1
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Fleming CL, Benitez-Martin C, Bernson E, Xu Y, Kristenson L, Inghardt T, Lundbäck T, Thorén FB, Grøtli M, Andréasson J. All-photonic kinase inhibitors: light-controlled release-and-report inhibition. Chem Sci 2024; 15:6897-6905. [PMID: 38725520 PMCID: PMC11077529 DOI: 10.1039/d4sc00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Light-responsive molecular tools targeting kinases affords one the opportunity to study the underlying cellular function of selected kinases. In efforts to externally control lymphocyte-specific protein tyrosine kinase (LCK) activity, the development of release-and-report LCK inhibitors is described, in which (i) the release of the active kinase inhibitor can be controlled externally with light; and (ii) fluorescence is employed to report both the release and binding of the active kinase inhibitor. This introduces an unprecedented all-photonic method for users to both control and monitor real-time inhibitory activity. A functional cellular assay demonstrated light-mediated LCK inhibition in natural killer cells. The use of coumarin-derived caging groups resulted in rapid cellular uptake and non-specific intracellular localisation, while a BODIPY-derived caging group predominately localised in the cellular membrane. This concept of release-and-report inhibitors has the potential to be extended to other biorelevant targets where both spatiotemporal control in a cellular setting and a reporting mechanism would be beneficial.
Collapse
Affiliation(s)
- Cassandra L Fleming
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
| | - Elin Bernson
- TIMM Laboratory at Sahlgrenska Centre for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Yongjin Xu
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Linnea Kristenson
- TIMM Laboratory, Sahlgrenska Centre for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Tord Inghardt
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development, AstraZeneca SE-43183 Mölndal Sweden
| | - Thomas Lundbäck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca SE-43183 Mölndal Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Centre for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg SE-41296 Göteborg Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg Box 462 SE-40530 Göteborg Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology SE-41296 Göteborg Sweden
| |
Collapse
|
3
|
Serritella AV, Saenz-Lopez Larrocha P, Dhar P, Liu S, Medd MM, Jia S, Cao Q, Wu JD. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024; 12:196. [PMID: 38255301 PMCID: PMC10812945 DOI: 10.3390/biomedicines12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
Collapse
Affiliation(s)
- Anthony V. Serritella
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pablo Saenz-Lopez Larrocha
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Shengxian Jia
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023; 42:304-322. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
6
|
Fyn Signaling in Ischemia-Reperfusion Injury: Potential and Therapeutic Implications. Mediators Inflamm 2022; 2022:9112127. [PMID: 36157893 PMCID: PMC9499810 DOI: 10.1155/2022/9112127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke and is one of the leading causes of disability and death, with the incidence increasing each year. Fyn is a nonreceptor tyrosine kinase belonging to the Src family of kinases (SFKs), which is related to many normal and pathological processes of the nervous system, including neurodevelopment and disease progression. In recent years, more and more evidence suggests that Fyn may be closely related to cerebral ischemia-reperfusion, including energy metabolism disorders, excitatory neurotoxicity, intracellular calcium homeostasis, free radical production, and the activation of apoptotic genes. This paper reviews the role of Fyn in the pathological process of cerebral ischemia-reperfusion, including neuroexcitotoxicity and neuroinflammation, to explore how Fyn affects specific signal cascades and leads to cerebral ischemia-reperfusion injury. In addition, Fyn also promotes the production of superoxide and endogenous NO, so as to quickly react to produce peroxynitrite, which may also mediate cerebral ischemia-reperfusion injury, which is discussed in this paper. Finally, we revealed the treatment methods related to Fyn inhibitors and discussed its potential as a clinical treatment for ischemic stroke.
Collapse
|
7
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
8
|
Meza Guzman LG, Nicholson SE. Determining Activation Status of Natural Killer Cells Following Stimulation via Cytokines and Surface Receptors. Methods Mol Biol 2022; 2463:181-194. [PMID: 35344175 DOI: 10.1007/978-1-0716-2160-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stimulation of Natural Killer (NK) cells with cytokines, target cell interaction, or antibody mediated activation of receptors on the NK cell surface enables the dissection of specific signaling intermediates in different activation pathways. NK cell activation status is commonly measured by production of interferon gamma (IFNγ) and expression of the degranulation marker LAMP-1 (CD107a). Cytotoxic potency can also be assessed by the production of perforin, granzymes, and tumor necrosis factor alpha (TNFα). NK cell receptor mediated activation by antibodies requires crosslinking of the receptor-specific antibodies; thus, in vitro activation assays are performed by binding antibodies to cell culture plates. All parameters can be measured by flow cytometry.
Collapse
Affiliation(s)
- Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
10
|
Dhar P, Basher F, Ji Z, Huang L, Qin S, Wainwright DA, Robinson J, Hagler S, Zhou J, MacKay S, Wu JD. Tumor-derived NKG2D ligand sMIC reprograms NK cells to an inflammatory phenotype through CBM signalosome activation. Commun Biol 2021; 4:905. [PMID: 34294876 PMCID: PMC8298432 DOI: 10.1038/s42003-021-02440-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
Natural Killer (NK) cell dysfunction is associated with poorer clinical outcome in cancer patients. What regulates NK cell dysfunction in tumor microenvironment is not well understood. Here, we demonstrate that the human tumor-derived NKG2D ligand soluble MIC (sMIC) reprograms NK cell to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential. Antibody clearing sMIC restores NK cell to a normal cytotoxic effector functional state. We discovered that sMIC selectively activates the CBM-signalosome inflammatory pathways in NK cells. Conversely, tumor cell membrane-bound MIC (mMIC) stimulates NK cell cytotoxicity through activating PLC2γ2/SLP-76/Vav1 pathway. Ultimately, antibody targeting sMIC effectuated the in vivo anti-tumor effect of adoptively transferred NK cells. Our findings uncover an unrecognized mechanism that could instruct NK cell to a dysfunctional state in response to cues in the tumor microenvironment. Our findings provide a rationale for co-targeting sMIC to enhance the efficacy of the ongoing NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fahmin Basher
- Division of General Internal Medicine, Department of Medicine, University of Miami, Miami, FL, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lei Huang
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Si Qin
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Jing Zhou
- Isoplexis Corporation, Branford, CT, USA
| | | | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
MyD88 is an essential regulator of NK cell-mediated clearance of MCMV infection. Mol Immunol 2021; 137:94-104. [PMID: 34242922 DOI: 10.1016/j.molimm.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/17/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022]
Abstract
The signaling adapter MyD88 is critical for immune cell activation in response to viral or bacterial pathogens via several TLRs, IL-1βR and IL-18R. However, the essential role of MyD88 during activations mediated by germline-encoded NK cell receptors (NKRs), such as Ly49H or NKG2D, has yet to be investigated. To define the NK cell-intrinsic function of MyD88, we generated a novel NK cell conditional knockout mouse for MyD88 (Myd88fl/flNcr1Cre/+). Phenotypic characterization of these mice demonstrated that MyD88 is dispensable for NK cell development and maturation. However, the MyD88-deficient NK cells exhibited significantly reduced cytotoxic potentials in vivo. In addition, the lack of MyD88 significantly reduced the NKG2D-mediated inflammatory cytokine production in vitro. Consistent with this, mice lacking MyD88 were unable to respond and clear MCMV infection. Transcriptomic analyses of splenic NK cells following MCMV infection revealed that inflammatory gene signatures were upregulated in Ly49H+. In contrast, Ly49H- NK cells have significant enrichment in G2M checkpoint genes, revealing distinct transcriptomic profiles of these subsets. Our results identify a central role for MyD88 in Ly49H-dependent gene signatures, including alterations in genes regulating proliferation in Ly49H+ NK cells. In summary, our study reveals a previously unknown function of MyD88 in Ly49H-dependent signaling and in vivo functions of NK cells.
