1
|
Doherty JS, Kirkegaard K. Differential inhibition of intra- and inter-molecular protease cleavages by antiviral compounds. J Virol 2023; 97:e0092823. [PMID: 38047713 PMCID: PMC10734437 DOI: 10.1128/jvi.00928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.
Collapse
Affiliation(s)
| | - Karla Kirkegaard
- Department of Genetics, Stanford University, Palo Alto, California, USA
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Domingo E, Martínez-González B, García-Crespo C, Somovilla P, de Ávila AI, Soria ME, Durán-Pastor A, Perales C. Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies. J Virol 2023; 97:e0151123. [PMID: 38092661 PMCID: PMC10734546 DOI: 10.1128/jvi.01511-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Brenda Martínez-González
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
3
|
Padhy AA, Mavor D, Sahoo S, Bolon DNA, Mishra P. Systematic profiling of dominant ubiquitin variants reveals key functional nodes contributing to evolutionary selection. Cell Rep 2023; 42:113064. [PMID: 37656625 DOI: 10.1016/j.celrep.2023.113064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dominant-negative mutations can help to investigate the biological mechanisms and to understand the selective pressures for multifunctional proteins. However, most studies have focused on recessive mutant effects that occur in the absence of a second functional gene copy, which overlooks the fact that most eukaryotic genomes contain more than one copy of many genes. We have identified dominant effects on yeast growth rate among all possible point mutations in ubiquitin expressed alongside a wild-type allele. Our results reveal more than 400 dominant-negative mutations, indicating that dominant-negative effects make a sizable contribution to selection acting on ubiquitin. Cellular and biochemical analyses of individual ubiquitin variants show that dominant-negative effects are explained by varied accumulation of polyubiquitinated cellular proteins and/or defects in conjugation of ubiquitin variants to ubiquitin ligases. Our approach to identify dominant-negative mutations is general and can be applied to other proteins of interest.
Collapse
Affiliation(s)
- Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - David Mavor
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India.
| |
Collapse
|
4
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|
5
|
Singh K, Mehta D, Dumka S, Chauhan AS, Kumar S. Quasispecies Nature of RNA Viruses: Lessons from the Past. Vaccines (Basel) 2023; 11:308. [PMID: 36851186 PMCID: PMC9963406 DOI: 10.3390/vaccines11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV), lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus populations are a daunting challenge for the designing of effective control measures like vaccines. Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what influences their adaptation and virulence will help curtail outbreaks of past and future pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
6
|
Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection. J Virol 2022; 96:e0069922. [PMID: 35993738 PMCID: PMC9472611 DOI: 10.1128/jvi.00699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.
Collapse
|
7
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
8
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
9
|
Deutschmann-Olek KM, Yue WW, Bezerra GA, Skern T. Defining substrate selection by rhinoviral 2A proteinase through its crystal structure with the inhibitor zVAM.fmk. Virology 2021; 562:128-141. [PMID: 34315103 DOI: 10.1016/j.virol.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Picornavirus family members cause disease in humans. Human rhinoviruses (RV), the main causative agents of the common cold, increase the severity of asthma and COPD; hence, effective agents against RVs are required. The 2A proteinase (2Apro), found in all enteroviruses, represents an attractive target; inactivating mutations in poliovirus 2Apro result in an extension of the VP1 protein preventing infectious virion assembly. Variations in sequence and substrate specificity on eIF4G isoforms between RV 2Apro of genetic groups A and B hinder 2Apro as drug targets. Here, we demonstrate that although RV-A2 and RV-B4 2Apro cleave the substrate GAB1 at different sites, the 2Apro from both groups cleave equally efficiently an artificial site containing P1 methionine. We determined the RV-A2 2Apro structure complexed with zVAM.fmk, containing P1 methionine. Analysis of this first 2Apro-inhibitor complex reveals a conserved hydrophobic P4 pocket among enteroviral 2Apro as a potential target for broad-spectrum anti-enteroviral inhibitors.
Collapse
Affiliation(s)
- Karin M Deutschmann-Olek
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, A-1030, Vienna, Austria
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Gustavo A Bezerra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Tim Skern
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
10
|
Amidoxime prodrugs convert to potent cell-active multimodal inhibitors of the dengue virus protease. Eur J Med Chem 2021; 224:113695. [PMID: 34298282 DOI: 10.1016/j.ejmech.2021.113695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
The flavivirus genus of the Flaviviridae family comprises Dengue, Zika and West-Nile viruses which constitute unmet medical needs as neither appropriate antivirals nor safe vaccines are available. The dengue NS2BNS3 protease is one of the most promising validated targets for developing a dengue treatment however reported protease inhibitors suffer from toxicity and cellular inefficacy. Here we report SAR on our previously reported Zika-active carbazole scaffold, culminating prodrug compound SP-471P (EC50 1.10 μM, CC50 > 100 μM) that generates SP-471; one of the most potent, non-cytotoxic and cell-active protease inhibitors described in the dengue literature. In cell-based assays, SP-471P leads to inhibition of viral RNA replication and complete abolishment of infective viral particle production even when administered 6 h post-infection. Mechanistically, SP-471 appears to inhibit both normal intermolecular protease processes and intramolecular cleavage events at the NS2BNS3 junction, as well as at NS3 internal sites, all critical for virus replication. These render SP-471 a unique to date multimodal inhibitor of the dengue protease.
Collapse
|
11
|
Lamut A, Gjorgjieva M, Naesens L, Liekens S, Lillsunde KE, Tammela P, Kikelj D, Tomašič T. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg Chem 2020; 98:103733. [DOI: 10.1016/j.bioorg.2020.103733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
|
12
|
Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305.,Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
13
|
Quasispecies dynamics in disease prevention and control. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153035 DOI: 10.1016/b978-0-12-816331-3.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Medical interventions to prevent and treat viral disease constitute evolutionary forces that may modify the genetic composition of viral populations that replicate in an infected host and influence the genomic composition of those viruses that are transmitted and progress at the epidemiological level. Given the adaptive potential of viruses in general and the RNA viruses in particular, the selection of viral mutants that display some degree of resistance to inhibitors or vaccines is a tangible challenge. Mutant selection may jeopardize control of the viral disease. Strategies intended to minimize vaccination and treatment failures are proposed and justified based on fundamental features of viral dynamics explained in the preceding chapters. The recommended use of complex, multiepitopic vaccines, and combination therapies as early as possible after initiation of infection falls under the general concept that complexity cannot be combated with simplicity. It also follows that sociopolitical action to interrupt virus replication and spread as soon as possible is as important as scientifically sound treatment designs to control viral disease on a global scale.
