1
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. Dev Biol 2025; 522:106-115. [PMID: 40113028 PMCID: PMC12065081 DOI: 10.1016/j.ydbio.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/27/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
IRF6 is a key genetic determinant of cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mice defined its role in the embryonic surface epithelium and periderm, where it regulates cell proliferation and differentiation. Several reports have also described Irf6 expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cells has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA, 19104, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA, 19104, USA; Shriners Hospital for Children, Tampa, FL, 33607, USA.
| |
Collapse
|
2
|
Reznick J, Niessen CM. IRF6 hits the sweet spot. Cell Stem Cell 2025; 32:671-672. [PMID: 40315828 DOI: 10.1016/j.stem.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
Glucose serves as an essential energy source for cells. In this issue, Lopez-Pajares et al.1 uncover a role for glucose uncoupled from its energetic function. During epidermal differentiation, free glucose accumulates and binds the pro-differentiation transcription factor IRF6, promoting its dimerization and DNA binding to activate genes that drive differentiation.
Collapse
Affiliation(s)
- Jane Reznick
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carien M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Breakey W, Fell M, Burge J, Davies A, Sainsbury D, Tanikawa D, Chong D. Van Der Woude in Unilateral Cleft Lip: Phenotypic Patterns and Surgical Adaptations. J Craniofac Surg 2025:00001665-990000000-02620. [PMID: 40208953 DOI: 10.1097/scs.0000000000011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Van der Woude syndrome is synonymous with a severe phenotypic expression of cleft lip and palate. Traditionally, the severity of unilateral cleft lip has been associated to the width of a cleft. The authors examine the presentation of the unilateral cleft lip in Van der Woude syndrome, with a focus on the lateral lip element. METHODS This is a retrospective, observational study of patients with a unilateral cleft lip and palate, a diagnosis of Van der Woude syndrome and preoperative clinical images treated at The Royal Children's Hospital, Melbourne, Australia; Royal Victoria Infirmary, Newcastle upon Tyne, UK; or Menino Jesus Municipal Hospital, São Paulo, Brazil. Patient images were classified into different levels of lateral element hypoplasia according to the Melbourne Classification. RESULTS Eight patients with Van der Woude syndrome and unilateral cleft lip and palate were identified across the 3 hospital sites. All 8 patients had left-sided unilateral cleft lip and palate and Melbourne Classification type 2 tissue hypoplasia, with shortened vertical lip and red vermillion height. CONCLUSIONS This cohort of children with unilateral cleft lip and palate in the setting of Van der Woude syndrome presented with a left-sided preponderance and type 2 hypoplasia of the lateral lip element. It is important to observe the presence of hypoplasia in the lateral lip element when attempting to balance any cleft lip repair. Technical nuances are presented, which may assist in improving appearance outcomes.
Collapse
Affiliation(s)
- Will Breakey
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew Fell
- The Welsh Centre for Cleft Lip and Palate, Morriston Hospital, Swansea
| | - Jonathan Burge
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amy Davies
- The Cleft Collective, University of Bristol, Bristol
| | - David Sainsbury
- Department of Plastic Surgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Daniela Tanikawa
- Department of Plastic Surgery, Menino Jesus Municipal Hospital, São Paulo, Brazil
| | - David Chong
- Department of Plastic and Maxillofacial Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Adelizzi E, Rhea L, Mitvalsky C, Pek S, Doolittle B, Dunnwald M. The ectodermal loss of ARHGAP29 alters epithelial morphology and organization and disrupts murine palatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642653. [PMID: 40161602 PMCID: PMC11952475 DOI: 10.1101/2025.03.11.642653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Orofacial clefts, including cleft palate (CP), are among the most common types of birth defects. CP specifically, results from a failure of palatal shelf fusion during development. Previous studies have shown that mutations in RhoA GTPase Activating Protein 29 ( ARHGAP29) are linked to CP, yet the role and tissue-specific requirements for ARHGAP29 during palatogenesis remain unknown. Here, we use tissue-specific deletion of Arhgap29 in mice to provide the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. We demonstrate that ectodermal conditional loss of Arhgap29 induces a significant delay in the fusion of palatal shelves at embryonic (E) day 14.5 and an incomplete yet significantly penetrant cleft palate at E18.5 - neither of which are observed when Arhgap29 is lost later in development using K14-Cre. Phenotypic analyses of palatal shelves at E14.5 reveal a disorganized and thicker epithelium at the tip of the shelves. Loss of Arhgap29 increases palate epithelial cell area and upregulates alpha-smooth muscle actin and phospho-myosin regulatory light chain implicating cell morphology and contractility as drivers of CP. Summary statement This study in mice is the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. Loss of Arhgap29 alters oral epithelial morphology and upregulates contractility proteins.
Collapse
|
5
|
Perilli L, Negro S, Carbone S, Minerva M, Curcio MR, Lotti F, Mencarelli MA, Ariani F, Renieri A, Tomasini B, Grosso S. Exploring the Role of IRF6 in Perinatal Arterial Ischemic Stroke: A Case of a Newborn with Craniofacial Malformations. Genes (Basel) 2025; 16:271. [PMID: 40149423 PMCID: PMC11941822 DOI: 10.3390/genes16030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Ischemic arterial stroke (AIS) is a cerebrovascular event that can occur acutely within the first hours or days of life, presenting as a neurological emergency. To date, clearly defined genetic risk factors for AIS have not been established, although certain genes involved in cerebrovascular regulation mechanisms are suspected to play a role. The Interferon Regulatory Factor 6 (IRF6) gene is a transcription factor involved in craniofacial and epidermal development. Recently, pathogenic variants of IRF6 have been implicated in the cytoprotective pathway of ischemic cerebrovascular disease. The aim of this manuscript is to further support the already-reported association between IRF6 and AIS. Materials and Methods: Genetic counseling and exome sequencing analysis were conducted for diagnostic purposes. Results: We report the case of a female newborn with palatoschisis, cleft palate, sensorineural deafness, facial dysmorphisms, and cutaneous defects who suffered an ischemic stroke in the territory of the left middle cerebral artery on day 1 of life. Family and pregnancy histories revealed no identifiable risk factors, and coagulation studies were normal. Exome sequencing identified a de novo c.1124T>C (p.Phe375Ser) variant in the IRF6 gene. The child developed right spastic hemiplegia and began motor rehabilitation therapy. Recently, a genome-wide association study (GWAS) using m6A-SNPs identified a statistical association between AIS and a single nucleotide polymorphism (SNP) that influences the expression of the IRF6 gene as an expression quantitative trait locus (eQTL). Conclusions: To our knowledge, this is the first report of neonatal ischemic stroke in a child carrying a de novo IRF6 pathogenic variant, further supporting its potential role as a genetic factor influencing cerebrovascular events. Further studies are needed to elucidate the precise relationship between IRF6 and AIS.
Collapse
Affiliation(s)
- Lorenzo Perilli
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Simona Negro
- Neonatal Intensive Care Unit, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Samanta Carbone
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Michele Minerva
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Rosaria Curcio
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, Department of Cellular Therapies, Hematology, and Laboratory Medicine, Azienda Ospedaliera-Universitaria Senese, 53100 Siena, Italy
| | - Francesca Ariani
- Medical Genetics, Department of Cellular Therapies, Hematology, and Laboratory Medicine, Azienda Ospedaliera-Universitaria Senese, 53100 Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, Department of Cellular Therapies, Hematology, and Laboratory Medicine, Azienda Ospedaliera-Universitaria Senese, 53100 Siena, Italy
| | - Barbara Tomasini
- Neonatal Intensive Care Unit, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
6
|
Kumari P, Friedman RZ, Pi L, Curtis SW, Paraiso K, Visel A, Rhea L, Dunnwald M, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Leslie EJ, White MA, Cohen BA, Cornell RA. Identification of functional non-coding variants associated with orofacial cleft. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.01.596914. [PMID: 40027800 PMCID: PMC11870446 DOI: 10.1101/2024.06.01.596914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Oral facial cleft (OFC) is a multifactorial disorder that can present as a cleft lip with or without cleft palate (CL/P) or a cleft palate only. Genome wide association studies (GWAS) of isolated OFC have identified common single nucleotide polymorphisms (SNPs) at the 1q32/ IRF6 locus and many other loci where, like IRF6 , the presumed OFC-relevant gene is expressed in embryonic oral epithelium. To identify the functional subset of SNPs at eight such loci we conducted a massively parallel reporter assay in a cell line derived from fetal oral epithelium, revealing SNPs with allele-specific effects on enhancer activity. We filtered these against chromatin-mark evidence of enhancers in relevant cell types or tissues, and then tested a subset in traditional reporter assays, yielding six candidates for functional SNPs in five loci (1q32/ IRF6 , 3q28/ TP63 , 6p24.3/ TFAP2A , 20q12/ MAFB , and 9q22.33/ FOXE1 ). We further tested two SNPs near IRF6 and one near FOXE1 by engineering the genome of induced pluripotent stem cells, differentiating the cells into embryonic oral epithelium, and measuring expression of IRF6 or FOXE1 and binding of transcription factors; the results strongly supported their candidacy. Conditional analyses of a meta-analysis of GWAS suggest that the two functional SNPs near IRF6 account for the majority of risk for CL/P associated with variation at this locus. This study connects genetic variation associated with orofacial cleft to mechanisms of pathogenesis.
