1
|
Frittelli A, Botticella E, Palombieri S, Metelli G, Masci S, Silvestri M, Lafiandra D, Sestili F. Improving the agronomic performance of high-amylose durum wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112459. [PMID: 40064352 DOI: 10.1016/j.plantsci.2025.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
High-amylose wheat has garnered significant attention from the food industry for its potential to produce low-glycaemic food products. It is well-established that there is a direct correlation between the amylose content in flour and the amount of resistant starch (RS) in foods. Recently, some research initiatives have successfully produced high-amylose durum wheat by targeting key enzymes in the amylopectin biosynthesis pathway, though this has resulted in a reduction in seed weight. This study aimed to develop durum wheat genotypes with enhanced nutritional and agronomic traits by pyramiding mutations in the SSIIa genes and the GW2-A1 null allele. A cross between Svevo SSIIa- and Kronos GW2-A1- was performed, and marker-assisted selection (MAS) strategies were employed to identify ten sister lines (GW2-A1-/SSIIa-). Biochemical analyses revealed that the GW2-A1-/SSIIa- genotypes exhibited significantly higher amylose and resistant starch (5-10-fold) levels compared to Svevo and GW2-A1- controls. Phenotypic analyses highlighted that GW2-A1-/SSIIa- lines showed a 50 % increase in hundred-grain weight (HGW) and improved grain size parameters compared to Svevo SSIIa-, though these values remained lower than Svevo and Kronos GW2-A1-. Yield per plot increased by 67 % compared to Svevo SSIIa- but was 30-40 % lower than Svevo and Kronos GW2-A1-. Gene expression analysis revealed upregulation of key starch biosynthesis genes (Susy2, UGPase) in GW2-A1-/SSIIa- lines, suggesting compensatory mechanisms for reduced starch content. Downregulation of TPS7 indicated potential limitations in trehalose-6-phosphate biosynthesis, which may influence starch accumulation. This study demonstrates that combining SSIIa and GW2-A1 null mutations can mitigate yield losses associated with high-amylose genotypes while maintaining elevated levels of resistant starch and dietary fiber.
Collapse
Affiliation(s)
- Arianna Frittelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giulio Metelli
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | | | - Domenico Lafiandra
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
2
|
Rathore RS, Jiang W, Sedeek K, Mahfouz M. Harnessing neo-domestication of wild pigmented rice for enhanced nutrition and sustainable agriculture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:108. [PMID: 40317300 DOI: 10.1007/s00122-025-04896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
Advances in precision gene editing have enabled the rapid domestication of wild crop relatives, a process known as neo-domestication. During domestication, breeding rice for maximum productivity under optimal growth conditions reduced genetic diversity, eliminating variants for stress tolerance and grain nutrients. Wild rice varieties have rich genetic diversity, including variants for disease resistance, stress tolerance, and grain nutritional quality. For example, the grain of pigmented wild rice has abundant antioxidants (anthocyanins, proanthocyanidins, and flavonoids), but low yield, poor plant architecture, and long life cycle limit its cultivation. In this review, we address the neo-domestication of wild pigmented rice, focusing on recent progress, CRISPR-Cas editing toolboxes, selection of key candidate genes for domestication, identifying species with superior potential via generating genomic and multi-omics resources, efficient crop transformation methods and highlight strategies for the promotion and application pigmented rice. We also address critical outstanding questions and potential solutions to enable efficient neo-domestication of wild pigmented rice and thus enhance food security and nutrition.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Zhuang L, Du L, Liu H, Liu H, Li H, Zhang Y, Liu Y, Hou J, Li T, Yang D, Zhang X, Hao C. Joint linkage and association analysis identifies genomic regions and candidate genes for yield-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:107. [PMID: 40314838 PMCID: PMC12048430 DOI: 10.1007/s00122-025-04900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
KEY MESSAGE Twenty-six QTLs associated with yield-related traits in wheat were identified through joint linkage and association analysis, with TraesCS5A03G0002500 being selected as a candidate gene for QGl.caas-5A.1. As a major staple crop worldwide, continuously increasing wheat yield is crucial for ensuring food security. Wheat yield is influenced by multiple traits, and elucidating the genetic basis of yield-related traits lays a foundation for future gene cloning and molecular mechanism studies. In this study, a recombinant inbred line (RIL) population derived from 292 lines of Hengguan 35/Zhoumai 18 was genotyped with the Affymetrix wheat 660 K SNP array. Combined with the phenotype of the RIL population in 13 environments, linkage analysis of six yield-related traits including plant height, grain number per spike, thousand-grain weight, grain length, grain width, and grain thickness was conducted. A total of 262 quantitative trait locus (QTLs) (logarithm of odds [LOD] > 3) were identified across 21 chromosomes, in which 50 QTLs were repeatedly detected in more than three environments. Numerous QTLs harbored cloned genes and overlapped with those reported in previous studies. Subsequently, joint analysis of genome-wide association study (GWAS) data from the advanced backcross-nested association mapping plus inter-crossed (AB-NAMIC) population and QTLs identified in the RIL population revealed 26 overlapping genomic regions. Notably, the QGl.caas-5A.1 associated with grain length on chromosome 5A was detected in both the RIL and AB-NAMIC populations, and TraesCS5A03G0002500 was selected as a candidate gene. A kompetitive allele-specific PCR (KASP) marker based on a variant [A/G] in TraesCS5A03G0002500 was developed and validated in a natural population containing 350 accessions. Taken together, these results provide valuable information for fine mapping and cloning of yield-related wheat genes in the future.
Collapse
Affiliation(s)
- Lei Zhuang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Du
- Jiaozuo Academy of Agricultural and Forestry Sciences, Jiaozuo, 454000, Henan, China
| | - Haixia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Gao Q, Ding J, Dong S, Zheng K, Liu X, Yuan C. Trihelix Transcription Factor OsTGS1 Regulates Grain Size and Weight in Rice. RICE (NEW YORK, N.Y.) 2025; 18:31. [PMID: 40299154 PMCID: PMC12040797 DOI: 10.1186/s12284-025-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Grain size is one of the major factors determining rice grain yield. Nevertheless, our knowledge of the molecular mechanisms underlying the control rice grain size remains limited. Trihelix proteins are plant-specific transcription factors that regulate plant growth and development. However, their roles in modulating grain size in cereal crops are largely unknown. Here, we report the rice trihelix family gene Oryza sativa trihelix transcription factor related to grain size 1 (OsTGS1) as a novel regulator of grain size and weight. Mutation of OsTGS1 leads to large and heavy grains, whereas overexpression of OsTGS1 results in small and light grains. OsTGS1 regulates grain size by influencing cell division and cell expansion in spikelet hulls. OsTGS1 is expressed in various tissues, and its expression level increases during panicle development. The OsTGS1 protein is localized to the nucleus and exhibits transcriptional repressor activity. The screening of interacting proteins via a yeast two-hybrid assay revealed that OsTGS1 interacted with GSK3/SHAGGY-LIKE KINASE2 (GSK2), an important regulator of various agronomic traits, including grain size, in rice. Moreover, ostgs1 mutants are hypersensitive to exogenous brassinosteroid treatment, indicating that OsTGS1 may be involved in brassinosteroid signaling. Our study reveals the role of OsTGS1 in controlling grain size and provides a new gene resource for improving grain weight in rice.
Collapse
Affiliation(s)
- Qingsong Gao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Jiayi Ding
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Shiqing Dong
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Kezhi Zheng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Xi Liu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China.
| | - Caiyong Yuan
- Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China.
| |
Collapse
|
5
|
Yang J, Meng P, Mi H, Wang X, Yang J, Fu S, Gong W, Bao R, Deng W, Wu H, Liu Z, Yang S, Ni J, Liu J, Shi H. The development of ideal insertion and deletion (InDel) markers and initial indel map variation in cucumber using re-sequenced data. BMC Genomics 2025; 26:391. [PMID: 40251483 PMCID: PMC12008987 DOI: 10.1186/s12864-025-11584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND InDels are the most common type of length polymorphism and play a critical role in the genetic traits of many important phenotypes in both plants and animals, making them an ideal source for length polymorphism molecular markers. However, in the process of cucumber breeding, researchers still face deficiencies in the identification of InDel loci and the development of genomic-wide molecular markers. RESULTS In this study, we conducted InDel identification on 115 cucumber re-sequencing datasets, identifying a total of 7,842,946 InDels, with lengths ranging from 1 to 59 bp and an average density of one InDel every 2.8 kb on the chromosomes. The InDel variations were classified into four main categories, and 81 InDel hotspots were identified, serving as the foundation for constructing a cucumber InDel variation map. Additionally, we utilized an electronic PCR strategy to develop genome-wide InDel markers for cucumber, resulting in the selection of 22,442 InDel primers exhibiting high polymorphism (PIC ≥ 0.5) and major allele differences of ≥ 3 bp. We experimentally validated 50 randomly selected InDel primers, and the results showed that all markers exhibited high polymorphism. CONCLUSIONS The construction of the cucumber genome InDel variation map aids in understanding the genetic basis of key traits in cucumber derived from InDel variations. The ideal InDel markers developed in this study may enhance the efficiency of cucumber breeding for resistance to both biotic and abiotic stresses, as well as scientific research.
Collapse
Affiliation(s)
- Jinchang Yang
- Chengdu Academy of Agricultural and Forestry Sciences, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Hang Mi
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jin Yang
- Chengdu Academy of Agricultural and Forestry Sciences, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Shaohong Fu
- Chengdu Academy of Agricultural and Forestry Sciences, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Wanzhuo Gong
- Chengdu Academy of Agricultural and Forestry Sciences, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Sijia Yang
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No 211 Huiming Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry Sciences, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, No 200 Nongke Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2662-2690. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
7
|
Xian F, Liu S, Huang J, Xie B, Zhu L, Zhang Q, Lv C, Xu Y, Zhang X, Hu J. The OsIAA3-OsARF16-OsBUL1 auxin signaling module regulates grain size in rice. PLANT PHYSIOLOGY 2025; 197:kiaf122. [PMID: 40156155 DOI: 10.1093/plphys/kiaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Auxin plays an important role in various aspects of plant growth and development. However, the molecular mechanism underlying the control of grain size via auxin signaling pathways remains obscure. Here, we report that AUXIN/INDOLE-3-ACETIC ACID protein 3 (OsIAA3) positively regulates rice (Oryza sativa) grain size by promoting the cell expansion and proliferation of spikelet hulls. OsIAA3 interacted with 11 AUXIN RESPONSE FACTORS (ARFs), among which the interaction with OsARF16 was the strongest. The osarf16 knockout mutant showed smaller grains with decreased grain length, grain width, grain thickness, and 1,000-grain weight. Meanwhile, transgenic plants overexpressing OsARF16 produced noticeably larger grains with increased grain length and 1,000-grain weight. O. sativa BRASSINOSTEROID UPREGULATED 1-LIKE (OsBUL1), which encodes an atypical bHLH protein that positively regulates grain size by promoting cell expansion, is a direct target gene of OsARF16. The interaction between OsIAA3 and OsARF16 repressed the transcriptional activation of OsARF16 on OsBUL1. Our study reveals an OsIAA3-OsARF16-OsBUL1 module that regulates grain size, refining the molecular mechanism of the auxin signaling pathway involved in grain size control.