Collapse
|
12
|
Huang X, Wang L, Zhao S, Liu H, Chen S, Wu L, Liu L, Ding J, Yang H, Maxwell A, Yin Z, Mor G, Liao A. Pregnancy Induces an Immunological Memory Characterized by Maternal Immune Alterations Through Specific Genes Methylation. Front Immunol 2021; 12:686676. [PMID: 34163485 PMCID: PMC8215664 DOI: 10.3389/fimmu.2021.686676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
During pregnancy, the maternal immune system undergoes major adaptive modifications that are necessary for the acceptance and protection of the fetus. It has been postulated that these modifications are temporary and limited to the time of pregnancy. Growing evidence suggests that pregnancy has a long-term impact on maternal health, especially among women with pregnancy complications, such as preeclampsia (PE). In addition, the presence of multiple immunological-associated changes in women that remain long after delivery has been reported. To explain these long-term modifications, we hypothesized that pregnancy induces long-term immunological memory with effects on maternal well-being. To test this hypothesis, we evaluated the immunological phenotype of circulating immune cells in women at least 1 year after a normal pregnancy and after pregnancy complicated by PE. Using multiparameter flow cytometry (FCM) and whole-genome bisulfite sequencing (WGBS), we demonstrate that pregnancy has a long-term effect on the maternal immune cell populations and that this effect differs between normal pregnancy and pregnancy complicated by PE; furthermore, these modifications are due to changes in the maternal methylation status of genes that are associated with T cell and NK cell differentiation and function. We propose the existence of an "immunological memory of pregnancy (IMOP)" as an evolutionary advantage for the success of future pregnancies and the proper adaptation to the microchimeric status established during pregnancy. Our findings demonstrate that the type of immune cell populations modified during pregnancy may have an impact on subsequent pregnancy and future maternal health.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Anhui Province Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Liping Liu
- Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hengwen Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Anthony Maxwell
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Sheppard S, Sun JC. Virus-specific NK cell memory. J Exp Med 2021; 218:211913. [PMID: 33755720 PMCID: PMC7992500 DOI: 10.1084/jem.20201731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
NK cells express a limited number of germline-encoded receptors that identify infected or transformed cells, eliciting cytotoxicity, effector cytokine production, and in some circumstances clonal proliferation and memory. To maximize the functional diversity of NK cells, the array and expression level of surface receptors vary between individual NK cell “clones” in mice and humans. Cytomegalovirus infection in both species can expand a population of NK cells expressing receptors critical to the clearance of infected cells and generate a long-lived memory pool capable of targeting future infection with greater efficacy. Here, we discuss the pathways and factors that regulate the generation and maintenance of effector and memory NK cells and propose how this understanding may be harnessed therapeutically.
Collapse
Affiliation(s)
- Sam Sheppard
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
| |
Collapse
|
14
|
Yang N, Xiong Y, Wang Y, Yi Y, Zhu J, Ma F, Li J, Liu H. ADAP Y571 Phosphorylation Is Required to Prime STAT3 for Activation in TLR4-Stimulated Macrophages. THE JOURNAL OF IMMUNOLOGY 2021; 206:814-826. [PMID: 33431658 DOI: 10.4049/jimmunol.2000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022]
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP), originally identified as an essential adaptor molecule in TCR signaling and T cell adhesion, has emerged as a critical regulator in innate immune cells such as macrophages; however, its role in macrophage polarization and inflammatory responses remains unknown. In this study, we show that ADAP plays an essential role in TLR4-mediated mouse macrophage polarization via modulation of STAT3 activity. Macrophages from ADAP-deficient mice exhibit enhanced M1 polarization, expression of proinflammatory cytokines and capacity in inducing Th1 responses, but decreased levels of anti-inflammatory cytokines in response to TLR4 activation by LPS. Furthermore, overexpression of ADAP enhances, whereas loss of ADAP reduces, the LPS-mediated phosphorylation and activity of STAT3, suggesting ADAP acts as a coactivator of STAT3 activity and function. Furthermore, the coactivator function of ADAP mostly depends on the tyrosine phosphorylation at Y571 in the motif YDSL induced by LPS. Mutation of Y571 to F severely impairs the stimulating effect of ADAP on STAT3 activity and the ability of ADAP to inhibit M1-like polarization in TLR4-activated mouse macrophages. Moreover, ADAP interacts with STAT3, and loss of ADAP renders mouse macrophages less sensitive to IL-6 stimulation for STAT3 phosphorylation. Collectively, our findings revealed an additional layer of regulation of TLR4-mediated mouse macrophage plasticity whereby ADAP phosphorylation on Y571 is required to prime STAT3 for activation in TLR4-stimulated mouse macrophages.
Collapse
Affiliation(s)
- Naiqi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Jingfei Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; and.,Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; .,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
15
|
The Role of NF-κB in Uterine Spiral Arteries Remodeling, Insight into the Cornerstone of Preeclampsia. Int J Mol Sci 2021; 22:ijms22020704. [PMID: 33445783 PMCID: PMC7828278 DOI: 10.3390/ijms22020704] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is one of the three leading causes of maternal morbidity and mortality worldwide. It afflicts 2-8% of pregnancies and is the most common cause of gestational hypertension. This article is focused on nuclear factor kappa B (NF-κB), its role in normal and pathological spiral arteries remodelling and development of preeclampsia, with evaluation if it is a promising therapeutic target. NF-κB is a key mediator of placentation. Since insemination, it stimulates production of proinflammatory cytokines by the uterine epithelium, which leads to activation of macrophages, uterine natural killer cells (uNKs), and other leukocytes. The trophoblast/uNK/macrophage crosstalk is crucial for implantation and spiral arteries remodeling, and NF-κB regulates that process through modification of cytokine expression, as well as cell phenotype and function. In the course of preeclampsia, the remodeling processes is disturbed by excessive inflammation and increased NF-κB activation. The pathological remodeling leads to uteroplacental dysfunction, release of proinflammatory cytokines into the maternal circulation, endothelial stress, and development of preeclampsia. The analysis of genetic and environmental inductors of NF-κB helps to distinguish preeclampsia risk groups. Furthermore, a selective inhibition of NF-κB or NF-κB activating pathways alleviates symptoms of preeclampsia in rat models; therefore, this could be an efficient therapeutic option.