Collapse
|
7
|
Bossolani-Martins AL, Meira JGC, Kobayashi GS, Barbosa-Gonçalves A, Passos-Bueno MR, Fett-Conte AC. Van der Woude syndrome and amniotic band sequence: A clue to a common genetic etiology? A case report. Genet Mol Biol 2025; 48:e20240123. [PMID: 40084670 PMCID: PMC11895807 DOI: 10.1590/1678-4685-gmb-2024-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 03/16/2025] Open
Abstract
Rare heterozygous variants in IRF6 (interferon regulatory factor-6) gene cause van der Woude syndrome 1 (VWS1) or Popliteal Pterygium syndrome, two forms of syndromic cleft lip/palate (CLP) that present with a variety of congenital malformations due to impairment ectodermal homeostasis. These malformations include, in addition to CLP, lip pits, pterygia, and intraoral and eyelid fibrous bands. Amniotic band sequence (ABS) is a rare condition of unknown genetic etiology that involves a range of congenital anomalies caused by the entanglement of fibrous bands, which disrupt fetal body parts. However, ABS co-occurs with CLP and other malformations that cannot be explained by this mechanism. Therefore, investigating the genetic relationship between ABS and CLP may provide clues regardind the genes involved in these conditions. Here, we report a case of a girl diagnosed with VWS1, autism, intellectual disability, and congenital right limb anomalies compatible with ABS. Molecular analysis revealed a novel, rare heterozygous missense variant in IRF6 (NM_006147.3:c.970T>C) located in exon 7, inherited from her father. This variant results in the replacement of serine by proline at position 324 of the IRF6 protein with potentially deleterious effects. This report expands the mutational landscape of IRF6 and provides further support for a possible link between the genetics of CLP and ABS.
Collapse
Affiliation(s)
| | | | - Gerson Shigeru Kobayashi
- Universidade de São Paulo, Instituto de Biociências, Centro de Estudos do Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | | | - Maria Rita Passos-Bueno
- Universidade de São Paulo, Instituto de Biociências, Centro de Estudos do Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | | |
Collapse
|
8
|
Peschel N, Willershausen I, Schliep S, Sticherling M, Schneider H. A yet undescribed IRF6 variant causes a new type of ectodermal dysplasia with natal teeth. J Eur Acad Dermatol Venereol 2025. [PMID: 39902929 DOI: 10.1111/jdv.20564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Nicolai Peschel
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Willershausen
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schliep
- Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Sticherling
- Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Holm Schneider
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Jeong R, Bulyk ML. Meta-analysis reveals transcription factors and DNA binding domain variants associated with congenital heart defect and orofacial cleft. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.30.25321274. [PMID: 39974057 PMCID: PMC11838631 DOI: 10.1101/2025.01.30.25321274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Many structural birth defect patients lack genetic diagnoses because there are many disease genes as yet to be discovered. We applied a gene burden test incorporating de novo predicted-loss-of-function (pLoF) and likely damaging missense variants together with inherited pLoF variants to a collection of congenital heart defect (CHD) and orofacial cleft (OC) parent-offspring trio cohorts (n = 3,835 and 1,844, respectively). We identified 17 novel candidate CHD genes and 10 novel candidate OC genes, of which many were known developmental disorder genes. Shorter genes were more powered in a "de novo only" analysis as compared to analysis including inherited pLoF variants. TFs were enriched among the significant genes; 14 and 8 transcription factor (TF) genes showed significant variant burden for CHD and OC, respectively. In total, 30 affected children had a de novo missense variant in a DNA binding domain of a known CHD, OC, and other developmental disorder TF genes. Our results suggest candidate pathogenic variants in CHD and OC and their potentially pleiotropic effects in other developmental disorders.
Collapse
Affiliation(s)
- Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Hubing V, Marquis A, Ziemann C, Moriyama H, Moriyama EN, Zhang L. Cytoplasmic Shift of Interferon Regulatory Factors Co-Evolved With Jawed Vertebrate Innate Immunity. J Med Virol 2025; 97:e70247. [PMID: 39977406 PMCID: PMC11841930 DOI: 10.1002/jmv.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
The emergence of jaws in early vertebrates introduced a novel feeding apparatus and powerful oral defenses, but it also increased the risk of physical injury and pathogen exposure. Interferon regulatory factors (IRFs) play critical roles in orchestrating innate immunity and inflammation in response to invading microbes and tissue damage, with their subcellular localization being essential to some IRFs' function. Our results indicate that IRF members underwent independent expansion and diversification in two distinct vertebrate lineages: jawed and jawless vertebrates. The jawed vertebrate-specific factor, IRF5, has maintained conserved nuclear export sequences throughout evolution, while newly diversified IRF members in jawed vertebrates have acquired cytoplasmic localization. This cytoplasmic shift particularly affected IRFs involved in type I interferon (IFN) signaling (IRF3, IRF5, IRF7, and IRF9), suggesting co-evolution with the development of the type I IFN system in jawed animals. Interestingly, although IRF9 is inherently nuclear, its association with Signal Transducer and Activator of Transcription 2 (STAT2) has led to its cytoplasmic localization. Additionally, IRF6, another jawed vertebrate-specific factor, plays a crucial role in jaw development, reflecting an evolutionary adaptation that aligns structural innovations with immune function. Our findings suggest that the evolution of jaws coincided with the adoption of cytoplasmic localization in IRF members, potentially enhancing rapid immune responses to meet the immunological challenges posed by the predatory lifestyle of early jawed vertebrates.
Collapse
Affiliation(s)
- Vanessa Hubing
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Avery Marquis
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Chanasei Ziemann
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Hideaki Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Etsuko N. Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Luwen Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Nebraska Center for VirologyUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
11
|
Divaris M. Decoding Facial Dissymmetry: A Comparative Morphological Study on Human Skulls and Facial Structures. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6514. [PMID: 39974771 PMCID: PMC11838159 DOI: 10.1097/gox.0000000000006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
Background This study provides a detailed examination of facial asymmetry and its relationship with skeletal structure and soft tissues, aiming to better understand the morphological variations of the face. Methods The facial characteristics of 615 patients were analyzed using morphometric measurements. To complement this analysis, 189 skulls were examined to establish a concordance between skeletal structure and soft tissues, allowing for a deeper understanding of the observed asymmetry. The data were statistically analyzed to identify patterns of asymmetry. Results The measurements revealed a prevalence of the "narrow face" on the right side, characterized by features such as a narrower orbit, a thinner lateronasal area, and a slightly higher and narrower maxillomalar block. Notable exceptions to this pattern were observed, indicating significant individual variations. Conclusions Facial asymmetry is a constant feature among individuals and is influenced by complex embryological development processes. Identifying these variations provides new insights for aesthetic procedures, emphasizing the importance of a personalized approach to facial diagnosis.
