1
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
2
|
Textor J, Buytenhuijs F, Rogers D, Gauthier ÈM, Sultan S, Wortel IMN, Kalies K, Fähnrich A, Pagel R, Melichar HJ, Westermann J, Mandl JN. Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity. Cell Syst 2023; 14:1059-1073.e5. [PMID: 38061355 DOI: 10.1016/j.cels.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4+ T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Johannes Textor
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Franka Buytenhuijs
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shabaz Sultan
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Inge M N Wortel
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Kathrin Kalies
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Anke Fähnrich
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - René Pagel
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
3
|
Anderson CC, Bonney EA, Mueller TF, Corthay A, Havele C, Singh NJ, Øynebråten I, Bretscher PA. On antigen-specific signals, immune class regulation and energetics: Report III from the workshops on foundational concepts of immune regulation. Scand J Immunol 2023; 98:e13311. [PMID: 38112131 DOI: 10.1111/sji.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 12/20/2023]
Abstract
This is a report from a one-week workshop held in Athens, Greece in July of 2022. The workshop aimed to identify emerging concepts relevant to the fundamentals of immune regulation and areas for future research. Theories of immune regulation emphasize the role of T cell help or co-stimulation (signal 2). The workshop participants considered how new data on the characteristics of agonist antigens, the role of the antigen receptor signals (signal 1) in driving fate decisions, the effect of energetics on immunity and a better understanding of class-control in the immune response, may impact theories of immune regulation. These ideas were discussed in the context of tumour immunology, autoimmunity, pregnancy and transplantation. Here we present the discussions as a narrative of different viewpoints to allow the reader to join the conversation. These discussions highlight the evolving understanding of the nature of specific antigen recognition and how both antigen-specific and non-specific mechanisms impact immune responses.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of medicine, Burlington, Vermont, USA
| | - Thomas F Mueller
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Calliopi Havele
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter A Bretscher
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
This S, Rogers D, Mallet Gauthier È, Mandl JN, Melichar HJ. What's self got to do with it: Sources of heterogeneity among naive T cells. Semin Immunol 2023; 65:101702. [PMID: 36463711 DOI: 10.1016/j.smim.2022.101702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Dakota Rogers
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Ève Mallet Gauthier
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada.
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
5
|
Wolf G, Gerber AN, Fasana ZG, Rosenberg K, Singh NJ. Acute effects of FLT3L treatment on T cells in intact mice. Sci Rep 2022; 12:19487. [PMID: 36376544 PMCID: PMC9662129 DOI: 10.1038/s41598-022-24126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T cells express a diverse repertoire of antigen-specific receptors, which together protect against the full range of pathogens. In this context, the total repertoire of memory T cells which are maintained by trophic signals, long after pathogen clearance, is critical. Since these trophic factors include cytokines and self-peptide-MHC, both of which are available from endogenous antigen-presenting cells (APC), we hypothesized that enhancing APC numbers in vivo can be a viable strategy to amplify the population of memory T cells. We evaluated this by acutely treating intact mice with FMS-like tyrosine kinase 3 ligand (Flt3l), which promotes expansion of APCs. Here we report that this treatment allowed for, an expansion of effector-memory CD4+ and CD8+ T cells as well as an increase in their expression of KLRG1 and CD25. In the lymph nodes and spleen, the expansion was limited to a specific CD8 (CD44-low but CD62L-) subset. Functionally, this subset is distinct from naïve T cells and could produce significant amounts of effector cytokines upon restimulation. Taken together, these data suggest that the administration of Flt3L can impact both APC turnover as well as a corresponding flux of specific subsets of CD8+ T cells in an intact peripheral immune compartment.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Allison N Gerber
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Zachary G Fasana
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Kenneth Rosenberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St., HSF1, Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Van Laethem F, Bhattacharya A, Craveiro M, Lu J, Sun PD, Singer A. MHC-independent αβT cells: Lessons learned about thymic selection and MHC-restriction. Front Immunol 2022; 13:953160. [PMID: 35911724 PMCID: PMC9331304 DOI: 10.3389/fimmu.2022.953160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding the generation of an MHC-restricted T cell repertoire is the cornerstone of modern T cell immunology. The unique ability of αβT cells to only recognize peptide antigens presented by MHC molecules but not conformational antigens is referred to as MHC restriction. How MHC restriction is imposed on a very large T cell receptor (TCR) repertoire is still heavily debated. We recently proposed the selection model, which posits that newly re-arranged TCRs can structurally recognize a wide variety of antigens, ranging from peptides presented by MHC molecules to native proteins like cell surface markers. However, on a molecular level, the sequestration of the essential tyrosine kinase Lck by the coreceptors CD4 and CD8 allows only MHC-restricted TCRs to signal. In the absence of Lck sequestration, MHC-independent TCRs can signal and instruct the generation of mature αβT cells that can recognize native protein ligands. The selection model thus explains how only MHC-restricted TCRs can signal and survive thymic selection. In this review, we will discuss the genetic evidence that led to our selection model. We will summarize the selection mechanism and structural properties of MHC-independent TCRs and further discuss the various non-MHC ligands we have identified.