Collapse
|
16
|
Hashemi E, Bjorgaard S, Wang D, Uyemura B, Riese M, Thakar MS, Malarkannan S. NK Cell Development and Function in Patients with Fanconi Anemia. Crit Rev Immunol 2021; 41:35-44. [PMID: 34348001 PMCID: PMC11536512 DOI: 10.1615/critrevimmunol.2021037644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by diverse congenital malformations, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. The role of the Fanconi anemia pathway in DNA repair mechanisms and genome instability is well studied. However, the consequences of inherited mutations in genes encoding the FA proteins and the acquired mutations due to impaired DNA repair complex in immune cells are far from understood. Patients with FA show bone marrow failure (BMF) and have a higher risk of developing myelodysplasia (MDS) or acute myeloid leukemia (AML) which are directly related to having chromosomal instability in hematopoietic stem cells and their subsequent progeny. However, immune dysregulation can also be seen in FA. As mature descendants of the common lymphoid progenitor line, NK cells taken from FA patients are dysfunctional in both NK cell-mediated cytotoxicity and cytokine production. The molecular bases for these defects are yet to be determined. However, recent studies have provided directions to define the cause and effect of inherited and acquired mutations in FA patients. Here, we summarize the recent studies in the hematopoietic dysfunction, focusing on the impairment in the development and functions of NK cells in FA patients, and discuss the possible mechanisms and future directions.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stacey Bjorgaard
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bradley Uyemura
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Matthew Riese
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Monica S. Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Malarkannan S. Molecular mechanisms of FasL-mediated 'reverse-signaling'. Mol Immunol 2020; 127:31-37. [PMID: 32905906 DOI: 10.1016/j.molimm.2020.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Effector lymphocytes, including NK and T cells, express FasL. Expression of Fas, the receptor for FasL in tumor cells, renders them susceptible to NK and T cell-mediated killing. The functional relevance of FasL in initiating death signals in tumor cells is well-characterized. However, the cytoplasmic interacting partners and the potential signaling pathways downstream of FasL are far from fully defined. FasL possesses an 81 amino acid long cytoplasmic tail with multiple unique recruitment motifs. We predict multiple interdependent signaling complexes form the core of the 'reverse signaling' downstream of FasL. A direct interaction between the proline-rich domain of FasL and the SH3 domain of PI(3)K-p85α initiates the first pathway. This cascade helps FasL to link to PLC-γ2 via PIP3 or the Akt-dependent activation of mTOR complexes. Independently, a GRB2/GADs-binding PXXP cytoplasmic motif of FasL can initiate a Ras-GTP-dependent PAK1→C-Raf→MEK1/2→ERK1/2 activation. FasL can recruit Fyn via the proline-rich domain leading to the recruitment of ADAP. Through its ability to directly interact with Carma1 and TAK1, ADAP initiates the formation of the Carma1/Bcl10/Malt1-based CBM signalosome that is primarily responsible for inflammatory cytokine production. Here, we explore the conserved cytoplasmic domains of FasL, the potential signaling molecules that interact, and the functional downstream consequences within the effector lymphocytes to define the FasL-mediated 'reverse signaling'.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
18
|
The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res 2020; 8:38. [PMID: 32905346 PMCID: PMC7469106 DOI: 10.1186/s40364-020-00220-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Spliceosome mutations have become the most interesting mutations detected in human cancer in recent years. The spliceosome, a large, dynamic multimegadalton small nuclear ribonucleoprotein composed of small nuclear RNAs associated with proteins, is responsible for removing introns from precursor mRNA (premRNA) and generating mature, spliced mRNAs. SF3B1 is the largest subunit of the spliceosome factor 3b (SF3B) complex, which is a core component of spliceosomes. Recurrent somatic mutations in SF3B1 have been detected in human cancers, including hematological malignancies and solid tumors, and indicated to be related to patient prognosis. This review summarizes the research progress of SF3B1 mutations in cancer, including SF3B1 mutations in the HEAT domain, the multiple roles and aberrant splicing events of SF3B1 mutations in the pathogenesis of tumors, and changes in mutated cancer cells regarding sensitivity to SF3B small-molecule inhibitors. In addition, the potential of SF3B1 or its mutations to serve as biomarkers or therapeutic targets in cancer is discussed. The accumulated knowledge about SF3B1 mutations in cancer provides critical insight into the integral role the SF3B1 protein plays in mRNA splicing and suggests new targets for anticancer therapy.
Collapse
|
19
|
Do AN, Chun Y, Grishina G, Grishin A, Rogers AJ, Raby BA, Weiss ST, Vicencio A, Schadt EE, Bunyavanich S. Network study of nasal transcriptome profiles reveals master regulator genes of asthma. J Allergy Clin Immunol 2020; 147:879-893. [PMID: 32828590 DOI: 10.1016/j.jaci.2020.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nasal transcriptomics can provide an accessible window into asthma pathobiology. OBJECTIVE Our goal was to move beyond gene signatures of asthma to identify master regulator genes that causally regulate genes associated with asthma phenotypes. METHODS We recruited 156 children with severe persistent asthma and controls for nasal transcriptome profiling and applied network-based and probabilistic causal methods to identify severe asthma genes and their master regulators. We then took the same approach in an independent cohort of 190 adults with mild/moderate asthma and controls to identify mild/moderate asthma genes and their master regulators. Comparative analysis of the master regulator genes followed by validation testing in independent children with severe asthma (n = 21) and mild/moderate asthma (n = 154) was then performed. RESULTS Nasal gene signatures for severe persistent asthma and for mild/moderate persistent asthma were identified; both were found to be enriched in coexpression network modules for ciliary function and inflammatory response. By applying probabilistic causal methods to these gene signatures and validation testing in independent cohorts, we identified (1) a master regulator gene common to asthma across severity and ages (FOXJ1); (2) master regulator genes of severe persistent asthma in children (LRRC23, TMEM231, CAPS, PTPRC, and FYB); and (3) master regulator genes of mild/moderate persistent asthma in children and adults (C1orf38 and FMNL1). The identified master regulators were statistically inferred to causally regulate the expression of downstream genes that modulate ciliary function and inflammatory response to influence asthma. CONCLUSION The identified master regulator genes of asthma provide a novel path forward to further uncovering asthma mechanisms and therapy.
Collapse
Affiliation(s)
- Anh N Do
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoojin Chun
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angela J Rogers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Children's Hospital Boston, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass
| | - Alfin Vicencio
- Division of Pulmonary Medicine, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric E Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
20
|
Liu G, Fiock KL, Levites Y, Golde TE, Hefti MM, Lee G. Fyn depletion ameliorates tau P301L-induced neuropathology. Acta Neuropathol Commun 2020; 8:108. [PMID: 32665013 PMCID: PMC7362472 DOI: 10.1186/s40478-020-00979-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Src family non-receptor tyrosine kinase Fyn has been implicated in neurodegeneration of Alzheimer's disease through interaction with amyloid β (Aβ). However, the role of Fyn in the pathogenesis of primary tauopathies such as FTDP-17, where Aβ plaques are absent, is poorly understood. In the current study, we used AAV2/8 vectors to deliver tauP301L to the brains of WT and Fyn KO mice, generating somatic transgenic tauopathy models with the presence or absence of Fyn. Although both genotypes developed tau pathology, Fyn KO developed fewer neurofibrillary tangles on Bielschowsky and Thioflavin S stained sections and showed lower levels of phosphorylated tau. In addition, tauP301L-induced behavior abnormalities and depletion of synaptic proteins were not observed in the Fyn KO model. Our work provides evidence for Fyn being a critical protein in the disease pathogenesis of FTDP-17.
