty-six had breast cancer, fifteen had ovarian cancer and three had both breast and ovarian cancer. The molecular analysis revealed that 18 patients from the 64 harbored a pathogenic variant (28%). Twelve had six different BRCA1 pathogenic variants and six had six different BRCA2 pathogenic variants. In this study, we report four pathogenic variants that to the best of our knowledge has never been reported in the Moroccan population before. Regarding copy number variation analysis, No CNV was detected in both genes for all the 64 successfully sequenced and analyzed patients in our cohort. Conclusion Work like the present has an important implication on public health and science. It is critical that molecular profiling studies are performed on underserved and understudied population like Morocco.
Collapse
Affiliation(s)
- Fatima Zahra El Ansari
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco. .,Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco.
| | - Farah Jouali
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| | - Nabila Marchoudi
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| | - Mohcine Mechita Bennani
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Naima Nourouti Ghailani
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, 90000, Tangier, Morocco
| | - Jamal Fekkak
- Molecular Biology Department, ANOUAL Laboratory, Casablanca, Morocco
| |
Collapse
|
47
|
Wang J, Qin J, Xi C, Zhang Y. BRCA2 c.8827C>T pathogenic mutation in a consanguineous Chinese family with hereditary breast cancer. Mol Genet Genomic Med 2020; 8:e1411. [PMID: 32686918 PMCID: PMC7507009 DOI: 10.1002/mgg3.1411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in the BRCA2 DNA repair associated gene (BRCA2) are associated with the development of breast cancer, with different ethnic mutations at different sites. Based on different types of BRCA2 variants, the underlying mechanism remains still elusive. Methods Next‐generation sequencing (NGS) was performed to detect germ line mutations in BRCA2. The expressions of BRCA2 mRNA and BRCA2 protein were detected by Real‐time PCR and Western blot, respectively. Results In a consanguineous Chinese family with hereditary breast cancer, one woman had unilateral breast cancer, two women had bilateral asynchronous breast cancer, and one man had prostate cancer. We identified a mutation site (NM_000059.4: c.8827C>T, NP_ 000050.3: p.(Gln2943*)) in BRCA2 gene, which was a nonsense mutation that predicted disrupting peptide chain synthesis and limiting BRCA2 protein production, validated by the decreased expressions of both BRCA2 mRNA and BRCA2 protein. Conclusion In this study, we identified a BRCA2 c.8827C>T nonsense mutation with a truncated BRCA2 protein in a consanguineous Chinese Han family, suggesting individuals with this mutation should be regularly screened for malignancies such as breast, prostate, and ovarian cancer. Our study verified the function of this BRCA2 mutation site and provided a new target for the precise treatment of such patients.
Collapse
Affiliation(s)
- Jiangfen Wang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jiayue Qin
- Department of Medical Affairs, Annoroad Gene Technology Co. Ltd, Beijing, China
| | - Chunfang Xi
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Yafen Zhang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
48
|
Gross AM, Turner J, Kirkorian AY, Okoye GA, Luca DC, Bornhorst M, Jacobs SS, Williams KM, Schore RJ. A Pediatric Case of Transformed Mycosis Fungoides in a BRCA2 Positive Patient. J Pediatr Hematol Oncol 2020; 42:e361-e364. [PMID: 30969264 DOI: 10.1097/mph.0000000000001481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cutaneous T-cell lymphomas are very rare in children. Although mycosis fungoides is the most common of these rare cutaneous T-cell lymphomas in children, transformation to an aggressive malignancy remains extremely uncommon, and there are no clear guidelines for clinical management in the pediatric population. In addition, the increased usage of next-generation sequencing for pediatric patients with unusual malignancies may result in the discovery of pathogenic germline mutations, though the association between these mutations and the patient's cancer is not always clear. We present here a unique pediatric case of transformed mycosis fungoides in a patient with BRCA2 mutation.