Collapse
Affiliation(s)
- François Van Laethem
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Hematology, Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France
- *Correspondence: François Van Laethem, ,
| | - Abhisek Bhattacharya
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marco Craveiro
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D. Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Alfred Singer
- Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Zhao X, Wu LZ, Ng EKY, Leow KWS, Wei Q, Gascoigne NRJ, Brzostek J. Non-Stimulatory pMHC Enhance CD8 T Cell Effector Functions by Recruiting Coreceptor-Bound Lck. Front Immunol 2021; 12:721722. [PMID: 34707605 PMCID: PMC8542885 DOI: 10.3389/fimmu.2021.721722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Under physiological conditions, CD8+ T cells need to recognize low numbers of antigenic pMHC class I complexes in the presence of a surplus of non-stimulatory, self pMHC class I on the surface of the APC. Non-stimulatory pMHC have been shown to enhance CD8+ T cell responses to low amounts of antigenic pMHC, in a phenomenon called co-agonism, but the physiological significance and molecular mechanism of this phenomenon are still poorly understood. Our data show that co-agonist pMHC class I complexes recruit CD8-bound Lck to the immune synapse to modulate CD8+ T cell signaling pathways, resulting in enhanced CD8+ T cell effector functions and proliferation, both in vitro and in vivo. Moreover, co-agonism can boost T cell proliferation through an extrinsic mechanism, with co-agonism primed CD8+ T cells enhancing Akt pathway activation and proliferation in neighboring CD8+ T cells primed with low amounts of antigen.
Collapse
Affiliation(s)
- Xiang Zhao
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang-Zhe Wu
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther K Y Ng
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kerisa W S Leow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qianru Wei
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Abstract
Conventional CD4+ and CD8+ T lymphocytes comprise a mixture of naive and memory cells. Generation and survival of these T-cell subsets is under strict homeostatic control and reflects contact with self-major histocompatibility complex (MHC) and certain cytokines. Naive T cells arise in the thymus via T-cell receptor (TCR)-dependent positive selection to self-peptide/MHC complexes and are then maintained in the periphery through self-MHC interaction plus stimulation via interleukin-7 (IL-7). By contrast, memory T cells are largely MHC-independent for their survival but depend strongly on stimulation via cytokines. Whereas typical memory T cells are generated in response to foreign antigens, some arise spontaneously through contact of naive precursors with self-MHC ligands; we refer to these cells as memory-phenotype (MP) T cells. In this review, we discuss the generation and homeostasis of naive T cells and these two types of memory T cells, focusing on their relative interaction with MHC ligands and cytokines.
Collapse
Affiliation(s)
- Takeshi Kawabe
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jaeu Yi
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
10
|
Weyerer V, Strissel PL, Stöhr C, Eckstein M, Wach S, Taubert H, Brandl L, Geppert CI, Wullich B, Cynis H, Beckmann MW, Seliger B, Hartmann A, Strick R. Endogenous Retroviral-K Envelope Is a Novel Tumor Antigen and Prognostic Indicator of Renal Cell Carcinoma. Front Oncol 2021; 11:657187. [PMID: 33968761 PMCID: PMC8100683 DOI: 10.3389/fonc.2021.657187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the ten most common cancers for men and women with an approximate 75% overall 5-year survival. Sixteen histological tumor subtypes exist and the most common are papillary, chromophobe and clear cell renal cell carcinoma (ccRCC) representing 85% of all RCC. Although epigenetically silenced, endogenous retroviral (ERV) genes become activated in tumors and function to ignite immune responses. Research has intensified to understand ERV protein function and their role as tumor antigens and targets for cancer (immune) therapy. ERV-K env is overexpressed and implicated as a therapeutic target for breast cancer, however studies in RCC are limited. In this investigation a human RCC tissue microarray (TMA) (n=374) predominantly consisting of the most common histological tumor subtypes was hybridized with an ERV-K env antibody and correlated with patient clinical data. TMA results showed the highest amount of ERV-K env protein expression and the strongest significant membrane expression in ccRCC versus other RCC subtypes. High ERV-K env total protein expression of all tumor subtypes significantly correlated with low tumor grading and a longer disease specific survival using multivariable analyses. Cell proliferation and invasion were assayed using the kidney cell lines HEK293 with wild-type p53 and a ccRCC cell line MZ1257RC mutated for p53. Transfecting these cell lines with a codon optimized ERV-K113 env overexpressing CMV vector was performed with or without 5’-Aza-2’-deoxycytidine (Aza) treatment to sustain promoter de-methylation. MZ1257RC showed induction of ERV-K113 expression and significantly increased both proliferation and invasion in the presence or absence of Aza. HEK293 cells demonstrated a restriction of ERV-K113 env expression and invasion with no changes in proliferation in the absence of Aza. However, in the presence of Aza despite increased ERV-K113 env expression, an inhibition of HEK293 proliferation and a further restriction of invasion was found. This study supports ERV-K env as a single prognostic indicator for better survival of RCC, which we propose represents a new tumor antigen. In addition, ERV-K env significantly regulates proliferation and invasion depending on p53 status and Aza treatment.
Collapse
Affiliation(s)
- Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Adjunct Affiliation With Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Lisa Brandl
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Translational Research Centre (TRC), Erlangen, Germany
| |
Collapse
|
11
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Modeling the Dynamics of T-Cell Development in the Thymus. ENTROPY 2021; 23:e23040437. [PMID: 33918050 PMCID: PMC8069328 DOI: 10.3390/e23040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.