Collapse
Affiliation(s)
- Fengjun Xian
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shuya Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Zhu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiannan Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210016, China
| | - Chen Lv
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yimeng Xu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinrong Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
8
|
Huang L, Fang N, Zhang L, Xu R, Zhang B, Duan P, Li G, Luo Y, Li Y. The Mediator subunit OsMED23 associates with the histone demethylase OsJMJ703 and the transcription factor OsWOX3A to control grain size and yield in rice. Proc Natl Acad Sci U S A 2025; 122:e2419464122. [PMID: 40117312 PMCID: PMC11962494 DOI: 10.1073/pnas.2419464122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/07/2025] [Indexed: 03/23/2025] Open
Abstract
Seed size is one of the important yield traits, and size control is also a fundamental developmental question. The knowledge about the genetic and molecular mechanisms that govern seed size is crucial for improving crop yield. Here, we report that the Mediator subunit OsMED23 associates with the histone demethylase OsJMJ703 and the transcription factor OsWOX3A to control grain size and weight in rice. Loss of function of OsMED23 or OsJMJ703 causes narrow and light grains, while overexpression of OsMED23 or OsJMJ703 results in large and heavy grains. OsMED23 physically interacts with OsJMJ703 and the transcription factor OsWOX3A. OsMED23, OsJMJ703, and OsWOX3A associate with the common promoter regions of two key grain size genes GW2 and OsLAC and repress their transcription by influencing H3K4me3 levels. Field trials demonstrate that overexpression of OsMED23 or OsJMJ703 can significantly increase grain yield. Therefore, our findings identify a mechanism by which the transcriptional repressor complex OsJMJ703-OsMED23-OsWOX3A determines grain size and weight by regulating gene expression and influencing H3K4me3 levels in rice, suggesting that this pathway has a great potential for improving grain yield in key crops.
Collapse
Affiliation(s)
- Luojiang Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya572025, China
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Na Fang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya572025, China
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Limin Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot010020, China
| | - Ran Xu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya572025, China
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Baolan Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Penggen Duan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Guansong Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya572025, China
| | - Yuehua Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya572025, China
| | - Yunhai Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100039, China
| |
Collapse
|
9
|
Lu W, Cai G, Xing Y, Fu X, Zhou L, Tang Y, Xu R, Li Y, Wu L. SWG5 regulates grain size and weight via sugar metabolism-mediated signaling in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1552268. [PMID: 40201785 PMCID: PMC11977390 DOI: 10.3389/fpls.2025.1552268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025]
Abstract
Grain size significantly affects rice yield and quality. Although several genes that regulate grain size have been identified, their mechanisms remain unclear. In this study, we characterized the swg5 mutant, which has a smaller plant height, shorter panicles, and smaller grains compared to the wild type (WT). MutMap resequencing and gene knockout analysis identified SWG5, a gene encoding the kinesin-13a protein, a new allele of SRS3 that positively regulates grain length and weight. RNA sequencing analyses revealed that the SWG5 allele is involved in diterpenoid biosynthesis, amino sugar metabolism, and pentose-glucuronate interconversions. Furthermore, young panicles of the swg5 mutant exhibited decreased sucrose invertase activity as well as reduced sugar and starch content. These findings indicate that SWG5/SRS3 plays a significant role in sugar metabolism, influencing grain size and weight in rice. This research provides valuable insights into breeding rice varieties with improved yield and grain quality.
Collapse
Affiliation(s)
- Wenhui Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Gaoyi Cai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yannan Xing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Xingzhe Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yijun Tang
- Zunyi Normal College, Department of Resources and Environment, Zunyi, Guizhou, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences (CAS) Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| |
Collapse
|
10
|
Bharali V, Yadla S, Thati S, Bitra B, Karapati D, Chirravuri NN, Badri J, Sundaram RM, Jukanti AK. Mapping Genomic Regions for Grain Protein Content and Quality Traits in Milled Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:905. [PMID: 40265844 PMCID: PMC11944466 DOI: 10.3390/plants14060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Grain protein content (GPC) is gaining attention due to increasing consumer demand for nutritious foods. The present study carried out at ICAR-IIRR, Hyderabad, focused on the identification of quantitative trait loci (QTLs) linked with GPC and other quality traits. We utilized a population of 188 F2 individuals developed from BPT 5204 (low GPC) X JAK 686 (high GPC) for QTL analysis. QTL analysis yielded four significant QTLs for GPC, three for amylose content, and multiple QTLs for other quality traits. qPC1.2, a major QTL in milled rice, was located in the marker interval RM562-RM11307 on chromosome 1 with an LOD value of 4.4. qPC1.2 explained 15.71% of the phenotypic variance (PVE). Additionally, the Interval Mapping for Epistatic QTLs (IM-EPI) method detected 332 pairs of di-genic epistatic QTLs. Fifteen QTLs exhibited a positive additive effect, indicating that the contributing allele(s) was from JAK 686. Five F2 plants, viz., F2-140, F2-12, F2-7, F2-147, and F2-41, exhibited a high GPC of 14.67%, 14.36%, 14.32%, 13.60%, and 13.36%, respectively. Additionally, these plants also exhibited high per-plant grain yield (~17.0-29.0 g) with desirable agronomic traits. The QTLs identified are valuable resources for developing high-grain-protein varieties with high grain yield and desirable quality traits.
Collapse
Affiliation(s)
- Violina Bharali
- Agricultural College, Acharya NG Ranga Agricultural University, Bapatla 522101, India
| | - Suneetha Yadla
- Regional Agricultural Research Station (RARS), Maruteru 534122, India
| | - Srinivas Thati
- Regional Agricultural Research Station (RARS), Maruteru 534122, India
| | - Bhargavi Bitra
- Agricultural College, Acharya NG Ranga Agricultural University, Bapatla 522101, India
| | - Divya Karapati
- ICAR—Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, India
| | | | - Jyothi Badri
- ICAR—Indian Institute of Rice Research, Rajendranagar, Hyderabad 500030, India
| | | | | |
Collapse
|
11
|
Chen L, Chen W, Li J, Wei Y, Qing D, Huang J, Yang X, Tang M, Zhang Z, Yu J, Deng G, Dai G, Chen C, Liang T, Pan Y. Identifying Heat Adaptability QTLs and Candidate Genes for Grain Appearance Quality at the Flowering Stage in Rice. RICE (NEW YORK, N.Y.) 2025; 18:13. [PMID: 40067644 PMCID: PMC11896946 DOI: 10.1186/s12284-025-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
High temperature significantly impacts grain appearance quality, yet few studies have focused on identifying new quantitative trait loci (QTLs)/genes related to these traits under heat stress during the flowering stage in rice. In this study, a natural population of 525 rice accessions was used to identify QTLs and candidate genes associated with grain appearance quality using a Genome-Wide Association Study under heat stress. We identified 25 QTLs associated with grain length (GL), grain width (GW), and grain chalkiness (GC) under heat stress across 10 chromosomes in the three rice populations (full, indica, and japonica). Notably, three sets of overlapping QTLs were identified (set 1: qHTT-L3 and qHTT-XL3; set 2: qHTT-C5 and qHTT-XC5; set 3: qHTT-L11.1 and qHTT-GL11), located on chromosomes 3, 5, and 11, respectively. Haplotype analysis indicated that Hap1 is the superior haplotype, and pyramiding more than two superior alleles improved rice grain appearance quality (longer GL, wider GW, and lower GC) in high-temperature environments. Based on RNA-seq, qRT-PCR and functional annotations analysis, LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 were highly expressed, identifying them as the high-priority candidate genes for QTLs linked to grain appearance quality (GL, GW, and GC) under heat stress. Expression analysis revealed that LOC_Os05g06920, which encodes a relA-SpoT-like protein RSH4, and LOC_Os11g28104, which encodes a protein kinase with a DUF26 domain, were highly expressed in seeds, leaves, and shoots. And LOC_Os05g06970, encoding a peroxidase precursor, exhibited high expression levels in roots. Compared to the wild-type (WT) plants, the mutants of LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 exhibited increased GL and grain length-to-width ratio, but reduced GW under both natural and heat stress conditions, while the LOC_Os05g06970 and LOC_Os11g28104 mutants significantly increased the chalky grain rate and grain chalkiness degree under natural conditions. Furthermore, the LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 mutants showed a lower decline in grain appearance quality traits than the WT after high-temperature treatment. These findings suggest that LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 play crucial roles in regulating both grain development and heat tolerance under heat stress at anthesis, thus affecting grain appearance quality in rice. Our results provide a promising genetic resource for improving rice grain appearance quality under heat stress.
Collapse
Affiliation(s)
- Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Jin Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yu Wei
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Juan Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Maoyan Tang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Zhanying Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yu
- College of Plant Science and Technology/Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing, 102206, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.
| | - Chao Chen
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding/Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, China.
| | - Tianfeng Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
12
|
Yaseen M, Tariq N, Kanwal R, Farooq A, Wang H, Yuan H. Rice grain size: current regulatory mechanisms and future perspectives. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01626-8. [PMID: 40056359 DOI: 10.1007/s10265-025-01626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Rice is a staple food for over half of the world's population. To feed the growing population, molecular breeders aim to increase grain yield. Grain size is an important factor for crop productivity, and it has been extensively studied. However, molecular breeders face a major challenge in further improving crop productivity in terms of grain yield and quality. Grain size is a complex trait controlled by multiple genes. Over the past few decades, genetic studies have identified various gene families involved in grain size development. The list of molecular mechanisms, and key regulators involved in grain size development is constantly expanding, making it difficult to understand the main regulators that play crucial roles in grain development. In this review, we focus on the major regulators of grain size, including G-protein signaling, the mitogen-activated protein kinase (MAPK) pathway, transcriptional regulation, the ubiquitin-proteasome degradation (UPD) pathway, and phytohormone signaling. These molecular mechanisms directly or indirectly regulate grain size. We provided a comprehensive understanding of the genes involved in these mechanisms and cross discussions about how these mechanisms are interlinked. This review serves as a valuable resource for understanding the molecular mechanisms that govern grain development and can aid in the development of molecular breeding strategies.