Collapse
|
14
|
Sangiambut S, Pethrak C, Anupap C, Ninnabkaew P, Kongsanthia C, Promphet N, Chaiyaloom S, Songjaeng A, Avirutnan P, Puttikhunt C, Kasinrerk W, Sittisombut N, Malasit P. Enhanced production of infectious particles by adaptive modulation of C–prM processing and C–C interaction during propagation of dengue pseudoinfectious virus in stable CprME-expressing cells. J Gen Virol 2020; 101:59-72. [DOI: 10.1099/jgv.0.001345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sutha Sangiambut
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Chatpong Pethrak
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Chainarong Anupap
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Parichat Ninnabkaew
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Charuphan Kongsanthia
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Natcha Promphet
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Suwipa Chaiyaloom
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Prida Malasit
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| |
Collapse
|
15
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Many organisms disperse in groups, yet this process is understudied in viruses. Recent work, however, has uncovered different types of collective infectious units, all of which lead to the joint delivery of multiple viral genome copies to target cells, favoring co-infections. Collective spread of viruses can occur through widely different mechanisms, including virion aggregation driven by specific extracellular components, cloaking inside lipid vesicles, encasement in protein matrices, or binding to cell surfaces. Cell-to-cell viral spread, which allows the transmission of individual virions in a confined environment, is yet another mode of clustered virus dissemination. Nevertheless, the selective advantages of dispersing in groups remain poorly understood in most cases. Collective dispersal might have emerged as a means of sharing efficacious viral transmission vehicles. Alternatively, increasing the cellular multiplicity of infection may confer certain short-term benefits to viruses, such as overwhelming antiviral responses, avoiding early stochastic loss of viral components required for initiating infection, or complementing genetic defects present in different viral genomes. However, increasing infection multiplicity may also entail long-term costs, such as mutation accumulation and the evolution of defective particles or other types of cheater viruses. These costs and benefits, in turn, should depend on the genetic relatedness among collective infectious unit members. Establishing the genetic basis of collective viral dispersal and performing controlled experiments to pinpoint fitness effects at different spatial and temporal scales should help us clarify the implications of these spread modes for viral fitness, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - María-Isabel Thoulouze
- Institut Pasteur, Structural Virology Unit, Biofilm & Viral Transmission Group, Paris, France
| |
Collapse
|
17
|
Stewart H, Olspert A, Butt BG, Firth AE. Propensity of a picornavirus polymerase to slip on potyvirus-derived transcriptional slippage sites. J Gen Virol 2018; 100:199-205. [PMID: 30507373 PMCID: PMC6591135 DOI: 10.1099/jgv.0.001189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to 'slip' during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymerase slippage in the family Potyviridae. This slippage results in either an insertion or a substitution, depending on whether the RNA duplex realigns following the insertion. In this study we investigated whether this phenomenon is a conserved feature of superfamily I viral RdRps, by inserting a range of potyvirus-derived slip-prone sequences into a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). Deep-sequencing analysis of viral transcripts indicates that the TMEV polymerase 'slips' at the sequences U6-7 and A6-7 to insert additional nucleotides. Such sequences are under-represented within picornaviral genomes, suggesting that slip-prone sequences create a fitness cost. Nonetheless, the TMEV insertional and substitutional spectrum differed from that previously determined for the potyvirus polymerase.
Collapse
Affiliation(s)
- Hazel Stewart
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Allan Olspert
- 2School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Benjamin G Butt
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
de la Higuera I, Ferrer-Orta C, Moreno E, de Ávila AI, Soria ME, Singh K, Caridi F, Sobrino F, Sarafianos SG, Perales C, Verdaguer N, Domingo E. Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. J Virol 2018; 92:e01119-18. [PMID: 30068642 PMCID: PMC6158410 DOI: 10.1128/jvi.01119-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop β9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop β9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.
Collapse
Affiliation(s)
| | - Cristina Ferrer-Orta
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Elena Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
19
|
Gregori J, Soria ME, Gallego I, Guerrero-Murillo M, Esteban JI, Quer J, Perales C, Domingo E. Rare haplotype load as marker for lethal mutagenesis. PLoS One 2018; 13:e0204877. [PMID: 30281674 PMCID: PMC6169937 DOI: 10.1371/journal.pone.0204877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
RNA viruses replicate with a template-copying fidelity, which lies close to an extinction threshold. Increases of mutation rate by nucleotide analogues can drive viruses towards extinction. This transition is the basis of an antiviral strategy termed lethal mutagenesis. We have introduced a new diversity index, the rare haplotype load (RHL), to describe NS5B (polymerase) mutant spectra of hepatitis C virus (HCV) populations passaged in absence or presence of the mutagenic agents favipiravir or ribavirin. The increase in RHL is more prominent in mutant spectra whose expansions were due to nucleotide analogues than to multiple passages in absence of mutagens. Statistical tests for paired mutagenized versus non-mutagenized samples with 14 diversity indices show that RHL provides consistently the highest standardized effect of mutagenic treatment difference for ribavirin and favipiravir. The results indicate that the enrichment of viral quasispecies in very low frequency minority genomes can serve as a robust marker for lethal mutagenesis. The diagnostic value of RHL from deep sequencing data is relevant to experimental studies on enhanced mutagenesis of viruses, and to pharmacological evaluations of inhibitors suspected to have a mutagenic activity.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, Barcelona, Spain
| | - María Eugenia Soria
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Isabel Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
- * E-mail: (CP); (JQ)
| | - Celia Perales
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- * E-mail: (CP); (JQ)
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
20
|
Targeting intramolecular proteinase NS2B/3 cleavages for trans-dominant inhibition of dengue virus. Proc Natl Acad Sci U S A 2018; 115:10136-10141. [PMID: 30228122 PMCID: PMC6176606 DOI: 10.1073/pnas.1805195115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Many positive-strand RNA viruses translate their genomes as single polyproteins that are processed by host and viral proteinases to generate all viral protein products. Among these is dengue virus, which encodes the serine proteinase NS2B/3 responsible for seven different cleavages in the polyprotein. NS2B/3 has been the subject of many directed screens to find chemical inhibitors, of which the compound ARDP0006 is among the most effective at inhibiting viral growth. We show that at least three cleavages in the dengue polyprotein are exclusively intramolecular. By definition, such a cis-acting defect cannot be rescued in trans This creates the possibility that a drug-susceptible or inhibited proteinase can be genetically dominant, inhibiting the outgrowth of drug-resistant virus via precursor accumulation. Indeed, an NS3-G459L variant that is incapable of cleavage at the internal NS3 junction dominantly inhibited negative-strand RNA synthesis of wild-type virus present in the same cell. This internal NS3 cleavage site is the junction most inhibited by ARDP0006, making it likely that the accumulation of toxic precursors, not inhibition of proteolytic activity per se, explains the antiviral efficacy of this compound in restraining viral growth. We argue that intramolecularly cleaving proteinases are promising drug targets for viruses that encode polyproteins. The most effective inhibitors will specifically target cleavage sites required for processing precursors that exert trans-dominant inhibition.