Collapse
Affiliation(s)
- Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Kimberly L. Fiock
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Gloria Lee
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 500 Newton Road, ML B191, Iowa City, IA 52242 USA
| |
Collapse
|
21
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
22
|
Idso JM, Lao S, Schloemer NJ, Knipstein J, Burns R, Thakar MS, Malarkannan S. Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway. Oncotarget 2020; 11:1799-1815. [PMID: 32499867 PMCID: PMC7244011 DOI: 10.18632/oncotarget.27546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines. Additionally, entinostat increased both cytotoxicity and IFN-γ production in human NK cells following coculture with these tumor cells. Mechanistically, entinostat treatment resulted in increased chromatin accessibility to the promoter region for interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene and thereby increasing the transcript and protein levels of IFIT1 that augmented the IFIT1-mediated IRF1, STAT4, and STING pathways. Corresponding transcriptome analysis revealed enrichment of IRF1 and STAT4 and gene sets responsible for NK cell-mediated IFN-γ production and cytotoxicity, respectively. Our results show a novel mechanism by which entinostat initiates an IFIT1-STING-mediated potentiation of STAT4 via IRF1 to augment NK cell-mediated anti-tumor responses.
Collapse
Affiliation(s)
- John M Idso
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Knipstein
- Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Co-senior authors
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Co-senior authors
| |
Collapse
|
23
|
Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury. Biomol Ther (Seoul) 2020; 28:213-221. [PMID: 32336052 PMCID: PMC7216742 DOI: 10.4062/biomolther.2019.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Huang Z, Ouyang M, Lu S, Wang Y, Peng Q. Optogenetic Control for Investigating Subcellular Localization of Fyn Kinase Activity in Single Live Cells. J Mol Biol 2020; 432:1901-1909. [PMID: 32198118 PMCID: PMC7225052 DOI: 10.1016/j.jmb.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Previous studies with various Src family kinase biosensors showed that the nuclear kinase activities are much suppressed compared to those in the cytosol, suggesting that these kinases are regulated differently in the nucleus and in the cytosol. In this study, using Fyn as an example, we first engineered a Fyn biosensor with a light-inducible nuclear localization signal to demonstrate that the Fyn kinase activity is significantly lower in the nucleus than in the cytosol. To understand how different equilibrium states between Fyn and the corresponding phosphatases are maintained in the cytosol and nucleus, we further engineered a Fyn kinase domain with light-inducible nuclear localization signal. The results revealed that the Fyn kinase can be actively transported into the nucleus upon light activation and upregulate the biosensor signals in the nucleus. Our results suggest that there is limited transport or diffusion of Fyn kinase between the cytosol and nucleus in the cells, which is important for the maintenance of different equilibrium states of Fyn in situ.
Collapse
Affiliation(s)
- Ziliang Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Luu TT, Wagner AK, Schmied L, Meinke S, Freund JE, Kambayashi T, Ravens I, Achour A, Bernhardt G, Chambers BJ, Höglund P, Kadri N. IL-15 and CD155 expression regulate LAT expression in murine DNAM1 + NK cells, enhancing their effectors functions. Eur J Immunol 2020; 50:494-504. [PMID: 31834938 DOI: 10.1002/eji.201948233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023]
Abstract
NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jacquelyn E Freund
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inga Ravens
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Gunter Bernhardt
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Benedict J Chambers
- Center for Infectious Medicine, Department of Medicine, Huddinge, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinic for Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
26
|
Thakar MS, Kearl TJ, Malarkannan S. Controlling Cytokine Release Syndrome to Harness the Full Potential of CAR-Based Cellular Therapy. Front Oncol 2020; 9:1529. [PMID: 32076597 PMCID: PMC7006459 DOI: 10.3389/fonc.2019.01529] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/18/2019] [Indexed: 01/25/2023] Open
Abstract
Chimeric Antigen Receptor (CAR)-based therapies offer a promising, targeted approach to effectively treat relapsed or refractory B cell malignancies. However, the treatment-related toxicity defined as cytokine-release syndrome (CRS) often develops in patients, and if uncontrolled, can be fatal. Grading systems have now been developed to further characterize and objectify clinical findings in order to provide algorithm-based guidance on CRS-related treatment decisions. The pharmacological treatments associated with these algorithms suppress inflammation through a variety of mechanisms and are paramount to improving the safety profile of CAR-based therapies. However, fatalities are still occurring, and there are downsides to these treatments, including the possibility of disrupting CAR-T cell persistence. This review article will describe the clinical presentation and current management of CRS, and through our now deeper understanding of downstream signaling pathways, will provide a molecular framework to formulate new hypotheses regarding clinical applications to contain proinflammatory cytokines responsible for CRS.
Collapse
Affiliation(s)
- Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tyce J Kearl
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
27
|
Böning MAL, Trittel S, Riese P, van Ham M, Heyner M, Voss M, Parzmair GP, Klawonn F, Jeron A, Guzman CA, Jänsch L, Schraven B, Reinhold A, Bruder D. ADAP Promotes Degranulation and Migration of NK Cells Primed During in vivo Listeria monocytogenes Infection in Mice. Front Immunol 2020; 10:3144. [PMID: 32038647 PMCID: PMC6987423 DOI: 10.3389/fimmu.2019.03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Trittel
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maxi Heyner
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald P Parzmair
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
28
|
Wang J, Zheng Y, Bai B, Song Y, Zheng K, Xiao J, Liang Y, Bao L, Zhou Q, Ji L, Feng X. MicroRNA-125a-3p participates in odontoblastic differentiation of dental pulp stem cells by targeting Fyn. Cytotechnology 2020; 72:69-79. [PMID: 31953701 DOI: 10.1007/s10616-019-00358-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022] Open
Abstract
Fyn is a member of the protein tyrosine kinase family and its overexpression is associated with various types of inflammation. MicroRNAs can regulate the expression of target genes and play an important role in varied physiological and pathological processes. Based on the important role of Fyn and microRNA-125a-3p (miR-125a-3p) in inflammation, and combined with the bioinformatics studies, we performed in this study and chose miR-125a-3p as the focus of our research. During the progression of inflammation, we found that the expression of miR-125a-3p was decreased while the expression of Fyn was up-regulated. Fyn formed a complex with Neuropilin-1, which inhibited odontoblastic differentiation and expanded inflammatory responses through nuclear factor-κB signal pathways in dental pulp stem cells (DPSCs). These findings suggested that miR-125a-3p plays an important role in odontoblastic differentiation of DPSCs by targeting Fyn, implying its therapeutic potential in dental caries.
Collapse
Affiliation(s)
- Jihua Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bingbing Bai
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No. 2 People Hospital, Wuxi, 214000, China
| | - Jinwen Xiao
- Department of Stomatology, People's Hospital of Haimen, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lujun Ji
- Department of Stomatology, Tongzhou People's Hospital, Taizhou, 225300, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
29
|
Cardoso Alves L, Berger MD, Koutsandreas T, Kirschke N, Lauer C, Spörri R, Chatziioannou A, Corazza N, Krebs P. Non-apoptotic TRAIL function modulates NK cell activity during viral infection. EMBO Rep 2020; 21:e48789. [PMID: 31742873 PMCID: PMC6945065 DOI: 10.15252/embr.201948789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022] Open
Abstract
The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.