Collapse
Affiliation(s)
- Marc Divaris
- From the Maxilofacial Surgery Department, Pitié Salpêtrière University, Paris, Île-de-France, France
- Maxilofacial Surgery Department, Georges Mandel Office, Paris, France
- Musée de l'Homme, Paris-Sorbonne University, Paris, France
| |
Collapse
|
12
|
Robinson K, Singh SK, Walkup RB, Fawwal DV, Adeyemo WL, Beaty TH, Butali A, Buxó CJ, Chung WK, Cutler DJ, Epstein MP, Fashina A, Gasser B, Gowans LJJ, Hecht JT, Uribe LM, Scott DA, Shaw GM, Thomas MA, Weinberg SM, Brand H, Marazita ML, Lipinski RJ, Murray JC, Cornell RA, Leslie-Clarkson EJ. Rare variants in PRKCI cause Van der Woude syndrome and other features of peridermopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.17.25320742. [PMID: 39867391 PMCID: PMC11759255 DOI: 10.1101/2025.01.17.25320742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis. Both IRF6 and GRHL3 function in a transcriptional regulatory network governing differentiation of periderm, a single layer of epithelial cells that prevents pathological adhesions during palatogenesis. Disruption of this layer results in a spectrum of phenotypes ranging from lip pits and OFCs to severe pterygia and other congenital anomalies that can be incompatible with life. Understanding the mechanisms of peridermopathies is vital in improving health outcomes for affected individuals. We reasoned that genes encoding additional members of the periderm gene regulatory network, including kinases acting upstream of IRF6 (i.e., atypical protein kinase C family members, RIPK4, and CHUK), are candidates to harbor variants resulting in VWS. Consistent with this prediction, we identified 6 de novo variants (DNs) and 11 rare variants in PRKCI, an atypical protein kinase C, in 17 individuals with clinical features consistent with syndromic OFCs and peridermopathies. Of the identified DNs, 4 were identical p.(Asn383Ser) variants in unrelated individuals with syndromic OFCs, indicating a likely hotspot mutation. We also performed functional validation of 12 variants using the enveloping layer in zebrafish embryos, a structure analogous to the periderm. Three patient-specific alleles (p.Arg130His, p.(Asn383Ser), and p.Leu385Phe) were confirmed to be loss-of-function variants. In summary, we identified PRKCI as a novel causal gene for VWS and syndromic OFC with other features of peridermopathies.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Sunil K. Singh
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Walkup
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA, USA
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Azeez Fashina
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | | - Lord JJ Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX, USA
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mary Ann Thomas
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
13
|
Yu LL, Zeng Q, Yu BF, Wei J, Dai CC. A Novel Genetic Variation Identified in Patients With Orofacial Clefts. J Craniofac Surg 2024:00001665-990000000-02275. [PMID: 39679673 DOI: 10.1097/scs.0000000000011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Orofacial clefts represent the most prevalent form of craniomaxillofacial deformity. Genetic factors are particularly significant in the development of orofacial clefts. This study was to investigate genetic variation in patients with orofacial clefts. METHODS This is a retrospective descriptive study. Whole-exome sequencing (WES) was conducted to identify mutated genes and mutation loci in patients with orofacial clefts. The identified mutation was validated through Sanger sequencing. Furthermore, functional analysis of the mutated gene was performed by utilizing a comprehensive database. RESULTS The results of WES showed IRF6 was mutated, and the variant locus was IRF6: NM_006147.4, IRF6 c.174+1delG chr1-209974583-ac-a. The variant locus was detected in the patient's mother with orofacial clefts by Sanger sequencing. The Human Gene Database for variant gene shows that the IRF6 gene may be associated with craniomaxillofacial developmental abnormalities. CONCLUSION The authors identified a novel locus within the IRF6 gene in a family with orofacial clefts that has not been previously reported. Functional analysis of the mutated gene suggests that this newly discovered mutation site may be associated with the genetic etiology of orofacial clefts in these patients. The findings will provide valuable data for elucidating the molecular mechanisms underlying orofacial clefts. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Li-Ling Yu
- Department of Health Education, Jiangxi Maternal and Child Health Hospital, Maternal and Child Health Hospital of Nanchang Medical College, Jiangxi Hospital Affiliated to Children's Hospital of Chongqing Medical University
| | - Qi Zeng
- Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang
| | - Bao-Fu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chuan-Chang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Department of Ear, nose and throat, Shanghai Ninth People's Hospital Huangpu Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Siewert A, Hoeland S, Mangold E, Ludwig KU. Combining genetic and single-cell expression data reveals cell types and novel candidate genes for orofacial clefting. Sci Rep 2024; 14:26492. [PMID: 39489835 PMCID: PMC11532359 DOI: 10.1038/s41598-024-77724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Non-syndromic cleft lip with/without cleft palate (nsCL/P) is one of the most common birth defects and has a multifactorial etiology. To date, over 45 loci harboring common risk variants have been identified. However, the effector genes at these loci, and the cell types that are affected by risk alleles, remain largely unknown. To address this, we combined genetic data from an nsCL/P genome-wide association study (GWAS) with single-cell RNA sequencing data obtained from the heads of unaffected human embryos. Using the recently developed single-cell disease relevance score (scDRS) approach, we identified two major cell types involved in nsCL/P development, namely the epithelium and the HAND2+ pharyngeal arches (PA). Combining scDRS with co-expression networks and differential gene expression analysis, we prioritized nsCL/P candidate genes, some of which were additionally supported by GWAS data (e.g., CTNND1, PRTG, RPL35A, RAB11FIP1, KRT19). Our results suggest that specific epithelial and PA sub-cell types are involved in nsCL/P development, and harbor a substantial fraction of the genetic risk for nsCL/P.
Collapse
Affiliation(s)
- Anna Siewert
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Simone Hoeland
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Yan H, Tang W. Programmed RNA editing with an evolved bacterial adenosine deaminase. Nat Chem Biol 2024; 20:1361-1370. [PMID: 38969862 DOI: 10.1038/s41589-024-01661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Programmed RNA editing presents an attractive therapeutic strategy for genetic disease. In this study, we developed bacterial deaminase-enabled recoding of RNA (DECOR), which employs an evolved Escherichia coli transfer RNA adenosine deaminase, TadA8e, to deposit adenosine-to-inosine editing to CRISPR-specified sites in the human transcriptome. DECOR functions in a variety of cell types, including human lung fibroblasts, and delivers on-target activity similar to ADAR-overexpressing RNA-editing platforms with 88% lower off-target effects. High-fidelity DECOR further reduces off-target effects to basal level. We demonstrate the clinical potential of DECOR by targeting Van der Woude syndrome-causing interferon regulatory factor 6 (IRF6) insufficiency. DECOR-mediated RNA editing removes a pathogenic upstream open reading frame (uORF) from the 5' untranslated region of IRF6 and rescues primary ORF expression from 12.3% to 36.5%, relative to healthy transcripts. DECOR expands the current portfolio of effector proteins and opens new territory in programmed RNA editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Cai S, Yin N. Single-cell transcriptome and chromatin accessibility mapping of upper lip and primary palate fusion. J Cell Mol Med 2024; 28:e70128. [PMID: 39392189 PMCID: PMC11467802 DOI: 10.1111/jcmm.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Cleft lip and/or primary palate (CL/P) represent a prevalent congenital malformation, the aetiology of which is highly intricate. Although it is generally accepted that the condition arises from failed fusion between the upper lip and primary palate, the precise mechanism underlying this fusion process remains enigmatic. In this study, we utilized transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to interrogate lambdoidal junction tissue derived from C57BL/6J mouse embryos at critical stages of embryogenesis (10.5, 11.5 and 12.5 embryonic days). We successfully identified distinct subgroups of mesenchymal and ectodermal cells involved in the fusion process and characterized their unique transcriptional profiles. Furthermore, we conducted cell differentiation trajectory analysis, revealing a dynamic repertoire of genes that are sequentially activated or repressed during pseudotime, facilitating the transition of relevant cell types. Additionally, we employed scATAC data to identify key genes associated with the fusion process and demonstrated differential chromatin accessibility across major cell types. Finally, we constructed a dynamic intercellular communication network and predicted upstream transcriptional regulators of critical genes involved in important signalling pathways. Our findings provide a valuable resource for future studies on upper lip and primary palate development, as well as congenital defects.
Collapse
Affiliation(s)
- Sini Cai
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Cosmetic Center of Dermatology Hospital of Southern Medical UniversityGuangdong Provincial Dermatology HospitalGuangzhouChina
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
18
|
Mishra JK, Sahu SA, Saha A, Sindhuja A, Rahmi JJ, Valsalan A. Popliteal Pterygium Syndrome with a Family History of Van der Woude Syndrome: A Case Report. JOURNAL OF THE WEST AFRICAN COLLEGE OF SURGEONS 2024; 14:445-449. [PMID: 39309379 PMCID: PMC11412588 DOI: 10.4103/jwas.jwas_173_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 09/25/2024]
Abstract
Popliteal pterygium syndrome (PPS) is a rare inherited disorder involving the face, limbs, and genitalia. The most prominent and handicapping deformity associated with this syndrome is Popliteal pterygium. Popliteal pterygium is a contracture band that extends from ischial tuberosity to calcaneum. It is a dense fibrous band difficult to correct surgically. We report a case of PPS with her two other family members diagnosed with Van der Woude syndrome. Single-stage surgical release is ineffective due to shortened neurovascular and surrounding soft tissues. Multimodality treatment with surgical release and motivated parents may help these children to rehabilitate.