Collapse
|
21
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
22
|
van Buuren N, Tellinghuisen TL, Richardson CD, Kirkegaard K. Transmission genetics of drug-resistant hepatitis C virus. eLife 2018; 7:32579. [PMID: 29589830 PMCID: PMC5916564 DOI: 10.7554/elife.32579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Antiviral development is plagued by drug resistance and genetic barriers to resistance are needed. For HIV and hepatitis C virus (HCV), combination therapy has proved life-saving. The targets of direct-acting antivirals for HCV infection are NS3/4A protease, NS5A phosphoprotein and NS5B polymerase. Differential visualization of drug-resistant and -susceptible RNA genomes within cells revealed that resistant variants of NS3/4A protease and NS5A phosphoprotein are cis-dominant, ensuring their direct selection from complex environments. Confocal microscopy revealed that RNA replication complexes are genome-specific, rationalizing the non-interaction of wild-type and variant products. No HCV antivirals yet display the dominance of drug susceptibility shown for capsid proteins of other viruses. However, effective inhibitors of HCV polymerase exact such high fitness costs for drug resistance that stable genome selection is not observed. Barriers to drug resistance vary with target biochemistry and detailed analysis of these barriers should lead to the use of fewer drugs. Viruses are simple organisms that consist of genetic information and a few types of proteins. They cannot replicate on their own, and instead hijack the molecular machinery of a host cell to produce more of themselves. Inside an infected cell, the genetic information of the virus is replicated and ‘read’ to create viral proteins. These components are then assembled to form a new generation of viruses. During this process, genetic errors may occur that lead to modifications in the viral proteins, and help the virus become resistant to treatment. For instance, a viral protein that used to be targeted by a drug can change slightly and not be recognized anymore. Currently, the most efficient way to fight drug resistance is to use combination therapy, where several drugs are given at the same time. This strategy is successful, for example to treat infections with the hepatitis C virus, but it is also expensive, especially for developing countries. An alternative approach is dominant-drug targeting, which exploits the fact that both drug-resistant and drug-susceptible viruses are ‘born’ in the same cell. There, the susceptible viruses can overwhelm and ‘mask’ the benefits of the resistant ones. For example, proteins from resistant strains, which are no longer detected by a treatment, can bind to proteins from susceptible viruses; drugs will still be able to recognize these resulting viral structures. The proteins that operate in such ways are potential dominant-drug targets. However, resistant and susceptible strains can also cohabit without any contacts if their proteins do not interact with each other. Now, van Buuren et al. screen several viral proteins, including one called NS5A, to test whether a dominant drug target exists for the hepatitis C virus. Only a few molecules of a drug that targets NS5A can stop the virus from growing. In theory, drug-bound NS5A proteins could block their non-drug-bound neighbors, but when these drugs have been used on their own, resistance quickly emerged. Experiments showed that NS5A is not a dominant drug target because the drug-resistant and drug-susceptible proteins do not mix. Unless ‘forced’ in the laboratory, NS5A proteins only bind to the ones produced by the same strain of virus. This explains why resistant viruses quickly take over when NS5A drugs are the sole treatment. However, other hepatitis C proteins, such as the HCV core protein, are known to mix during the assembly of the virus, and thus are likely be dominant drug targets.
Collapse
Affiliation(s)
- Nicholas van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | | | | | - Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
23
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
24
|
Newman J, Asfor AS, Berryman S, Jackson T, Curry S, Tuthill TJ. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers. J Virol 2018; 92:e01415-17. [PMID: 29212943 PMCID: PMC5809743 DOI: 10.1128/jvi.01415-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.
Collapse
Affiliation(s)
- Joseph Newman
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Amin S Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
25
|
van Buuren N, Kirkegaard K. Detection and Differentiation of Multiple Viral RNAs Using Branched DNA FISH Coupled to Confocal Microscopy and Flow Cytometry. Bio Protoc 2018; 8:e3058. [PMID: 30505886 DOI: 10.21769/bioprotoc.3058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Due to the exceptionally high mutation rates of RNA-dependent RNA polymerases, infectious RNA viruses generate extensive sequence diversity, leading to some of the lowest barriers to the development of antiviral drug resistance in the microbial world. We have previously discovered that higher barriers to the development of drug resistance can be achieved through dominant suppression of drug-resistant viruses by their drug-susceptible parents. We have explored the existence of dominant drug targets in poliovirus, dengue virus and hepatitis C virus (HCV). The low replication capacity of HCV required the development of novel strategies for identifying cells co-infected with drug-susceptible and drug-resistant strains. To monitor co-infected cell populations, we generated codon-altered versions of the JFH1 strain of HCV. Then, we could differentiate the codon-altered and wild-type strains using a novel type of RNA fluorescent in situ hybridization (FISH) coupled with flow cytometry or confocal microscopy. Both of these techniques can be used in conjunction with standard antibody-protein detection methods. Here, we describe a detailed protocol for both RNA FISH flow cytometry and confocal microscopy.