Collapse
Affiliation(s)
- Ludmila Cardoso Alves
- Institute of PathologyUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | | | - Thodoris Koutsandreas
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nick Kirschke
- Institute of PathologyUniversity of BernBernSwitzerland
| | | | - Roman Spörri
- Institute of MicrobiologyETH ZurichZurichSwitzerland
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & BiotechnologyNHRFAthensGreece
- e‐NIOS PCKallithea‐AthensGreece
| | - Nadia Corazza
- Institute of PathologyUniversity of BernBernSwitzerland
| | | |
Collapse
|
30
|
Schloemer NJ, Abel AM, Thakar MS, Malarkannan S. In Vivo Assessment of NK Cell-Mediated Cytotoxicity by Adoptively Transferred Splenocyte Rejection. Methods Mol Biol 2020; 2097:115-123. [PMID: 31776923 DOI: 10.1007/978-1-0716-0203-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
NK cells are innate lymphocytes that are vital to clearance of virally infected or malignantly transformed cells. Assessment of the cytotoxic response is an important component of NK cell research and investigation of human disease. Standard assays of NK cell-mediated cytotoxicity of CD107a degranulation or 51Cr release assay utilize cultured or freshly isolated NK cell populations in vitro. In addition to requirements to maintain multiple target cell lines and radioactivity precautions in the case of 51Cr, these are in vitro evaluations of a complex in vivo function. Here, we describe the in vivo assessment of NK cell-mediated cytotoxicity through the adoptive transfer of splenocytes and their subsequent rejection. This protocol offers rapid, quantitative, and concurrent assessment of NK cell-mediated cytotoxicity against the prototypic NK stimulations of "missing-self" and "nonself."
Collapse
Affiliation(s)
- Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
31
|
Rudolph J, Meinke C, Voss M, Guttek K, Kliche S, Reinhold D, Schraven B, Reinhold A. Immune Cell-Type Specific Ablation of Adapter Protein ADAP Differentially Modulates EAE. Front Immunol 2019; 10:2343. [PMID: 31632410 PMCID: PMC6779796 DOI: 10.3389/fimmu.2019.02343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The cytosolic adhesion and degranulation-promoting adapter protein ADAP is expressed in various hematopoietic cells including T cells, NK cells, myeloid cells, and platelets but absent in mature B cells. The role of ADAP in T cell activation, proliferation and integrin activation is well-accepted. We previously demonstrated that conventional ADAP knockout mice show a significantly attenuated course of experimental autoimmune encephalomyelitis (EAE). To dissect the impact of different ADAP expressing cell populations on the reduced EAE severity, here, we generated lineage-specific conditional knockout mice. ADAP was deleted in T cells, myeloid cells, NK cells and platelets, respectively. Specific loss of ADAP was confirmed on the protein level. Detailed immunophenotyping was performed to assess the consequence of deletion of ADAP with regard to the maturation and distribution of immune cells in primary and secondary lymphoid organs. The analysis showed equivalent results as for conventional ADAP knockout mice: impaired thymocyte development in ADAPfl/fl Lck-Cre mice, normal NK cell and myeloid cell distribution in ADAPfl/fl NKp46-Cre mice and ADAPfl/fl LysM-Cre mice, respectively as well as thrombocytopenia in ADAPfl/fl PF4-Cre mice. Active EAE was induced in these animals by immunization with the myelin oligodendrocyte glycoprotein35−55 peptide. The clinical course of EAE was significantly milder in mice with loss of ADAP in T cells, myeloid cells and NK cells compared to ADAP-sufficient control littermates. Surprisingly, specific deletion of ADAP in platelets resulted in a more exacerbated disease. These data show that T cell-independent as well as T cell-dependent mechanisms are responsible for the complex phenotype observed in conventional ADAP knockout mice.
Collapse
Affiliation(s)
- Jochen Rudolph
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Clara Meinke
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Martin Voss
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Karina Guttek
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Dirk Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Annegret Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| |
Collapse
|
32
|
Nanbakhsh A, Srinivasamani A, Holzhauer S, Riese MJ, Zheng Y, Wang D, Burns R, Reimer MH, Rao S, Lemke A, Tsaih SW, Flister MJ, Lao S, Dahl R, Thakar MS, Malarkannan S. Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells. Cancer Immunol Res 2019; 7:1647-1662. [PMID: 31515257 DOI: 10.1158/2326-6066.cir-18-0934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as Mirc11 (which includes miRNA-23a, miRNA-24a, and miRNA-27a) in NK cell-mediated proinflammatory responses. Absence of Mirc11 did not alter the development or the antitumor cytotoxicity of NK cells. However, loss of Mirc11 reduced generation of proinflammatory factors in vitro and interferon-γ-dependent clearance of Listeria monocytogenes or B16F10 melanoma in vivo by NK cells. These functional changes resulted from Mirc11 silencing ubiquitin modifiers A20, Cbl-b, and Itch, allowing TRAF6-dependent activation of NF-κB and AP-1. Lack of Mirc11 caused increased translation of A20, Cbl-b, and Itch proteins, resulting in deubiquitylation of scaffolding K63 and addition of degradative K48 moieties on TRAF6. Collectively, our results describe a function of Mirc11 that regulates generation of proinflammatory cytokines from effector lymphocytes.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Anupallavi Srinivasamani
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Sandra Holzhauer
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Laboratory of Lymphocyte Signaling, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongwei Zheng
- Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Laboratory of B Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Bioinformatics Core, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Michael H Reimer
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Biology, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Lemke
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shirng-Wern Tsaih
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael J Flister
- Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shunhua Lao
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard Dahl
- Indiana University School of Medicine, South Bend, Indiana
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin. .,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Genome Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
33
|
Polo ML, Ghiglione YA, Salido JP, Urioste A, Poblete G, Sisto AE, Martinez A, Rolón MJ, Ojeda DS, Cahn PE, Turk GJ, Laufer NL. Liver cirrhosis in HIV/HCV-coinfected individuals is related to NK cell dysfunction and exhaustion, but not to an impaired NK cell modulation by CD4 + T-cells. J Int AIDS Soc 2019; 22:e25375. [PMID: 31536177 PMCID: PMC6752153 DOI: 10.1002/jia2.25375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION HIV worsens HCV-related liver disease by accelerating fibrosis progression; however, progression rates are extremely variable among HIV/HCV-coinfected individuals. NK cells are associated with modulation of liver fibrosis and are profoundly altered during HCV and HIV infections. CD4+ T-cells modulate NK cell function, and are also affected by HIV infection. Here, we aim to characterize the association of hepatic fibrosis with both the phenotype and function of peripheral NK cells and their regulation by CD4+ T-cells, in HIV/HCV-coinfected individuals. METHODS Thirty-four HIV/HCV-coinfected individuals with minimal (n = 16) and advanced (n = 18) fibrosis (METAVIR F0/F1 and F4 scores respectively) and 20 healthy volunteers were enrolled. PBMC were obtained from peripheral blood samples and NK and CD4+ T-cells were isolated and analysed. NK cell phenotype (CD25, CD69, Nkp46, NKG2D, PD-1), degranulation (CD107a) and IFN-γ and TNF-α production, as well as CD4+ T-cell activation (CD69, CD25 and CD38) were measured by flow cytometry. CD4+ T-cell conditioned medium (CM) derived from F0/F1 or F4 individuals was assessed for IL-2 levels by ELISA. Modulation of NK cell functionality by these CMs was also analysed. RESULTS When comparing to NK cells from individuals with minimal fibrosis, degranulation and cytokine secretion by NK cells from subjects with F4 scores was significantly impaired, while PD-1 expression was augmented. On the one hand, neither the expression of activation markers nor IL-2 secretion was distinctly induced in CD4+ T-cells from subjects with F0/F1 or F4 METAVIR scores. Finally, NK cell degranulation and cytokine secretion were not differentially modulated by CD4+ T-cell CM, whether CD4+ T-cells derived from subjects with minimal or advanced fibrosis. CONCLUSIONS Low levels of NK and CD4+ T-cells in HIV/HCV-coinfected individuals with advanced liver fibrosis have been previously described. Here, we show that advanced liver fibrosis in coinfected individuals is associated to a defective function of NK cells and an increased expression of the exhaustion/senescence marker PD-1. This NK signature could not be attributed to changes in the ability of CD4+ T-cells to modulate NK cell function.