Collapse
|
13
|
CD5 dynamically calibrates basal NF-κB signaling in T cells during thymic development and peripheral activation. Proc Natl Acad Sci U S A 2020; 117:14342-14353. [PMID: 32513716 PMCID: PMC7322041 DOI: 10.1073/pnas.1922525117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immature T cells undergo a process of positive selection in the thymus when their new T cell receptor (TCR) engages and signals in response to self-peptides. As the T cell matures, a slew of negative regulatory molecules, including the inhibitory surface glycoprotein CD5, are up-regulated in proportion to the strength of the self-peptide signal. Together these regulators dampen TCR-proximal signaling and help avoid any subsequent peripheral activation of T cells by self-peptides. Paradoxically, antigen-specific T cells initially expressing more CD5 (CD5hi) have been found to better persist as effector/memory cells after a peripheral challenge. The molecular mechanisms underlying such a duality in CD5 function is not clear. We found that CD5 alters the basal activity of the NF-κB signaling in resting peripheral T cells. When CD5 was conditionally ablated, T cells were unable to maintain higher expression of the cytoplasmic NF-κB inhibitor IκBα. Consistent with this, resting CD5hi T cells expressed more of the NF-κB p65 protein than CD5lo cells, without significant increases in transcript levels, in the absence of TCR signals. This posttranslationally stabilized cellular NF-κB depot potentially confers a survival advantage to CD5hi T cells over CD5lo ones. Taken together, these data suggest a two-step model whereby the strength of self-peptide-induced TCR signal lead to the up-regulation of CD5, which subsequently maintains a proportional reserve of NF-κB in peripheral T cells poised for responding to agonistic antigen-driven T cell activation.
Collapse
|
14
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
15
|
Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, Richert L, Pommerening-Röser A, Körner C, Ozawa M, Martrus G, Rossjohn J, Lee JH, Berry R, Carrington M, Altfeld M. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol 2019; 20:1129-1137. [PMID: 31358998 PMCID: PMC8370669 DOI: 10.1038/s41590-019-0448-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.
Collapse
Affiliation(s)
- Annika Niehrs
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F Garcia-Beltran
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gabrielle M Watson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Angelique Hölzemer
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - Anaïs Chapel
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Unité HIV Inflammation et Persistance, Institut Pasteur, Paris, France
| | - Laura Richert
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Inserm Inria SISTM Bordeaux Population Health Research Center UMR 1219, Univ. Bordeaux, Bordeaux, France
| | | | - Christian Körner
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Glòria Martrus
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Richard Berry
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, HLA Immunogenetics Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
16
|
Abstract
After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands.
Collapse
Affiliation(s)
- Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea.,Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
17
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
18
|
Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 2018; 115:E7369-E7378. [PMID: 30021852 DOI: 10.1073/pnas.1802746115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ μM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 μM) and high-affinity (Kd ∼ μM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.
Collapse
|
19
|
Abstract
Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.
Collapse
Affiliation(s)
- Mark M Davis
- Department of Microbiology and Immunology, The Howard Hughes Medical Institute, and the Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden.,Department of Neonatology, Karolinska University Hospital, 17176 Solna, Sweden
| |
Collapse
|
20
|
Abstract
Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| | - Vasily Rybakin
- Laboratory of Immunobiology, REGA Institute, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, National University of Singapore, Singapore 11759;
| |
Collapse
|
21
|
Guichard V, Bonilla N, Durand A, Audemard-Verger A, Guilbert T, Martin B, Lucas B, Auffray C. Calcium-mediated shaping of naive CD4 T-cell phenotype and function. eLife 2017; 6:27215. [PMID: 29239722 PMCID: PMC5747519 DOI: 10.7554/elife.27215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. To help protect the body from disease, small immune cells called T lymphocytes move rapidly, searching for signs of infection. These signs are antigens – processed pieces of proteins from invading microbes – that are displayed on the surface of so-called antigen-presenting cells.Before it encounters its specific antigen, a T cell is called naive. After encountering its antigen, the naive T cell activates and then develops into a variety of immune cells, each with a specific activity. These immune cells include so-called peripherally induced regulatory T cells (or “pTreg cells” for short), which, as the name suggests, help to regulate the immune response. In addition to foreign antigens from microbes, antigen-presenting cells display fragments of the body’s own proteins too. All naive T cells recognize some “Self-antigens”, but not as strongly as they recognize foreign antigens. As a naive T cell travels around the body, it repeatedly interacts with antigen-presenting cells that display Self-antigens, which triggers a low level of signaling in the T cell. While this background signaling was known to help the T cell survive, in 2013, researchers reported that: it also makes the T cell more responsive to foreign antigens; and it shapes how these cells will respond when activated. For example, the naive T cells that respond the most to Self-antigens were seen to be much more likely to become pTreg cells when activated than other T cells. Guichard et al. – who include several of the researchers involved in the 2013 work – set out to understand why the most Self-reactive T cells show this bias toward becoming pTreg cells. The experiments used a range of approaches with T cells both in the laboratory and in mice. By looking at which genes were active in the most Self-reactive T cells, Guichard et al. narrowed in on a signaling pathway that involves calcium ions and an enzyme called Calcineurin. Blocking this pathway caused the most Self-reactive T cells to lose their bias, and instead develop in the same way as the least Self-reactive T cells. Guichard et al. propose that the continuous interactions with Self-antigens trigger waves of calcium ions in a naive T cell that shapes its behavior and future development. In a related study, Dong, Othy et al. also conclude that contact with antigen-presenting cells causes calcium signals that shape how the T cells behave. In addition to providing more detail about the inner workings of immune cells, these findings may also have implications in a clinical setting. Calcineurin inhibitors are often used to suppress the immune system in transplant patients to prevent rejection of the transplanted organ. However, it has proved difficult to safely interrupt these therapies even after many years. These new findings may provide a possible explanation for this, by suggesting that the inhibitors may also interfere with the generation of pTreg cells. Without these cells’ regulatory influence, the immune system is unlikely to ever become tolerant of the transplant.