Collapse
Affiliation(s)
- Nicholas van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
26
|
Bingham RJ, Dykeman EC, Twarock R. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance. Viruses 2017; 9:E347. [PMID: 29149077 PMCID: PMC5707554 DOI: 10.3390/v9110347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.
Collapse
Affiliation(s)
- Richard J Bingham
- Departments of Mathematics, University of York, York YO10 5DD, UK.
- Department of Biology, University of York, York YO10 5DD, UK.
- York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK.
| | - Eric C Dykeman
- Departments of Mathematics, University of York, York YO10 5DD, UK.
- York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK.
| | - Reidun Twarock
- Departments of Mathematics, University of York, York YO10 5DD, UK.
- Department of Biology, University of York, York YO10 5DD, UK.
- York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK.
| |
Collapse
|
27
|
Moratorio G, Henningsson R, Barbezange C, Carrau L, Bordería AV, Blanc H, Beaucourt S, Poirier EZ, Vallet T, Boussier J, Mounce BC, Fontes M, Vignuzzi M. Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat Microbiol 2017; 2:17088. [PMID: 28581455 PMCID: PMC7098180 DOI: 10.1038/nmicrobiol.2017.88] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Abstract
RNA viruses pose serious threats to human health. Their success relies on their capacity to generate genetic variability and, consequently, on their adaptive potential. We describe a strategy to attenuate RNA viruses by altering their evolutionary potential. We rationally altered the genomes of Coxsackie B3 and influenza A viruses to redirect their evolutionary trajectories towards detrimental regions in sequence space. Specifically, viral genomes were engineered to harbour more serine and leucine codons with nonsense mutation targets: codons that could generate Stop mutations after a single nucleotide substitution. Indeed, these viruses generated more Stop mutations both in vitro and in vivo, accompanied by significant losses in viral fitness. In vivo, the viruses were attenuated, generated high levels of neutralizing antibodies and protected against lethal challenge. Our study demonstrates that cornering viruses in ‘risky’ areas of sequence space may be implemented as a broad-spectrum vaccine strategy against RNA viruses. Virus attenuation is used to obtain vaccine strains. Here, the rapid evolution of RNA viruses is exploited by engineering their genomes to encode sites that are a mutation away from a stop codon, a clever method to generate attenuated viruses.
Collapse
Affiliation(s)
- Gonzalo Moratorio
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Rasmus Henningsson
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
| | - Cyril Barbezange
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Lucia Carrau
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Sorbonne Paris Cité, Université Paris Diderot, Cellule Pasteur, 75013 Paris, France
| | - Antonio V Bordería
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Stephanie Beaucourt
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Enzo Z Poirier
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Sorbonne Paris Cité, Université Paris Diderot, Cellule Pasteur, 75013 Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jeremy Boussier
- International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, Inserm 1223, 25 rue du Dr. Roux, 75724 Paris cedex 15, Paris, France.,Ecole doctorale Frontières du vivant, Université Paris Diderot, 75013 Paris, France
| | - Bryan C Mounce
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Magnus Fontes
- International Group for Data Analysis, Institut Pasteur, C3BI, USR 3756 IP CNRS, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.,Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
28
|
Yang G, Liu Z, Yang J, Luo K, Xu Y, He H, Fu Q, Yu S, Wang Z. Quasispecies characteristics in mother-to-child transmission of hepatitis B virus by next-generation sequencing. J Infect 2017; 75:48-58. [PMID: 28483405 DOI: 10.1016/j.jinf.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To identify within-host quasispecies characteristics of hepatitis B virus (HBV) in mothers and children infected via mother-to-child transmission (MTCT). METHODS Using next-generation sequencing (NGS), we analyzed sequences within the non-overlapping pre-core/core (pre-C/C) gene in 37 mother-child pairs. RESULTS Phylogenetic and Highlighter analyses suggested that both a single strain and multiple distinct strains may be transmitted in MTCT of HBV. However, analysis of reassembled viral sequences revealed a relatively narrow distribution of variants in children, which was confirmed by a lower viral diversity in children than that in mothers. New closely related variants with combinations of two to five high-frequency mutations were observed in seven children with elevated ALT levels; the new variants out-competed the transmitted maternal variants to become the dominant strains in five of them. Furthermore, 30 mutations with a frequency >1% of all viruses within-host were present in those children; the mutations caused 19 amino-acid substitutions. Interestingly, almost all were located within the well-known T-cell or B-cell epitopes. CONCLUSIONS There are restrictive changes that occur in the early stages of chronic HBV infection through MTCT with different clinical consequences. These data might have important implications for future investigations of interrelated immunopathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Guifeng Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Zhihua Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juncheng Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangxian Luo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitang He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qunfang Fu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouyi Yu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathog 2016; 12:e1005964. [PMID: 27812216 PMCID: PMC5094736 DOI: 10.1371/journal.ppat.1005964] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. How quickly infection occurs should be an important determinant of viral fitness, but mechanisms which could accelerate the onset of viral gene expression were previously undefined. In this work we use time-lapse microscopy to quantify the timing of the HIV viral cycle and show that onset of viral gene expression can be substantially accelerated. This occurs during cell-to-cell spread of HIV, a mode of directed viral infection where multiple virions are transmitted between cells. Surprisingly, we found that neither cooperativity between infecting viruses, nor trans-acting factors from already infected cells, influence the timing of infection. Rather, we show experimentally that a more rapid onset of infection is explained by a first-past-the-post mechanism, where the fastest expressing virus out of the infecting virus pool sets the time for the onset of viral gene expression of an individual cell independently of other infections of the same cell. Fast onset of viral gene expression in cell-to-cell spread may play an important role in seeding the HIV reservoir, which rapidly makes infection irreversible.
