1
|
Maiti P, Xue Y, Rex TS, McDonald MP. Gene Therapy Targeting GD3 Synthase Protects Against MPTP-Induced Parkinsonism and Executive Dysfunction. Eur J Neurosci 2025; 61:e70061. [PMID: 40091288 DOI: 10.1111/ejn.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
More than half of Parkinson's patients exhibit fronto-striatally mediated executive dysfunction, including deficits in sustained attention, judgment, and impulse control. We have previously shown that modification of brain gangliosides by targeted deletion of GD3 synthase (GD3S) is neuroprotective in vivo and in vitro. The objective of the present study was to determine whether GD3S knockdown will protect neurons and prevent executive dysfunction following a subchronic regimen of 25-mg/kg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6N wild-type mice were assessed on a battery of sensorimotor tasks and a reaction-time task that included measures of sustained attention and impulse control. Sustained attention was measured by response accuracy and reaction time; impulsivity was measured by premature responding in the response holes or the food well during the precue period. After reaching stable performance, mice received intrastriatal injections of a recombinant adeno-associated viral (AAV) vector expressing a short-hairpin RNA (shRNA) construct targeting St8sia1, the gene that codes for GD3S, or a scrambled-sequence control (scrRNA). After 4 weeks, mice received MPTP or saline injections. MPTP-lesioned mice in the scrRNA control group exhibited loss of impulse control in the sessions following MPTP injections, compared to the other three groups. These deficits abated with extended training but re-emerged on challenge sessions with shorter cue durations or longer precue durations. GD3S knockdown partially protected nigrostriatal neurons from MPTP neurotoxicity and prevented the motor impairments (coordination, bradykinesia, fine motor skills) and loss of impulse control. Our data suggest that inhibition of GD3S warrants further investigation as a novel therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Panchanan Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tonia S Rex
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Shukla M, Chugh D, Ganesh S. Neuromuscular junction dysfunction in Lafora disease. Dis Model Mech 2024; 17:dmm050905. [PMID: 39301689 PMCID: PMC11512103 DOI: 10.1242/dmm.050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepti Chugh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
3
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Tanaka H, Tsuji D, Watanabe R, Ohnishi Y, Kitaguchi S, Nakae R, Teramoto H, Tsukimoto J, Horii Y, Itoh K. Aberrant autophagy in lysosomal storage disorders marked by a lysosomal SNARE protein shortage due to suppression of endocytosis. J Inherit Metab Dis 2022; 45:1191-1202. [PMID: 36102069 DOI: 10.1002/jimd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by genetic defects in lysosomal enzymes or related factors. LSDs are associated with excessive accumulation of natural substrates in lysosomes leading to central nervous system and peripheral tissue damage. Abnormal autophagy is also involved in pathogenesis, although the underlying mechanisms remain unclear. We demonstrated that impairment of lysosome-autophagosome fusion is due to suppressed endocytosis in LSDs. The fusion was reduced in several LSD cells and the brains of LSD model mice, suggesting that the completion of autophagy is suppressed by the accumulation of substrates. In this brain, the expression of the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins, VAMP8 and Syntaxin7, was decreased on the lysosomal surface but not intracellular. This aberrant autophagy preceded the development of pathological phenotypes in LSD-model mice. Furthermore, the enzyme deficiency leading to the substrate accumulation could suppress endocytosis, and the inhibited endocytosis decreased SNARE proteins localized on lysosomes. These findings suggest that the shortage of SNARE proteins on lysosomes is one of the reasons for the impairment of lysosome-autophagosome fusion in LSD cells. Defects in lysosomal enzyme activity suppress endocytosis and decrease the supply of intracellular SNARE proteins recruited to lysosomes. This shortage of lysosomal SNARE proteins impairs lysosome-autophagosome fusion in lysosomal storage disorders.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Ryosuke Watanabe
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yukiya Ohnishi
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Shindai Kitaguchi
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Ryuto Nakae
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Hiromi Teramoto
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Tsukimoto
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Yuto Horii
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Suehiro CL, Souza NTS, da Silva EB, Cruz MM, Laia RM, de Oliveira Santos S, Santana-Novelli FPR, de Castro TBP, Lopes FD, Pinheiro NM, de FátimaLopes Calvo Tibério I, Olivo CR, Alonso-Vale MI, Prado MAM, Prado VF, de Toledo-Arruda AC, Prado CM. Aerobic exercise training engages cholinergic signaling to improve emphysema induced by cigarette smoke exposure in mice. Life Sci 2022; 301:120599. [DOI: 10.1016/j.lfs.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
6
|
Amorim Neto DP, Bosque BP, Pereira de Godoy JV, Rodrigues PV, Meneses DD, Tostes K, Costa Tonoli CC, Faustino de Carvalho H, González-Billault C, de Castro Fonseca M. Akkermansia muciniphila induces mitochondrial calcium overload and α -synuclein aggregation in an enteroendocrine cell line. iScience 2022; 25:103908. [PMID: 35243260 PMCID: PMC8881719 DOI: 10.1016/j.isci.2022.103908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influence neurodevelopment, modulate behavior, and contribute to neurodegenerative disorders. Several studies have consistently reported a greater abundance of Akkermansia muciniphila in Parkinson disease (PD) fecal samples. Therefore, we investigated whether A.muciniphila-conditioned medium (CM) could initiate α-synuclein (αSyn) misfolding in enteroendocrine cells (EEC) — a component of the gut epithelium featuring neuron-like properties. We found that A. muciniphila CM composition is influenced by the ability of the strain to degrade mucin. Our in vitro experiments showed that the protein-enriched fraction of mucin-free CM induces RyR-mediated Ca2+ release and increased mitochondrial Ca2+ uptake leading to ROS generation and αSyn aggregation. Oral administration of A. muciniphila cultivated in the absence of mucin to mice led to αSyn aggregation in cholecystokinin (CCK)-positive EECs but no motor deficits were observed. Noteworthy, buffering mitochondrial Ca2+ reverted the damaging effects observed. These molecular insights offer evidence that bacterial proteins can induce αSyn aggregation in EECs. Gut bacterium Akkermansia muciniphila is increased in patients with Parkinson disease A. muciniphila-conditioned medium induces mitochondrial Ca2+ overload in EECs Mitochondrial Ca2+ overload leads to ROS generation and αSyn aggregation in vitro Buffering mitochondrial Ca2+ inhibits A. muciniphila-induced αSyn aggregation
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dario Donoso Meneses
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
| | | | - Christian González-Billault
- Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., 13083-100 Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
- Corresponding author
| |
Collapse
|
7
|
Ugonotti J, Kawahara R, Loke I, Zhu Y, Chatterjee S, Tjondro HC, Sumer-Bayraktar Z, Neelamegham S, Thaysen-Andersen M. N-acetyl-β-D-hexosaminidases mediate the generation of paucimannosidic proteins via a putative noncanonical truncation pathway in human neutrophils. Glycobiology 2021; 32:218-229. [PMID: 34939086 DOI: 10.1093/glycob/cwab108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-β-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and β subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and β mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Ian Loke
- Cordlife Group Limited, 1 Yishun Industrial Street, Singapore 768160, Singapore
| | - Yuqi Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Zeynep Sumer-Bayraktar
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Osmon KJ, Thompson P, Woodley E, Karumuthil-Melethil S, Heindel C, Keimel JG, Kaemmerer WF, Gray SJ, Walia JS. Treatment of GM2 Gangliosidosis in Adult Sandhoff Mice using an Intravenous Self-Complementary Hexosaminidase Vector. Curr Gene Ther 2021; 22:262-276. [PMID: 34530708 DOI: 10.2174/1566523221666210916153051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of β-hexosaminidase A enzyme (HexA), an α/β-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEXM, has previously been shown to form a stable homodimer, HexM, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.