Collapse
Affiliation(s)
- Muhammad Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Naveed Tariq
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rida Kanwal
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Akasha Farooq
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Bian R, Liu N, Xu Y, Su Z, Chai L, Bernardo A, St. Amand P, Rupp J, Pumphrey M, Fritz A, Zhang G, Jordan KW, Bai G. A novel quantitative trait locus for barley yellow dwarf virus resistance and kernel traits on chromosome 2D of a wheat cultivar Jagger. THE PLANT GENOME 2025; 18:e20548. [PMID: 39853960 PMCID: PMC11760652 DOI: 10.1002/tpg2.20548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/26/2025]
Abstract
Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095). A linkage map of 3106 cM consisting of 21 wheat chromosomes was developed using 1003 unique single nucleotide polymorphisms (SNPs) from the RIL population and was used to identify QTLs for BYDV resistance and yield-related traits, including 1000-kernel weight (TKW), kernel area (KA), kernel width (KW), and kernel length (KL). QByd.hwwg-2DL, a QTL on chromosome arm 2DL for BYDV resistance, was consistently identified in three field experiments and explained 11.6%-44.5% of the phenotypic variation. For yield-related traits, six major and repeatable QTLs were identified on 1AS (QKa.hwwg-1AS), 2DL (QTkw.hwwg-2DL, QKa.hwwg-2DL, QKw.hwwg-2DL, and QKl.hwwg-2DL), and 5AL (QKw.hwwg-5AL). The major QTLs on chromosome 2DL for TKW, KA, KW, and KL were mapped between 621 and 643 Mb, overlapping with QByd.hwwg-2DL with all the favorable alleles from Jagger. This study reports the first native BYDV resistance QTL (QByd.hwwg-2DL) originating from common wheat and tightly linked markers to the QTL for improvement of wheat BYDV resistance in wheat breeding.
Collapse
Affiliation(s)
- Ruolin Bian
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Na Liu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yuzhou Xu
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Zhenqi Su
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- China Agricultural UniversityBeijingChina
| | - Lingling Chai
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- China Agricultural UniversityBeijingChina
| | - Amy Bernardo
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| | - Paul St. Amand
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| | - Jessica Rupp
- Department of Plant PathologyKansas State UniversityManhattanKansasUSA
| | - Michael Pumphrey
- Department of Crop and Soil SciencesWashington State UniversityPullmanWashingtonUSA
| | - Allan Fritz
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Guorong Zhang
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | | | - Guihua Bai
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- USDA‐ARS, Hard Winter Wheat Genetics Research UnitManhattanKansasUSA
| |
Collapse
|
14
|
Zhang Y, Zhen S, Zhang C, Zhang J, Shangguan X, Lu J, Wu Q, Dirk LMA, Downie AB, Wang G, Zhao T, Fu J. Natural variation of CT2 affects the embryo/kernel weight ratio in maize. J Genet Genomics 2025; 52:432-440. [PMID: 39343093 DOI: 10.1016/j.jgg.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sihan Zhen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Seed Science and Technology Research Center, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory for Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; School of Management Science and Real Estate, Chongqing University, Chonging 400045, China
| | - Chunxia Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Shangguan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianyong Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Li S, Li T, Zhang P, Wang X, Feng W, Zhang Y, Chen B, Liu Y, Zhan G, Hao C, Zhang X, Kang Z, Mao H. The E3 ubiquitin ligase TaGW2 facilitates TaSnRK1γ and TaVPS24 degradation to enhance stripe rust susceptibility in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:750-765. [PMID: 39625738 PMCID: PMC11869196 DOI: 10.1111/pbi.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 03/01/2025]
Abstract
Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production, and therefore discovering genes involved in stripe rust susceptibility is essential for balancing yield with disease resistance in sustainable breeding strategies. Although TaGW2 is well known to negatively regulate wheat kernel size and weight, its role in stress response remains unclear. Here, we found that TaGW2 transcription levels increased following inoculation with Pst or treatment with flg22 or chitin. TaGW2 knockdown lines showed enhanced resistance to multiple Pst races, while TaGW2 overexpression reduced host defence response, promoted Pst growth and development and increased wheat susceptibility to Pst. Additionally, TaGW2 could mediate the ubiquitination and degradation of both TaSnRK1γ and TaVPS24 via the 26S proteasome pathway. Silencing TaSnRK1γ or TaVPS24 in wheat increased sensitivity to Pst, whereas overexpressing either gene enhanced wheat defence response, indicating that TaSnRK1γ and TaVPS24 act as positive regulators of Pst resistance. This study reveals a previously unrecognized mechanism inhibiting plant immunity to Pst through TaGW2-mediated ubiquitination and degradation of TaSnRK1γ and TaVPS24. This work also provides crucial genetic resources for breeding high-yield, stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Shumin Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Peiyin Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xuemin Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Wenxuan Feng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Yifang Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Bin Chen
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuling Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
16
|
Sang L, Xu E, Liu Y, Hu T, Yang M, Niu J, Lu C, Zhou Y, Sun Y, Zhai Z, Abdulmajid D, Zhang P, Wang Q, La H, Zou Y. Transcriptomic analysis offers deep insights into the Increased Grain Length 1 (IGL1) regulation of grain length. BMC PLANT BIOLOGY 2025; 25:264. [PMID: 40011803 PMCID: PMC11866874 DOI: 10.1186/s12870-025-06279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Although great progress has been made in recent years in identifying novel genes or natural alleles for rice yield improvement, the molecular mechanisms of how these genes/natural alleles regulate yield-associated traits, such as grain length and 1000-grain weight, remain largely unclear. An in-depth understanding of the roles of these genes/natural alleles in controlling yield traits become a necessity to ultimately increase rice yield via novel molecular techniques, such as gene editing. RESULTS In this study, the roles of IGL1, which was previously identified through a map-based cloning approach, in the regulation of grain length were investigated by overexpressing and knocking out it in the Nipponbare genetic background. Overexpression and knockout of IGL1 (the resulting transgenic lines were hereafter designated IGL1-OE and IGL1-CR lines, respectively) led to elongation and shortening of grains, respectively. To further elucidate the molecular mechanisms behind the IGL1 action, young panicles from IGL1-OE and IGL1-CR lines were subjected to mRNA sequencing. The results showed that both overexpression and knockout of IGL1 all resulted in a large number of upregulated and downregulated differentially expression genes (DEGs) relative to wild-type NPB control lines. A total of 984 DEGs overlapped between upregulated DEGs from IGL1-OE and downregulated DEGs from IGL1-CR; 1146 DEGs were common to downregulated DEGs from IGL1-OE and upregulated DEGs from IGL1-CR. GO term and KEGG pathway analysis revealed that IGL1-upregulated DEGs were associated with extracellular region, protein ubiquitination, cell-wall modification, BR signaling, cell cycle, etc.; by comparison, the IGL1-downregulated DEGs were connected with extracellular region, response to wounding, flavonoid biosynthesis, jasmonic-acid signaling, glucose/sucrose metabolism, etc. Some phytohormone-associated genes (like OsYUCCA4, OsPIN10b, OsBAK1, and OsDLT), TF genes (like OsMADS1 and OsGASR9), grain length-regulating genes (like An-1, GS9, OsIQD14, and TGW2) showed significant upregulation or downregulation in IGL1-OE or IGL1-CR. CONCLUSION Our result clearly demonstrated that IGL1 is an important regulator of grain length, and has profound impacts on genome-wide gene expression, suggesting that it may work together with certain TFs. Overexpression or knockout of IGL1 appears to cause complex expression changes of genes associated with phytohormones, TFs, grain length-regulating factors, which ultimately brings about the grain elongation.
Collapse
Affiliation(s)
- Liran Sang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Ending Xu
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Yan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Tiange Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Mengqi Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yi Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Yifei Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China
| | - Zhaoyu Zhai
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dina Abdulmajid
- Rice Research and Training Centre, Field Crops Research Institute, A.R.C, Sakha, Kafrelsheikh, 33717, Egypt
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, 266000, China.
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing , Jiangsu, 210095, China.