Collapse
|
30
|
Kirkegaard K, van Buuren NJ, Mateo R. My Cousin, My Enemy: quasispecies suppression of drug resistance. Curr Opin Virol 2016; 20:106-111. [PMID: 27764731 PMCID: PMC5298929 DOI: 10.1016/j.coviro.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 11/27/2022]
Abstract
If a freshly minted genome contains a mutation that confers drug resistance, will it be selected in the presence of the drug? Not necessarily. During viral infections, newly synthesized viral genomes occupy the same cells as parent and other progeny genomes. If the antiviral target is chosen so that the drug-resistant progeny's growth is dominantly inhibited by the drug-susceptible members of its intracellular family, its outgrowth can be suppressed. Precedent for 'dominant drug targeting' as a deliberate approach to suppress the outgrowth of inhibitor-resistant viruses has been established for envelope variants of vesicular stomatitis virus and for capsid variants of poliovirus and dengue virus. Small molecules that stabilize oligomeric assemblages are a promising means to an unfit family to destroy the effectiveness of a newborn drug-resistant relative due to the co-assembly of drug-susceptible and drug-resistant monomers.
Collapse
Affiliation(s)
- Karla Kirkegaard
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States.
| | - Nicholas J van Buuren
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Roberto Mateo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
31
|
Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. J Virol 2016; 90:9305-16. [PMID: 27512070 PMCID: PMC5044845 DOI: 10.1128/jvi.00661-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast, HAZV is nonpathogenic to humans and thus represents an excellent model to study aspects of CCHFV biology under conditions of more-accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV, we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells by the use of small-molecule inhibitors significantly reduced HAZV titers, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest that chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease. IMPORTANCE Nairoviruses compose a group of human and animal viruses that are transmitted by ticks and associated with serious or fatal disease. One member is Crimean-Congo hemorrhagic fever virus (CCHFV), which is responsible for fatal human disease and is recognized as an emerging threat within Europe in response to climate change. No preventative or therapeutic strategies against nairovirus-mediated disease are currently available. Here we show that the N protein of CCHFV and the related Hazara virus interact with a cellular protein, HSP70, during both the intracellular and extracellular stages of the virus life cycle. The use of inhibitors that block HSP70 function reduces virus titers by up to 1,000-fold, suggesting that this interaction is important within the context of the nairovirus life cycle and may represent a potent target for antinairovirus therapies against which the virus cannot easily develop resistance.
Collapse
|
32
|
Abstract
Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings.
Collapse
|
33
|
Smithee S, Tracy S, Chapman NM. Reversion to wildtype of a mutated and nonfunctional coxsackievirus B3CRE(2C). Virus Res 2016; 220:136-49. [PMID: 27130630 DOI: 10.1016/j.virusres.2016.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022]
Abstract
The cis-acting replication element (CRE) in the 2C protein coding region [CRE(2C)] of enteroviruses (EV) facilitates the addition of two uridine residues (uridylylation) onto the virus-encoded protein VPg in order for it to serve as the RNA replication primer. We demonstrated that coxsackievirus B3 (CVB3) is replication competent in the absence of a native (uridylylating) CRE(2C) and also demonstrated that lack of a functional CRE(2C) led to generation of 5' terminal genomic deletions in the CVB3 CRE-knock-out (CVB3-CKO) population. We asked whether reversion of the mutated CRE(2C) occurred, thus permitting sustained replication, and when were 5' terminal deletions generated during replication. Virions were isolated from HeLa cells previously electroporated with infectious CVB3-CKO T7 transcribed RNA or from hearts and spleens of mice after transfection with CVB3-CKO RNA. Viral RNA was isolated in order to amplify the CRE(2C) coding region and the genomic 5' terminal sequences. Sequence analysis revealed reversion of the CVB3-CKO sequence to wildtype occurs by 8 days post-electroporation of HeLa cells and by 20days post-transfection in mice. However, 5' terminal deletions evolve prior to these times. Reversion of the CRE(2C) mutations to wildtype despite loss of the genomic 5' termini is consistent with the hypothesis that an intact CRE(2C) is inherently vital to EV replication even when it is not enabling efficient positive strand initiation.
Collapse
Affiliation(s)
- Shane Smithee
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30033, USA
| | - Steven Tracy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Arslan SY, Son KN, Lipton HL. During Infection, Theiler's Virions Are Cleaved by Caspases and Disassembled into Pentamers. J Virol 2016; 90:3573-83. [PMID: 26792734 PMCID: PMC4794658 DOI: 10.1128/jvi.03035-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infected macrophages in spinal cords of mice persistently infected with Theiler's murine encephalomyelitis virus (TMEV) undergo apoptosis, resulting in restricted virus yields, as do infected macrophages in culture. Apoptosis of murine macrophages in culture occurs via the intrinsic pathway later in infection (>10 h postinfection [p.i.]) after maximal virus titers (150 to 200 PFU/cell) have been reached, with loss of most infectious virus (<5 PFU/cell) by 20 to 24 h p.i. Here, we show that BeAn virus RNA replication, translation, polyprotein processing into final protein products, and assembly of protomers and pentamers in infected M1-D macrophages did not differ from those processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the initial difference from BHK-21 cell infection was seen at 10 to 12 h p.i., where virions from the 160S peak in sucrose gradients had incompletely processed VP0 (compared to that in infected BHK-21 cells). Thereafter, there was a gradual loss of the 160S virion peak in sucrose gradients, with replacement by a 216S peak that was observed to contain pentamers among lipid debris in negatively stained grids by electron microscopy. After infection or incubation of purified virions with activated caspase-3 in vitro, 13- and 17-kDa capsid peptide fragments were observed and were predicted by algorithms to contain cleavage sites within proteins by cysteine-dependent aspartate-directed proteases. These findings suggest that caspase cleavage of sites in exposed capsid loops of assembled virions occurs contemporaneously with the onset and progression of apoptosis later in the infection. IMPORTANCE Theiler's murine encephalomyelitis virus (TMEV) infection in mice results in establishment of virus persistence in the central nervous system and chronic inflammatory demyelinating disease, providing an experimental animal model for multiple sclerosis. Virus persistence takes place primarily in macrophages recruited into the spinal cord that undergo apoptosis and in turn may facilitate viral spread via infected apoptotic blebs. Infection of murine macrophages in culture results in restricted virus yields late in infection. Here it is shown that the early steps of the virus life cycle in infected macrophages in vitro do not differ from these processes in TMEV-infected BHK-21 cells, which undergo necroptosis. However, the findings late in infection suggest that caspases cleave sites in exposed capsid loops and possibly internal sites of assembled virions occurring contemporaneously with onset and progression of apoptosis. Mechanistically, this would explain the dramatic loss in virus yields during TMEV-induced apoptosis and attenuate the virus, enabling persistence.