Collapse
Affiliation(s)
- Jiten Kumar Mishra
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Shamendra Anand Sahu
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Aparajita Saha
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Abi Sindhuja
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Jalaz Joezer Rahmi
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Abhijith Valsalan
- Department of Burns & Plastic Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
19
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Zhou P, Yang L, Ma X, Li Q. Sevoflurane inhibits lung cancer development by promoting FUS1 transcription via downregulating IRF6. Carcinogenesis 2024; 45:543-555. [PMID: 38819072 DOI: 10.1093/carcin/bgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024] Open
Abstract
Lung cancer is a major contributor to cancer deaths worldwide and is on the rise. Although surgical resection has been widely used as a standard therapy for lung cancer patients, the relapse rate after surgery is high. It is still unclear whether there is a potential drug that can reduce the probability of postsurgical recurrence in lung cancer patients. We used 5 typical lung cancer cell lines as well as 41 lung cancer tissue samples and paracancer tissue samples to investigate the expression levels of interferon regulatory factor 6 (IRF6) and tumor suppressor candidate 2 (TUSC2, also known as FUS1). We also treated lung cancer cells (H322 and A549) with different concentrations of sevoflurane to study its influence on lung cancer cell tumorigenesis. Lentivirus-mediated gain-of-function studies of IRF6 and FUS1 were applied to validate the role of IRF6 and FUS1 in lung cancer. Next, we used short hairpin RNA-mediated loss of function of IRF6 and luciferase, chromatin immunoprecipitation assays to validate the regulatory role of IRF6 on FUS1. Our findings reported that IRF6 was upregulated in lung cancer tissues, while FUS1 was downregulated. Functional assays revealed that sevoflurane inhibits lung cancer development by downregulating IRF6 expression. Luciferase and chromatin immunoprecipitation-quantitative real-time PCR assays uncovered that IRF6 represses FUS1 transcriptional expression in lung cancer cells. We have shown that sevoflurane prevents lung cancer development by downregulating IRF6 to stimulate FUS1 transcription, indicating that sevoflurane can be used as the potential anesthetic drug in surgical resection to reduce postoperative tumor relapse in lung cancer patients.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road, No. 139, Changsha City, Hunan Province 410011, People's Republic of China
| | - Lei Yang
- Department of Oncology, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Xinyu Ma
- Department of Surgery, Hunan Chest Hospital, No. 519 Xianjiahu Road, Yuelu District, Changsha City, Hunan Province 410205, People's Republic of China
| | - Qiuguo Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road, No. 139, Changsha City, Hunan Province 410011, People's Republic of China
- Department of Surgery, Hunan Chest Hospital, No. 519 Xianjiahu Road, Yuelu District, Changsha City, Hunan Province 410205, People's Republic of China
| |
Collapse
|
21
|
Seaberg A, Awotoye W, Qian F, Machado-Paula LA, Dunlay L, Butali A, Murray J, Moreno-Uribe L, Petrin AL. DNA Methylation Effects on Van der Woude Syndrome Phenotypic Variability. Cleft Palate Craniofac J 2024:10556656241269495. [PMID: 39109995 PMCID: PMC11802890 DOI: 10.1177/10556656241269495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVE Van der Woude Syndrome (VWS) presents with combinations of lip pits (LP) and cleft lip and/or cleft palate (CL/P, CPO). VWS phenotypic heterogeneity even amongst relatives, suggests that epigenetic factors may act as modifiers. IRF6, causal for 70% of VWS cases, and TP63 interact in a regulatory loop coordinating epithelial proliferation and differentiation in palatogenesis. We hypothesize that differential DNA methylation within IRF6 and TP63 regulatory regions underlie VWS phenotypic discordance. METHODS DNA methylation of CpG sites in IRF6 and TP63 promoters and in an IRF6 enhancer element was compared amongst blood or saliva DNA samples of 78 unrelated cases. Analyses were done separately for blood and saliva, within each sex and in combination, and to address cleft type (CL/P ± LP vs. CPO ± LP) and phenotypic severity (any cleft + LP vs. any cleft only). RESULTS For cleft type, blood samples showed higher IRF6 and TP63 promoter methylation on males with CPO ± LP compared to CL/P ± LP and on individuals with CPO ± LP compared to those with CL/P ± LP, respectively. Saliva samples showed higher IRF6 enhancer methylation on individuals with CPO ± LP compared to CL/P ± LP and contrary to above, lower TP63 promoter methylation on CPO ± LP compared to CL/P ± LP. For phenotypic severity, blood samples showed no differences; however, saliva samples showed higher IRF6 promoter methylation in individuals with any cleft + LP compared to those without lip pits. CONCLUSION We observed differential methylation in IRF6 and TP63 regulatory regions associated with cleft type and phenotypic severity, indicating that epigenetic changes in IRF6 and TP63 can contribute to phenotypic heterogeneity in VWS.
Collapse
Affiliation(s)
- Amanda Seaberg
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Fang Qian
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lindsey Dunlay
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jeff Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lina Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Aline L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Dai Y, Itai T, Pei G, Yan F, Chu Y, Jiang X, Weinberg SM, Mukhopadhyay N, Marazita ML, Simon LM, Jia P, Zhao Z. DeepFace: Deep-learning-based framework to contextualize orofacial-cleft-related variants during human embryonic craniofacial development. HGG ADVANCES 2024; 5:100312. [PMID: 38796699 PMCID: PMC11193024 DOI: 10.1016/j.xhgg.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yan Chu
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Ding F, Hou F, Shan S, Zhao Y, Jin H. Case report and functional verification of a novel mutation in the interferon regulatory transcription factor 6 gene in a family with orofacial clefts. Am J Transl Res 2024; 16:2898-2909. [PMID: 39114717 PMCID: PMC11301462 DOI: 10.62347/iaqv2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND This study aimed to identify the causative genetic variant in a Chinese family with orofacial clefts. METHODS We retrospectively analyzed the clinical information of a family with orofacial clefts. Then, we performed an etiological genetic analysis of the family using whole exome sequencing analysis and Sanger sequencing. We created a hybrid code-shifting mutation cell line (293T-462het) and evaluated its impact on cell proliferation, migration, and apoptosis, as well as E-cadherin and vimentin expression. RESULTS Whole exome sequencing revealed a novel heterozygous variant c.1386del (p.A462Pfs*28) in the interferon regulatory transcription factor 6 (IRF6) gene in a family with orofacial clefts. Sanger sequencing further confirmed that this heterozygous variant was the genetic cause of orofacial clefts in this family. The c.1386del variant of IRF6 was classified as likely pathogenic. The heterozygous mutation IRF6 (c.1386del) enhanced cell proliferation and migration while inhibiting cell apoptosis and regulating the expression of E-cadherin and vimentin. CONCLUSION This study identified a novel c.1386del mutation in the IRF6 gene and explored how this mutation leads to lip and palate defects. Our results provide a solid theoretical foundation for future genetic detection of these orofacial defects.
Collapse
Affiliation(s)
- Fengjuan Ding
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Jinan 250001, Shandong, China
| | - Fei Hou
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Jinan 250001, Shandong, China
| | - Shan Shan
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Jinan 250001, Shandong, China
| | - Yan Zhao
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Jinan 250001, Shandong, China
| | - Hua Jin
- Department of Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital Jinan 250001, Shandong, China
| |
Collapse
|
24
|
Rahimov F, Nieminen P, Kumari P, Juuri E, Nikopensius T, Paraiso K, German J, Karvanen A, Kals M, Elnahas AG, Karjalainen J, Kurki M, Palotie A, FinnGen, Estonian Biobank Research Team, Heliövaara A, Esko T, Jukarainen S, Palta P, Ganna A, Patni AP, Mar D, Bomsztyk K, Mathieu J, Ruohola-Baker H, Visel A, Fakhouri WD, Schutte BC, Cornell RA, Rice DP. High incidence and geographic distribution of cleft palate cases in Finland are associated with a regulatory variant in IRF6. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310146. [PMID: 39040165 PMCID: PMC11261923 DOI: 10.1101/2024.07.09.24310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In Finland the frequency of isolated cleft palate (CP) is higher than that of isolated cleft lip with or without cleft palate (CL/P). This trend contrasts to that in other European countries but its genetic underpinnings are unknown. We performed a genome-wide association study for orofacial clefts, which include CL/P and CP, in the Finnish population. We identified rs570516915, a single nucleotide polymorphism that is highly enriched in Finns and Estonians, as being strongly associated with CP ( P = 5.25 × 10 -34 , OR = 8.65, 95% CI 6.11-12.25), but not with CL/P ( P = 7.2 × 10 -5 ), with genome-wide significance. The risk allele frequency of rs570516915 parallels the regional variation of CP prevalence in Finland, and the association was replicated in independent cohorts of CP cases from Finland ( P = 8.82 × 10 -28 ) and Estonia ( P = 1.25 × 10 -5 ). The risk allele of rs570516915 disrupts a conserved binding site for the transcription factor IRF6 within a previously characterized enhancer upstream of the IRF6 gene. Through reporter assay experiments we found that the risk allele of rs570516915 diminishes the enhancer activity. Oral epithelial cells derived from CRISPR-Cas9 edited induced pluripotent stem cells demonstrate that the CP-associated allele of rs570516915 concomitantly decreases the binding of IRF6 and the expression level of IRF6 , suggesting impaired IRF6 autoregulation as a molecular mechanism underlying the risk for CP.