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
| |
Collapse
|
17
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
18
|
Zhou K, Yu J, Yu Z, Chi C, Ren J, Zhao Z, Zhang H, Ling Y, Zhang C, Zhao F. Identification of quantitative trait loci for yield traits and fine-mapping of qGW4 using the chromosome segment substitution line-Z708 and dissected single-segment substitution lines. FRONTIERS IN PLANT SCIENCE 2025; 16:1524770. [PMID: 40007961 PMCID: PMC11850545 DOI: 10.3389/fpls.2025.1524770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Identifying quantitative trait loci (QTL) for yield traits using single-segment substitution lines (SSSL) is essential for both targeted breeding and functional analysis of key genes. Here, a wide-grain rice chromosome segment substitution line (CSSL), Z708, carrying four substitution segments from Jinhui35 in the genetic background of Xihui18, was used to identify the QTL associated with grain size. Seven QTL for yield-related traits (qGW4, qRLW4, qGWT4, qGW5, qRLW5, qGWT5, and qGPP5) were identified on the substitution segments of the fourth and fifth chromosomes of Z708. Subsequently, four SSSLs (S1-S4), which harbored 16 QTL for yield traits, were constructed using molecular marker-assisted selection. These lines (S1-S4) exhibited a significant increase in yield per plant compared to that of Xihui18. Among them, qGW4, which controls wide grains, belongs to a single dominant gene action in S1 based on the frequency distribution of grain width and chi-square test analysis. Finally, qGW4 was fine-mapped to the interval of 80-kb (minimum) and 310-kb (maximum) using both traditional fine mapping and overlapping substitution mapping of the newly constructed secondary SSSLs (S5-S8). Within this interval, four previously unreported candidate genes were predicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangming Zhao
- Integrative Science Center of Germplasm Creation in Western China Science City; Rice Research Institute, Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
19
|
He X, Liu J, Ren X, Wei S, Zhu Z, Zhang F, Hu S, Ding Y, Sun F, Han D, Bai G, Ni Z, Sun Q, Su Z. Mapping and validation of QTkw.cau-3DL, a major QTL controlling thousand-kernel weight in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:46. [PMID: 39907799 DOI: 10.1007/s00122-025-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
KEY MESSAGE A novel major QTL, QTkw.cau-3DL, for thousand-kernel weight has been identified on the wheat chromosome arm 3DL and enhances grain yield by 6.2% under field conditions. Increasing kernel weight is an effective way to improve yield potential in wheat. The identification of major quantitative trait loci (QTL) for kernel weight, without negative effects on other yield-related traits, is crucial for continuous yield improvement. We developed a population of F6 recombinant inbred lines from Jimai 120 × Jimai 325 and identified eight QTL for thousand-kernel weight, kernel length, and kernel width across five environments. The population was genotyped using Wheat15K SNP arrays and QTL analysis found that one QTL, QTkw.cau-3DL, on the chromosome arm 3DL consistently showed major effects on TKW and KL in five field experiments. This QTL accounted for up to 16.43% and 13.87% of phenotypic variation, respectively. QTkw.cau-3DL was confined to a 5.72-Mb (3.48 cM) interval between 554.39 Mb and 560.11 Mb. This QTL was validated in a pair of NILs and in a new population. QTkw.cau-3DL increased kernel weight per spike without any negative effect on heading data, plant height, spike length, spikelet number per spike, or kernels number per spike. It increased grain yield by 6.2% under regular field production conditions. Haplotype analysis and geographical distribution in a nationwide collection of 630 wheat cultivars showed that QTkw.cau-3DL has not been widely deployed in Chinese wheat breeding programs. QTkw.cau-3DL is a novel QTL for increasing TKW through increasing KL; therefore, it is an important locus for enhancing wheat grain yield. The tightly linked, user-friendly markers developed in this study should facilitate map-based cloning and marker-assisted selection of the QTL in wheat breeding programs.
Collapse
Affiliation(s)
- Xi He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Jilu Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Shurong Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Zhenzhen Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Fuping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Sijia Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Yanpeng Ding
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Fangyao Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Dong Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Guihua Bai
- US Department of Agriculture, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Zhongfu Ni
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Zhenqi Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
20
|
Wang W, Pan Q, Tian B, Yu Z, Davidson D, Bai G, Akhunova A, Trick H, Akhunov E. Non-additive dosage-dependent effects of TaGS3 gene editing on grain size and weight in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:38. [PMID: 39880939 PMCID: PMC11779757 DOI: 10.1007/s00122-025-04827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
KEY MESSAGE Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice. While an association between allelic variation in the GS3 homologs of wheat and grain weight/size has been detected previously, the effects of LOF alleles at TaGS3 on these traits remain unknown. We used genome editing to create TaGS3 mutant lines with varying LOF homeo-allele dosages. Contrary to the results obtained in rice, editing all three TaGS3 homoeologous copies resulted in a significant decrease in grain length (4.4%), width (3.4%), grain area (7.3%) and weight (7.5%), without affecting the number of grains per spike. Compared to the wild type, the highest increase in grain weight (up to 9.6%) and area (up to 5.0%) was observed in homozygous mutants with one or two genomes carrying LOF homeo-alleles, suggesting non-additive suppressive effects of TaGS3 on grain size and weight in wheat. Our results suggest that the regulatory effects of GS3 homologs in wheat and rice have diverged. The newly developed LOF homeo-alleles of TaGS3 expand the set of CRISPR-Cas9-induced variants of yield component genes that have potential to increase grain weight in wheat.
Collapse
Affiliation(s)
- Wei Wang
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
- Nanjing Agricultural University, Nanjing, China
| | - Qianli Pan
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Bin Tian
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Zitong Yu
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Dwight Davidson
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Alina Akhunova
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
- Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Harold Trick
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Eduard Akhunov
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
21
|
Zhang T, Wang Z, Liu Q, Zhao D. Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System. RICE (NEW YORK, N.Y.) 2025; 18:3. [PMID: 39865189 PMCID: PMC11769925 DOI: 10.1186/s12284-025-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes. The use of the CRISPR/Cas9 tool for the genetic improvement of grain size-related genes is worth exploring. This paper summarizes the known grain size-related genes and the use of CRISPR/Cas9 for grain size modification and discusses the potential applications of CRISPR/Cas9 for improving rice grain size.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhengwei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Liu R, Zhao D, Li P, Xia D, Feng Q, Wang L, Wang Y, Shi H, Zhou Y, Chen F, Lou G, Yang H, Gao H, Wu B, Chen J, Gao G, Zhang Q, Xiao J, Li X, Xiong L, Li Y, Li Z, You A, He Y. Natural variation in OsMADS1 transcript splicing affects rice grain thickness and quality by influencing monosaccharide loading to the endosperm. PLANT COMMUNICATIONS 2025; 6:101178. [PMID: 39489992 PMCID: PMC11783882 DOI: 10.1016/j.xplc.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Grain size, which encompasses grain length, width, and thickness, is a critical determinant of both grain weight and quality in rice. Despite the extensive regulatory networks known to determine grain length and width, the pathway(s) that regulate grain thickness remain to be clarified. Here, we present the map-based cloning and characterization of qGT3, a major quantitative trait locus for grain thickness in rice that encodes the MADS-domain transcription factor OsMADS1. Our findings demonstrate that OsMADS1 regulates grain thickness by affecting sugar delivery during grain filling, and we show that OsMADS1 modulates expression of the downstream monosaccharide transporter gene MST4. A natural variant leads to alternative splicing and thus to a truncated OsMADS1 protein with attenuated transcriptional repressor activity. The truncated OsMADS1 protein results in increased expression of MST4, leading to enhanced loading of monosaccharides into the developing endosperm and thereby increasing grain thickness and improving grain quality. In addition, our results reveal that NF-YB1 and NF-YC12 interact directly with OsMADS1, acting as cofactors to enhance its transcriptional activity toward MST4. Collectively, these findings reveal a novel molecular mechanism underlying grain thickness regulation that is controlled by the OsMADS1-NF-YB1-YC12 complex and has great potential for synergistic improvement of grain yield and quality in rice.
Collapse
Affiliation(s)
- Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingfei Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yipei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangying Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyuan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Haozhou Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bian Wu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Junxiao Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100000, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China.
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Chang G, Li Y, Peng L, Shen C, Lu Y, Teng W, Liu Y, Wang Y, Zhu W, Liu C, He X, Tong Y, Zhao X. TavWA1 is critical for wheat growth by modulating cell morphology and arrangement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:71-86. [PMID: 39670529 DOI: 10.1111/jipb.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
Plant growth is determined by the production of cells and initiation of new organs. Exploring genes that control cell number and cell size is of great significance for understanding plant growth regulation. In this study, we characterized two wheat mutants, ah and dl, with abnormal growth. The ah mutant is a naturally occurring variant characterized by severe dwarfism, increased tiller number, and reduced grain length, while the dl mutant is derived from an ethyl methane sulfonate (EMS)-mutagenized population and exhibits smaller grain size and slightly reduced plant height. Cytological analyses revealed abnormal cell number, cell morphology and arrangement in the stems and leaves of the ah mutant, along with reduced cell length in the grains of the dl mutant. Map-based cloning identified that both mutants carry mutations in the same gene TavWA1-7D, which encodes a protein with a von Willebrand factor A (vWA) domain. The ah mutant harbors a 174-bp insertion in the 1,402-bp coding sequence (CDS) of TavWA1-7D, causing premature termination of protein translation, while the dl mutant contains a Glu420Lys substitution. Mimicking the TavWA1-7Dah through clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9-mediated genome editing leads to a severe dwarfism phenotype. The C-terminus of the protein is crucial for its correct subcellular localization and interaction, supporting its critical role for TavWA1-7D function. Proteomic analysis showed that the dwarf phenotype of the ah mutant is associated with impaired photosynthesis, ribosome function, and nucleosome formation. Additionally, TavWA1-7D interacts with an E3 ligase, TaVIP1-3B, the expression levels of which are elevated in both mutants. Overexpression and knockout studies of TaVIP1-3B demonstrated its negative regulatory role in cell length and grain size. Together, our findings suggest that TavWA1-7D plays a vital role in regulating wheat growth and yield-related traits, with the dl mutant's short grain phenotype being associated with TaVIP1-3B expression levels.
Collapse
Affiliation(s)
- Guowei Chang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Peng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuncai Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yipeng Lu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiqi Zhu
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian, 515300, China
| | - Cuimin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiping Tong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueqiang Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
24
|
Liu S, He Y, Fan T, Zhu M, Qi C, Ma Y, Yang M, Yang L, Tang X, Zhou J, Zhong Z, An X, Qi Y, Zhang Y. PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:156-173. [PMID: 39387219 DOI: 10.1111/pbi.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Class 2 Type V-A CRISPR-Cas (Cas12a) nucleases are powerful genome editing tools, particularly effective in A/T-rich genomic regions, complementing the widely used CRISPR-Cas9 in plants. To enhance the utility of Cas12a, we investigate three Cas12a orthologs-Mb3Cas12a, PrCas12a, and HkCas12a-in plants. Protospacer adjacent motif (PAM) requirements, editing efficiencies, and editing profiles are compared in rice. Among these orthologs, Mb3Cas12a exhibits high editing efficiency at target sites with a simpler, relaxed TTV PAM which is less restrictive than the canonical TTTV PAM of LbCas12a and AsCas12a. To optimize Mb3Cas12a, we develop an efficient single transcription unit (STU) system by refining the linker between Mb3Cas12a and CRISPR RNA (crRNA), nuclear localization signal (NLS), and direct repeat (DR). This optimized system enables precise genome editing in rice, particularly for fine-tuning target gene expression by editing promoter regions. Further, we introduced Arginine (R) substitutions at Aspartic acid (D) 172, Asparagine (N) 573, and Lysine (K) 579 of Mb3Cas12a, creating two temperature-tolerant variants: Mb3Cas12a-R (D172R) and Mb3Cas12a-RRR (D172R/N573R/K579R). These variants demonstrate significantly improved editing efficiency at lower temperatures (22 °C and 28 °C) in rice cells, with Mb3Cas12a-RRR showing the best performance. We extend this approach by developing efficient Mb3Cas12a-RRR STU systems in maize and tomato, achieving biallelic mutants targeting single or multiple genes in T0 lines cultivated at 28 °C and 25 °C, respectively. This study significantly expands Cas12a's targeting capabilities in plant genome editing, providing valuable tools for future research and practical applications.