Collapse
Affiliation(s)
- Karlaina Jl Osmon
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario. Canada
| | - Patrick Thompson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario. Canada
| | - Evan Woodley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario. Canada
| | | | - Cliff Heindel
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina. United States
| | - John G Keimel
- New Hope Research Foundation, North Oaks, Minnesota. United States
| | | | - Steven J Gray
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina. United States
| | - Jagdeep S Walia
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario. Canada
| |
Collapse
|
9
|
Cavender C, Mangini L, Van Vleet JL, Corado C, McCullagh E, Gray-Edwards HL, Martin DR, Crawford BE, Lawrence R. Natural history study of glycan accumulation in large animal models of GM2 gangliosidoses. PLoS One 2020; 15:e0243006. [PMID: 33259552 PMCID: PMC7707493 DOI: 10.1371/journal.pone.0243006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
β-hexosaminidase is an enzyme responsible for the degradation of gangliosides, glycans, and other glycoconjugates containing β-linked hexosamines that enter the lysosome. GM2 gangliosidoses, such as Tay-Sachs and Sandhoff, are lysosomal storage disorders characterized by β-hexosaminidase deficiency and subsequent lysosomal accumulation of its substrate metabolites. These two diseases result in neurodegeneration and early mortality in children. A significant difference between these two disorders is the accumulation in Sandhoff disease of soluble oligosaccharide metabolites that derive from N- and O-linked glycans. In this paper we describe our results from a longitudinal biochemical study of a feline model of Sandhoff disease and an ovine model of Tay-Sachs disease to investigate the accumulation of GM2/GA2 gangliosides, a secondary biomarker for phospholipidosis, bis-(monoacylglycero)-phosphate, and soluble glycan metabolites in both tissue and fluid samples from both animal models. While both Sandhoff cats and Tay-Sachs sheep accumulated significant amounts of GM2 and GA2 gangliosides compared to age-matched unaffected controls, the Sandhoff cats having the more severe disease, accumulated larger amounts of gangliosides compared to Tay-Sachs sheep in their occipital lobes. For monitoring glycan metabolites, we developed a quantitative LC/MS assay for one of these free glycans in order to perform longitudinal analysis. The Sandhoff cats showed significant disease-related increases in this glycan in brain and in other matrices including urine which may provide a useful clinical tool for measuring disease severity and therapeutic efficacy. Finally, we observed age-dependent increasing accumulation for a number of analytes, especially in Sandhoff cats where glycosphingolipid, phospholipid, and glycan levels showed incremental increases at later time points without signs of peaking. This large animal natural history study for Sandhoff and Tay-Sachs is the first of its kind, providing insight into disease progression at the biochemical level. This report may help in the development and testing of new therapies to treat these disorders.
Collapse
Affiliation(s)
- Catlyn Cavender
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Linley Mangini
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Jeremy L. Van Vleet
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Carley Corado
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Emma McCullagh
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Douglas R. Martin
- Scott-Ritchey Research Center and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States of America
| | - Brett E. Crawford
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Roger Lawrence
- Research, BioMarin Pharmaceutical Inc., Novato, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Minkley M, MacLeod P, Anderson CK, Nashmi R, Walter PB. Loss of tyrosine hydroxylase, motor deficits and elevated iron in a mouse model of phospholipase A2G6-associated neurodegeneration (PLAN). Brain Res 2020; 1748:147066. [PMID: 32818532 DOI: 10.1016/j.brainres.2020.147066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
Phospholipase A2G6-associated neurodegeneration (PLAN) is a rare early-onset monogenic neurodegenerative movement disorder which targets the basal ganglia and other regions in the central and peripheral nervous system; presenting as a series of heterogenous subtypes in patients. We describe here a B6.C3-Pla2g6m1J/CxRwb mouse model of PLAN which presents with early-onset neurodegeneration at 90 days which is analogous of the disease progression that is observed in PLAN patients. Homozygous mice had a progressively worsening motor deficit, which presented as tremors starting at 65 days and progressed to severe motor dysfunction and increased falls on the wire hang test at 90 days. This motor deficit positively correlated with a reduction in tyrosine hydroxylase (TH) protein expression in dopaminergic neurons of the substantia nigra (SN) without any neuronal loss. Fluorescence imaging of Thy1-YFP revealed spheroid formation in the SN. The spheroids in homozygous mice strongly mirrors those observed in patients and were demonstrated to correlate strongly with the motor deficits as measured by the wire hang test. The appearance of spheroids preceded TH loss and increased spheroid numbers negatively correlated with TH expression. Perls/DAB staining revealed the presence of iron accumulation within the SN of mice. This mouse model captures many of the major hallmarks of PLAN including severe-early onset neurodegeneration, a motor deficit that correlates directly to TH levels, spheroid formation and iron accumulation within the basal ganglia. Thus, this mouse line is a useful tool for further research efforts to improve understanding of how these disease mechanisms give rise to the disease presentations seen in PLAN patients as well as to test novel therapies.
Collapse
Affiliation(s)
- Michael Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada
| | - Patrick MacLeod
- Division of Medical Genetics, Vancouver Island Health Authority, Victoria, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada.
| | - Patrick B Walter
- Department of Biology, Centre for Biomedical Research, University of Victoria, Canada; Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, USA.
| |
Collapse
|
11
|
Exploratory analyses of postanesthetic effects of desflurane using behavioral test battery of mice. Behav Pharmacol 2020; 31:597-609. [PMID: 32459695 DOI: 10.1097/fbp.0000000000000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Halogenated ethers, such as desflurane, sevoflurane, and isoflurane, are known to exert an array of effects besides sedation. However, the postanesthetic effects of desflurane remain undiscovered as no study has explored these effects systematically. Phenotypic screening using behavioral test batteries is a powerful method to identify such effects. In the present study, we behaviorally phenotyped desflurane-treated mice to investigate postanesthetic effects. We applied comprehensive behavioral test batteries measuring sensorimotor functions, anxiety, depression, sociability, attention, and learning abilities, starting 7 days after anesthesia performed with 8.0% desflurane for 6 h. Although our previous study revealed postanesthetic effects of isoflurane in adult mice, in the current study, desflurane-treated mice exhibited no such effects in any behavioral test. To further examine whether desflurane affect behavior in more early time point, we built up a new additional test battery, which carried out 1 day or 3 days after exposure to desflurane. Mice treated with desflurane 1 day before testing showed more slips than other two groups in the first trial, suggesting mild acute side effects of desflurane on motor coordination. These results suggest the safety of desflurane in clinical settings and imply that postanesthetic effects are unique to each halogenated ether.
Collapse
|
12
|
Breiden B, Sandhoff K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease. Int J Mol Sci 2020; 21:ijms21072566. [PMID: 32272755 PMCID: PMC7178057 DOI: 10.3390/ijms21072566] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease type C. Chondroitin sulfate effectively inhibits GM2 catabolism in mucopolysaccharidoses like Hurler, Hunter, Sanfilippo, and Sly syndrome and causes a secondary neuronal ganglioside GM2 accumulation, triggering neurodegeneration. Secondary ganglioside and lipid accumulation is furthermore known in many more lysosomal storage diseases, so far without known molecular basis.