Collapse
|
25
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Antiguas A, Dunnwald M. A novel noncanonical function for IRF6 in the recycling of E-cadherin. Mol Biol Cell 2024; 35:ar102. [PMID: 38809584 PMCID: PMC11244161 DOI: 10.1091/mbc.e23-11-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) is a transcription factor essential for keratinocyte cell-cell adhesions. Previously, we found that recycling of E-cadherin was defective in the absence of IRF6, yet total E-cadherin levels were not altered, suggesting a previously unknown, nontranscriptional function for IRF6. IRF6 protein contains a DNA binding domain (DBD) and a protein binding domain (PBD). The transcriptional function of IRF6 depends on its DBD and PBD, however, whether the PBD is necessary for the interaction with cytoplasmic proteins has yet to be demonstrated. Here, we show that an intact PBD is required for recruitment of cell-cell adhesion proteins at the plasma membrane, including the recycling of E-cadherin. Colocalizations and coimmunoprecipitations reveal that IRF6 forms a complex in recycling endosomes with Rab11, Myosin Vb, and E-cadherin, and that the PBD is required for this interaction. These data indicate that IRF6 is a novel effector of the endosomal recycling of E-cadherin and demonstrate a non-transcriptional function for IRF6 in regulating cell-cell adhesions.
Collapse
Affiliation(s)
- Angelo Antiguas
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52245
| |
Collapse
|
27
|
Yang CW, Yin B, Shi JY, Shi B, Jia ZL. Causal Variations at IRF6 Gene Identified in Van der Woude Syndrome Pedigrees. Cleft Palate Craniofac J 2024; 61:1134-1142. [PMID: 36866619 DOI: 10.1177/10556656231157575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The purpose of this study is to analyze the clinical characteristics of patients with Van der Woude syndrome (VWS) and to detect variations in each patient. Finally, the combination of genotype and phenotype can make a clear diagnosis of VWS patients with different phenotype penetrance. Five Chinese VWS pedigree were enrolled. Whole exome sequencing of the proband was performed, and the potential pathogenic variation was further verified by Sanger sequencing in the patient and their parents. The human mutant IRF6 coding sequence was generated from the human full-length IRF6 plasmid by site-directed mutagenesis and cloned into the GV658 vector, RT-qPCR and Western blot were used to detect the expression of IRF6. We found one de novo nonsense variation (p. Gln118Ter) and three novel missense variations (p. Gly301Glu, p. Gly267Ala, and p. Glu404Gly) co-segregated with VWS. RT-qPCR analysis revealed that p. Glu404Gly significantly reduced the expression level of IRF6 mRNA. Western blot of cell lysates confirmed that IRF6 p. Glu404Gly abundance levels were lower than those for IRF6 wild type. This discovery of the novel variation (IRF6 p. Glu404Gly) expands the spectrum of known variations in VWS in Chinese humans. Genetic results combined with clinical phenotypes and differential diagnosis points from other diseases can make a definitive diagnosis and provide genetic counseling for families.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Yu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Lin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598425. [PMID: 38915513 PMCID: PMC11195129 DOI: 10.1101/2024.06.11.598425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation. Several reports have also described Irf6 gene expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cell lineages has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
29
|
Zhao Z, Cui R, Chi H, Wan T, Ma D, Zhang J, Cai M. A novel IRF6 gene mutation impacting the regulation of TGFβ2-AS1 in the TGFβ pathway: A mechanism in the development of Van der Woude syndrome. Front Genet 2024; 15:1397410. [PMID: 38903762 PMCID: PMC11188484 DOI: 10.3389/fgene.2024.1397410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Several mutations in the IRF6 gene have been identified as a causative link to VWS. In this investigation, whole-exome sequencing (WES) and Sanger sequencing of a three-generation pedigree with an autosomal-dominant inheritance pattern affected by VWS identified a unique stop-gain mutation-c.748C>T:p.R250X-in the IRF6 gene that co-segregated exclusively with the disease phenotype. Immunofluorescence analysis revealed that the IRF6-p.R250X mutation predominantly shifted its localization from the nucleus to the cytoplasm. WES and protein interaction analyses were conducted to understand this mutation's role in the pathogenesis of VWS. Using LC-MS/MS, we found that this mutation led to a reduction in the binding of IRF6 to histone modification-associated proteins (NAA10, SNRPN, NAP1L1). Furthermore, RNA-seq results show that the mutation resulted in a downregulation of TGFβ2-AS1 expression. The findings highlight the mutation's influence on TGFβ2-AS1 and its subsequent effects on the phosphorylation of SMAD2/3, which are critical in maxillofacial development, particularly the palate. These insights contribute to a deeper understanding of VWS's molecular underpinnings and might inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zhiyang Zhao
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Renjie Cui
- Department of Molecular Diagnostics & Endocrinology, The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoshu Chi
- Shanghai Xuhui District Dental Disease Center, Shanghai, China
| | - Teng Wan
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Cai
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
30
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Alhazmi N, Alamoud KA, Albalawi F, Alalola B, Farook FF. The application of zebrafish model in the study of cleft lip and palate development: A systematic review. Heliyon 2024; 10:e28322. [PMID: 38533046 PMCID: PMC10963633 DOI: 10.1016/j.heliyon.2024.e28322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Craniofacial growth and development are more than a scientific curiosity; it is of tremendous interest to clinicians. Insights into the genetic etiology of cleft lip and palate development are essential for improving diagnosis and treatment planning. The purpose of this systematic review was to utilize a zebrafish model to highlight the role of the IRF6 gene in cleft lip and palate development in humans. Data This review adhered to the guidelines outlined in the PRISMA statement. Nine studies were included in the analysis. Sources This study used major scientific databases such as MEDLINE, EMBASE, Web of Science, and the Zebrafish Information Network and yielded 1275 articles. Two reviewers performed the screening using COVIDENCE™ independently, and a third reviewer resolved any conflicts. Study selection After applying the inclusion and exclusion criteria and screening, nine studies were included in the analysis. The Systematic Review Center for Laboratory Animal Experimentation's (SYRCLE's) risk-of-bias tool was used to assess the quality of the included studies. Results The main outcome supports the role of the IRF6 gene in zebrafish periderm development and embryogenesis, and IRF6 variations result in cleft lip and palate development. The overall SYRCLE risk of bias was low-medium. Conclusion In conclusion, this review indicated the critical role of the IRF6 gene and its downstream genes (GRHL3, KLF17, and ESRP1/2) in the development of cleft lip and palate in zebrafish models. Genetic mutation zebrafish models provide a high level of insights into zebrafish craniofacial development. Clinical relevance this review provides a productive avenue for understanding the powerful and conserved zebrafish model for investigating the pathogenesis of human cleft lip and palate.
Collapse
Affiliation(s)
- Nora Alhazmi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Khalid A. Alamoud
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Farraj Albalawi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Bassam Alalola
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Fathima F. Farook
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
32
|
Sinha BK, Kumar D, Meher P, Kumari S, Prakash K, Gourinath S, Kashav T. Biophysical and functional characterization of N-terminal domain of Human Interferon Regulatory Factor 6. Mol Biol Rep 2024; 51:380. [PMID: 38429584 DOI: 10.1007/s11033-024-09205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNβ gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNβ). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNβ promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION NTD-IRF6 consists of a mix of α-helix and β-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNβ.
Collapse
Affiliation(s)
- Binita Kumari Sinha
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Devbrat Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyabrata Meher
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Shilpi Kumari
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, New Delhi, India
| | - Krishna Prakash
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | | | - Tara Kashav
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India.
| |
Collapse
|
33
|
Kim IK, Diamond MS, Yuan S, Kemp SB, Kahn BM, Li Q, Lin JH, Li J, Norgard RJ, Thomas SK, Merolle M, Katsuda T, Tobias JW, Baslan T, Politi K, Vonderheide RH, Stanger BZ. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:1532. [PMID: 38378697 PMCID: PMC10879147 DOI: 10.1038/s41467-024-46048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.