Collapse
Affiliation(s)
- Shishi Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Meirui Zhu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, China
| | - Caiyan Qi
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanqin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Mengqiao Yang
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Xu Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueli An
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Manzoor GA, Yin C, Zhang L, Wang J. Mapping and Validation of Quantitative Trait Loci on Yield-Related Traits Using Bi-Parental Recombinant Inbred Lines and Reciprocal Single-Segment Substitution Lines in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 14:43. [PMID: 39795303 PMCID: PMC11723429 DOI: 10.3390/plants14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Yield-related traits have higher heritability and lower genotype-by-environment interaction, making them more suitable for genetic studies in comparison with the yield per se. Different populations have been developed and employed in QTL mapping; however, the use of reciprocal SSSLs is limited. In this study, three kinds of bi-parental populations were used to investigate the stable and novel QTLs on six yield-related traits, i.e., plant height (PH), heading date (HD), thousand-grain weight (TGW), effective tiller number (ETN), number of spikelets per panicle (NSP), and seed set percentage (SS). Two parental lines, i.e., japonica Asominori and indica IR24, their recombinant inbred lines (RILs), and reciprocal single-segment substitution lines (SSSLs), i.e., AIS and IAS, were genotyped by SSR markers and phenotyped in four environments with two replications. Broad-sense heritability of the six traits ranged from 0.67 to 0.94, indicating their suitability for QTL mapping. In the RIL population, 18 stable QTLs were identified for the six traits, 4 for PH, 6 for HD, 5 for TGW, and 1 each for ETN, NSP, and SS. Eight of them were validated by the AIS and IAS populations. The results indicated that the allele from IR24 increased PH, and the alternative allele from Asominori reduced PH at qPH3-1. AIS18, AIS19, and AIS20 were identified to be the donor parents which can be used to increase PH in japonica rice; on the other hand, IAS14 and IAS15 can be used to reduce PH in indica rice. The allele from IR24 delayed HD, and the alternative allele reduced HD at qHD3-1. AIS14 and AIS15 were identified to be the donor parents which can be used to delay HD in japonica rice; IAS13 and IAS14 can be used to reduce HD in indica rice. Reciprocal SSSLs not only are the ideal genetic materials for QTL validation, but also provide the opportunity for fine mapping and gene cloning of the validated QTLs.
Collapse
Affiliation(s)
- Ghulam Ali Manzoor
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.A.M.); (L.Z.)
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Luyan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.A.M.); (L.Z.)
| | - Jiankang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (G.A.M.); (L.Z.)
| |
Collapse
|
26
|
Xie Z, Sun Y, Zhan C, Qu C, Jin N, Gu X, Huang J. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module. THE PLANT CELL 2024; 37:koae297. [PMID: 39499669 DOI: 10.1093/plcell/koae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024]
Abstract
Grain size and weight are important determinants of crop yield. Although the ubiquitin pathway has been implicated in the grain development in rice (Oryza sativa), the underlying genetic and molecular mechanisms remain largely unknown. Here, we report that the plant U-box E3 ubiquitin ligase OsPUB33 interferes with the OsNAC120-BG1 module to control rice grain development. Functional loss of OsPUB33 triggers elevated photosynthetic rates and greater sugar translocation, leading to enhanced cell proliferation and accelerated grain filling. These changes cause enlarged spikelet hulls, thereby increasing final grain size and weight. OsPUB33 interacts with transcription factor OsNAC120, resulting in its ubiquitination and degradation. Unlike OsPUB33, OsNAC120 promotes grain size and weight: OsNAC120-overexpression plants harbor large and heavy grains, whereas osnac120 loss-of-function mutants produce small grains. Genetic interaction analysis supports that OsPUB33 and OsNAC120 function at least partially in a common pathway to control grain development, but have opposite functions. Additionally, OsNAC120 transcriptionally activates BIG GRAIN1 (BG1), a prominent modulator of grain size, whereas OsPUB33 impairs the OsNAC120-mediated regulation of BG1. Collectively, our findings uncover an important molecular framework for the control of grain size and weight by the OsPUB33-OsNAC120-BG1 regulatory module and provide promising targets for improving crop yield.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chengfeng Qu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xinyue Gu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Jia SS, Ren XY, Tong MN, Jiang SY, Zhang CQ, Liu QQ, Li QF. OsIAA19, an Aux/ IAA Family Gene, Involved in the Regulation of Seed-Specific Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3538. [PMID: 39771236 PMCID: PMC11678818 DOI: 10.3390/plants13243538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The Aux/IAA family proteins, key components of the auxin signaling pathway, are plant-specific transcription factors with important roles in regulating a wide range of plant growth and developmental events. The Aux/IAA family genes have been extensively studied in Arabidopsis. However, most of the Aux/IAA family genes in rice have not been functionally studied. Only two IAA genes have been reported to be involved in the regulation of rice grain size. Grain size is a key factor affecting both rice yield and quality. Therefore, we selected an unreported IAA member, OsIAA19, based on bioinformatics analysis to investigate its potential role in grain size control. Our study showed that OsIAA19 was constitutively expressed in all tissues tested and that the encoding protein was nuclear localized. The osiaa19 mutants were then generated using CRISPR/Cas9 gene editing. Agronomic trait analyses showed that the OsIAA19 mutation significantly increased rice grain length and weight, but had no significant effect on plant height, number of tillers, flag leaf length and width. In addition, the chalkiness of the osiaa19 mutant seeds also increased, but their eating and cooking quality (ECQ) was not altered. Finally, seed germination analysis showed that knocking out OsIAA19 slightly suppressed rice seed germination. These results suggest that OsIAA19 may specifically regulate rice seed-related traits, such as grain shape, rice chalkiness and seed germination. This study not only enriched the functional study of the Aux/IAA genes and the auxin signaling pathway in rice, but also provided valuable genetic resources for breeding elite rice varieties.
Collapse
Affiliation(s)
- Sha-Sha Jia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
| | - Xin-Yu Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
| | - Man-Ni Tong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
| | - Si-Yao Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (S.-S.J.); (X.-Y.R.); (M.-N.T.); (S.-Y.J.); (C.-Q.Z.); (Q.-Q.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Chen H, Zhang X, Tian S, Gao H, Sun J, Pang X, Li X, Li Q, Xie W, Wang L, Liang C, Sui G, Zheng W, Ma Z. Genome-wide association study reveals the advantaged genes regulating japonica rice grain shape traits in northern China. PeerJ 2024; 12:e18746. [PMID: 39713157 PMCID: PMC11662900 DOI: 10.7717/peerj.18746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Background Rice, a staple food for over half of the global population, exhibits significant diversity in grain shape characteristics, which impact not only appearance and milling quality but also grain weight and yield. Identifying genes and loci underlying these traits is crucial for improving rice breeding programs. Previous studies have identified multiple quantitative trait loci (QTLs) and genes regulating grain length, width, and length-width ratio; however, further investigation is necessary to elucidate their regulatory pathways and their practical application in crop improvement. Methods This study employed a genome-wide association study (GWAS) on 280 japonica rice varieties from northern China to decipher the genetic basis of grain shape traits. Phenotyping included measurements of 11 grain-related traits, such as grain length, width, and area, along with their brown and white rice counterparts. High-density single nucleotide polymorphism (SNP) markers (33,579) were utilized for genotyping, and GWAS was performed using a mixed linear model (MLM) incorporating principal component analysis (PCA) and kinship (K) matrix to account for population structure and relatedness. Results Our analysis detected 15 QTLs associated with the 11 grain shape traits, of which five major QTL clusters emerged as crucial. Candidate genes, including LOC_Os01g50720 (qGL1), OsMKK4 (LOC_Os02g54600, influencing qBA2, qWL2, and qWA2), GW5 (LOC_Os05g09520, controlling qGW5, qBW5, qBR5, qWW5, and qWR5), GW6a (LOC_Os06g44100, associated with qGW6, qBW6, qBR6, qWW6, and qWR6), and FZP (LOC_Os07g47330, linked to qWL7), were identified based on functional annotations and haplotype analysis. These findings offer valuable insights into the genetic mechanisms underlying rice grain shape and suggest promising targets for marker-assisted selection to enhance rice quality and yield.
Collapse
Affiliation(s)
- Hongwei Chen
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xue Zhang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Shujun Tian
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Hong Gao
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiu Pang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaowan Li
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Quanying Li
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Wenxiao Xie
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lili Wang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Chengwei Liang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Guomin Sui
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Zuobin Ma
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
29
|
Doan PPT, Vuong HH, Kim J. Genetic Foundation of Leaf Senescence: Insights from Natural and Cultivated Plant Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3405. [PMID: 39683197 DOI: 10.3390/plants13233405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Leaf senescence, the final stage of leaf development, is crucial for plant fitness as it enhances nutrient reutilization, supporting reproductive success and overall plant adaptation. Understanding its molecular and genetic regulation is essential to improve crop resilience and productivity, particularly in the face of global climate change. This review explores the significant contributions of natural genetic diversity to our understanding of leaf senescence, focusing on insights from model plants and major crops. We discuss the physiological and adaptive significance of senescence in plant development, environmental adaptation, and agricultural productivity. The review emphasizes the importance of natural genetic variation, including studies on natural accessions, landraces, cultivars, and artificial recombinant lines to unravel the genetic basis of senescence. Various approaches, from quantitative trait loci mapping to genome-wide association analysis and in planta functional analysis, have advanced our knowledge of senescence regulation. Current studies focusing on key regulatory genes and pathways underlying natural senescence, identified from natural or recombinant accession and cultivar populations, are highlighted. We also address the adaptive implications of abiotic and biotic stress factors triggering senescence and the genetic mechanisms underlying these responses. Finally, we discuss the challenges in translating these genetic insights into crop improvement. We propose future research directions, such as expanding studies on under-researched crops, investigating multiple stress combinations, and utilizing advanced technologies, including multiomics and gene editing, to harness natural genetic diversity for crop resilience.