Collapse
|
13
|
Cromolyn sodium delays disease onset and is neuroprotective in the SOD1 G93A Mouse Model of amyotrophic lateral sclerosis. Sci Rep 2019; 9:17728. [PMID: 31776380 PMCID: PMC6881366 DOI: 10.1038/s41598-019-53982-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that neuroinflammatory processes are implicated in the initiation and progression of amyotrophic lateral sclerosis (ALS). Previous reports have demonstrated an increase in microgliosis and astrogliosis in the lumbar spinal cord of SOD1G93A transgenic mice before the onset of symptoms, a neuroinflammatory response which correlated with disease progression. Importantly, early stage homeostatic microglia enhanced motor neuron survival, while pro-inflammatory microglia were toxic to motor neurons in the SOD1G93A mice. Recent studies from our group have demonstrated that cromolyn sodium, an FDA approved compound, exerts neuroprotective effects in mouse models of Alzheimer's disease by altering microglial cell activation. Here, we tested the neuroprotective and anti-inflammatory effects of cromolyn sodium in the SOD1G93A mouse model of ALS. Our results indicate that cromolyn sodium treatment significantly delayed the onset of neurological symptoms, and improved deficits in PaGE performance in both male and female mice, however, there was only an effect on survival in female mice. Furthermore, there was a significant increase in motor neuron survival in the lumbar spinal cord as well as a significant decrease in the denervation of the neuromuscular junction of the tibialis anterior muscle in cromolyn treated transgenic SOD1G93A mice. Lastly, cromolyn treatment decreased the expression of pro-inflammatory cytokines/chemokines in the lumbar spinal cord and plasma and decreased mast cell degranulation in the tibialis anterior muscle of transgenic SOD1G93A mice. Together, these findings suggest that cromolyn sodium provides neuroprotection in the SOD1G93A mice by decreasing the inflammatory response.
Collapse
|
14
|
Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 2019; 134:104667. [PMID: 31682993 DOI: 10.1016/j.nbd.2019.104667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or β-subunits of the lysosomal β-Hexosaminidase enzyme. In physiological conditions, α- and β-subunits combine to generate β-Hexosaminidase A (HexA, αβ) and β-Hexosaminidase B (HexB, ββ). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and β-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and β-subunits, leading to supranormal levels of β-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of β-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or β-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.
Collapse
|
15
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
16
|
Abstract
Glycosphingolipids are cell-type-specific components of the outer leaflet of mammalian plasma membranes. Gangliosides, sialic acid–containing glycosphingolipids, are especially enriched on neuronal surfaces. As amphi-philic molecules, they comprise a hydrophilic oligosaccharide chain attached to a hydrophobic membrane anchor, ceramide. Whereas glycosphingolipid formation is catalyzed by membrane-bound enzymes along the secretory pathway, degradation takes place at the surface of intralysosomal vesicles of late endosomes and lysosomes catalyzed in a stepwise fashion by soluble hydrolases and assisted by small lipid-binding glycoproteins. Inherited defects of lysosomal hydrolases or lipid-binding proteins cause the accumulation of undegradable material in lysosomal storage diseases (GM1 and GM2 gangliosidosis; Fabry, Gaucher, and Krabbe diseases; and metachromatic leukodystrophy). The catabolic processes are strongly modified by the lipid composition of the substrate-carrying membranes, and the pathological accumulation of primary storage compounds can trigger an accumulation of secondary storage compounds (e.g., small glycosphingolipids and cholesterol in Niemann-Pick disease).
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| | - Konrad Sandhoff
- LIMES Institute, Membrane Biology and Lipid Biochemistry Unit, Universität Bonn, D-53121 Bonn, Germany;,
| |
Collapse
|
17
|
Santos FM, Dias RS, de Oliveira MD, Costa ICTA, Fernandes LDS, Pessoa CR, da Matta SLP, Costa VV, Souza DG, da Silva CC, de Paula SO. Animal model of arthritis and myositis induced by the Mayaro virus. PLoS Negl Trop Dis 2019; 13:e0007375. [PMID: 31050676 PMCID: PMC6519846 DOI: 10.1371/journal.pntd.0007375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/15/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Mayaro virus (MAYV) is an endemic arbovirus in South American countries, where it is responsible for sporadic outbreaks of Mayaro fever. Clinical manifestations include fever, headache, ocular pain, rash, myalgia, and debilitating and persistent polyarthralgia. Understanding the mechanisms associated with MAYV-induced arthritis is of great importance due to the potential for its emergence, urbanization and dispersion to other regions. METHODS 15-day old Balb/c mice were infected by two distinct pathways, below the forelimb and in the rear footpad. Animals were observed for a period of 21 days. During this time, they were monitored every 24 hours for disease signs, such as weight loss and muscle weakness. Histological damage in the muscles and joints was evaluated 3, 7, 10, 15 and 20 days post-infection. The cytokine profile in serum and muscles during MAYV infection was evaluated by flow cytometry at different post-infection times. For pain analysis, the animals were submitted to the von Frey test and titre in different organs was evaluated throughout the study to obtain viral kinetics. FINDINGS Infection by two distinct pathways, below the forelimb and in the rear footpad, resulted in a homogeneous viral spread and the development of acute disease in animals. Clinical signs were observed such as ruffled fur, hunched posture, eye irritation and slight gait alteration. In the physical test, both groups presented loss of resistance, which was associated with histopathological damage, including myositis, arthritis, tenosynovitis and periostitis. The immune response was characterized by a strong inflammatory response mediated by the cytokines TNF-α, IL-6 and INF-γ and chemokine MCP-1, followed by the action of IL-10 and IL-4 cytokines. INTERPRETATION The results showed that Balb/c mice represent a promising model to study mechanisms involved in MAYV pathogenesis and for future antiviral testing.