Collapse
Affiliation(s)
- Sevim Yildiz Arslan
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA The Graduate School, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyung-No Son
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Howard L Lipton
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
|
36
|
Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication. J Virol 2015; 90:2868-83. [PMID: 26719260 PMCID: PMC4810661 DOI: 10.1128/jvi.01931-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional organization of viral proteins within this structure. We have complemented protein-encoded defects in HCV by constructing subgenomic HCV transcripts capable of simultaneously expressing both a mutated and functional polyprotein precursor needed for RNA genome replication (intragenomic replicons). Our results reveal that HCV relies on two interdependent sets of protein complexes to support viral replication. They also show that the intragenomic replicon offers a unique way to study replication complex assembly, as it enables improved composite polyprotein complex formation compared to traditional trans-complementation systems. Finally, the differential behavior of distinct NS3 helicase knockout mutations hints that certain conformations of this enzyme might be particularly deleterious for replication.
Collapse
|
37
|
Abstract
Dengue virus is a major human pathogen responsible for 400 million infections yearly. As with other RNA viruses, daunting challenges to antiviral design exist due to the high error rates of RNA-dependent RNA synthesis. Indeed, treatment of dengue virus infection with a nucleoside analog resulted in the expected genetic selection of resistant viruses in tissue culture and in mice. However, when the function of the oligomeric core protein was inhibited, no detectable selection of drug resistance in tissue culture or in mice was detected, despite the presence of drug-resistant variants in the population. Suppressed selection of drug-resistant virus correlated with cooligomerization of the targeted drug-susceptible and drug-resistant core proteins. The concept of “dominant drug targets,” in which inhibition of oligomeric viral assemblages leads to the formation of drug-susceptible chimeras, can therefore be used to prevent the outgrowth of drug resistance during dengue virus infection. Drug resistance is a major hurdle in the development of effective antivirals, especially those directed at RNA viruses. We have found that one can use the concept of the genetic dominance of defective subunits to “turn cousins into enemies,” i.e., to thwart the outgrowth of drug-resistant viral genomes as soon as they are generated. This requires deliberate targeting of larger assemblages, which would otherwise rarely be considered by antiviral researchers.
Collapse
|
38
|
Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov Today 2015; 21:562-72. [PMID: 26691874 PMCID: PMC7108309 DOI: 10.1016/j.drudis.2015.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
Abstract
Coronavirus nucleocapsid proteins are appealing drug targets against coronavirus-induced diseases. A variety of compounds targeting the coronavirus nucleocapsid protein have been developed. Many of these compounds show potential antiviral activity.
The advent of severe acute respiratory syndrome (SARS) in the 21st century and the recent outbreak of Middle-East respiratory syndrome (MERS) highlight the importance of coronaviruses (CoVs) as human pathogens, emphasizing the need for development of novel antiviral strategies to combat acute respiratory infections caused by CoVs. Recent studies suggest that nucleocapsid (N) proteins from coronaviruses and other viruses can be useful antiviral drug targets against viral infections. This review aims to provide readers with a concise survey of the structural features of coronavirus N proteins and how these features provide insights into structure-based development of therapeutics against coronaviruses. We will also present our latest results on MERS-CoV N protein and its potential as an antiviral drug target.
Collapse
|
39
|
Steinberger J, Skern T. The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor. Biol Chem 2015; 395:1179-85. [PMID: 24670358 DOI: 10.1515/hsz-2014-0156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
The leader proteinase (Lpro) of the foot-and-mouth disease virus inhibits the host innate immune response by at least three different mechanisms. The most well-characterised of these is the prevention of the synthesis of cytokines such as interferons immediately after infection, brought about by specific proteolytic cleavage of the eukaryotic initiation factor 4G. This prevents the recruitment of capped cellular mRNA; however, the viral RNA can be translated under these conditions. The two other mechanisms are the induction of NF-κB cleavage and the deubiquitination of immune signalling molecules. This review focuses on the structure-function relationships in Lpro responsible for these widely divergent activities.
Collapse
|
40
|
Mutational Disruption of cis-Acting Replication Element 2C in Coxsackievirus B3 Leads to 5'-Terminal Genomic Deletions. J Virol 2015; 89:11761-72. [PMID: 26355088 PMCID: PMC4645312 DOI: 10.1128/jvi.01308-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Following natural human or experimental murine infections and in cell culture, coxsackievirus B (CVB) RNA can persist for weeks in the absence of a cytopathic effect, yet viral RNA remains detectable. Our earlier studies demonstrated that this persistence produced viral RNA with up to 49 nucleotide deletions at the genomic 5' terminus which partially degraded the cloverleaf (or domain I), an RNA structure required for efficient viral replication. A cis-acting replication element (CRE) in the 2C protein-coding region [CRE(2C)] templates the addition of two uridine residues to the virus genome-encoded RNA replication primer VPg prior to positive-strand synthesis. Because our previous work also demonstrated that the genomes of CVB with a 5'-terminal deletion (CVB-TD) have VPg covalently linked, even though they rarely terminate in the canonical UU donated by CRE(2C)-mediated uridylylation of VPg, we hypothesized that a functional (uridylylating) CRE(2C) would be unnecessary for CVB-TD replication. Using the same 16 mutations in the CVB3 CRE(2C) structure that were considered lethal for this virus by others, we demonstrate here both in infected cell cultures and in mice that wild-type (wt) and CVB3-TD strains carrying these mutations with a nonuridylylating CRE(2C) are viable. While the wt genome with the mutated CRE(2C) displays suppressed replication levels similar to those observed in a CVB3-TD strain, mutation of the CRE(2C) function in a CVB3-TD strain does not further decrease replication. Finally, we show that replication of the parental CVB3 strain containing the mutated CRE(2C) drives the de novo generation of genomic deletions at the 5' terminus. IMPORTANCE In this report, we demonstrate that while CVB can replicate without a uridylylating CRE(2C), the replication rate suffers significantly. Further, deletions at the 5' terminus of the genome are generated in this virus population, with this virus population supplanting the wild-type population. This demonstrates that VPg can prime without being specifically uridylylated and that this priming is error prone, resulting in the loss of sequence information from the 5' terminus. These findings have significance when considering the replication of human enteroviruses, and we believe that these data are unattainable in a cell-free system due to the poor replication of these CRE-deficient viruses.