Collapse
Affiliation(s)
- Vincent Guichard
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France.,Paris Diderot Université, Paris, France
| | - Nelly Bonilla
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Aurélie Durand
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | | | - Thomas Guilbert
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Bruno Martin
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Bruno Lucas
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Cédric Auffray
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| |
Collapse
|
22
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
23
|
Takada K, Kondo K, Takahama Y. Generation of Peptides That Promote Positive Selection in the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:2215-2222. [PMID: 28264997 DOI: 10.4049/jimmunol.1601862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
To establish an immunocompetent TCR repertoire that is useful yet harmless to the body, a de novo thymocyte repertoire generated through the rearrangement of genes that encode TCR is shaped in the thymus through positive and negative selection. The affinity between TCRs and self-peptides associated with MHC molecules determines the fate of developing thymocytes. Low-affinity TCR engagement with self-peptide-MHC complexes mediates positive selection, a process that primarily occurs in the thymic cortex. Massive efforts exerted by many laboratories have led to the characterization of peptides that can induce positive selection. Moreover, it is now evident that protein degradation machineries unique to cortical thymic epithelial cells play a crucial role in the production of MHC-associated self-peptides for inducing positive selection. This review summarizes current knowledge on positive selection-inducing self-peptides and Ag processing machineries in cortical thymic epithelial cells. Recent studies on the role of positive selection in the functional tuning of T cells are also discussed.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
24
|
Kim HO, Cho JH. T Cell's Sense of Self: a Role of Self-Recognition in Shaping Functional Competence of Naïve T Cells. Immune Netw 2017; 17:201-213. [PMID: 28860950 PMCID: PMC5577298 DOI: 10.4110/in.2017.17.4.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023] Open
Abstract
Post-thymic naïve T cells constitute a key cellular arm of adaptive immunity, with a well-known characteristic of the specificity and robustness of responses to cognate foreign antigens which is presented as a form of antigen-derived peptides bound to major histocompatibility complex (MHC) molecules by antigen-presenting cells (APCs). In a steady state, however, these cells are resting, quiescent in their activity, but must keep full ranges of functional integrity to mount rapid and robust immunity to cope with various infectious pathogens at any time and space. Such unique property of resting naïve T cells is not acquired in a default manner but rather requires an active mechanism. Although our understanding of exactly how this process occurs and what factors are involved remains incomplete, a particular role of self-recognition by T cells has grown greatly in recent years. In this brief review, we discuss recent data on how the interaction of T cells with self-peptide MHC ligands regulates their functional responsiveness and propose that variable strength of self-reactivity imposes distinctly different levels of functional competence and heterogeneity.
Collapse
Affiliation(s)
- Hee-Ok Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
25
|
Singh NJ. Self-reactivity as the necessary cost of maintaining a diverse memory T-cell repertoire. Pathog Dis 2016; 74:ftw092. [PMID: 27620200 DOI: 10.1093/femspd/ftw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adaptive immune system is expected to protect the host from infectious agents and malignancies, while avoiding robust activation against self-peptides. However, T cells are notoriously inept at protection whenever the pathogen or tumor is persistent in the body for longer periods of time. While this has been thought of as an adaptation to limit the immunopathology from continued effector T-cell responses, it is also likely an extension of the T cell's intrinsic mechanisms which evolved to tolerate self-peptides. Here we deliberate on how the need to tolerate self-peptides might stem from a paradoxical requirement-the utility of such molecules in maintaining a diverse repertoire of pathogen-specific memory T cells in the body. Understanding the mechanisms underlying this intriguing nexus, therefore, has the potential to reveal therapeutic strategies not only for improving immune responses to chronic infections and tumors but also the long-term efficacy of vaccines aimed at cellular immune responses.
Collapse
Affiliation(s)
- Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the bad with the good. Nat Rev Immunol 2016; 16:207-19. [PMID: 27026073 DOI: 10.1038/nri.2016.27] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate form of parasitism and evasion of host immunity is for the parasite genome to enter the germ line of the host species. Retroviruses have invaded the host germ line on the grandest scale, and this is evident in the extraordinary abundance of endogenous retroelements in the genome of all vertebrate species that have been studied. Many of these endogenous retroelements have retained viral characteristics; some also the capacity to replicate and, consequently, the potential to trigger host innate and adaptive immune responses. However, although retroelements are mainly recognized for their pathogenic potential, recent evidence suggests that this 'enemy within' may also have beneficial roles in tuning host immune reactivity. In this Review, we discuss how the immune system recognizes and is shaped by endogenous retroelements.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.,Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan P Stoye
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.,Retrovirus-Host Interactions, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
27
|
Hood JD, Zarnitsyna VI, Zhu C, Evavold BD. Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:4162-70. [PMID: 26385521 DOI: 10.4049/jimmunol.1501464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
Having regulatory T cells (Tregs) with the same Ag specificity as the responding conventional T cells is thought to be important in maintaining peripheral tolerance. It has been demonstrated that during experimental autoimmune encephalomyelitis there are myelin oligodendrocyte glycoprotein (MOG)--specific Tregs that infiltrate into the CNS. However, the affinity of naturally occurring polyclonal Tregs for any self-antigen, let alone MOG, has not been analyzed in the periphery or at the site of autoimmune disease. Utilizing the highly sensitive micropipette adhesion frequency assay, which allows one to determine on a single-cell basis the affinity and frequency of polyclonal Ag-specific T cells directly ex vivo, we demonstrate that at peak disease MOG-specific Tregs were progressively enriched in the draining cervical lymph nodes and CNS as compared with spleen. These frequencies were greater than the frequencies measured by tetramer analysis, indicative of the large fraction of lower affinity T cells that comprise the MOG-specific conventional T cell (Tconv) and Treg response. Of interest, the self-reactive CD4(+) Tconvs and Tregs displayed overlapping affinities for MOG in the periphery, yet in the CNS, the site of neuroinflammation, Tconvs skew toward higher affinities. Most of the MOG-specific Tregs in the CNS possessed the methylation signature associated with thymic-derived Tregs. These findings indicate that thymic-derived Treg affinity range matches that of their Tconvs in the periphery and suggest a change in TCR affinity as a potential mechanism for autoimmune progression and escape from immune regulation.