Collapse
Affiliation(s)
- Franciele Martins Santos
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Michelle Dias de Oliveira
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Luciana de Souza Fernandes
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carine Ribeiro Pessoa
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio Luis Pinto da Matta
- Structural Biology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Danielle G. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Sérgio Oliveira de Paula
- Molecular Immunovirology Laboratory, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
18
|
Ou L, Przybilla MJ, Whitley CB. Metabolomics profiling reveals profound metabolic impairments in mice and patients with Sandhoff disease. Mol Genet Metab 2019; 126:151-156. [PMID: 30236619 PMCID: PMC6365207 DOI: 10.1016/j.ymgme.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Sandhoff disease (SD) results from mutations in the HEXB gene, subsequent deficiency of N-acetyl-β-hexosaminidase (Hex) and accumulation of GM2 gangliosides. SD leads to progressive neurodegeneration and early death. However, there is a lack of established SD biomarkers, while the pathogenesis etiology remains to be elucidated. To identify potential biomarkers and unveil the pathogenic mechanisms, metabolomics analysis with reverse phase liquid chromatography (RPLC) was conducted. A total of 177, 112 and 119 metabolites were found to be significantly dysregulated in mouse liver, mouse brain and human hippocampus samples, respectively (p < .05, ID score > 0.5). Principal component analysis (PCA) analysis of the metabolites showed clear separation of metabolomics profiles between normal and diseased individuals. Among these metabolites, dipeptides, amino acids and derivatives were elevated, indicating a robust protein catabolism. Through pathway enrichment analysis, we also found alterations in metabolites associated with neurotransmission, lipid metabolism, oxidative stress and inflammation. In addition, N-acetylgalactosamine 4-sulphate, key component of glycosaminoglycans (GAG) was significantly elevated, which was also confirmed by biochemical assays. Collectively, these results indicated major shifts of energy utilization and profound metabolic impairments, contributing to the pathogenesis mechanisms of SD. Global metabolomics profiling may provide an innovative tool for better understanding the disease mechanisms, and identifying potential diagnostic biomarkers for SD.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Michael J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
19
|
Santana FPR, Pinheiro NM, Bittencourt-Mernak MI, Perini A, Yoshizaki K, Macchione M, Saldiva PHN, Martins MA, Tibério IFLC, Prado MAM, Prado VF, Prado CM. Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:494-504. [PMID: 30368143 DOI: 10.1016/j.ecoenv.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-α, and NF-κB in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-α were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Nathalia M Pinheiro
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Mariângela Macchione
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
20
|
Valadão PAC, de Aragão BC, Andrade JN, Magalhães-Gomes MPS, Foureaux G, Joviano-Santos JV, Nogueira JC, Machado TCG, de Jesus ICG, Nogueira JM, de Paula RS, Peixoto L, Ribeiro FM, Tapia JC, Jorge ÉC, Guatimosim S, Guatimosim C. Abnormalities in the Motor Unit of a Fast-Twitch Lower Limb Skeletal Muscle in Huntington's Disease. ASN Neuro 2019; 11:1759091419886212. [PMID: 31818120 PMCID: PMC6904785 DOI: 10.1177/1759091419886212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is a disorder characterized by chronic involuntary movements, dementia, and psychiatric symptoms. It is caused by a mutation in the gene that encodes for huntingtin protein (HTT), leading to the formation of mutant proteins expressed in various tissues. Although brain pathology has become the hallmark for HD, recent studies suggest that damage of peripheral structures also contributes to HD progression. We previously identified severe alterations in the motor units that innervate cervical muscles in 12-month-old BACHD (Bacterial Artificial Chromosome Huntington’s Disease) mice, a well-established mouse model for HD. Here, we studied lumbar motoneurons and their projections onto hind limb fast-twitch skeletal muscles (tibialis anterior), which control balance and gait in HD patients. We found that lumbar motoneurons were altered in the HD mouse model; the number and size of lumbar motoneurons were reduced in BACHD. Structural alterations were also present in the sciatic nerve and neuromuscular junctions. Acetylcholine receptors were organized in several small patches (acetylcholine receptor fragmentation), many of which were partially innervated. In BACHD mice, we observed atrophy of tibialis anterior muscles, decreased expression of glycolytic fast Type IIB fibers, and at the ultrastructural level, alterations of sarcomeres and mitochondria. Corroborating all these findings, BACHD animals performed worse on motor behavior tests. Our results provide additional evidences that nerve–muscle communication is impaired in HD and that motoneurons from distinct spinal cord locations are similarly affected in the disease.
Collapse
Affiliation(s)
| | | | - Jéssica Neves Andrade
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | - Giselle Foureaux
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | - José Carlos Nogueira
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Rayan Silva de Paula
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Peixoto
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Departamento de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - ÉriKa Cristina Jorge
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Magalhães-Gomes MPS, Motta-Santos D, Schetino LPL, Andrade JN, Bastos CP, Guimarães DAS, Vaughan SK, Martinelli PM, Guatimosim S, Pereira GS, Coimbra CC, Prado VF, Prado MAM, Valdez G, Guatimosim C. Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: A mouse model for congenital myasthenia. Neurochem Int 2018; 120:1-12. [PMID: 30003945 PMCID: PMC6421860 DOI: 10.1016/j.neuint.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/27/2018] [Accepted: 07/07/2018] [Indexed: 12/15/2022]
Abstract
Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we examined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT, mouse line herein called VAChT-KDHOM). We examined this mouse line for several reasons. First, VAChT plays a central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans. Importantly, VAChT-KDHOM present with reduced ACh and muscle weakness, resembling CMS. We evaluated the morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL, they hypertrophy in the soleus muscle of VAChT-KDHOM mice. Along with these cellular changes, skeletal muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism (PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KDHOM mice. Importantly, we demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KDHOM mice. These findings reveal that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are reversible.
Collapse
Affiliation(s)
| | - Daisy Motta-Santos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Esportes, EEFFTO, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luana P L Schetino
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jéssica N Andrade
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiane P Bastos
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Patrícia M Martinelli
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grace S Pereira
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Candido C Coimbra
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vânia F Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Marco A M Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Cristina Guatimosim
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
22
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
23
|
Al-Onaizi MA, Parfitt GM, Kolisnyk B, Law CSH, Guzman MS, Barros DM, Leung LS, Prado MAM, Prado VF. Regulation of Cognitive Processing by Hippocampal Cholinergic Tone. Cereb Cortex 2018; 27:1615-1628. [PMID: 26803167 DOI: 10.1093/cercor/bhv349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholinergic dysfunction has been associated with cognitive abnormalities in a variety of neurodegenerative and neuropsychiatric diseases. Here we tested how information processing is regulated by cholinergic tone in genetically modified mice targeting the vesicular acetylcholine transporter (VAChT), a protein required for acetylcholine release. We measured long-term potentiation of Schaffer collateral-CA1 synapses in vivo and assessed information processing by using a mouse touchscreen version of paired associates learning task (PAL). Acquisition of information in the mouse PAL task correlated to levels of hippocampal VAChT, suggesting a critical role for cholinergic tone. Accordingly, synaptic plasticity in the hippocampus in vivo was disturbed, but not completely abolished, by decreased hippocampal cholinergic signaling. Disrupted forebrain cholinergic signaling also affected working memory, a result reproduced by selectively decreasing VAChT in the hippocampus. In contrast, spatial memory was relatively preserved, whereas reversal spatial memory was sensitive to decreased hippocampal cholinergic signaling. This work provides a refined roadmap of how synaptically secreted acetylcholine influences distinct behaviors and suggests that distinct forms of cognitive processing may be regulated in different ways by cholinergic activity.
Collapse
Affiliation(s)
| | - Gustavo M Parfitt
- Robarts Research Institute.,Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências (FURG), Brazil
| | | | - Clayton S H Law
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, CanadaN6A5K8
| | - Monica S Guzman
- Robarts Research Institute.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Daniela Martí Barros
- Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências (FURG), Brazil
| | - L Stan Leung
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, CanadaN6A5K8
| | - Marco A M Prado
- Robarts Research Institute.,Department of Anatomy and Cell Biology.,Graduate Program in Neuroscience and.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Vania F Prado
- Robarts Research Institute.,Department of Anatomy and Cell Biology.,Graduate Program in Neuroscience and.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| |
Collapse
|
24
|
Asorey LG, Carbone S, Gonzalez BJ, Cutrera RA. Behavioral effects of the combined use of alcohol and energy drinks on alcohol hangover in an experimental mice model. Neurosci Lett 2018; 670:1-7. [PMID: 29355695 DOI: 10.1016/j.neulet.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
In last few years it has been a significant increase in the consumption of alcohol combined with energy drink. The aim of this work was to study the effect of this mixture in motor and affective behaviors during an alcohol hangover episode. Male Swiss mice received one of the following treatments: saline + sucrose; saline + energy drink; ethanol + sucrose; ethanol + energy drink. Ethanol dose was 3.8 g/kg BW (i.p.) and energy drink dose was 18 ml/kg BW (gavage) at ZT1 (8 am) (ZT: Zeitgeber time; ZT0: 7 am; lights on). The behavioral tests used were tight rope test to determine motor coordination; hanging wire test to study muscular strength; elevated plus maze and open field tests to evaluate anxiety like-behavior and locomotor activity. Tests were carried out at basal point that matched with lights onset and every 6 h up to 18 h after treatments. Hangover onset was established at ZT7 when blood alcohol concentration (BAC) was almost zero. Our results showed that the mixture of alcohol and energy drink altered significantly motor skills. Specifically, a significant decrease was observed in the performance of the animals in the tightrope and hanging wire tests in groups treated with the mixture of alcohol and energy drink. A significant impairment in the anxiety-like behavior was observed mainly at the beginning of alcohol hangover. These findings suggest that energy drink added to alcohol extends motor disabilities observed during an alcohol hangover episode in comparison with animals that received alcohol alone.