Collapse
|
41
|
Kazakov T, Yang F, Ramanathan HN, Kohlway A, Diamond MS, Lindenbach BD. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathog 2015; 11:e1004817. [PMID: 25875808 PMCID: PMC4395149 DOI: 10.1371/journal.ppat.1004817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
Collapse
Affiliation(s)
- Teymur Kazakov
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Feng Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Abstract
New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections.
Collapse
|
43
|
Tanner EJ, Liu HM, Oberste MS, Pallansch M, Collett MS, Kirkegaard K. Dominant drug targets suppress the emergence of antiviral resistance. eLife 2014; 3. [PMID: 25365453 PMCID: PMC4270081 DOI: 10.7554/elife.03830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/01/2014] [Indexed: 12/18/2022] Open
Abstract
The emergence of drug resistance can defeat the successful treatment of pathogens that display high mutation rates, as exemplified by RNA viruses. Here we detail a new paradigm in which a single compound directed against a ‘dominant drug target’ suppresses the emergence of naturally occurring drug-resistant variants in mice and cultured cells. All new drug-resistant viruses arise during intracellular replication and initially express their phenotypes in the presence of drug-susceptible genomes. For the targets of most anti-viral compounds, the presence of these drug-susceptible viral genomes does not prevent the selection of drug resistance. Here we show that, for an inhibitor of the function of oligomeric capsid proteins of poliovirus, the expression of drug-susceptible genomes causes chimeric oligomers to form, thus rendering the drug-susceptible genomes dominant. The use of dominant drug targets should suppress drug resistance whenever multiple genomes arise in the same cell and express products in a common milieu. DOI:http://dx.doi.org/10.7554/eLife.03830.001 Treating a viral infection with a drug sometimes has an unwanted side effect—the virus quickly becomes resistant to the drug. Viruses whose genetic information is encoded in molecules of RNA mutate faster than DNA viruses and are particularly good at developing resistance to drugs. This is because the process of copying the RNA is prone to errors, and by chance some of these errors, or mutations, may allow the virus to resist the drug's effects. Treating viral infections with most drugs destroys the viruses that are susceptible to the drug and inadvertently ‘selects’ for viruses that are resistant to the drug's effects. These drug-resistant viruses are harder to treat and often require physicians to switch between different drugs. Sometimes these new drug-resistant viruses spread and these new infections cannot be treated with drugs that would have worked in the past. So far, the best strategy to prevent drug-resistant viruses from growing in patients is to use multiple drugs, such as the life-saving treatments for HIV infection. However, for many viral infections—such as those that cause the common cold, dengue fever, Ebola, and polio—no drugs are yet available to treat infected people. Moreover, there are concerns that, if a new drug is used on its own, the viruses will quickly develop resistance to the drug and render it ineffective. Tanner et al. now show that an antiviral drug that interferes with the formation of the outer layer (or capsid) of the poliovirus inhibits the emergence of drug resistance. The drug, called V-073, is currently being tested as a treatment for poliovirus and will be useful in the worldwide eradication effort. Tanner et al. show that treating poliovirus-infected mice with V-073 does not select for drug-resistant strains of the virus—and provide evidence that this occurs because the drug targets an assemblage of proteins. The poliovirus capsid is assembled from a mix of proteins from different naturally occurring strains of the virus within the infected cell. A new strain of virus is always ‘born’ into a cell that is already infected by other viruses, which could be thought of as its parents, cousins and siblings. A new drug-resistant virus will therefore be forced to mix its capsid proteins with those of its ‘family’ members, who are all drug-sensitive. These hybrid capsids will remain vulnerable to the drug—and in this way, the resistant strains do not become the dominant form of the virus. Tanner et al. also discovered a way to screen for drugs that have a similar resistance-blocking effect. These drugs would target capsids, or other viral structures made up of a mix of proteins from different virus strains. Such drugs might be useful against other viruses including the ones that cause the common cold, hepatitis C, or dengue fever. DOI:http://dx.doi.org/10.7554/eLife.03830.002
Collapse
Affiliation(s)
- Elizabeth J Tanner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Hong-mei Liu
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - M Steven Oberste
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - Mark Pallansch
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | | | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
44
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
45
|
Exploration of sequence space as the basis of viral RNA genome segmentation. Proc Natl Acad Sci U S A 2014; 111:6678-83. [PMID: 24757055 DOI: 10.1073/pnas.1323136111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region. These genomes were infectious and killed cells by complementation. Here we show that the point mutations in the nonstructural protein-coding region (P2, P3) that accumulated in the standard genome before segmentation increased the relative fitness of the segmented version relative to the standard genome. Fitness increase was documented by intracellular expression of virus-coded proteins and infectious progeny production by RNAs with the internal deletions placed in the sequence context of the parental and evolved genome. The complementation activity involved several viral proteins, one of them being the leader proteinase L. Thus, a history of genetic drift with accumulation of point mutations was needed to allow a major variation in the structure of a viral genome. Thus, exploration of sequence space by a viral genome (in this case an unsegmented RNA) can reach a point of the space in which a totally different genome structure (in this case, a segmented RNA) is favored over the form that performed the exploration.