Collapse
Affiliation(s)
- Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hue Huong Vuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
30
|
Guo H, Liang Y, Lv J, Su X, Ren G, Gao F. Research Progress on the Trait of Stigma Exsertion in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3404. [PMID: 39683198 DOI: 10.3390/plants13233404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
As global food demand continues to grow, enhancing rice seed-setting rate and yield has emerged as a crucial research topic. The stigma exsertion rate in rice, a pivotal determinant of the outcrossing seed-setting rate in sterility lines, is essential for facilitating the propagation and efficient seed production of hybrid rice varieties. This article reviews the research progress on stigma exertion rate in rice, systematically analyzing the latest molecular biology and genetics findings to uncover the key genes and molecular mechanisms regulating stigma exertion. Furthermore, it explores the application of molecular marker-assisted selection technology in rice breeding, aiming to optimize stigma exertion traits to enhance the stigma exertion rate and outcrossing habits of rice sterility lines. By integrating existing research outcomes, this article not only provides researchers with a theoretical foundation for a deeper understanding of the regulatory mechanisms of stigma exertion but also offers practical strategies for rice breeding practices.
Collapse
Affiliation(s)
- Hongming Guo
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center), Chengdu 610066, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Yuyu Liang
- Rice Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jianqun Lv
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center), Chengdu 610066, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xiangwen Su
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center), Chengdu 610066, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Guangjun Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center), Chengdu 610066, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Fangyuan Gao
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences (Sichuan Provincial Germplasm Resources Center), Chengdu 610066, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
31
|
Ouyang X, Chang S, Ma X. Combining two main NAL1 functional alleles can increase rice yield. FRONTIERS IN PLANT SCIENCE 2024; 15:1505679. [PMID: 39687311 PMCID: PMC11647526 DOI: 10.3389/fpls.2024.1505679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
NARROW LEAF1 (NAL1) is one of the key genes in regulating photosynthesis and plant architecture. As the antagonistic effects of NAL1 have concurrent impacts on photosynthesis and yield component traits, how we can effectively utilize the NAL1 gene to further increase rice yield is not clear. In this study, we used two different main functional NAL1 alleles, each of which has previously been proven to have specifically advantageous traits, and tested whether the combined NAL1 alleles have a higher yield than the homozygous alleles. Our results exhibited that the combined NAL1 alleles had better parent heterosis (BPH) for panicle number and the total filled grain number per plant, and had middle parent heterosis (MPH) for spikelet number per panicle without affecting thousand-grain weight when compared with the homozygous alleles. In consequence, the NAL1 hybrid plants displayed highly increased grain yield compared with both homozygous parents. The hybrid plants also had better plant architecture and higher canopy photosynthesis. Western blot and proteomics results showed the hybrid plants had a middle abundant NAL1 protein level, and the upregulated proteins were mainly involved in the nucleus and DNA binding process but the downregulated proteins were mainly involved in the oxidation-reduction process, single-organism metabolic process, and fatty acid biosynthetic process. Furthermore, the hybrid vigor effect of NAL1 was confirmed by substituting the mutual male parent 9311 with 9311-NIL in two super hybrid rice varieties (LYP9 and YLY1). This study demonstrates that we can achieve a higher level of grain production in hybrid rice by using the heterosis of NAL1.
Collapse
Affiliation(s)
- Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaoling Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
32
|
Li H, Wang Y, Qiao W, Zhu Z, Wang Z, Tian Y, Liu S, Wan J, Liu L. Identification of a novel locus qGW12/OsPUB23 regulating grain shape and weight in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:267. [PMID: 39540992 DOI: 10.1007/s00122-024-04776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Key message A major quantitative trait locus (qGW12) for grain shape and weight has been isolated in rice, corresponding to LOC_Os12g17900/OsPUB23, and its encoded protein interacts with OsMADS1. Grain shape in rice is an important trait that influences both yield and quality. The primary determinants of grain shape are quantitative trait loci (QTLs) inherited from natural variation in crops. In recent years, much attention has been paid to the molecular role of QTLs in regulating grain shape and weight. In this study, we report the cloning and characterization of qGW12, a major QTL regulating grain shape and weight in rice, using a series of chromosome fragment substitution lines (CSSLs) derived from Oryza sativa indica cultivar 9311 (acceptor) and Oryza rufipogon Griff (donor). One CSSL line, Q187, harboring the introgression of qGW12, exhibited a significant decrease in grain-shape-related traits (including grain length and width) and thousand-grain weight compared to the cultivar 9311. Subsequent backcrossing of Q187 with 9311 resulted in the generation of secondary segregating populations, which were used to fine-map qGW12 to a 24-kb region between markers Seq-44 and Seq-48. Our data indicated that qGW12 encodes a previously unreported U-box type E3 ubiquitin ligase, designated OsPUB23, which exhibited E3 ubiquitin ligase activity. Overexpression of OsPUB23 in rice resulted in higher plant yield than the wild type due to an increase in grain size and weight. Conversely, loss of OsPUB23 function resulted in the opposite tendency. Yeast two-hybrid screening and split luciferase complementation assays revealed that OsPUB23 interacts with OsMADS1. The functional characterization of OsPUB23 provides new genetic resources for improving of grain yield and quality in crops.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze Zhu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Sanya Research Institute, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210095, China.
| |
Collapse
|
33
|
Zhang L, Lu Z, Pan Z, Chen T, Wang S, Liu W, Wang X, Wu H, Chen H, Zhan Y, He X. Genetic Dissection of Milled Rice Grain Shape by Using a Recombinant Inbred Line Population and Validation of qMLWR11.1 and qMLWR11.2. PLANTS (BASEL, SWITZERLAND) 2024; 13:3178. [PMID: 39599386 PMCID: PMC11597858 DOI: 10.3390/plants13223178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Grain shape in rice (Oryza sativa L.) is a complex trait governed by multiple quantitative trait loci (QTLs). To dissect the genetic basis of rice shape, QTL analysis was conducted for milled rice grain width (MGW), milled rice grain length (MGL), and milled rice length-to-width ratio (MLWR) using a recombinant inbred line (RIL) population of F10 and F11 generations derived from a cross between Yuexiangzhan and Shengbasimiao. A high-density genetic map consisting of 2412 bins was constructed by sequencing 184 RILs, spanning a total length of 2376.46 cM. A total of 19 QTLs related to MGL, MGW, and MLWR were detected under two environments. The range of phenotypic variation attributed to individual QTL ranged from 1.67% to 32.08%. Among those, a novel locus for MGL, MGW and MLWR, designated as qMLWR3.2, was pinpointed within a specific ~0.96-Mb region. Two novel loci for MGW and MLWR, qMLWR11.1 and qMLWR11.2, were verified within ~1.22-Mb and ~0.52-Mb regions using three RIL-developed populations, respectively. These findings lay the foundation for further map-based cloning and molecular design breeding in rice.
Collapse
Affiliation(s)
- Liting Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Zhanhua Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Zhaoyang Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Tengkui Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shiguang Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xiaofei Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Haoxiang Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Hao Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yunyi Zhan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xiuying He
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (Z.L.); (Z.P.); (T.C.); (S.W.); (W.L.); (X.W.); (H.W.); (H.C.); (Y.Z.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
34
|
Wang Y, Chen W, Xing M, Sun J, Wang S, Yang Z, Huang J, Nie Y, Zhao M, Li Y, Guo W, Wang Y, Chen Z, Zhang Q, Hu J, Li Y, Huang K, Zheng X, Zhou L, Zhang L, Cheng Y, Qian Q, Yang Q, Qiao W. Wild rice GL12 synergistically improves grain length and salt tolerance in cultivated rice. Nat Commun 2024; 15:9453. [PMID: 39487109 PMCID: PMC11530696 DOI: 10.1038/s41467-024-53611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
The abounding variations in wild rice provided potential reservoirs of beneficial genes for rice breeding. Maintaining stable and high yields under environmental stresses is a long-standing goal of rice breeding but is challenging due to internal trade-off mechanisms. Here, we report wild rice GL12W improves grain length and salt tolerance in both indica and japonica genetic backgrounds. GL12W alters cell length by regulating grain size related genes including GS2, and positively regulates the salt tolerance related genes, such as NAC5, NCED3, under salt stresses. We find that a G/T variation in GL12 promoter determined its binding to coactivator GIF1 and transcription factor WRKY53. GIF1 promotes GL12W expression in young panicle and WRKY53 represses GL12W expression under salt stresses. The G/T variation also contributes to the divergence of indica and japonica subspecies. Our results provide useful resources for modern rice breeding and shed insights for understanding yield and salt tolerance trade-off mechanism.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yamin Nie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Zhao
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Cereal Crop Institute, Hainan Agricultural Academy Sciences, Haikou, China
| | - Yapeng Li
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Cereal Crop Institute, Hainan Agricultural Academy Sciences, Haikou, China
| | - Wenlong Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yinting Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoling Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jiang Hu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Leina Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlian Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- China National Rice Research Institute, Hangzhou, 310006, China.
- Yazhouwan National Laboratory, Sanya, China.
| | - Qingwen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
35
|
Dang X, Xu Q, Li Y, Song S, Hu C, Jing C, Zhang Y, Wang D, Hong D, Jiang J. GW3, encoding a member of the P450 subfamily, controls grain width by regulating the GA 4 content in spikelets of rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:251. [PMID: 39425772 DOI: 10.1007/s00122-024-04751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA4 content detection and electron scanning analysis revealed that GA4 regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.