Collapse
Affiliation(s)
- Lucas G Asorey
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO), Buenos Aires, Argentina
| | - Silvia Carbone
- Universidad de Buenos Aires, CONICET, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Bárbara J Gonzalez
- Universidad de Buenos Aires, CONICET, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Rodolfo A Cutrera
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO), Buenos Aires, Argentina.
| |
Collapse
|
25
|
Osmon KJL, Woodley E, Thompson P, Ong K, Karumuthil-Melethil S, Keimel JG, Mark BL, Mahuran D, Gray SJ, Walia JS. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice. Hum Gene Ther 2017; 27:497-508. [PMID: 27199088 DOI: 10.1089/hum.2016.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD mouse phenotype for long-term. Our data could have implications not only for treatment of SD but also for Tay-Sachs disease (α-subunit deficiency) and similar brain disorders.
Collapse
Affiliation(s)
- Karlaina J L Osmon
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Evan Woodley
- 2 Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Patrick Thompson
- 3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Katalina Ong
- 3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | | | - John G Keimel
- 5 New Hope Research Foundation , North Oaks, Minnesota
| | - Brian L Mark
- 6 Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Don Mahuran
- 7 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada .,8 Department of Laboratory Medicine and Pathology, University of Toronto , Toronto, Ontario, Canada
| | - Steven J Gray
- 4 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,9 Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina
| | - Jagdeep S Walia
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada .,2 Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada .,3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| |
Collapse
|
26
|
Ogawa Y, Kaizu K, Yanagi Y, Takada S, Sakuraba H, Oishi K. Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage. PLoS One 2017; 12:e0178978. [PMID: 28575132 PMCID: PMC5456357 DOI: 10.1371/journal.pone.0178978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
In Sandhoff disease (SD), the activity of the lysosomal hydrolytic enzyme, β-hexosaminidase (Hex), is lost due to a Hexb gene defect, which results in the abnormal accumulation of the substrate, GM2 ganglioside (GM2), in neuronal cells, causing neuronal loss, microglial activation, and astrogliosis. We established induced pluripotent stem cells from the cells of SD mice (SD-iPSCs). In the present study, we investigated the occurrence of abnormal differentiation and development of a neural lineage in the asymptomatic phase of SD in vitro using SD mouse fetus-derived neural stem cells (NSCs) and SD-iPSCs. It was assumed that the number of SD mouse fetal brain-derived NSCs was reduced and differentiation was promoted, resulting in the inhibition of differentiation into neurons and enhancement of differentiation into astrocytes. The number of SD-iPSC-derived NSCs was also reduced, suggesting that the differentiation of NSCs was promoted, resulting in the inhibition of differentiation into neurons and enhancement of that into astrocytes. This abnormal differentiation of SD-iPSCs toward a neural lineage was reduced by the glucosylceramide synthase inhibitor, miglustat. Furthermore, abnormal differentiation toward a neural lineage was reduced in SD-iPSCs with Hexb gene transfection. Therefore, differentiation ability along the time axis appears to be altered in SD mice in which the differentiation ability of NSCs is promoted and differentiation into neurons is completed earlier, while the timing of differentiation into astrocytes is accelerated. These results clarified that the abnormal differentiation of SD-iPSCs toward a neural lineage in vitro was shown to reflect the pathology of SD.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Katsutoshi Kaizu
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yusuke Yanagi
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Subaru Takada
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kazuhiko Oishi
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Chevalier AC, Rosenberger TA. Increasing acetyl-CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis. J Neurochem 2017; 141:721-737. [PMID: 28369944 DOI: 10.1111/jnc.14032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/28/2022]
Abstract
Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Collapse
Affiliation(s)
- Amber C Chevalier
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
28
|
Akkhawattanangkul Y, Maiti P, Xue Y, Aryal D, Wetsel WC, Hamilton D, Fowler SC, McDonald MP. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 16:522-536. [PMID: 28239983 DOI: 10.1111/gbb.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Y Akkhawattanangkul
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D Aryal
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - W C Wetsel
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - D Hamilton
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S C Fowler
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - M P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Sci Rep 2017; 7:40518. [PMID: 28084424 PMCID: PMC5234013 DOI: 10.1038/srep40518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
Sandhoff disease (SD) is caused by the loss of β-hexosaminidase (Hex) enzymatic activity in lysosomes resulting from Hexb mutations. In SD patients, the Hex substrate GM2 ganglioside accumulates abnormally in neuronal cells, resulting in neuronal loss, microglial activation, and astrogliosis. Hexb−/− mice, which manifest a phenotype similar to SD, serve as animal models for examining the pathophysiology of SD. Hexb−/− mice reach ~8 weeks without obvious neurological defects; however, trembling begins at 12 weeks and is accompanied by startle reactions and increased limb tone. These symptoms gradually become severe by 16–18 weeks. Immune reactions caused by autoantibodies have been recently associated with the pathology of SD. The inhibition of immune activation may represent a novel therapeutic target for SD. Herein, SD mice (Hexb−/−) were crossed to mice lacking an activating immune receptor (FcRγ−/−) to elucidate the potential relationship between immune responses activated through SD autoantibodies and astrogliosis. Microglial activation and astrogliosis were observed in cortices of Hexb−/− mice during the asymptomatic phase, and were inhibited in Hexb−/−FcRγ−/− mice. Moreover, early astrogliosis and impaired motor coordination in Hexb−/− mice could be ameliorated by immunosuppressants, such as FTY720. Our findings demonstrate the importance of early treatment and the therapeutic effectiveness of immunosuppression in SD.
Collapse
|
30
|
Glajch KE, Ferraiuolo L, Mueller KA, Stopford MJ, Prabhkar V, Gravanis A, Shaw PJ, Sadri-Vakili G. MicroNeurotrophins Improve Survival in Motor Neuron-Astrocyte Co-Cultures but Do Not Improve Disease Phenotypes in a Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0164103. [PMID: 27716798 PMCID: PMC5055348 DOI: 10.1371/journal.pone.0164103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease caused by loss of motor neurons. ALS patients experience rapid deterioration in muscle function with an average lifespan of 3–5 years after diagnosis. Currently, the most effective therapeutic only extends lifespan by a few months, thus highlighting the need for new and improved therapies. Neurotrophic factors (NTFs) are important for neuronal development, maintenance, and survival. NTF treatment has previously shown efficacy in pre-clinical ALS models. However, clinical trials using NTFs produced no major improvements in ALS patients, due in part to the limited blood brain barrier (BBB) penetration. In this study we assessed the potential neuroprotective effects of a novel class of compounds known as MicroNeurotrophins (MNTs). MNTs are derivatives of Dehydroepiandrosterone (DHEA), an endogenous neurosteroid that can cross the BBB and bind to tyrosine kinase receptors mimicking the pro-survival effects of NTFs. Here we sought to determine whether MNTs were neuroprotective in two different models of ALS. Our results demonstrate that BNN27 (10 μM) attenuated loss of motor neurons co-cultured with astrocytes derived from human ALS patients with SOD1 mutations via the reduction of oxidative stress. Additionally, in the G93A SOD1 mouse, BNN27 (10 mg/kg) treatment attenuated motor behavioral impairment in the paw grip endurance and rotarod tasks at postnatal day 95 in female but not male mice. In contrast, BNN27 (10 mg/kg and 50 mg/kg) treatment did not alter any other behavioral outcome or neuropathological marker in male or female mice. Lastly, BNN27 was not detected in post-mortem brain or spinal cord tissue of treated mice due to the rapid metabolism of BNN27 by mouse hepatocytes relative to human hepatocytes. Together, these findings demonstrate that BNN27 treatment failed to yield significant neuroprotective effects in the G93A SOD1 model likely due to its rapid rate of metabolism in mice.