Collapse
Affiliation(s)
- Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha B Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey H Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy K Thomas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Merolle
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takeshi Katsuda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Wieprzowski Ł, Surowiec Z, Sawicka E, Brudnicki A. Surgical Treatment of Lip Pits in Van der Woude Syndrome: A Preliminary Retrospective Study of 24 Patients. JOURNAL OF MOTHER AND CHILD 2024; 28:45-50. [PMID: 38920016 PMCID: PMC11200161 DOI: 10.34763/jmotherandchild.20242801.d-24-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Van der Woude syndrome (VWS) is a rare congenital malformation characterized by lower lip pits among patients with a lip and/or palate cleft. It is transmitted by an autosomal dominant inheritance with variable expressivity. METHODS The study group consisted of 24 consecutive patients (13 males and 11 females) with VWS operated on at a single center between 2009 and 2022. They suffered from: bilateral cleft lip and palate - 6 patients; unilateral cleft lip and palate - 9 patients; cleft lip - 1 patient; and isolated cleft palate - 8 patients. RESULTS In 16 (66%) cases pits of lower lip occurred on both side of midline, while in 8 (34%) the pits were detected unilaterally. The primary cleft repairs were performed according to one-stage principle at the mean age of 8.6 months (SD 1.4, range 6-12). In all patients lower lip pits repairs were performed after the primary cleft repairs as a separate procedure at the mean age of 37 months (SD 11.3 range 14-85). The mean number of all primary repairs of the syndrome-both cleft defect and lower lip pits repairs-was 2.46. Nine patients (37.5%) required additional secondary corrections of the lower lip due to the poor aesthetic post-operative outcome. CONCLUSIONS The frequent need for secondary corrections of residual lower lip deformities indicates the considerable difficulties in obtaining a satisfactory outcome of the repairs to lip pits caused by VWS. The average number of the primary surgical interventions in evaluated material remained low.
Collapse
Affiliation(s)
- Łukasz Wieprzowski
- Department of Maxillo-facial Surgery, Clinic of Pediatric Surgery, Institute of Mother and Child, Kasprzaka Street 17a, 01-211Warsaw, Poland
| | - Zbigniew Surowiec
- Department of Maxillo-facial Surgery, Clinic of Pediatric Surgery, Institute of Mother and Child, Kasprzaka Street 17a, 01-211Warsaw, Poland
| | - Ewa Sawicka
- Department of Maxillo-facial Surgery, Clinic of Pediatric Surgery, Institute of Mother and Child, Kasprzaka Street 17a, 01-211Warsaw, Poland
| | - Andrzej Brudnicki
- Department of Maxillo-facial Surgery, Clinic of Pediatric Surgery, Institute of Mother and Child, Kasprzaka Street 17a, 01-211Warsaw, Poland
| |
Collapse
|
35
|
Ma Y, Liu H, Shi L. Progress of epigenetic modification of SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate. Asian J Surg 2024; 47:72-76. [PMID: 37852859 DOI: 10.1016/j.asjsur.2023.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Non-syndromic Cleft Lip and Palate (NSCLP) is one of the most common congenital craniofacial malformations. However, there is no enough knowledge about its mechanism, even through many relevant studies verify that cleft lip and palate is caused by interactions between environmental and genetic factors. SATB2 gene is one of the most common candidate genes of NSCLP, and the development of epigenetics provides a new direction on pathogenesis of cleft lip and palate. This review summarizes SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate, expecting to provide strategies to prevent and treat cleft and palate in the future.
Collapse
Affiliation(s)
- Yang Ma
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China
| | - Hangyu Liu
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Lungang Shi
- Department of Plastic Surgery, Meizhou Clinical Institute of Shantou University Medical College, No 63 Huangtang Road, Meizhou, 514031, Guangdong, China; Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
36
|
Seaberg A, Awotoye W, Qian F, Dunlay L, Butali A, Murray J, Moreno-Uribe L, Petrin A. DNA methylation effects on Van der Woude Syndrome phenotypic variability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.04.23298094. [PMID: 37961322 PMCID: PMC10635279 DOI: 10.1101/2023.11.04.23298094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Van der Woude Syndrome (VWS) classically presents with combinations of lip pits (LP) and orofacial clefts, with marked phenotypic discordance even amongst individuals carrying the same mutation. Such discordance suggests a possible role for epigenetic factors as phenotypic modifiers. Both IRF6 , causal for 70% of VWS cases, and TP63 interact in a regulatory loop to coordinate epithelial proliferation and differentiation for palatogenesis. We hypothesize that differential DNA methylation (DNAm) in CpG sites within regulatory regions of IRF6 and TP63 are associated with VWS phenotypic discordance. METHODS We measured DNAm levels of CpG sites located in the promoter regions of IRF6 and TP63 and in an IRF6 enhancer element (MCS9.7) in 83 individuals with VWS grouped within 5 phenotypes for primary analysis: 1=CL+/-P+LP, 2=CL+/-P, 3=CP+LP, 4=CP, 5=LP and 2 phenotypes for secondary analysis: 1=any cleft and LP, 2= any cleft without LP. DNA samples were bisulfite converted and pyrosequenced with target-specific primers. Methylation levels were compared amongst phenotypes. RESULTS CpG sites in the IRF6 promoter showed statistically significant differences in methylation among phenotypic groups in both analyses (P<0.05). Individuals with any form of cleft (Groups 1-4) had significantly higher methylation levels than individuals with lip pits only (Group 5). In the secondary analysis, individuals in Group 1 (cleft+LP) had significantly higher methylation than Group 2 (cleft only). CONCLUSION Results indicated that hypermethylation of the IRF6 promoter is associated with more severe phenotypes (any cleft +/- lip pits); thus, possibly impacting an already genetically weakened IRF6 protein and leading to a more severe phenotype.
Collapse
|
37
|
Pham LNG, Niimi T, Suzuki S, Nguyen MD, Nguyen LCH, Nguyen TD, Hoang KA, Nguyen DM, Sakuma C, Hayakawa T, Hiyori M, Natsume N, Furukawa H, Imura H, Akashi J, Ohta T, Natsume N. Association between IRF6, TP63, GREM1 Gene Polymorphisms and Non-Syndromic Orofacial Cleft Phenotypes in Vietnamese Population: A Case-Control and Family-Based Study. Genes (Basel) 2023; 14:1995. [PMID: 38002937 PMCID: PMC10671090 DOI: 10.3390/genes14111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to identify potential variants in the TP63-IRF6 pathway and GREM1 for the etiology of non-syndromic orofacial cleft (NSOFC) among the Vietnamese population. By collecting 527 case-parent trios and 527 control samples, we conducted a stratified analysis based on different NSOFC phenotypes, using allelic, dominant, recessive and over-dominant models for case-control analyses, and family-based association tests for case-parent trios. Haplotype and linkage disequilibrium analyses were also conducted. IRF6 rs2235375 showed a significant association with an increased risk for non-syndromic cleft lip and palate (NSCLP) and cleft lip with or without cleft palate (NSCL/P) in the G allele, with pallele values of 0.0018 and 0.0003, respectively. Due to the recessive model (p = 0.0011) for the NSCL/P group, the reduced frequency of the GG genotype of rs2235375 was associated with a protective effect against NSCL/P. Additionally, offspring who inherited the G allele at rs2235375 had a 1.34-fold increased risk of NSCL/P compared to the C allele holders. IRF6 rs846810 and a G-G haplotype at rs2235375-rs846810 of IRF6 impacted NSCL/P, with p-values of 0.0015 and 0.0003, respectively. In conclusion, our study provided additional evidence for the association of IRF6 rs2235375 with NSCLP and NSCL/P. We also identified IRF6 rs846810 as a novel marker associated with NSCL/P, and haplotypes G-G and C-A at rs2235375-rs846810 of IRF6 associated with NSOFC.
Collapse
Affiliation(s)
- Loc Nguyen Gia Pham
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Teruyuki Niimi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Satoshi Suzuki
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Minh Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Linh Cao Hoai Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Tuan Duc Nguyen
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Kien Ai Hoang
- Odonto-Maxillo Facial Hospital of Ho Chi Minh City, 263-265 Tran Hung Dao Street, District 1, Ho Chi Minh City 71000, Vietnam; (M.D.N.); (L.C.H.N.); (T.D.N.); (K.A.H.)
| | - Duc Minh Nguyen
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- School of Odonto-Stomatology, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Chisato Sakuma
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Toko Hayakawa
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Makino Hiyori
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Nagana Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hiroo Furukawa
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| | - Junko Akashi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan;
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, 2–11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (L.N.G.P.); (T.N.); (S.S.); (D.M.N.); (C.S.); (N.N.); (H.I.)
- Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
- Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.H.); (M.H.)
| |
Collapse
|
38
|
Xie J, Zhuang Z, Gou S, Zhang Q, Wang X, Lan T, Lian M, Li N, Liang Y, Ouyang Z, Ye Y, Wu H, Lai L, Wang K. Precise genome editing of the Kozak sequence enables bidirectional and quantitative modulation of protein translation to anticipated levels without affecting transcription. Nucleic Acids Res 2023; 51:10075-10093. [PMID: 37650635 PMCID: PMC10570039 DOI: 10.1093/nar/gkad687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
None of the existing approaches for regulating gene expression can bidirectionally and quantitatively fine-tune gene expression to desired levels. Here, on the basis of precise manipulations of the Kozak sequence, which has a remarkable influence on translation initiation, we proposed and validated a novel strategy to directly modify the upstream nucleotides of the translation initiation codon of a given gene to flexibly alter the gene translation level by using base editors and prime editors. When the three nucleotides upstream of the translation initiation codon (named KZ3, part of the Kozak sequence), which exhibits the most significant base preference of the Kozak sequence, were selected as the editing region to alter the translation levels of proteins, we confirmed that each of the 64 KZ3 variants had a different translation efficiency, but all had similar transcription levels. Using the ranked KZ3 variants with different translation efficiencies as predictors, base editor- and prime editor-mediated mutations of KZ3 in the local genome could bidirectionally and quantitatively fine-tune gene translation to the anticipated levels without affecting transcription in vitro and in vivo. Notably, this strategy can be extended to the whole Kozak sequence and applied to all protein-coding genes in all eukaryotes.
Collapse
Affiliation(s)
- Jingke Xie
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Zhenpeng Zhuang
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Quanjun Zhang
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Xia Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Ting Lan
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Lian
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Nan Li
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Yanhui Liang
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Zhen Ouyang
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Yinghua Ye
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Han Wu
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Liangxue Lai
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| | - Kepin Wang
- China–New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
| |
Collapse
|
39
|
Diaz Perez KK, Chung S, Head ST, Epstein MP, Hecht JT, Wehby GL, Weinberg SM, Murray JC, Marazita ML, Leslie EJ. Rare variants found in multiplex families with orofacial clefts: Does expanding the phenotype make a difference? Am J Med Genet A 2023; 191:2558-2570. [PMID: 37350193 PMCID: PMC10528230 DOI: 10.1002/ajmg.a.63336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Exome sequencing (ES) is now a relatively straightforward process to identify causal variants in Mendelian disorders. However, the same is not true for ES in families where the inheritance patterns are less clear, and a complex etiology is suspected. Orofacial clefts (OFCs) are highly heritable birth defects with both Mendelian and complex etiologies. The phenotypic spectrum of OFCs may include overt clefts and several subclinical phenotypes, such as discontinuities in the orbicularis oris muscle (OOM) in the upper lip, velopharyngeal insufficiency (VPI), microform clefts or bifid uvulas. We hypothesize that expanding the OFC phenotype to include these phenotypes can clarify inheritance patterns in multiplex families, making them appear more Mendelian. We performed exome sequencing to find rare, likely causal genetic variants in 31 multiplex OFC families, which included families with multiple individuals with OFCs and individuals with subclinical phenotypes. We identified likely causal variants in COL11A2, IRF6, SHROOM3, SMC3, TBX3, and TP63 in six families. Although we did not find clear evidence supporting the subclinical phenotype hypothesis, our findings support a role for rare variants in the etiology of OFCs.
Collapse
Affiliation(s)
- Kimberly K Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney Chung
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, Texas, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Diaz Perez KK, Curtis SW, Sanchis-Juan A, Zhao X, Head T, Ho S, Carter B, McHenry T, Bishop MR, Valencia-Ramirez LC, Restrepo C, Hecht JT, Uribe LM, Wehby G, Weinberg SM, Beaty TH, Murray JC, Feingold E, Marazita ML, Cutler DJ, Epstein MP, Brand H, Leslie EJ. Rare variants found in clinical gene panels illuminate the genetic and allelic architecture of orofacial clefting. Genet Med 2023; 25:100918. [PMID: 37330696 PMCID: PMC10592535 DOI: 10.1016/j.gim.2023.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Collapse
Affiliation(s)
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Bridget Carter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; Agnes Scott College, Decatur, GA
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Madison R Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX
| | - Lina M Uribe
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | - George Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
41
|
Cheng X, Du F, Long X, Huang J. Genetic Inheritance Models of Non-Syndromic Cleft Lip with or without Palate: From Monogenic to Polygenic. Genes (Basel) 2023; 14:1859. [PMID: 37895208 PMCID: PMC10606748 DOI: 10.3390/genes14101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Non-syndromic cleft lip with or without palate (NSCL/P) is a prevalent birth defect that affects 1/500-1/1400 live births globally. The genetic basis of NSCL/P is intricate and involves both genetic and environmental factors. In the past few years, various genetic inheritance models have been proposed to elucidate the underlying mechanisms of NSCL/P. These models range from simple monogenic inheritance to more complex polygenic inheritance. Here, we present a comprehensive overview of the genetic inheritance model of NSCL/P exemplified by representative genes and regions from both monogenic and polygenic perspectives. We also summarize existing association studies and corresponding loci of NSCL/P within the Chinese population and highlight the potential of utilizing polygenic risk scores for risk stratification of NSCL/P. The potential application of polygenic models offers promising avenues for improved risk assessment and personalized approaches in the prevention and management of NSCL/P individuals.
Collapse
Affiliation(s)
- Xi Cheng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
| | - Fengzhou Du
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xiao Long
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (X.C.); (F.D.); (X.L.)
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
42
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
43
|
Trybek G, Jaroń A, Gabrysz-Trybek E, Rutkowska M, Markowska A, Chmielowiec K, Chmielowiec J, Grzywacz A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. Int J Mol Sci 2023; 24:13889. [PMID: 37762190 PMCID: PMC10530430 DOI: 10.3390/ijms241813889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In recent research, there has been a growing awareness of the role of genetic factors in the positioning and eruption of teeth in the maxilla and mandible. This study aimed to evaluate the potential of specific polymorphic markers of single nucleotide polymorphisms (SNPs) located within the PAX9, MSX1, AXIN2, and IRF6 genes to determine the predisposition to tooth impaction. The study participants were divided into two groups: the first group consisted of individuals with at least one impacted secondary tooth. In contrast, the second group (control group) had no impacted teeth in their jaws. To analyze the genes, real-time PCR (polymerase chain reaction) and TaqMan probes were utilized to detect the selected polymorphisms. The findings suggest that disruptions in the structure and function of the mentioned genetic factors such as polymorphic and haplotype variants of PAX9, MSX1, AXIN2, and IRF6 genes, which play a direct role in tooth and periodontal tissue development, might be significant factors in tooth impaction in individuals with genetic variations. Therefore, it is reasonable to hypothesize that tooth impaction may be influenced, at least in part, by the presence of specific genetic markers, including different allelic variants of the PAX9, AXIN2, and IRF6 genes, and especially MSX1.
Collapse
Affiliation(s)
- Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72/18, 70-111 Szczecin, Poland
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Jaroń
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Ewa Gabrysz-Trybek
- Individual Specialist Medical Practice Ewa Gabrysz-Trybek, 70-111 Szczecin, Poland;
| | - Monika Rutkowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Aleksandra Markowska
- 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland; (A.J.); (A.M.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
44
|
Gonggrijp BMA, van de Weijer SGA, Bijleveld CCJH, van Dongen J, Boomsma DI. The Co-Twin Control Design: Implementation and Methodological Considerations. Twin Res Hum Genet 2023:1-8. [PMID: 37655521 DOI: 10.1017/thg.2023.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Establishing causal relationships in observational studies is an important step in research and policy decision making. The association between an exposure and an outcome can be confounded by multiple factors, often making it hard to draw causal conclusions. The co-twin control design (CTCD) is a powerful approach that allows for the investigation of causal effects while controlling for genetic and shared environmental confounding factors. This article introduces the CTCD and offers an overview of analysis methods for binary and continuous outcome and exposure variables. Tools for data simulation are provided, along with practical guidance and accompanying scripts for implementing the CTCD in R, SPSS, and Stata. While the CTCD offers valuable insights into causal inference, it depends on several assumptions that are important when interpreting CTCD results. By presenting a broad overview of the CTCD, this article aims to equip researchers with actionable recommendations and a comprehensive understanding of the design's strengths and limitations.
Collapse
Affiliation(s)
- Bodine M A Gonggrijp
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, the Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Steve G A van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, the Netherlands
| | - Catrien C J H Bijleveld
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, the Netherlands
- Department of Criminal Law and Criminology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Babai A, Irving M. Orofacial Clefts: Genetics of Cleft Lip and Palate. Genes (Basel) 2023; 14:1603. [PMID: 37628654 PMCID: PMC10454293 DOI: 10.3390/genes14081603] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Orofacial clefting is considered one of the commonest birth defects worldwide. It presents as cleft lip only, isolated cleft palate or cleft lip and palate. The condition has a diverse genetic background influenced by gene-gene and gene-environment interaction, resulting in two main types, syndromic and nonsyndromic orofacial clefts. Orofacial clefts lead to significant physiological difficulties that affect feeding, speech and language development and other developmental aspects, which results in an increased social and financial burden on the affected individuals and their families. The management of cleft lip and palate is solely based on following a multidisciplinary team approach. In this narrative review article, we briefly summarize the different genetic causes of orofacial clefts and discuss some of the common syndromes and the approach to the management of orofacial clefts.