Collapse
|
46
|
Sholders AJ, Peersen OB. Distinct conformations of a putative translocation element in poliovirus polymerase. J Mol Biol 2014; 426:1407-19. [PMID: 24424421 PMCID: PMC3963463 DOI: 10.1016/j.jmb.2013.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Abstract
The mechanism whereby RNA is translocated by the single subunit viral RNA-dependent RNA polymerases is not yet understood. These enzymes lack homologs of the "O-helix" structures and associated fingers domain movements thought to be responsible for translocation in many DNA-templated polymerases. The structures of multiple picornavirus polymerase elongation complexes suggest that these enzymes use a different molecular mechanism where translocation is not strongly coupled to the opening of the active site following catalysis. Here we present the 2.0- to 2.6-Å-resolution crystal structures and biochemical data for 12 poliovirus polymerase mutants that together show how proper enzyme functions and translocation activity requires conformational flexibility of a loop sequence in the palm domain B-motif. Within the loop, the Ser288-Gly289-Cys290 sequence is shown to play a major role in the catalytic cycle based on RNA binding, processive elongation activity, and single nucleotide incorporation assays. The structures show that Ser288 forms a key hydrogen bond with Asp238, the backbone flexibility of Gly289 is required for translocation competency, and Cys290 modulates the overall elongation activity of the enzyme. Some conformations of the loop represent likely intermediates on the way to forming the catalytically competent closed active site, while others are consistent with a role in promoting translocation of the nascent base pair out of the active site. The loop structure and key residues surrounding it are highly conserved, suggesting that the structural dynamics we observe in poliovirus 3D(pol) are a common feature of viral RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Aaron J Sholders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
47
|
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol 2013; 87:10423-34. [PMID: 23903828 PMCID: PMC3807403 DOI: 10.1128/jvi.01049-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697 USA
| | | | | |
Collapse
|
48
|
Neubauer D, Aumayr M, Gösler I, Skern T. Specificity of human rhinovirus 2A(pro) is determined by combined spatial properties of four cleavage site residues. J Gen Virol 2013; 94:1535-1546. [PMID: 23580429 DOI: 10.1099/vir.0.051201-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2A proteinase (2A(pro)) of human rhinoviruses cleaves the virally encoded polyprotein between the C terminus of VP1 and its own N terminus. Poor understanding of the 2A(pro) substrate specificity of this enzyme has hampered progress in developing inhibitors that may serve as antiviral agents. We show here that the 2A(pro) of human rhinovirus (HRV) 1A and 2 (rhinoviruses from genetic group A) cannot self-process at the HRV14 (a genetic group B rhinovirus) cleavage site. When the amino acids in the cleavage site of HRV2 2A(pro) (Ile-Ile-Thr-Thr-Ala*Gly-Pro-Ser-Asp) were singly or doubly replaced with the corresponding HRV14 residues (Asp-Ile-Lys-Ser-Tyr*Gly-Leu-Gly-Pro) at positions from P3 to P2', HRV1A and HRV2 2A(pro) cleavage took place at WT levels. However, when three or more positions of the HRV1A or 2 2A(pro) were substituted (e.g. at P2, P1 and P2'), cleavage in vitro was essentially eliminated. Introduction of the full HRV14 cleavage site into a full-length clone of the HRV1A and transfection of HeLa cells with a transcribed RNA did not give rise to viable virus. In contrast, revertant viruses bearing cysteine at the P1 position or proline at P2' were obtained when an RNA bearing the three inhibitory amino acids was transfected. Reversions in the enzyme affecting substrate specificity were not found in any of the in vivo experiments. Modelling of oligopeptide substrates onto the structure of HRV2 2A(pro) revealed no appreciable differences in residues of HRV2 and HRV14 in the respective substrate binding sites, suggesting that the overall shape of the substrate is important in determining binding efficiency.
Collapse
Affiliation(s)
- David Neubauer
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Martina Aumayr
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Irene Gösler
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
49
|
Abstract
RNA viruses face dynamic environments and are masters at adaptation. During their short 'lifespans', they must surmount multiple physical, anatomical and immunological challenges. Central to their adaptative capacity is the enormous genetic diversity that characterizes RNA virus populations. Although genetic diversity increases the rate of adaptive evolution, low replication fidelity can present a risk because excess mutations can lead to population extinction. In this Review, we discuss the strategies used by RNA viruses to deal with the increased mutational load and consider how this mutational robustness might influence viral evolution and pathogenesis.
Collapse
|
50
|
Fitzgerald KD, Chase AJ, Cathcart AL, Tran GP, Semler BL. Viral proteinase requirements for the nucleocytoplasmic relocalization of cellular splicing factor SRp20 during picornavirus infections. J Virol 2013; 87:2390-400. [PMID: 23255796 PMCID: PMC3571363 DOI: 10.1128/jvi.02396-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023] Open
Abstract
Infection of mammalian cells by picornaviruses results in the nucleocytoplasmic redistribution of certain host cell proteins. These viruses interfere with import-export pathways, allowing for the cytoplasmic accumulation of nuclear proteins that are then available to function in viral processes. We recently described the cytoplasmic relocalization of cellular splicing factor SRp20 during poliovirus infection. SRp20 is an important internal ribosome entry site (IRES) trans-acting factor (ITAF) for poliovirus IRES-mediated translation; however, it is not known whether other picornaviruses utilize SRp20 as an ITAF and direct its cytoplasmic relocalization. Also, the mechanism by which poliovirus directs the accumulation of SRp20 in the cytoplasm of the infected cell is currently unknown. Work described in this report demonstrated that infection by another picornavirus (coxsackievirus B3) causes SRp20 to relocalize from the nucleus to the cytoplasm of HeLa cells, similar to poliovirus infection; however, SRp20 is relocalized to a somewhat lesser extent in the cytoplasm of HeLa cells during infection by yet another picornavirus (human rhinovirus 16). We show that expression of poliovirus 2A proteinase is sufficient to cause the nucleocytoplasmic redistribution of SRp20. Following expression of poliovirus 2A proteinase in HeLa cells, we detect cleavage of specific nuclear pore proteins known to be cleaved during poliovirus infection. We also find that expression of human rhinovirus 16 2A proteinase alone can cause efficient cytoplasmic relocalization of SRp20, despite the lower levels of SRp20 relocalization observed during rhinovirus infection compared to poliovirus. Taken together, these results further define the mechanism of SRp20 cellular redistribution during picornavirus infections, and they provide additional insight into some of the differences observed between human rhinovirus and other enterovirus infections.
Collapse
Affiliation(s)
- Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|