Collapse
Affiliation(s)
- Kelly E. Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Laura Ferraiuolo
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Kaly A. Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Matthew J. Stopford
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Varsha Prabhkar
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Institute of Molecular Biology & Biotechnology-FORTH, Heraklion 71003, Greece
| | - Pamela J. Shaw
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, United Kingdom
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129–4404, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, Kawamoto Y, Jitsuki-Takahashi A, Yonezaki K, Takase K, Miyazaki T, Nakamura F, Tanaka F, Goshima Y. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice. Genes Cells 2016; 21:1059-1079. [DOI: 10.1111/gtc.12403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/29/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
- Department of Neurology and Stroke Medicine; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
- JSPS Postdoctoral Fellowship for Research Abroad; Tokyo 102-0083 Japan
| | - Ayuko Kimura
- Advanced Medical Research Center; Yokohama City University; Yokohama 236-0004 Japan
| | - Yayoi Kimura
- Advanced Medical Research Center; Yokohama City University; Yokohama 236-0004 Japan
| | - Hisashi Hirano
- Advanced Medical Research Center; Yokohama City University; Yokohama 236-0004 Japan
| | - Hiroko Makihara
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Yuko Kawamoto
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
- Department of Neurology and Stroke Medicine; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Aoi Jitsuki-Takahashi
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Kumiko Yonezaki
- Department of Anesthesiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Kenkichi Takase
- Department of Anesthesiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
- Laboratory of Psychology; Jichi Medical University; Shimotsuke 329-0498 Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
- Department of Physiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology; Yokohama City University Graduate School of Medicine; Yokohama 236-0004 Japan
| |
Collapse
|
32
|
Moraes LS, Rohor BZ, Areal LB, Pereira EV, Santos AMC, Facundo VA, Santos ARS, Pires RGW, Martins-Silva C. Medicinal plant Combretum leprosum mart ameliorates motor, biochemical and molecular alterations in a Parkinson's disease model induced by MPTP. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:68-76. [PMID: 26994817 DOI: 10.1016/j.jep.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combretum leprosum is a popular medicinal plant distributed in north and northeastern regions of Brazil. Many different parts of this plant are used in traditional medicine to treat several inflammatory diseases. Parkinson's disease (PD) is a disorder associated with inflammatory toxic factors and the treatments available provide merely a delay of the neurodegeneration. AIM OF THE STUDY We investigated the potential neuroprotective properties of the C. leprosum ethanolic extract (C.l.EE) in a murine model of PD using the toxin 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). MATERIALS AND METHODS The mice were split into four groups: V/S (vehicle/saline), E/S (extract/saline), V/M (vehicle/MPTP) and E/M (extract/ MPTP). Mice received MPTP (30mg/kg, i.p.) or vehicle (10ml/kg, i.p.) once a day for 5 consecutive days and vehicle (10ml/kg) or C.l.EE (100mg/kg) orally by intra-gastric gavage (i.g.) during a 14-d period, starting 3 days before the first MPTP injection. All groups were assessed for behavioural impairments (amphetamine-induced locomotor activity and muscle strength), dopamine content in striatum using high performance liquid chromatography (HPLC), tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions using qPCR. RESULTS Animals were injected with d-amphetamine (2mg/kg) and the activity was recorded. Amphetamine-induced hyperlocomotion was observed in all groups; however animals treated with MPTP showed exacerbated hyperlocomotion (approximately 3 fold increase compared to control groups). By contrast, mice treated with MPTP that received C.l.EE exhibited attenuation of the hyperlocomotion and did not differ from control groups. Muscle strength test pointed that C.l.EE strongly avoided muscular deficits caused by MPTP (approximately 2 fold increase compared to V/M group). Dopamine and its metabolites were measured in the striatum. The V/M group presented a dopamine reduction of 80%. On the other hand, the E/M group exhibited an increase in dopamine and its metabolites levels (approximately 3 fold increase compared to V/M group). Tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions were significantly reduced in the V/M group (60%). Conversely, C.l.EE treatment was able to increase the mRNA levels of those genes in the E/M group (approximately 2 fold for TH and DAT). CONCLUSIONS These data show, for the first time, that C. leprosum ethanolic extract prevented motor and molecular changes induced by MPTP, and partially reverted dopamine deficit. Thus, our results demonstrate that C.l.EE has potential for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Livia S Moraes
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Bruna Z Rohor
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Lorena B Areal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Evaldo V Pereira
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Biochemistry and Molecular Biophysics of Proteins, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Alexandre M C Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Biochemistry and Molecular Biophysics of Proteins, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Valdir A Facundo
- Department of Medicine, Federal University of Rondônia-UNIR, Porto Velho, RO, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianopolis 88040-900, SC, Brazil
| | - Rita G W Pires
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil
| | - Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil; Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos 1468 - Maruípe, 29.043-910 Vitoria, ES, Brazil.
| |
Collapse
|
33
|
Kitakaze K, Mizutani Y, Sugiyama E, Tasaki C, Tsuji D, Maita N, Hirokawa T, Asanuma D, Kamiya M, Sato K, Setou M, Urano Y, Togawa T, Otaka A, Sakuraba H, Itoh K. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model. J Clin Invest 2016; 126:1691-703. [PMID: 27018595 DOI: 10.1172/jci85300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside-degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses.