Collapse
Affiliation(s)
- María L Polo
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Yanina A Ghiglione
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Jimena P Salido
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Alejandra Urioste
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Gabriela Poblete
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Alicia E Sisto
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Ana Martinez
- Gastroenterology UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - María J Rolón
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| | - Diego S Ojeda
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | | | - Gabriela J Turk
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
| | - Natalia L Laufer
- CONICET‐Universidad de Buenos AiresInstituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS)Buenos AiresArgentina
- Infectious Diseases UnitHospital General de Agudos “Dr. JA Fernández”Buenos AiresArgentina
| |
Collapse
|
34
|
Raab M, Strebhardt K, Rudd CE. Immune adaptor SKAP1 acts a scaffold for Polo-like kinase 1 (PLK1) for the optimal cell cycling of T-cells. Sci Rep 2019; 9:10462. [PMID: 31320682 PMCID: PMC6639320 DOI: 10.1038/s41598-019-45627-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
While the immune cell adaptor protein SKAP1 mediates LFA-1 activation induced by antigen-receptor (TCR/CD3) ligation on T-cells, it is unclear whether the adaptor interacts with other mediators of T-cell function. In this context, the serine/threonine kinase, polo-like kinase (PLK1) regulates multiple steps in the mitotic and cell cycle progression of mammalian cells. Here, we show that SKAP1 is phosphorylated by and binds to PLK1 for the optimal cycling of T-cells. PLK1 binds to the N-terminal residue serine 31 (S31) of SKAP1 and the interaction is needed for optimal PLK1 kinase activity. Further, siRNA knock-down of SKAP1 reduced the rate of T-cell division concurrent with a delay in the expression of PLK1, Cyclin A and pH3. Reconstitution of these KD cells with WT SKAP1, but not the SKAP1 S31 mutant, restored normal cell division. SKAP1-PLK1 binding is dynamically regulated during the cell cycle of T-cells. Our findings identify a novel role for SKAP1 in the regulation of PLK1 and optimal cell cycling needed for T-cell clonal expansion in response to antigenic activation.
Collapse
Affiliation(s)
- Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, CB2 1Q, Cambridge, UK.
- Centre de Recherch-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, Quebec, H1T 2M4, Canada.
- Département de Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
35
|
IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep 2019; 9:4984. [PMID: 30899058 PMCID: PMC6428861 DOI: 10.1038/s41598-019-41478-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Influenza virus targets epithelial cells in the upper respiratory tract. Natural Killer (NK) cell-mediated early innate defense responses to influenza infection include the killing of infected epithelial cells and generation of anti-viral cytokines including interferon gamma (IFN-γ). To date, it is unclear how the underlying cytokine milieu during infection regulates NK cell effector functions. Our data show during influenza infection myeloid cell-derived IL-27 regulates the early-phase effector functions of NK cells in the bronchioalveolar and lung tissue. Lack of IL-27R (Il27ra−/−) or IL-27 (Ebi3−/−) resulted in impaired NK cell effector functions including the generation of anti-viral IFN-γ responses. We identify CD27+CD11b+ NK cells as the primary subset that expresses IL-27R, which predominantly produces IFN-γ within the upper respiratory tract of the infected mice. IL-27 alone was incapable of altering the effector functions of NK cells. However, IL-27 sensitizes NK cells to augment both in vitro and in vivo responses mediated via the NKG2D receptor. This ‘priming’ function of IL-27 is mediated partly via transcriptional pathways regulated by Mafs and Nrf2 transcriptionally regulating TFAM and CPT1. Our data for the first time establishes a novel role for IL-27 in regulating early-phase effector functions of NK cells during influenza infection.
Collapse
|
36
|
Kotajima-Murakami H, Kobayashi T, Kashii H, Sato A, Hagino Y, Tanaka M, Nishito Y, Takamatsu Y, Uchino S, Ikeda K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol Brain 2019; 12:3. [PMID: 30621732 PMCID: PMC6325753 DOI: 10.1186/s13041-018-0423-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cell metabolism, growth, and proliferation. The overactivation of mTOR has been implicated in the pathogenesis of syndromic autism spectrum disorder (ASD), such as tuberous sclerosis complex (TSC). Treatment with the mTOR inhibitor rapamycin improved social interaction deficits in mouse models of TSC. Prenatal exposure to valproic acid (VPA) increases the incidence of ASD. Rodent pups that are exposed to VPA in utero have been used as an animal model of ASD. Activation of the mTOR signaling pathway was recently observed in rodents that were exposed to VPA in utero, and rapamycin ameliorated social interaction deficits. The present study investigated the effect of rapamycin on social interaction deficits in both adolescence and adulthood, and gene expressions in mice that were exposed to VPA in utero. We subcutaneously injected 600 mg/kg VPA in pregnant mice on gestational day 12.5 and used the pups as a model of ASD. The pups were intraperitoneally injected with rapamycin or an equal volume of vehicle once daily for 2 consecutive days. The social interaction test was conducted in the offspring after the last rapamycin administration at 5-6 weeks of ages (adolescence) or 10-11 weeks of age (adulthood). Whole brains were collected after the social interaction test in the adulthood, and microarray and Western blot analyses were performed. Mice that were exposed to VPA and treated with vehicle exhibited a decrease in social interaction compared with control mice that were treated with vehicle. Rapamycin treatment in VPA-exposed mice improved social deficits. Mice that were exposed to VPA and treated with vehicle exhibited the aberrant expression of genes in the mTOR signaling pathway, and rapamycin treatment recovered changes in the expression of some genes, including Fyb and A330094K24Rik. Rapamycin treatment suppressed S6 phosphorylation in VPA-exposed mice. Aberrant gene expression was associated with social interaction deficits in VPA-exposed mice. Rapamycin may be an effective treatment for non-syndromic ASD in adolescent and adult patients who present impairments in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Kashii
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Higashimachi, Kodaira-shi, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Yukio Takamatsu
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shigeo Uchino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
37
|
Terao R, Murata A, Sugamoto K, Watanabe T, Nagahama K, Nakahara K, Kondo T, Murakami N, Fukui K, Hattori H, Eto N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin andR-limonene. Food Funct 2019; 10:38-48. [DOI: 10.1039/c8fo01971a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The active constituents of kumquat in NK cell activation and anti-stress effects are β-cryptoxanthin andR-limonene.