Collapse
Affiliation(s)
- Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qing Xu
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yulong Li
- Institute of Crop Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shaojie Song
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Changmin Hu
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Chunyu Jing
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ying Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Dezheng Wang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
36
|
Sun LQ, Bai Y, Wu J, Fan SJ, Chen SY, Zhang ZY, Xia JQ, Wang SM, Wang YP, Qin P, Li SG, Xu P, Zhao Z, Xiang CB, Zhang ZS. OsNLP3 enhances grain weight and reduces grain chalkiness in rice. PLANT COMMUNICATIONS 2024; 5:100999. [PMID: 38853433 PMCID: PMC11574284 DOI: 10.1016/j.xplc.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Grain weight, a key determinant of yield in rice (Oryza sativa L.), is governed primarily by genetic factors, whereas grain chalkiness, a detriment to grain quality, is intertwined with environmental factors such as mineral nutrients. Nitrogen (N) is recognized for its effect on grain chalkiness, but the underlying molecular mechanisms remain to be clarified. This study revealed the pivotal role of rice NODULE INCEPTION-LIKE PROTEIN 3 (OsNLP3) in simultaneously regulating grain weight and grain chalkiness. Our investigation showed that loss of OsNLP3 leads to a reduction in both grain weight and dimension, in contrast to the enhancement observed with OsNLP3 overexpression. OsNLP3 directly suppresses the expression of OsCEP6.1 and OsNF-YA8, which were identified as negative regulators associated with grain weight. Consequently, two novel regulatory modules, OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8, were identified as key players in grain weight regulation. Notably, the OsNLP3-OsNF-YA8 module not only increases grain weight but also mitigates grain chalkiness in response to N. This research clarifies the molecular mechanisms that orchestrate grain weight through the OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8 modules, highlighting the pivotal role of the OsNLP3-OsNF-YA8 module in alleviating grain chalkiness. These findings reveal potential targets for simultaneous enhancement of rice yield and quality.
Collapse
Affiliation(s)
- Liang-Qi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Yu Bai
- Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shi-Jun Fan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Si-Yan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Shi-Mei Wang
- Rice Research Institute, Anhui Academy of Agricultural Science, Hefei, China
| | - Yu-Ping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shi-Gui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Zhong Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
37
|
Awan MJA, Amin I, Rasheed A, Saeed NA, Mansoor S. Knockout mutation in TaD27 enhances number of productive tillers in hexaploid wheat. Front Genome Ed 2024; 6:1455761. [PMID: 39469217 PMCID: PMC11513295 DOI: 10.3389/fgeed.2024.1455761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Recent advances allow the deployment of cluster regularly interspaced short palindromic repeats (CRISPR)-associated endonucleases (Cas) system for the targeted mutagenesis in the genome with accuracy and precision for trait improvement in crops. CRISPR-Cas systems have been extensively utilized to induce knockout or frameshift mutations in the targeted sequence of mostly negative regulating genes for wheat improvement. However, most of the reported work has been done in non-commercial varieties of wheat and introgression of edited alleles into breeding population comes with the penalty of unwanted linkage-drag. Wheat yield is controlled by various genes such as positive and negative regulators. The TaD27 gene is described as a negative regulator of shoot branching or tillering and involved in the biosynthesis of strigolactones. In this study, we developed Tad27 knockout mutant lines of an elite wheat cultivar that showed a twofold increase in the number of tillers and 1.8-fold increase in the number of grains per plant. Subsequently, enhancing the grain yield without any morphological penalty in the architecture of the plants. The co-transformation of regeneration enhancing growth regulator, Growth Regulating Factor 4 (GRF4) and its cofactor GRF-Interacting Factor 1 (GIF1), under single T-DNA cassette improved the regeneration efficiency up to 6% of transgenic events from mature embryos of wheat. Our results indicate that the CRISPR-mediated targeted mutagenesis confers the potential to knockout yield-related negative regulators in elite cultivars of wheat that can substantially enhance grain yield per plant and this strategy can be harnessed for the improvement of future wheat.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Nasir A. Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
38
|
Hao Q, Zhu X, Huang Y, Song J, Mou C, Zhang F, Miao R, Ma T, Wang P, Zhu Z, Chen C, Tong Q, Hu C, Chen Y, Dong H, Liu X, Jiang L, Wan J. E3 ligase DECREASED GRAIN SIZE 1 promotes degradation of a G-protein subunit and positively regulates grain size in rice. PLANT PHYSIOLOGY 2024; 196:948-960. [PMID: 38888990 DOI: 10.1093/plphys/kiae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145, and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post-transcriptional regulatory mechanism of the G-protein signaling pathway in the control of grain size.
Collapse
Affiliation(s)
- Qixian Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Qikai Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
39
|
Fan J, Ma X, Zou J, Li S, Liu Y, Guo D, Jiang W, Li X, Liu F, Tan L. LATA1, a RING E3 ligase, modulates the tiller angle by affecting auxin asymmetric distribution and content in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:429-444. [PMID: 39052425 DOI: 10.1111/tpj.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The tiller angle is an important agronomic trait that determines plant architecture and grain yield in rice (Oryza sativa L.). However, the molecular regulation mechanism of the rice tiller angle remains unclear. Here, we identified a rice tiller angle gene, LARGE TILLER ANGLE 1 (LATA1), using the MutMap approach. LATA1 encodes a C3H2C3-type RING zinc finger E3 ligase and the conserved region of the RING zinc finger is essential for its E3 activity. LATA1 was highly expressed in the root and tiller base and LATA1-GFP fusion protein was specifically localized to the nucleus. The mutation of LATA1 significantly reduced indole-3-acetic acid content and attenuated lateral auxin transport, thereby resulting in defective shoot gravitropism and spreading plant architecture in rice. Further investigations found that LATA1 may indirectly affect gravity perception by modulating the sedimentation rate of gravity-sensing amyloplasts upon gravistimulation. Our findings provide new insights into the molecular mechanism underlying the rice tiller angle and new genetic resource for the improvement of plant architecture in rice.
Collapse
Affiliation(s)
- Jinjian Fan
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Jun Zou
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangzhe Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuntao Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daokuan Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Wanxia Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xianyi Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Zhang H, Huang DR, Shen Y, Niu XJ, Fan YY, Zhang ZH, Zhuang JY, Zhu YJ. GL5.2, a Quantitative Trait Locus for Rice Grain Shape, Encodes a RING-Type E3 Ubiquitin Ligase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2521. [PMID: 39274005 PMCID: PMC11397561 DOI: 10.3390/plants13172521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Grain weight and grain shape are important traits that determine rice grain yield and quality. Mining more quantitative trait loci (QTLs) that control grain weight and shape will help to further improve the molecular regulatory network of rice grain development and provide gene resources for high-yield and high-quality rice varieties. In the present study, a QTL for grain length (GL) and grain width (GW), qGL5.2, was firstly fine-mapped into a 21.4 kb region using two sets of near-isogenic lines (NILs) derived from the indica rice cross Teqing (TQ) and IRBB52. In the NIL populations, the GL and ratio of grain length to grain width (RLW) of the IRBB52 homozygous lines increased by 0.16-0.20% and 0.27-0.39% compared with the TQ homozygous lines, but GW decreased by 0.19-0.75%. Then, by analyzing the grain weight and grain shape of the knock-out mutant, it was determined that the annotation gene Os05g0551000 encoded a RING-type E3 ubiquitin ligase, which was the cause gene of qGL5.2. The results show that GL and RLW increased by 2.44-5.48% and 4.19-10.70%, but GW decreased by 1.69-4.70% compared with the recipient. Based on the parental sequence analysis and haplotype analysis, one InDel variation located at -1489 in the promoter region was likely to be the functional site of qGL5.2. In addition, we also found that the Hap 5 (IRBB52-type) increased significantly in grain length and grain weight compared with other haplotypes, indicating that the Hap 5 can potentially be used in rice breeding to improve grain yield and quality.
Collapse
Affiliation(s)
- Hui Zhang
- Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - De-Run Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yi Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310012, China
| | - Xiao-Jun Niu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ye-Yang Fan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhen-Hua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jie-Yun Zhuang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yu-Jun Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
41
|
Zeng X, Fan K, Shi Y, Chen R, Liu W, Wang X, Ye G, Lin W, Li Z. OsSPL11 positively regulates grain size by activating the expression of GW5L in rice. PLANT CELL REPORTS 2024; 43:228. [PMID: 39237771 DOI: 10.1007/s00299-024-03315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
KEY MESSAGE Rice OsSPL11 activates the expression of GW5L through binding to its promoter and positively regulates grain size. Grain size (GS) is an important determinant of grain weight and yield potential in cereal. Here, we report the functional analysis of OsSPL11 in grain length (GL), grain width (GW), and 1000-grain weight (TGW). OsSPL11 mutant plants, osspl11 lines, exhibited a decrease in GL, GW, and TGW, and OsSPL11-OE lines showed an increase in GL and TGW. Expression analysis revealed that OsSPL11 was located in the nucleus and highly expressed in spikelet hull and young development grains, consistent with its function in determining GS. Further analysis confirmed that OsSPL11 directly activates the expression of GW5L to regulate GS, meanwhile OsSPL11 expression is negatively regulated by OsGBP3. Taken together, our findings demonstrate that OsSPL11 could be a key regulator of affecting GS during the spikelet hull development and facilitate the process of improving grain yield by GS modification in rice.
Collapse
Affiliation(s)
- Xinhai Zeng
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Yu Shi
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Rui Chen
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wanyu Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Xin Wang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guixiang Ye
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wenxiong Lin
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Zhaowei Li
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China.
| |
Collapse
|
42
|
Yue Z, Wang Z, Yao Y, Liang Y, Li J, Yin K, Li R, Li Y, Ouyang Y, Xiong L, Hu H. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. THE PLANT CELL 2024; 36:3201-3218. [PMID: 38701330 PMCID: PMC11371194 DOI: 10.1093/plcell/koae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many quantitative trait loci (QTLs) and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that was associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five single nucleotide polymophysim (SNP) variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity toward LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice and suggest the potential of WLGhap.B in improving rice yield.
Collapse
Affiliation(s)
- Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanlin Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Renou J, Li D, Lu J, Zhang B, Gineau E, Ye Y, Shi J, Voxeur A, Akary E, Marmagne A, Gonneau M, Uyttewaal M, Höfte H, Zhao Y, Vernhettes S. A cellulose synthesis inhibitor affects cellulose synthase complex secretion and cortical microtubule dynamics. PLANT PHYSIOLOGY 2024; 196:124-136. [PMID: 38833284 PMCID: PMC11376392 DOI: 10.1093/plphys/kiae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
P4B (2-phenyl-1-[4-(6-(piperidin-1-yl) pyridazin-3-yl) piperazin-1-yl] butan-1-one) is a novel cellulose biosynthesis inhibitor (CBI) discovered in a screen for molecules to identify inhibitors of Arabidopsis (Arabidopsis thaliana) seedling growth. Growth and cellulose synthesis inhibition by P4B were greatly reduced in a novel mutant for the cellulose synthase catalytic subunit gene CESA3 (cesa3pbr1). Cross-tolerance to P4B was also observed for isoxaben-resistant (ixr) cesa3 mutants ixr1-1 and ixr1-2. P4B has an original mode of action as compared with most other CBIs. Indeed, short-term treatments with P4B did not affect the velocity of cellulose synthase complexes (CSCs) but led to a decrease in CSC density in the plasma membrane without affecting their accumulation in microtubule-associated compartments. This was observed in the wild type but not in a cesa3pbr1 background. This reduced density correlated with a reduced delivery rate of CSCs to the plasma membrane but also with changes in cortical microtubule dynamics and orientation. At longer timescales, however, the responses to P4B treatments resembled those to other CBIs, including the inhibition of CSC motility, reduced growth anisotropy, interference with the assembly of an extensible wall, pectin demethylesterification, and ectopic lignin and callose accumulation. Together, the data suggest that P4B either directly targets CESA3 or affects another cellular function related to CSC plasma membrane delivery and/or microtubule dynamics that is bypassed specifically by mutations in CESA3.