Collapse
|
34
|
Gray-Edwards HL, Brunson BL, Holland M, Hespel AM, Bradbury AM, McCurdy VJ, Beadlescomb PM, Randle AN, Salibi N, Denney TS, Beyers RJ, Johnson AK, Voyles ML, Montgomery RD, Wilson DU, Hudson JA, Cox NR, Baker HJ, Sena-Esteves M, Martin DR. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol Genet Metab 2015; 116:80-7. [PMID: 25971245 DOI: 10.1016/j.ymgme.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme β-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Brandon L Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Merrilee Holland
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Adrien-Maxence Hespel
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Patricia M Beadlescomb
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nouha Salibi
- MR R&D Siemens Healthcare, Malvern, PA, USA; Auburn University MRI Research Center, Auburn, AL, USA
| | - Thomas S Denney
- Auburn University MRI Research Center, Auburn, AL, USA; Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | | | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Meredith L Voyles
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ronald D Montgomery
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
35
|
Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, Nishimura SI. A comprehensive glycome profiling of Huntington's disease transgenic mice. Biochim Biophys Acta Gen Subj 2015; 1850:1704-18. [DOI: 10.1016/j.bbagen.2015.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
|
36
|
Taguchi L, Pinheiro NM, Olivo CR, Choqueta-Toledo A, Grecco SS, Lopes FDTQS, Caperuto LC, Martins MA, Tiberio IFLC, Câmara NO, Lago JHG, Prado CM. A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases. Respir Res 2015; 16:79. [PMID: 26122092 PMCID: PMC4489216 DOI: 10.1186/s12931-015-0233-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/08/2015] [Indexed: 01/02/2023] Open
Abstract
Background Pulmonary emphysema is characterized by irreversible airflow obstruction, inflammation, oxidative stress imbalance and lung remodeling, resulting in reduced lung function and a lower quality of life. Flavonoids are plant compounds with potential anti-inflammatory and antioxidant effects that have been used in folk medicine. Our aim was to determine whether treatment with sakuranetin, a flavonoid extracted from the aerial parts of Baccharis retusa, interferes with the development of lung emphysema. Methods Intranasal saline or elastase was administered to mice; the animals were then treated with sakuranetin or vehicle 2 h later and again on days 7, 14 and 28. We evaluated lung function and the inflammatory profile in bronchoalveolar lavage fluid (BALF). The lungs were removed to evaluate alveolar enlargement, extracellular matrix fibers and the expression of MMP-9, MMP-12, TIMP-1, 8-iso-PGF-2α and p65-NF-κB in the fixed tissues as well as to evaluate cytokine levels and p65-NF-κB protein expression. Results In the elastase-treated animals, sakuranetin treatment reduced the alveolar enlargement, collagen and elastic fiber deposition and the number of MMP-9- and MMP-12-positive cells but increased TIMP-1 expression. In addition, sakuranetin treatment decreased the inflammation and the levels of TNF-α, IL-1β and M-CSF in the BALF as well as the levels of NF-κB and 8-iso-PGF-2α in the lungs of the elastase-treated animals. However, this treatment did not affect the changes in lung function. Conclusion These data emphasize the importance of oxidative stress and metalloproteinase imbalance in the development of emphysema and suggest that sakuranetin is a potent candidate that should be further investigated as an emphysema treatment. This compound may be useful for counteracting lung remodeling and oxidative stress and thus attenuating the development of emphysema. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0233-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Taguchi
- Department of Biological Science, Universidade Federal de São Paulo, Rua Artur Riedel, 275 - Eldorado, Diadema, SP, Brazil
| | - Nathalia M Pinheiro
- Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Clarice R Olivo
- Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Simone S Grecco
- Department of Exact and Earth Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Fernanda D T Q S Lopes
- Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Universidade Federal de São Paulo, Rua Artur Riedel, 275 - Eldorado, Diadema, SP, Brazil
| | - Mílton A Martins
- Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tiberio
- Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Niels O Câmara
- Department of Immunology, Biological Institute, Universidade de São Paulo, São Paulo, Brazil
| | - João Henrique G Lago
- Department of Exact and Earth Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Carla M Prado
- Department of Biological Science, Universidade Federal de São Paulo, Rua Artur Riedel, 275 - Eldorado, Diadema, SP, Brazil. .,Department of Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
37
|
Pinheiro NM, Miranda CJCP, Perini A, Câmara NOS, Costa SKP, Alonso-Vale MIC, Caperuto LC, Tibério IFLC, Prado MAM, Martins MA, Prado VF, Prado CM. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. PLoS One 2015; 10:e0120441. [PMID: 25816137 PMCID: PMC4376856 DOI: 10.1371/journal.pone.0120441] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/22/2015] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.
Collapse
Affiliation(s)
- Nathalia M. Pinheiro
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Soraia K. P. Costa
- Department of Pharmacology Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Luciana C. Caperuto
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | | | - Marco Antônio M. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Mílton A. Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Vânia F. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M. Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
- * E-mail:
| |
Collapse
|
38
|
Yonezaki K, Uchimoto K, Miyazaki T, Asakura A, Kobayashi A, Takase K, Goto T. Postanesthetic effects of isoflurane on behavioral phenotypes of adult male C57BL/6J mice. PLoS One 2015; 10:e0122118. [PMID: 25806517 PMCID: PMC4373903 DOI: 10.1371/journal.pone.0122118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022] Open
Abstract
Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia.
Collapse
Affiliation(s)
- Kumiko Yonezaki
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Uchimoto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Asakura
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Kobayashi
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
39
|
Progressive disorganization of paranodal junctions and compact myelin due to loss of DCC expression by oligodendrocytes. J Neurosci 2014; 34:9768-78. [PMID: 25031414 DOI: 10.1523/jneurosci.0448-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Paranodal axoglial junctions are critical for maintaining the segregation of axonal domains along myelinated axons; however, the proteins required to organize and maintain this structure are not fully understood. Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC) are proteins enriched at paranodes that are expressed by neurons and oligodendrocytes. To identify the specific function of DCC expressed by oligodendrocytes in vivo, we selectively eliminated DCC from mature myelinating oligodendrocytes using an inducible cre regulated by the proteolipid protein promoter. We demonstrate that DCC deletion results in progressive disruption of the organization of axonal domains, myelin ultrastructure, and myelin protein composition. Conditional DCC knock-out mice develop balance and coordination deficits and exhibit decreased conduction velocity. We conclude that DCC expression by oligodendrocytes is required for the maintenance and stability of myelin in vivo, which is essential for proper signal conduction in the CNS.
Collapse
|
40
|
Zigdon H, Meshcheriakova A, Futerman AH. From sheep to mice to cells: Tools for the study of the sphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1189-99. [DOI: 10.1016/j.bbalip.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
41
|
Liang CC, Tanabe LM, Jou S, Chi F, Dauer WT. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest 2014; 124:3080-92. [PMID: 24937429 DOI: 10.1172/jci72830] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Lack of a preclinical model of primary dystonia that exhibits dystonic-like twisting movements has stymied identification of the cellular and molecular underpinnings of the disease. The classical familial form of primary dystonia is caused by the DYT1 (ΔE) mutation in TOR1A, which encodes torsinA, AAA⁺ ATPase resident in the lumen of the endoplasmic reticular/nuclear envelope. Here, we found that conditional deletion of Tor1a in the CNS (nestin-Cre Tor1a(flox/-)) or isolated CNS expression of DYT1 mutant torsinA (nestin-Cre Tor1a(flox/ΔE)) causes striking abnormal twisting movements. These animals developed perinuclear accumulation of ubiquitin and the E3 ubiquitin ligase HRD1 in discrete sensorimotor regions, followed by neurodegeneration that was substantially milder in nestin-Cre Tor1a(flox/ΔE) compared with nestin-Cre Tor1a(flox/-) animals. Similar to the neurodevelopmental onset of DYT1 dystonia in humans, the behavioral and histopathological abnormalities emerged and became fixed during CNS maturation in the murine models. Our results establish a genetic model of primary dystonia that is overtly symptomatic, and link torsinA hypofunction to neurodegeneration and abnormal twisting movements. These findings provide a cellular and molecular framework for how impaired torsinA function selectively disrupts neural circuits and raise the possibility that discrete foci of neurodegeneration may contribute to the pathogenesis of DYT1 dystonia.
Collapse
|
42
|
Abstract
Tay-Sachs and Sandhoff diseases (GM2 gangliosidoses) are autosomal recessive lysosomal storage diseases caused by gene mutations in HEXA and HEXB, each encoding human lysosomal β-hexosaminidase α-subunits and β-subunits, respectively. In Tay-Sachs disease, excessive accumulation of GM2 ganglioside (GM2), mainly in the central nervous system, is caused by a deficiency of the HexA isozyme (αβ heterodimer), resulting in progressive neurologic disorders. In Sandhoff disease, combined deficiencies of HexA and HexB (ββ homodimer) cause not only the accumulation of GM2 but also of oligosaccharides carrying terminal N-acetylhexosamine residues (GlcNAc-oligosaccharides), resulting in systemic manifestations including hepatosplenomegaly as well as neurologic symptoms. Hence there is little clinically effective treatment for these GM2 gangliosidoses. Recent studies on the molecular pathogenesis in Sandhoff disease patients and disease model mice have shown the involvement of microglial activation and chemokine induction in neuroinflammation and neurodegeneration in this disease. Experimental and therapeutic approaches, including recombinant enzyme replacement, have been performed using Sandhoff disease model mice, suggesting the future application of novel techniques to treat GM2 gangliosidoses (Hex deficiencies), including Sandhoff disease as well as Tay-Sachs disease. In this study, we isolated astrocytes and microglia from the neonatal brain of Sandhoff disease model mice and demonstrated abnormalities of glial cells. Moreover, we demonstrated the therapeutic effect of an intracerebroventricular administration of novel recombinant human HexA carrying a high content of M6P residue in Sandhoff disease model mice.