Collapse
Affiliation(s)
- Jennifer D Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | | | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| |
Collapse
|
28
|
Viret C, Mahiddine K, Baker RL, Haskins K, Guerder S. The T Cell Repertoire-Diversifying Enzyme TSSP Contributes to Thymic Selection of Diabetogenic CD4 T Cell Specificities Reactive to ChgA and IAPP Autoantigens. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209627 DOI: 10.4049/jimmunol.1401683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple studies highlighted the overtly self-reactive T cell repertoire in the diabetes-prone NOD mouse. This autoreactivity has primarily been linked to defects in apoptosis induction during central tolerance. Previous studies suggested that thymus-specific serine protease (TSSP), a putative serine protease expressed by cortical thymic epithelial cells and thymic dendritic cells, may edit the repertoire of self-peptides presented by MHC class II molecules and shapes the self-reactive CD4 T cell repertoire. To gain further insight into the role of TSSP in the selection of self-reactive CD4 T cells by endogenous self-Ags, we examined the development of thymocytes expressing distinct diabetogenic TCRs sharing common specificity in a thymic environment lacking TSSP. Using mixed bone marrow chimeras, we evaluated the effect of TSSP deficiency confined to different thymic stromal cells on the differentiation of thymocytes expressing the chromogranin A-reactive BDC-2.5 and BDC-10.1 TCRs or the islet amyloid polypeptide-reactive TCR BDC-6.9 and BDC-5.2.9. We found that TSSP deficiency resulted in deficient positive selection and induced deletion of the BDC-6.9 and BDC-10.1 TCRs, but it did not affect the differentiation of the BDC-2.5 and BDC-5.2.9 TCRs. Hence, TSSP has a subtle role in the generation of self-peptide ligands directing diabetogenic CD4 T cell development. These results provide additional evidence for TSSP activity as a novel mechanism promoting autoreactive CD4 T cell development/accumulation in the NOD mouse.
Collapse
Affiliation(s)
- Christophe Viret
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Karim Mahiddine
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| | - Rocky Lee Baker
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Kathryn Haskins
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, Unité Mixte Recherche 5282, Toulouse F-31300, France; Université Toulouse III Paul-Sabatier, Toulouse F-31300, France; and
| |
Collapse
|
29
|
Abstract
The thymus is an essential organ for the generation of the adaptive immune system. By now, the cellular selection events taking place in ongoing life before sexual maturity have been worked out even at the molecular level, and thus thymic lymphocyte development represents one of the best-studied systems in mammalian development. Because thymic lymphocyte development involves ample proliferation and generation of new cells, it is not astonishing that the thymus also represents an organ where malignancy can develop. In this Masters of Immunology primer, the development of lymphocytes and the role of intracellular Notch 1 and cyclins in lymphocytic malignancy are reviewed, offering new therapeutic possibilities.
Collapse
Affiliation(s)
- Harald von Boehmer
- Author's Affiliations: Harvard Medical School; Dana-Farber Cancer Institute, Boston, Massachusetts; University of Florida, Gainesville, Florida; and University of Munich, Munich, Germany
| |
Collapse
|
30
|
Indoctrinating T cells to attack pathogens through homeschooling. Trends Immunol 2015; 36:337-43. [PMID: 25979654 DOI: 10.1016/j.it.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
Adaptive immunity is predicated on the ability of the T cell repertoire to have pre-existing specificity for the universe of potential pathogens. Recent findings suggest that T cell receptor (TCR)-self-major histocompatibility protein (pMHC) interactions limit autoimmune responses while enhancing T cell response to foreign antigens. We review these findings here, placing them in context of the current understanding of how TCR-self-pMHC interactions regulate T cell activation thresholds, and suggest that TCR-self-pMHC interactions increase the efficiency of the T cell repertoire by giving a competitive advantage to peptide cross-reactive T cells. We propose that self-reactivity and peptide cross-reactivity are controlled by particular CDR3 sequence motifs, which would allow thymic selection to contribute to solving the feat of broad pathogen specificity by exporting T cells that are pre-screened by positive and negative selection for the ability to be 'moderately' peptide cross-reactive.
Collapse
|
31
|
Rodriguez SN, Jiang M, Bujo H, Allen PM. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Mol Immunol 2015; 63:428-36. [PMID: 25451972 PMCID: PMC4254551 DOI: 10.1016/j.molimm.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting of self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by the activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape.
Collapse
Affiliation(s)
- Stephanie N Rodriguez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
32
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Insights into the initiation of TCR signaling. Nat Immunol 2014; 15:798-807. [PMID: 25137454 DOI: 10.1038/ni.2940] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.