Collapse
Affiliation(s)
- Rina Terao
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Akira Murata
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Kazuhiro Sugamoto
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | | | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Tomomi Kondo
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Noboru Murakami
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiichi Fukui
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Hidemi Hattori
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| | - Nozomu Eto
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| |
Collapse
|
38
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
39
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
40
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 737] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
41
|
Liu G, Lu P, Chen L, Zhang W, Wang M, Li D, Zhang X. B-cell leukemia/lymphoma 10 promotes angiogenesis in an experimental corneal neovascularization model. Eye (Lond) 2018; 32:1220-1231. [PMID: 29515217 PMCID: PMC6043546 DOI: 10.1038/s41433-018-0039-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/25/2017] [Accepted: 01/09/2018] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Corneal neovascularization (CrNV) arises from many causes including corneal inflammatory, infectious, or traumatic insult, and frequently leads to impaired vision. This study seeks to determine the role of B-cell leukemia/lymphoma 10 (BCL-10) in the development of experimental CrNV. METHODS Corneas from BCL-10 knockout (KO) mice and wild-type (WT) mice were burned by sodium hydroxide (NaOH) to create the CrNV model and neovascular formation in the corneas was assessed 2 weeks later. Intracorneal macrophage accumulation and the expression of angiogenic factors were quantified by flow cytometric analysis (FCM) and real-time PCR, respectively. RESULTS The amount of CrNV was determined 2 weeks after alkali burn. Compared to WT mice, the amount of CrNV in BCL-10 KO mice was significantly decreased. FCM revealed that F4/80-positive macrophages were markedly decreased in BCL-10 KO mice compared with WT mice. Reverse transcription PCR showed that the mRNA expression levels of intracorneal vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (bFGF) and monocyte chemotactic protein 1 were reduced in BCL-10 KO mice compared with WT mice. CONCLUSION BCL-10 KO mice exhibited reduced alkali-induced CrNV by suppressing intracorneal macrophage infiltration, which subsequently led to decreased VEGF-A and bFGF expression, suggesting that BCL-10 may become a potential clinical intervening target of CrNV.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenpeng Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengjiao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Li
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
43
|
Yamamoto K, Furuya K, Yamada K, Takahashi F, Hamajima C, Tanaka S. Enhancement of natural killer activity and IFN-γ production in an IL-12-dependent manner by a Brassica rapa L. Biosci Biotechnol Biochem 2018; 82:654-668. [DOI: 10.1080/09168451.2017.1408396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Certain food components possess immunomodulatory effects. The aim of this study was to elucidate the mechanism of the immunostimulatory activity of Brassica rapa L. We demonstrated an enhancement of natural killer (NK) activity and interferon (IFN)-γ production in mice that were orally administered an insoluble fraction of B. rapa L. The insoluble fraction of B. rapa L. significantly induced IFN-γ production in mouse spleen cells in an interleukin (IL)-12-dependent manner, and NK1.1+ cells were the main cells responsible for producing IFN-γ. Additionally, the results suggested that the active compounds in the insoluble fraction were recognized by Toll-like receptor (TLR) 2, TLR4, and C-type lectin receptors on dendritic cells, and they activated signaling cascades such as MAPK, NF-κB, and Syk. These findings suggest that B. rapa L. is a potentially promising immuno-improving material, and it might be useful for preventing immunological disorders such as infections and cancers by activating innate immunity.
Collapse
Affiliation(s)
- Kana Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
| | - Kanon Furuya
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
| | - Kazuki Yamada
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
| | - Fuka Takahashi
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
| | - Chisato Hamajima
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
| | - Sachi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, Japan
- Frontier Agriscience and Technology Center, Graduate School of Agriculture, Shinshu University, Nagano, Japan
- Supramolecular Complexes Unit, Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| |
Collapse
|
44
|
Song Y, Cao P, Gu Z, Xiao J, Lian M, Huang D, Xing J, Zhang Y, Feng X, Wang C. The Role of Neuropilin-1-FYN Interaction in Odontoblast Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2018; 20:117-126. [PMID: 29486132 DOI: 10.1089/cell.2017.0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abnormal odontoblast differentiation of dental pulp stem cells (DPSCs) caused by inflammation is closely related to the development of dental caries. Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell differentiation. FYN belongs to the protein-tyrosine kinase family, which has been implicated in the control of cell growth, and the effect can be further strengthened by inflammatory factors. In our studies, we verified that NRP1 can form complexes with FYN and have the correlation changes in odontoblast differentiation of DPSCs. Therefore, we surmise that in the progress of dental caries, NRP1 interacts with FYN, by expanding inflammation and inhibition of odontoblast differentiation of DPSCs through nuclear factor kappa B (NF-κB) signaling pathway. In this subject, we first investigated the expression and interaction of NRP1 and FYN in DPSCs. And then, we researched the effect of this complex controlling downstream signal pathway in normal or inflammation stimulated DPSCs. Finally, we analyzed the relationship between this role and odontoblast differentiation of DPSCs. This research will provide the molecular mechanism of inflammation factors of dental caries through activating NF-κB signal regulating odontoblast differentiation in DPSCs for finding new potential drug targets for the clinical treatment of dental caries.
Collapse
Affiliation(s)
- Yihua Song
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Peipei Cao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Zhifeng Gu
- 2 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Min Lian
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Dan Huang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Jing Xing
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Ye Zhang
- 3 Department of Stomatology, Qidong People's Hospital , Nantong, China
| | - Xingmei Feng
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Chenfei Wang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| |
Collapse
|
45
|
Nanbakhsh A, Best B, Riese M, Rao S, Wang L, Medin J, Thakar MS, Malarkannan S. Dextran Enhances the Lentiviral Transduction Efficiency of Murine and Human Primary NK Cells. J Vis Exp 2018. [PMID: 29364266 DOI: 10.3791/55063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The efficient transduction of specific genes into natural killer (NK) cells has been a major challenge. Successful transductions are critical to defining the role of the gene of interest in the development, differentiation, and function of NK cells. Recent advances related to chimeric antigen receptors (CARs) in cancer immunotherapy accentuate the need for an efficient method to deliver exogenous genes to effector lymphocytes. The efficiencies of lentiviral-mediated gene transductions into primary human or mouse NK cells remain significantly low, which is a major limiting factor. Recent advances using cationic polymers, such as polybrene, show an improved gene transduction efficiency in T cells. However, these products failed to improve the transduction efficiencies of NK cells. This work shows that dextran, a branched glucan polysaccharide, significantly improves the transduction efficiency of human and mouse primary NK cells. This highly reproducible transduction methodology provides a competent tool for transducing human primary NK cells, which can vastly improve clinical gene delivery applications and thus NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Arash Nanbakhsh
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin
| | - Brad Best
- Vector Core Lab, Blood Research Institute, The Blood Center of Wisconsin
| | - Matthew Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, The Blood Center of Wisconsin
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, The Blood Center of Wisconsin
| | - Li Wang
- Department of Microbiology and Immunology, The Medical College of Wisconsin
| | - Jeffrey Medin
- Department of Pediatrics, The Medical College of Wisconsin
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, The Blood Center of Wisconsin; Department of Microbiology and Immunology, The Medical College of Wisconsin; Department of Pediatrics, The Medical College of Wisconsin; Department of Medicine, The Medical College of Wisconsin;