Collapse
Affiliation(s)
- Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute of Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan.
| |
Collapse
|
43
|
Seyfried TN, Rockwell HE, Heinecke KA, Martin DR, Sena-Esteves M. Ganglioside storage diseases: on the road to management. ADVANCES IN NEUROBIOLOGY 2014; 9:485-99. [PMID: 25151393 DOI: 10.1007/978-1-4939-1154-7_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although the biochemical and genetic basis for the GM1 and GM2 gangliosidoses has been known for decades, effective therapies for these diseases remain in early stages of development. The difficulty with many therapeutic strategies for treating the gangliosidoses comes largely from their inability to remove stored ganglioside once it accumulates in central nervous system (CNS) neurons and glia. This chapter highlights advances made using substrate reduction therapy and gene therapy in reducing CNS ganglioside storage. Information obtained from mouse and feline models provides insight on therapeutic strategies that could be effective in human clinical trials. In addition, information is presented showing how a calorie-restricted diet might facilitate therapeutic drug delivery to the CNS. The development of multiple new therapeutic approaches offers hope that longer-term management of these diseases can be achieved. It is also clear that multiple therapeutic strategies will likely be needed to provide the most complete management.
Collapse
|
44
|
Mettlach G, Polo-Parada L, Peca L, Rubin CT, Plattner F, Bibb JA. Enhancement of neuromuscular dynamics and strength behavior using extremely low magnitude mechanical signals in mice. J Biomech 2013; 47:162-7. [PMID: 24157062 DOI: 10.1016/j.jbiomech.2013.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.
Collapse
Affiliation(s)
- Gabriel Mettlach
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - Lauren Peca
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Abstract
Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.
Collapse
|
46
|
Karadayian AG, Cutrera RA. Alcohol hangover: Type and time-extension of motor function impairments. Behav Brain Res 2013; 247:165-73. [DOI: 10.1016/j.bbr.2013.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
|
47
|
Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci 2013; 33:5162-74. [PMID: 23516282 DOI: 10.1523/jneurosci.5442-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ataxia, episodic dyskinesia, and thalamocortical seizures are associated with an inherited loss of P/Q-type voltage-gated Ca(2+) channel function. P/Q-type channels are widely expressed throughout the neuraxis, obscuring identification of the critical networks underlying these complex neurological disorders. We showed recently that the conditional postnatal loss of P/Q-type channels in cerebellar Purkinje cells (PCs) in mice (purky) leads to these aberrant phenotypes, suggesting that intrinsic alteration in PC output is a sufficient pathogenic factor for disease initiation. The question arises whether P/Q-type channel deletion confined to a single upstream cerebellar synapse might induce the pathophysiological abnormality of genomically inherited P/Q-type channel disorders. PCs integrate two excitatory inputs, climbing fibers from inferior olive and parallel fibers (PFs) from granule cells (GCs) that receive mossy fiber (MF) input derived from precerebellar nuclei. In this study, we introduce a new mouse model with a selective knock-out of P/Q-type channels in rhombic-lip-derived neurons including the PF and MF pathways (quirky). We found that in quirky mice, PF-PC synaptic transmission is reduced during low-frequency stimulation. Using focal light stimulation of GCs that express optogenetic light-sensitive channels, channelrhodopsin-2, we found that modulation of PC firing via GC input is reduced in quirky mice. Phenotypic analysis revealed that quirky mice display ataxia, dyskinesia, and absence epilepsy. These results suggest that developmental alteration of patterned input confined to only one of the main afferent cerebellar excitatory synaptic pathways has a significant role in generating the neurological phenotype associated with the global genomic loss of P/Q-type channel function.
Collapse
|
48
|
Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 2013; 8:e60378. [PMID: 23560093 PMCID: PMC3613356 DOI: 10.1371/journal.pone.0060378] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
49
|
Gianforcaro A, Solomon JA, Hamadeh MJ. Vitamin D(3) at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. PLoS One 2013; 8:e30243. [PMID: 23405058 PMCID: PMC3566148 DOI: 10.1371/journal.pone.0030243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously demonstrated that dietary vitamin D(3) at 10x the adequate intake (AI) attenuates the decline in functional capacity in the G93A mouse model of ALS. We hypothesized that higher doses would elicit more robust changes in functional and disease outcomes. OBJECTIVE To determine the effects of dietary vitamin D(3) at 50xAI on functional outcomes (motor performance, paw grip endurance) and disease severity (clinical score), as well as disease onset, disease progression and lifespan in the transgenic G93A mouse model of ALS. METHODS Starting at age 25 d, 100 G93A mice (55 M, 45 F) were provided ad libitum with either an adequate (AI; 1 IU D(3)/g feed) or high (HiD; 50 IU D(3)/g feed) vitamin D(3) diet. RESULTS HiD females consumed 9% less food corrected for body weight vs. AI females (P = 0.010). HiD mice had a 12% greater paw grip endurance over time between age 60-141 d (P = 0.015), and a 37% greater score during disease progression (P = 0.042) vs. AI mice. Although HiD females had a non-significant 31% greater CS prior to disease onset vs. AI females, they exhibited a significant 20% greater paw grip endurance AUC (P = 0.020) when corrected for clinical score. CONCLUSION Dietary D(3) supplementation at 50x the adequate intake attenuated the decline in paw grip endurance, but did not influence age at disease onset, hindlimb paralysis or endpoint in the transgenic G93A mouse model of ALS. Furthermore, females may have reached the threshold for vitamin D(3) toxicity as evidence by reduced food intake and greater disease severity prior to disease onset.
Collapse
Affiliation(s)
- Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Ogawa Y, Tanaka M, Tanabe M, Suzuki T, Togawa T, Fukushige T, Kanekura T, Sakuraba H, Oishi K. Impaired neural differentiation of induced pluripotent stem cells generated from a mouse model of Sandhoff disease. PLoS One 2013; 8:e55856. [PMID: 23383290 PMCID: PMC3561340 DOI: 10.1371/journal.pone.0055856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/03/2013] [Indexed: 12/03/2022] Open
Abstract
Sandhoff disease (SD) is a glycosphingolipid storage disease that arises from mutations in the Hexb gene and the resultant deficiency in β-hexosaminidase activity. This deficiency results in aberrant lysosomal accumulation of the ganglioside GM2 and related glycolipids, and progressive deterioration of the central nervous system. Dysfunctional glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. Induced pluripotent stem cell (iPSC) technology offers new opportunities for both elucidation of the pathogenesis of diseases and the development of stem cell-based therapies. Here, we report the generation of disease-specific iPSCs from a mouse model of SD. These mouse model-derived iPSCs (SD-iPSCs) exhibited pluripotent stem cell properties and significant accumulation of GM2 ganglioside. In lineage-directed differentiation studies using the stromal cell-derived inducing activity method, SD-iPSCs showed an impaired ability to differentiate into early stage neural precursors. Moreover, fewer neurons differentiated from neural precursors in SD-iPSCs than in the case of the wild type. Recovery of the Hexb gene in SD-iPSCs improved this impairment of neuronal differentiation. These results provide new insights as to understanding the complex pathogenic mechanisms of SD.
Collapse
Affiliation(s)
- Yasuhiro Ogawa
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Makoto Tanaka
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Miho Tanabe
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tomoko Fukushige
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Sakuraba
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kazuhiko Oishi
- Department of Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|