Collapse
|
34
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
35
|
Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP. The ability to rearrange dual TCRs enhances positive selection, leading to increased Allo- and Autoreactive T cell repertoires. THE JOURNAL OF IMMUNOLOGY 2014; 193:1778-86. [PMID: 25015825 DOI: 10.4049/jimmunol.1400532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thymic selection is designed to ensure TCR reactivity to foreign Ags presented by self-MHC while minimizing reactivity to self-Ags. We hypothesized that the repertoire of T cells with unwanted specificities such as alloreactivity or autoreactivity are a consequence of simultaneous rearrangement of both TCRα loci. We hypothesized that this process helps maximize production of thymocytes capable of successfully completing thymic selection, but results in secondary TCRs that escape stringent selection. In T cells expressing two TCRs, one TCR can mediate positive selection and mask secondary TCR from negative selection. Examination of mice heterozygous for TRAC (TCRα(+/-)), capable of only one functional TCRα rearrangement, demonstrated a defect in generating mature T cells attributable to decreased positive selection. Elimination of secondary TCRs did not broadly alter the peripheral T cell compartment, though deep sequencing of TCRα repertoires of dual TCR T cells and TCRα(+/-) T cells demonstrated unique TCRs in the presence of secondary rearrangements. The functional impact of secondary TCRs on the naive peripheral repertoire was evidenced by reduced frequencies of T cells responding to autoantigen and alloantigen peptide-MHC tetramers in TCRα(+/-) mice. T cell populations with secondary TCRs had significantly increased ability to respond to altered peptide ligands related to their allogeneic ligand as compared with TCRα(+/-) cells, suggesting increased breadth in peptide recognition may be a mechanism for their reactivity. Our results imply that the role of secondary TCRs in forming the T cell repertoire is perhaps more significant than what has been assumed.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin Solomon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
36
|
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014; 14:377-91. [PMID: 24830344 PMCID: PMC4757912 DOI: 10.1038/nri3667] [Citation(s) in RCA: 944] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fate of developing T cells is specified by the interaction of their antigen receptors with self-peptide-MHC complexes that are displayed by thymic antigen-presenting cells (APCs). Various subsets of thymic APCs are strategically positioned in particular thymic microenvironments and they coordinate the selection of a functional and self-tolerant T cell repertoire. In this Review, we discuss the different strategies that these APCs use to sample and process self antigens and to thereby generate partly unique, 'idiosyncratic' peptide-MHC ligandomes. We discuss how the particular composition of the peptide-MHC ligandomes that are presented by specific APC subsets not only shapes the T cell repertoire in the thymus but may also indelibly imprint the behaviour of mature T cells in the periphery.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55414, USA
| |
Collapse
|
37
|
Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Özkan E, Davis MM, Wucherpfennig KW, Garcia KC. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 2014; 157:1073-87. [PMID: 24855945 PMCID: PMC4071348 DOI: 10.1016/j.cell.2014.03.047] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 01/07/2023]
Abstract
In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.
Collapse
Affiliation(s)
- Michael E. Birnbaum
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Juan L. Mendoza
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Dhruv K. Sethi
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Shen Dong
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Jacob Glanville
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Jessica Dobbins
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115,Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - Engin Özkan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115,Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
38
|
Stadinski BD, Trenh P, Duke B, Huseby PG, Li G, Stern LJ, Huseby ES. Effect of CDR3 sequences and distal V gene residues in regulating TCR-MHC contacts and ligand specificity. THE JOURNAL OF IMMUNOLOGY 2014; 192:6071-82. [PMID: 24813203 DOI: 10.4049/jimmunol.1303209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mature T cell repertoire has the ability to orchestrate immunity to a wide range of potential pathogen challenges. This ability stems from thymic development producing individual T cell clonotypes that express TCRs with unique patterns of Ag reactivity. The Ag specificity of TCRs is created from the combinatorial pairing of one of a set of germline encoded TCR Vα and Vβ gene segments with randomly created CDR3 sequences. How the amalgamation of germline encoded and randomly created TCR sequences results in Ag receptors with unique patterns of ligand specificity is not fully understood. Using cellular, biophysical, and structural analyses, we show that CDR3α residues can modulate the geometry in which TCRs bind peptide-MHC (pMHC), governing whether and how germline encoded TCR Vα and Vβ residues interact with MHC. In addition, a CDR1α residue that is positioned distal to the TCR-pMHC binding interface is shown to contribute to the peptide specificity of T cells. These findings demonstrate that the specificity of individual T cell clonotypes arises not only from TCR residues that create direct contacts with the pMHC, but also from a collection of indirect effects that modulate how TCR residues are used to bind pMHC.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Peter Trenh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Brian Duke
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Guoqi Li
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
39
|
Krogsgaard M. Imprinting of the mature T cell response by self. Trends Immunol 2014; 35:141-3. [PMID: 24646828 DOI: 10.1016/j.it.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 11/18/2022]
Abstract
T cell development requires recognition of self-peptides in the thymus. Two recent studies by Allen and colleagues shed new light into the connection between self-recognition during positive selection and recognition of foreign antigen in the periphery.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University School of Medicine, 522 First Avenue, Smilow Research Building, 13th floor, Room 1311, New York, NY 100016, USA.