Collapse
Affiliation(s)
- Arwa Babai
- Department of Clinical Genetics, Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK;
| | | |
Collapse
|
46
|
Li MJ, Kumari P, Lin YS, Yao ML, Zhang BH, Yin B, Duan SJ, Cornell R, Marazita M, Shi B, Jia ZL. A Variant in the IRF6 Promoter Associated with the Risk for Orofacial Clefting. J Dent Res 2023; 102:806-813. [PMID: 37161310 PMCID: PMC10399074 DOI: 10.1177/00220345231165210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) rs2235371 (IRF6 V274I) is associated with nonsyndromic cleft lip with or without cleft palate (NSCL/P) in Han Chinese and other populations but appears to be without a functional effect. To find the common etiologic variant or variants within the haplotype tagged by rs2235371, we carried out targeted sequencing of an interval containing IRF6 in 159 Han Chinese with NSCL/P. This study revealed that the SNP rs12403599, within the IRF6 promoter, is associated with all phenotypes of NSCL/P, especially nonsyndromic cleft lip (NSCLO) and a subphenotype of it, microform cleft lip (MCL). This association was replicated in 2 additional much larger cohorts of cases and controls from the Han Chinese. Conditional logistic analysis indicated that association of rs2235371 with NSCL/P was lost if rs12403599 was excluded. rs12403599 contributes the most risk to MCL: its G allele is responsible for 38.47% of the genetic contribution to MCL, and the odds ratios of G/C and G/G genotypes were 2.91 and 6.58, respectively, for MCL. To test if rs12403599 is functional, we carried out reporter assays in a fetal oral epithelium cells (GMSM-K). Unexpectedly, the risk allele G yielded higher promoter activity in GMSM-K. Consistent with the reporter studies, expression of IRF6 in lip tissues from NSCLO and MCL patients with the G/G phenotype was higher than in those from patients with the C/C phenotype. These results indicate that rs12403599 is tagging the risk haplotype for NSCL/P better than rs2235371 in Han Chinese and supports investigation of the mechanisms by which the allele of rs12403599 affects IRF6 expression and tests of this association in different populations.
Collapse
Affiliation(s)
- M.-J. Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P. Kumari
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Y.-S. Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M.-L. Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B.-H. Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B. Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S.-J. Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R.A. Cornell
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - M.L. Marazita
- Centre for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - B. Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z.-l. Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Zhao Q, Zheng Y, Zhao D, Zhao L, Geng L, Ma S, Cai Y, Liu C, Yan Y, Belmonte JCI, Wang S, Zhang W, Liu GH, Qu J. Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration. Protein Cell 2023; 14:398-415. [PMID: 37285263 PMCID: PMC10246722 DOI: 10.1093/procel/pwac062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/16/2022] [Indexed: 07/21/2023] Open
Abstract
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Collapse
Affiliation(s)
| | | | | | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
48
|
Kim IK, Diamond M, Yuan S, Kemp S, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy. RESEARCH SQUARE 2023:rs.3.rs-2960521. [PMID: 37398248 PMCID: PMC10312946 DOI: 10.21203/rs.3.rs-2960521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Acquired resistance to immune checkpoint immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we found that tumors underwent an epithelial-to-mesenchymal transition (EMT) that resulted in reduced sensitivity to T cell-mediated killing. EMT-transcription factors (EMT-TFs) ZEB1 and SNAIL function as master genetic and epigenetic regulators of this tumor-intrinsic effect. Acquired resistance was not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, EMT was associated with epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), which renders tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings show how resistance to immunotherapy in PDAC can be acquired through plasticity programs that render tumor cells impervious to T cell killing.
Collapse
|
49
|
Naicker T, Alade A, Adeleke C, Mossey PA, Awotoye WA, Busch T, Li M, Olotu J, Aldous C, Butali A. Novel IRF6 variant in orofacial cleft patients from Durban, South Africa. Mol Genet Genomic Med 2023; 11:e2138. [PMID: 36811272 PMCID: PMC10178789 DOI: 10.1002/mgg3.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND To date, there are over 320 variants identified in the IRF6 gene that cause Van der Woude syndrome or popliteal pterygium syndrome. We sequenced this gene in a South African orofacial cleft cohort to identify the causal IRF6 variants in our population. METHOD Saliva samples from 100 patients with syndromic and non-syndromic CL ± P were collected. Patients were recruited from the cleft clinics at two public, tertiary hospitals in Durban, South Africa (SA), namely Inkosi Albert Luthuli Central Hospital (IALCH) and KwaZulu-Natal Children's Hospital (KZNCH). We prospectively sequenced the exons of IRF6 in 100 orofacial cleft cases, and where possible, we also sequenced the parents of the individuals to determine the segregation pattern. RESULTS Two variants were identified; one novel (p.Cys114Tyr) and one known (p.Arg84His) missense variant in IRF6 gene were identified. The patient with the p.Cys114Tyr variant was non-syndromic with no clinical VWS phenotype expected of individuals with IRF6 coding variants, and the patient with the p.Arg84His had phenotypic features of popliteal pterygium syndrome. The p.Arg84His variant segregated in the family, with the father also being affected. CONCLUSIONS This study provides evidence that IRF6 variants are found in the South African population. Genetic counselling is essential for affected families, particularly in the absence of a known clinical phenotype since it helps with the plans for future pregnancies.
Collapse
Affiliation(s)
- Thirona Naicker
- Genetics, Department of PaediatricsUniversity of KwaZulu‐NatalDurbanSouth Africa
- Smile Train PartnerNew YorkNew YorkUSA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Peter A. Mossey
- Department of OrthodonticsUniversity of DundeeDundeeUK
- Smile Train Global Medical Advisory BoardUSA
| | - Waheed A. Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Joy Olotu
- Department of AnatomyUniversity of Port HarcourtPort HarcourtNigeria
| | - Colleen Aldous
- School of Clinical MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
- Smile Train Research and Innovation Advisory CouncilUSA
| |
Collapse
|
50
|
Zawiślak A, Woźniak K, Kawala B, Gupta S, Znamirowska-Bajowska A, Janiszewska-Olszowska J, Lubiński J, Calvo-Guirado JL, Grocholewicz K, Jakubowska A. IRF6 and FGF1 polymorphisms in non-syndromic cleft lip with or without cleft palate in the Polish population. Open Med (Wars) 2023; 18:20230677. [PMID: 37020525 PMCID: PMC10068750 DOI: 10.1515/med-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common developmental defect that significantly affects the morphology and function of the stomatognathic system in children. The etiology of these birth defects is multifactorial, and single nucleotide polymorphisms (SNPs) in IRF6 and FGF1 have been associated with NSCL/P. This study aimed to evaluate whether SNPs in IRF6, namely rs2013162, rs642961, rs2235373, and rs34010 in FGF1, are associated with NSCL/P occurrence in the Polish population. The study included 627 participants: 209 children with NSCL/P and 418 healthy controls. DNA was isolated from saliva in the study group and from umbilical cord blood in controls. Genotyping of polymorphisms was performed using quantitative PCR. There was no statistically significant association of IRF6 gene variants with NSCL/P occurrence, although for rs2013162, AA genotype, odds ratio (OR) = 1.16 and for AC genotype, OR = 0.83; for rs642961, AA genotype, OR = 0.84 and for AG genotype, OR = 1.41; and for rs2235373, AA genotype, OR = 0.79 and for AG, OR = 0.85. In the instance of rs34010 polymorphism in FGF1, the presence of the AA genotype was statistically significant in reducing the risk of NSCL/P (OR = 0.31, p = 0.001). Genetic variation in FGF1 is an important risk marker of NSCL/P in the Polish population, which cannot be stated for the polymorphisms in the IRF6 gene.
Collapse
Affiliation(s)
- Alicja Zawiślak
- Department of Maxillofacial Orthopaedics and Orthodontics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Woźniak
- Department of Orthodontics, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Beata Kawala
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | - Satish Gupta
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Znamirowska-Bajowska
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | | | - Jan Lubiński
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - José Luis Calvo-Guirado
- Department of Oral Surgery and Implant Dentistry, Faculty of Health Sciences, Universidad Católica de Murcia, UCAM, 30107, Murcia, Spain
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Jakubowska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|