| |
Collapse
|
46
|
Forsberg MH, Ciecko AE, Bednar KJ, Itoh A, Kachapati K, Ridgway WM, Chen YG. CD137 Plays Both Pathogenic and Protective Roles in Type 1 Diabetes Development in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:3857-3868. [PMID: 28363905 DOI: 10.4049/jimmunol.1601851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
We previously reported that CD137 (encoded by Tnfrsf9) deficiency suppressed type 1 diabetes (T1D) progression in NOD mice. We also demonstrated that soluble CD137 produced by regulatory T cells contributed to their autoimmune-suppressive function in this model. These results suggest that CD137 can either promote or suppress T1D development in NOD mice depending on where it is expressed. In this study, we show that NOD.Tnfrsf9-/- CD8 T cells had significantly reduced diabetogenic capacity, whereas absence of CD137 in non-T and non-B cells had a limited impact on T1D progression. In contrast, NOD.Tnfrsf9-/- CD4 T cells highly promoted T1D development. We further demonstrated that CD137 was important for the accumulation of β cell-autoreactive CD8 T cells but was dispensable for their activation in pancreatic lymph nodes. The frequency of islet-infiltrating CD8 T cells was reduced in NOD.Tnfrsf9-/- mice in part because of their decreased proliferation. Furthermore, CD137 deficiency did not suppress T1D development in NOD mice expressing the transgenic NY8.3 CD8 TCR. This suggests that increased precursor frequency of β cell-autoreactive CD8 T cells in NY8.3 mice obviated a role for CD137 in diabetogenesis. Finally, blocking CD137-CD137 ligand interaction significantly delayed T1D onset in NOD mice. Collectively, our results indicate that one important diabetogenic function of CD137 is to promote the expansion and accumulation of β cell-autoreactive CD8 T cells, and in the absence of CD137 or its interaction with CD137 ligand, T1D progression is suppressed.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ashley E Ciecko
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kyle J Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226; .,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226; and.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
47
|
Selective induction of alternatively spliced FynT isoform by TNF facilitates persistent inflammatory responses in astrocytes. Sci Rep 2017; 7:43651. [PMID: 28266558 PMCID: PMC5339870 DOI: 10.1038/srep43651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/25/2017] [Indexed: 11/27/2022] Open
Abstract
Fyn tyrosine kinase has been implicated in the pathogenesis of Alzheimer’s disease (AD). We have previously reported that upregulation of the FynT isoform in AD brains was partly associated with astrocyte activation. In this study, we demonstrated selective FynT induction in murine cortex and primary astrocyte culture after prolonged exposure to inflammatory stimulants, suggesting that FynT may mediate persistent neuroinflammation. To delineate the functional role of astrocytic FynT in association with TNF-mediated inflammatory responses, immortalized normal human astrocytes (iNHA) stably expressing FynT kinase constitutively active (FynT-CA) or kinase dead (FynT-KD) mutants were treated with TNF and compared for inflammatory responses using high-throughput real-time RT-PCR and Luminex multi-analyte immunoassays. FynT-CA but not FynT-KD mutant exhibited drastic induction of proinflammatory cytokines and chemokines after prolonged exposure to TNF, which could be attenuated by treating with Fyn kinase inhibitor PP2 or silencing via FynT-specific DsiRNA. FynT kinase activity-dependent induction of PKCδ expression, PKCδ phosphorylation, as well as NFκB activation was detected at the late phase but not the early phase of TNF signaling. In conclusion, selective FynT induction by TNF may facilitate persistent inflammatory responses in astrocytes, which is highly relevant to chronic neuroinflammation in neurodegenerative diseases including but not limited to AD.
Collapse
|
48
|
Capuano C, Pighi C, Molfetta R, Paolini R, Battella S, Palmieri G, Giannini G, Belardinilli F, Santoni A, Galandrini R. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production. Oncoimmunology 2017; 6:e1290037. [PMID: 28405525 PMCID: PMC5384385 DOI: 10.1080/2162402x.2017.1290037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/30/2023] Open
Abstract
Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), based on the recognition of IgG-opsonized targets by the low-affinity receptor for IgG FcγRIIIA/CD16, represents one of the main mechanisms by which therapeutic antibodies (mAbs) mediate their antitumor effects. Besides ADCC, CD16 ligation also results in cytokine production, in particular, NK-derived IFNγ is endowed with a well-recognized role in the shaping of adaptive immune responses. Obinutuzumab is a glycoengineered anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for CD16 and consequently the killing of mAb-opsonized targets. However, the impact of CD16 ligation in optimized affinity conditions on NK functional program is not completely understood. Herein, we demonstrate that the interaction of NK cells with obinutuzumab-opsonized cells results in enhanced IFNγ production as compared with parental non-glycoengineered mAb or the reference molecule rituximab. We observed that affinity ligation conditions strictly correlate with the ability to induce CD16 down-modulation and lysosomal targeting of receptor-associated signaling elements. Indeed, a preferential degradation of FcεRIγ chain and Syk kinase was observed upon obinutuzumab stimulation independently from CD16-V158F polymorphism. Although the downregulation of FcεRIγ/Syk module leads to the impairment of cytotoxic function induced by NKp46 and NKp30 receptors, obinutuzumab-experienced cells exhibit an increased ability to produce IFNγ in response to different stimuli. These data highlight a relationship between CD16 aggregation conditions and the ability to promote a degradative pathway of CD16-coupled signaling elements associated to the shift of NK functional program.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Chiara Pighi
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Simone Battella
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Francesca Belardinilli
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Laboratorio Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University , Rome, Italy
| |
Collapse
|
49
|
Bauer B, Wotapek T, Zöller T, Rutkowski E, Steinle A. The Activating C-type Lectin-like Receptor NKp65 Signals through a Hemi-immunoreceptor Tyrosine-based Activation Motif (hemITAM) and Spleen Tyrosine Kinase (Syk). J Biol Chem 2017; 292:3213-3223. [PMID: 28082678 DOI: 10.1074/jbc.m116.759977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/11/2017] [Indexed: 11/06/2022] Open
Abstract
NKp65 is an activating human C-type lectin-like receptor (CTLR) triggering cellular cytotoxicity and cytokine secretion upon high-affinity interaction with the cognate CTLR keratinocyte-associated C-type lectin (KACL) selectively expressed by human keratinocytes. Previously, we demonstrated that NKp65-mediated cellular cytotoxicity depends on tyrosine 7, located in a cytoplasmic sequence motif of NKp65 resembling a hemi-immunoreceptor tyrosine-based activation motif (hemITAM). HemITAMs have been reported for a few activating myeloid-specific CTLRs, including Dectin-1 and CLEC-2, and consist of a single tyrosine signaling unit preceded by a triacidic motif. Upon receptor engagement, the hemITAM undergoes phosphotyrosinylation and specifically recruits spleen tyrosine kinase (Syk), initiating cellular activation. In this study, we addressed the functionality of the putative hemITAM of NKp65. We show that NKp65 forms homodimers and is phosphorylated at the hemITAM-embedded tyrosine 7 upon engagement by antibodies or KACL homodimers. HemITAM phosphotyrosinylation initiates a signaling pathway involving and depending on Syk, leading to cellular activation and natural killer (NK) cell degranulation. However, although NKp65 utilizes Syk for NK cell activation, a physical association of Syk with the NKp65 hemITAM could not be detected, unlike shown previously for the hemITAM of myeloid CTLR. Failure of NKp65 to recruit Syk is not due to an alteration of the triacidic motif, which rather affects the efficiency of hemITAM phosphotyrosinylation. In summary, NKp65 utilizes a hemITAM-like motif for cellular activation that requires Syk, although Syk appears not to be recruited to NKp65.
Collapse
Affiliation(s)
- Björn Bauer
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Emilia Rutkowski
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, Li D, Du J, Lin X, Yang M, Dong Z. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med 2017; 214:475-489. [PMID: 28049627 PMCID: PMC5294859 DOI: 10.1084/jem.20161312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Chen et al. dissect SAP-dependent and SAP-independent SLAM family signaling in the regulation of NKT cell development and follicular T helper cell differentiation using a novel mouse model lacking all seven SLAM family receptors. Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Chenxu Cai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Marzenna Blonska
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|