| |
Collapse
|
40
|
Kalscheuer H, Onoe T, Dahmani A, Li HW, Hölzl M, Yamada K, Sykes M. Xenograft tolerance and immune function of human T cells developing in pig thymus xenografts. THE JOURNAL OF IMMUNOLOGY 2014; 192:3442-50. [PMID: 24591363 DOI: 10.4049/jimmunol.1302886] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transplantation of xenogeneic thymus tissue allows xenograft tolerance induction in the highly disparate pig-to-mouse model. Fetal swine thymus (SW THY) can support the generation of a diverse human T cell repertoire that is tolerant of the pig in vitro. We demonstrate that SW THY generates all human T cell subsets, including regulatory T cells (Tregs), in similar numbers as fetal human thymus (HU THY) grafts in immunodeficient mice receiving the same human CD34(+) cells. Peripheral T cells are specifically tolerant to the mouse and to the human and porcine donors, with robust responses to nondonor human and pig Ags. Specific tolerance is observed to pig skin grafts sharing the THY donor MHC. SW THY-generated peripheral Tregs show similar function, but include lower percentages of naive-type Tregs compared with HU THY-generated Tregs. Tregs contribute to donor-pig specific tolerance. Peripheral human T cells generated in SW THY exhibit reduced proportions of CD8(+) T cells and reduced lymphopenia-driven proliferation and memory-type conversion, accelerated decay of memory-type cells, and reduced responses to protein Ags. Thus, SW thymus transplantation is a powerful xenotolerance approach for human T cells. However, immune function may be further enhanced by strategies to permit positive selection by autologous HLA molecules.
Collapse
Affiliation(s)
- Hannes Kalscheuer
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | |
Collapse
|
41
|
Persaud SP, Parker CR, Lo WL, Weber KS, Allen PM. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat Immunol 2014; 15:266-74. [PMID: 24487322 PMCID: PMC3944141 DOI: 10.1038/ni.2822] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
Abstract
Interactions of T cell antigen receptors (TCRs) with complexes of self peptide and major histocompatibility complex (MHC) are crucial to T cell development, but their role in peripheral T cell responses remains unclear. Specific and nonspecific stimulation of LLO56 and LLO118 T cells, which transgenically express a TCR specific for the same Listeria monocytogenes epitope, elicited distinct interleukin 2 (IL-2) and phosphorylated kinase Erk responses, the strength of which was set in the thymus and maintained in the periphery in proportion to the avidity of the binding of the TCR to the self peptide-MHC complex. Deprivation of self peptide-MHC substantially compromised the population expansion of LLO56 T cells in response to L. monocytogenes in vivo. Despite their very different self-reactivity, LLO56 T cells and LLO118 T cells bound cognate peptide-MHC with an identical affinity, which challenges associations made between these parameters. Our findings highlight a crucial role for selecting ligands encountered during thymic 'education' in determining the intrinsic functionality of CD4+ T cells.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chelsea R Parker
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wan-Lin Lo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
42
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
43
|
Hastings KT. GILT: Shaping the MHC Class II-Restricted Peptidome and CD4(+) T Cell-Mediated Immunity. Front Immunol 2013; 4:429. [PMID: 24409178 PMCID: PMC3885806 DOI: 10.3389/fimmu.2013.00429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022] Open
Abstract
The MHC class II-restricted antigen processing pathway generates peptide:MHC complexes in the endocytic pathway for the activation of CD4(+) T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) reduces protein disulfide bonds in the endocytic compartment, thereby exposing buried epitopes for MHC class II binding and presentation. T cell hybridoma responses and elution of MHC class II bound peptides have identified GILT-dependent epitopes, GILT-independent epitopes, and epitopes that are more efficiently presented in the absence of GILT termed GILT-prevented epitopes. GILT-mediated alteration in the MHC class II-restricted peptidome modulates T cell development in the thymus and peripheral tolerance and influences the pathogenesis of autoimmunity. Recent studies suggest an emerging role for GILT in the response to pathogens and cancer survival.
Collapse
Affiliation(s)
- Karen Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine , Phoenix, AZ , USA
| |
Collapse
|
44
|
Van Laethem F, Tikhonova AN, Pobezinsky LA, Tai X, Kimura MY, Le Saout C, Guinter TI, Adams A, Sharrow SO, Bernhardt G, Feigenbaum L, Singer A. Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell 2013; 154:1326-41. [PMID: 24034254 DOI: 10.1016/j.cell.2013.08.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/02/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Thymic selection requires signaling by the protein tyrosine kinase Lck to generate T cells expressing αβ T cell antigen receptors (TCR). For reasons not understood, the thymus selects only αβTCR that are restricted by major histocompatibility complex (MHC)-encoded determinants. Here, we report that Lck proteins that were coreceptor associated promoted thymic selection of conventionally MHC-restricted TCR, but Lck proteins that were coreceptor free promoted thymic selection of MHC-independent TCR. Transgenic TCR with MHC-independent specificity for CD155 utilized coreceptor-free Lck to signal thymic selection in the absence of MHC, unlike any transgenic TCR previously described. Thus, the thymus can select either MHC-restricted or MHC-independent αβTCR depending on whether Lck is coreceptor associated or coreceptor free. We conclude that the intracellular state of Lck determines the specificity of thymic selection and that Lck association with coreceptor proteins during thymic selection is the mechanism by which MHC restriction is imposed on a randomly generated αβTCR repertoire.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Black J, Waxman S. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013; 80:280-91. [DOI: 10.1016/j.neuron.2013.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
46
|
Hoerter JAH, Brzostek J, Artyomov MN, Abel SM, Casas J, Rybakin V, Ampudia J, Lotz C, Connolly JM, Chakraborty AK, Gould KG, Gascoigne NRJ. Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. ACTA ACUST UNITED AC 2013; 210:1807-21. [PMID: 23940257 PMCID: PMC3754861 DOI: 10.1084/jem.20122528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The requirement for the TCR to interact with coagonists, endogenous MHC–peptide complexes which do not themselves activate the T cell, decreases as the strength of the CD8–class I interaction increases. Recent work has demonstrated that nonstimulatory endogenous peptides can enhance T cell recognition of antigen, but MHCI- and MHCII-restricted systems have generated very different results. MHCII-restricted TCRs need to interact with the nonstimulatory peptide–MHC (pMHC), showing peptide specificity for activation enhancers or coagonists. In contrast, the MHCI-restricted cells studied to date show no such peptide specificity for coagonists, suggesting that CD8 binding to noncognate MHCI is more important. Here we show how this dichotomy can be resolved by varying CD8 and TCR binding to agonist and coagonists coupled with computer simulations, and we identify two distinct mechanisms by which CD8 influences the peptide specificity of coagonism. Mechanism 1 identifies the requirement of CD8 binding to noncognate ligand and suggests a direct relationship between the magnitude of coagonism and CD8 affinity for coagonist pMHCI. Mechanism 2 describes how the affinity of CD8 for agonist pMHCI changes the requirement for specific coagonist peptides. MHCs that bind CD8 strongly were tolerant of all or most peptides as coagonists, but weaker CD8-binding MHCs required stronger TCR binding to coagonist, limiting the potential coagonist peptides. These findings in MHCI systems also explain peptide-specific coagonism in MHCII-restricted cells, as CD4–MHCII interaction is generally weaker than CD8–MHCI.