Collapse
Affiliation(s)
- Andrea M Gross
- Children's National Medical Center, Washington, DC.,National Institutes of Health, National Cancer Institute, Bethesda
| | - Joyce Turner
- Children's National Medical Center, Washington, DC
| | | | - Ginette A Okoye
- Department of Dermatology, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|
49
|
Hanson HA, Leiser CL, Madsen MJ, Gardner J, Knight S, Cessna M, Sweeney C, Doherty JA, Smith KR, Bernard PS, Camp NJ. Family Study Designs Informed by Tumor Heterogeneity and Multi-Cancer Pleiotropies: The Power of the Utah Population Database. Cancer Epidemiol Biomarkers Prev 2020; 29:807-815. [PMID: 32098891 PMCID: PMC7168701 DOI: 10.1158/1055-9965.epi-19-0912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Previously, family-based designs and high-risk pedigrees have illustrated value for the discovery of high- and intermediate-risk germline breast cancer susceptibility genes. However, genetic heterogeneity is a major obstacle hindering progress. New strategies and analytic approaches will be necessary to make further advances. One opportunity with the potential to address heterogeneity via improved characterization of disease is the growing availability of multisource databases. Specific to advances involving family-based designs are resources that include family structure, such as the Utah Population Database (UPDB). To illustrate the broad utility and potential power of multisource databases, we describe two different novel family-based approaches to reduce heterogeneity in the UPDB. METHODS Our first approach focuses on using pedigree-informed breast tumor phenotypes in gene mapping. Our second approach focuses on the identification of families with similar pleiotropies. We use a novel network-inspired clustering technique to explore multi-cancer signatures for high-risk breast cancer families. RESULTS Our first approach identifies a genome-wide significant breast cancer locus at 2q13 [P = 1.6 × 10-8, logarithm of the odds (LOD) equivalent 6.64]. In the region, IL1A and IL1B are of particular interest, key cytokine genes involved in inflammation. Our second approach identifies five multi-cancer risk patterns. These clusters include expected coaggregations (such as breast cancer with prostate cancer, ovarian cancer, and melanoma), and also identify novel patterns, including coaggregation with uterine, thyroid, and bladder cancers. CONCLUSIONS Our results suggest pedigree-informed tumor phenotypes can map genes for breast cancer, and that various different cancer pleiotropies exist for high-risk breast cancer pedigrees. IMPACT Both methods illustrate the potential for decreasing etiologic heterogeneity that large, population-based multisource databases can provide.See all articles in this CEBP Focus section, "Modernizing Population Science."
Collapse
Affiliation(s)
- Heidi A Hanson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Utah Population Database, University of Utah, Salt Lake City, Utah
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Claire L Leiser
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Michael J Madsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - John Gardner
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Melissa Cessna
- Intermountain Biorepository, Intermountain Healthcare, Salt Lake City, Utah
- Department of Pathology, Intermountain Medical Center, Intermountain Healthcare, Salt Lake City, Utah
| | - Carol Sweeney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Utah Cancer Registry, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jennifer A Doherty
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Utah Cancer Registry, University of Utah, Salt Lake City, Utah
- Department of Population Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ken R Smith
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Utah Population Database, University of Utah, Salt Lake City, Utah
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, Utah
| | - Philip S Bernard
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Nicola J Camp
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Utah Population Database, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
50
|
Germline Variants in Driver Genes of Breast Cancer and Their Association with Familial and Early-Onset Breast Cancer Risk in a Chilean Population. Cancers (Basel) 2020; 12:cancers12010249. [PMID: 31968594 PMCID: PMC7016585 DOI: 10.3390/cancers12010249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023] Open
Abstract
The genetic variations responsible for tumorigenesis are called driver mutations. In breast cancer (BC), two studies have demonstrated that germline mutations in driver genes linked to sporadic tumors may also influence BC risk. The present study evaluates the association between SNPs and SNP-SNP interaction in driver genes TTN (rs10497520), TBX3 (rs2242442), KMT2D (rs11168827), and MAP3K1 (rs702688 and rs702689) with BC risk in BRCA1/2-negative Chilean families. The SNPs were genotyped in 489 BC cases and 1078 controls by TaqMan Assay. Our data do not support an association between rs702688: A>G or rs702689: G>A and BC risk. The rs10497520-T allele was associated with a decreased risk in patients with family history of BC or early-onset BC (OR = 0.6, p < 0.0001 and OR = 0.7, p = 0.05, respectively). rs2242442-G was associated with a protective effect and rs11168827-C was associated with increased BC risk in families with a strong history of BC (OR = 0.6, p = 0.02 and OR = 1.4, p = 0.05, respectively). As rs10497520-T and rs2242442-G seemed to protect against BC risk, we then evaluated their combined effect. Familial BC risk decreased in a dose-dependent manner with the protective allele count, reflecting an additive effect (p-trend < 10−4). To our knowledge, this is the first association study of BC driver gene germline variations in a Chilean population.
Collapse
|