Collapse
Affiliation(s)
- Julien Renou
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Deqiang Li
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Juan Lu
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baocai Zhang
- University of Chinese Academy of Sciences, Beijing 101408, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Emilie Gineau
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jianmin Shi
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Elodie Akary
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Martine Gonneau
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Yang Zhao
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan 650000, China
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
44
|
Soltani O, Jöst M, Hoffie I, Hensel G, Kappel C, Prag G, McKim S, Kumlehn J, Lenhard M. RING/U-box E3 protein BIR1 interacts with and ubiquitinates barley growth repressor BROAD LEAF1. PLANT PHYSIOLOGY 2024; 196:228-243. [PMID: 38829835 DOI: 10.1093/plphys/kiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Establishment of final leaf size in plants relies on the precise regulation of 2 interconnected processes, cell division and cell expansion. The barley (Hordeum vulgare) protein BROAD LEAF1 (BLF1) limits cell proliferation and leaf growth in the width direction. However, how the levels of this potent repressor of leaf growth are controlled remains unclear. Here, we used a yeast 2-hybrid screen to identify the BLF1-INTERACTING RING/U-BOX 1 (BIR1) E3 ubiquitin ligase that interacts with BLF1 and confirmed the interaction of the 2 proteins in planta. Inhibiting the proteasome caused overaccumulation of a BLF1-eGFP fusion protein when co-expressed with BIR1, and an in vivo ubiquitination assay in bacteria confirmed that BIR1 can mediate ubiquitination of BLF1 protein. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome in BLF1-vYFP-expressing barley plants caused an accumulation of the BLF1 protein. The BIR1 protein co-localized with BLF1 in nuclei and appeared to reduce BLF1 protein levels. Analysis of bir1-1 knockout mutants suggested the involvement of BIR1 in leaf growth control, although mainly on leaf length. Together, our results suggest that proteasomal degradation, in part mediated by BIR1, helps fine-tune BLF1 protein levels in barley.
Collapse
Affiliation(s)
- Ouad Soltani
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Moritz Jöst
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Iris Hoffie
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Götz Hensel
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Gali Prag
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah McKim
- Division of Plant Sciences, The University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Jochen Kumlehn
- Department of Physiology and Cell Biology, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Fernie AR, Bulut M. A delicate balance: transcriptional control of awn development and yield in barley. TRENDS IN PLANT SCIENCE 2024; 29:946-947. [PMID: 38538388 DOI: 10.1016/j.tplants.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 09/07/2024]
Abstract
In a recent study, Zhang et al. identified that MADS1-regulated lemma and awn development can positively regulate barley yield. This finding, alongside the demonstration that the function of MADS1 is conserved in wheat, suggests it is an important target for the improvement of Triticeae crops.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Mustafa Bulut
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
46
|
Jian C, Pan Y, Liu S, Guo M, Huang Y, Cao L, Zhang W, Yan L, Zhang X, Hou J, Hao C, Li T. The TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1953-1965. [PMID: 38924348 DOI: 10.1111/jipb.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
IDEAL PLANT ARCHITECTURE1 (IPA1) is a pivotal gene controlling plant architecture and grain yield. However, little is known about the effects of Triticum aestivum SQUAMOSA PROMOTER-BINDING-LIKE 14 (TaSPL14), an IPA1 ortholog in wheat, on balancing yield traits and its regulatory mechanism in wheat (T. aestivum L.). Here, we determined that the T. aestivum GRAIN WIDTH2 (TaGW2)-TaSPL14 module influences the balance between tiller number and grain weight in wheat. Overexpression of TaSPL14 resulted in a reduced tiller number and increased grain weight, whereas its knockout had the opposite effect, indicating that TaSPL14 negatively regulates tillering while positively regulating grain weight. We further identified TaGW2 as a novel interacting protein of TaSPL14 and confirmed its ability to mediate the ubiquitination and degradation of TaSPL14. Based on our genetic evidence, TaGW2 acts as a positive regulator of tiller number, in addition to its known role as a negative regulator of grain weight, which is opposite to TaSPL14. Moreover, combinations of TaSPL14-7A and TaGW2-6A haplotypes exhibit significantly additive effects on tiller number and grain weight in wheat breeding. Our findings provide insight into how the TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight and its potential application in improving wheat yield.
Collapse
Affiliation(s)
- Chao Jian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengjiao Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lina Cao
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, 74078, Oklahoma, USA
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
47
|
Zheng Y, Li M, Sun P, Gao G, Zhang Q, Li Y, Lou G, Wu B, He Y. QTL detection for grain shape and fine mapping of two novel locus qGL4 and qGL6 in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:62. [PMID: 39290202 PMCID: PMC11402885 DOI: 10.1007/s11032-024-01502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Rice grain size and grain weight, which have a great influence on rice quality and yield, are complex quantitative traits that are mediated by grain length (GL), grain width (GW), length-to-width ratio (LWR), and grain thickness (GT). In this study, the BC1F2 and BC1F2:3 populations derived from a cross between two indica rice varieties, Guangzhan 63-4S (GZ63-4S) and Dodda, were used to locate quantitative trait loci (QTL) related to grain size. A total of 30 QTL associated with GL, GW and LWR were detected, of which six QTL were scanned repeatedly in both populations. Two QTL, qGL4 and qGL6, were selected for genetic effect validation and were subsequently fine mapped to 2.359 kb and 176 kb, respectively. LOC_Os04g52240 (known as OsKS2/OsKSL2), which encoding an ent-beyerene synthase and as the only gene found in 2.359 kb interval, was proposed to be the candidate for qGL4. Moreover, the grains of qGL4 homozygous mutant plants generated by the CRISPR-Cas9 system became shorter and wider. In addition, the qGL4 allele from GZ63-4S contributes to the increase of yield per plant. Our study not only laid the foundation for further functional study of qGL4 and map-based cloning of qGL6, but also provided genetic resources for the development of high yield and good quality rice varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01502-8.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ping Sun
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070 China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
48
|
Chen T, Miao Y, Jing F, Gao W, Zhang Y, Zhang L, Zhang P, Guo L, Yang D. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). THE PLANT GENOME 2024; 17:e20480. [PMID: 38840306 DOI: 10.1002/tpg2.20480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongping Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fanli Jing
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weidong Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Long Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
49
|
Liang S, Duan Z, He X, Yang X, Yuan Y, Liang Q, Pan Y, Zhou G, Zhang M, Liu S, Tian Z. Natural variation in GmSW17 controls seed size in soybean. Nat Commun 2024; 15:7417. [PMID: 39198482 PMCID: PMC11358545 DOI: 10.1038/s41467-024-51798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Seed size/weight plays an important role in determining crop yield, yet only few genes controlling seed size have been characterized in soybean. Here, we perform a genome-wide association study and identify a major quantitative trait locus (QTL), named GmSW17 (Seed Width 17), on chromosome 17 that determine soybean seed width/weight in natural population. GmSW17 encodes a ubiquitin-specific protease, an ortholog to UBP22, belonging to the ubiquitin-specific protease (USPs/UBPs) family. Further functional investigations reveal that GmSW17 interacts with GmSGF11 and GmENY2 to form a deubiquitinase (DUB) module, which influences H2Bub levels and negatively regulates the expression of GmDP-E2F-1, thereby inhibiting the G1-to-S transition. Population analysis demonstrates that GmSW17 undergo artificial selection during soybean domestication but has not been fixed in modern breeding. In summary, our study identifies a predominant gene related to soybean seed weight, providing potential advantages for high-yield breeding in soybean.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuemei He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Pan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
50
|
Prodhan ZH, Samonte SOPB, Sanchez DL, Talukder SK. Profiling and Improvement of Grain Quality Traits for Consumer Preferable Basmati Rice in the United States. PLANTS (BASEL, SWITZERLAND) 2024; 13:2326. [PMID: 39204762 PMCID: PMC11359321 DOI: 10.3390/plants13162326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Basmati rice is a premium aromatic rice that consumers choose primarily because of its distinct aroma and excellent grain quality. The grain quality of Basmati rice (GQBR) reflects the perspectives of producers, processors, sellers, and consumers related to the production, processing, marketing, and consumption of Basmati rice. Consumers, an invaluable part of the production demand and value chain of the Basmati rice industry, have the freedom to choose from different types of aromatic rice. Consumers expect their preferred Basmati rice to possess all superior rice grain qualities, including the physical, biochemical, and physiological properties. Gene functional analysis explained that a 10-base pair deletion in the promoter region of the OsSPL16 gene causes the slender grains in Basmati rice, whereas an 8-base-pair deletion in exon 7 of the OsBadh2 gene (located in the fgr region on rice chromosome 8) results in the distinct aroma. Furthermore, a combination of the genetic characteristics of the gw8 and gs3 genes has led to the creation of a long-grain Basmati-type rice cultivar. It has also been demonstrated that agricultural, genetic, and environmental conditions significantly influence GQBR. Hence, research on improving GQBR requires a multidimensional approach and sophisticated elements due to the complexity of its nature and preference diversity. This review covers the basic definitions of grain quality traits, consumer preference criteria, influencing factors, and strategies for producing superior-quality Basmati rice in the United States. This knowledge will be useful in improving the grain quality of Basmati and Basmati-type rice, as well as developing appropriate breeding programs that will meet the preferences of different countries and cultures.
Collapse
Affiliation(s)
- Zakaria Hossain Prodhan
- Texas A&M AgriLife Research Center, 1509 Aggie Drive, Beaumont, TX 77713, USA; (D.L.S.); (S.K.T.)
| | | | | | | |
Collapse
|