Collapse
Affiliation(s)
- John A H Hoerter
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mohme M, Hotz C, Stevanovic S, Binder T, Lee JH, Okoniewski M, Eiermann T, Sospedra M, Rammensee HG, Martin R. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. ACTA ACUST UNITED AC 2013; 136:1783-98. [PMID: 23739916 DOI: 10.1093/brain/awt108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HLA-DR15 haplotype confers the largest part of the genetic risk to develop multiple sclerosis, a prototypic CD4+ T cell-mediated autoimmune disease. The mechanisms how certain HLA-class II molecules functionally contribute to autoimmune diseases are still poorly understood, but probably involve shaping an autoimmune-prone T cell repertoire during central tolerance in the thymus and subsequently maintaining or even expanding it in the peripheral immune system. Self-peptides that are presented by disease-associated HLA-class II molecules most likely play important roles during both processes. Here, we examined the functional involvement of the HLA-DR15 haplotype in autologous proliferation in multiple sclerosis and the contribution of HLA-DR15 haplotype-derived self-peptides in an in vitro system. We observe increased autologous T cell proliferation in patients with multiple sclerosis in relation to the multiple sclerosis risk-associated HLA-DR15 haplotype. Assuming that the spectrum of self-peptides that is presented by the two HLA-DR15 allelic products is important for sustaining autologous proliferation we performed peptide elution and identification experiments from the multiple sclerosis-associated DR15 molecules and a systematic analysis of a DR15 haplotype-derived self-peptide library. We identify HLA-derived self-peptides as potential mediators of altered autologous proliferation. Our data provide novel insights about perturbed T cell repertoire dynamics and the functional involvement of the major genetic risk factor, the HLA-DR15 haplotype, in multiple sclerosis.
Collapse
Affiliation(s)
- Malte Mohme
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Centre for Molecular Neurobiology Hamburg, University Medical Centre Eppendorf, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Highly self-reactive naive CD4 T cells are prone to differentiate into regulatory T cells. Nat Commun 2013; 4:2209. [DOI: 10.1038/ncomms3209] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023] Open
|
49
|
Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 2013; 35:794-803. [PMID: 23864388 PMCID: PMC4352332 DOI: 10.1002/bies.201300049] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of observations have led researchers to postulate that, despite being replication-defective, human endogenous retroviruses (HERVs) may have retained the potential to cause or contribute to disease. However, mechanisms of HERV pathogenicity might differ substantially from those of modern infectious retroviruses or of the infectious precursors of HERVs. Therefore, novel pathways of HERV involvement in disease pathogenesis should be investigated. Recent technological advances in sequencing and bioinformatics are making this task increasingly feasible. The accumulating knowledge of HERV biology may also facilitate the definition and general acceptance of criteria that establish HERV pathogenicity. Here, we explore possible mechanisms whereby HERVs may cause disease and examine the evidence that either has been or should be obtained in order to decisively address the pathogenic potential of HERVs.
Collapse
Affiliation(s)
- George R Young
- Division of Virology, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
50
|
Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 2013; 38:263-274. [PMID: 23290521 PMCID: PMC3785078 DOI: 10.1016/j.immuni.2012.09.011] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/28/2012] [Indexed: 01/19/2023]
Abstract
Developing T cells express diverse antigen receptors whose specificities are not prematched to the foreign antigens they eventually encounter. Past experiments have revealed that thymocytes must productively signal in response to self antigens to mature and enter the peripheral T cell pool (positive selection), but how this process enhances effective mature T cell responses to foreign antigen is not fully understood. Here we have documented an unsuspected connection between thymic recognition events and foreign antigen-driven T cell responses. We find that the strength of self-reactivity is a clone-specific property unexpectedly directly related to the strength of T cell receptor (TCR) binding to presented foreign antigen. T cells with receptors showing stronger interaction with self dominate in responses to infections and accumulate in aging individuals, revealing that positive selection contributes to effective immunity by skewing the mature TCR repertoire toward highly effective recognition of pathogens that pose a danger to the host.
Collapse
Affiliation(s)
- Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - João P. Monteiro
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nienke Vrisekoop
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|