1
|
Qi LJ, Gao S, Ning YH, Chen XJ, Wang RZ, Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118454. [PMID: 38852638 DOI: 10.1016/j.jep.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rβ2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rβ2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.
Collapse
Affiliation(s)
- Li-Jie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Yun-Hong Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Huang Q, H J Cao W, Curio S, Yu H, Denman R, Chen E, Schreuder J, Dight J, Chaudhry M, Jacquelot N, Wimmer VC, Seillet C, Möröy T, Belz GT. GFI1B specifies developmental potential of innate lymphoid cell progenitors in the lungs. Sci Immunol 2024; 9:eadj2654. [PMID: 38820141 DOI: 10.1126/sciimmunol.adj2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.
Collapse
Affiliation(s)
- Qiutong Huang
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Wang H J Cao
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophie Curio
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Huiyang Yu
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Renae Denman
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Evelyn Chen
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jaring Schreuder
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - James Dight
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - M Chaudhry
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology; Department of Microbiology, Immunology and Infectious Diseases; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Verena C Wimmer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarik Möröy
- Institut de recherches cliniques de Montreal, Université de Montréal, Montreal, QC H2W 1R7, Canada
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Frank D, Patnana PK, Vorwerk J, Mao L, Gopal LM, Jung N, Hennig T, Ruhnke L, Frenz JM, Kuppusamy M, Autry R, Wei L, Sun K, Mohammed Ahmed HM, Künstner A, Busch H, Müller H, Hutter S, Hoermann G, Liu L, Xie X, Al-Matary Y, Nimmagadda SC, Cano FC, Heuser M, Thol F, Göhring G, Steinemann D, Thomale J, Leitner T, Fischer A, Rad R, Röllig C, Altmann H, Kunadt D, Berdel WE, Hüve J, Neumann F, Klingauf J, Calderon V, Opalka B, Dührsen U, Rosenbauer F, Dugas M, Varghese J, Reinhardt HC, von Bubnoff N, Möröy T, Lenz G, Batcha AMN, Giorgi M, Selvam M, Wang E, McWeeney SK, Tyner JW, Stölzel F, Mann M, Jayavelu AK, Khandanpour C. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023; 142:2175-2191. [PMID: 37756525 PMCID: PMC10733838 DOI: 10.1182/blood.2022015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
ABSTRACT Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Collapse
Affiliation(s)
- Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lavanya Mokada Gopal
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Noelle Jung
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Leo Ruhnke
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maithreyan Kuppusamy
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Robert Autry
- Hopp Children’s Cancer Center, Heidelberg, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Refined Laser Systems GmbH, Münster, Germany
| | - Jürgen Klingauf
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Virginie Calderon
- Bioinformatic Core Facility, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
- Data Integration for Future Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Marianna Giorgi
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Murugan Selvam
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein Kiel, Christian Albrecht University Kiel, Kiel, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center, Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Xu S, Zhang Y, Liu X, Liu H, Zou X, Zhang L, Wang J, Zhang Z, Xu X, Li M, Li K, Shi S, Zhang Y, Miao Z, Zha J, Yu Y. Nr4a1 marks a distinctive ILC2 activation subset in the mouse inflammatory lung. BMC Biol 2023; 21:218. [PMID: 37833706 PMCID: PMC10576290 DOI: 10.1186/s12915-023-01690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huisheng Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinya Zou
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| |
Collapse
|
6
|
Wu S, Nie Q, Tan S, Liao G, Lv Y, Lv C, Chen G, Liu S. The immunity modulation of transforming growth factor-β in malaria and other pathological process. Int Immunopharmacol 2023; 122:110658. [PMID: 37467691 DOI: 10.1016/j.intimp.2023.110658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The main causative agent of malaria in humans is Plasmodium falciparum, which is spread through biting Anopheles mosquitoes. Immunoregulation in the host involving the pleiotropic cytokine transforming growth factor-β (TGF-β) has a vital role in controlling the immune response to P. falciparum infection. Based on a search of the published literature, this study investigated the correlation between malaria and immune cells, specifically the role of TGF-β in the immune response. The studies analyzed showed that, when present in low amounts, TGF-β promotes inflammation, but inhibits inflammation when present in high concentrations; thus, it is an essential regulator of inflammation. It has also been shown that the quantity of TGF-β produced by the host can influence how badly the parasite affects the host. Low levels of TGF-β in the host prevent the host from being able to manage the inflammation that Plasmodium causes, which results in a pathological situation that leaves the host vulnerable to fatal infection. Additionally, the amount of TGF-β fluctuates throughout the host's Plasmodium infection. At the beginning of a Plasmodium infection, TGF-β levels are noticeably increased, and as Plasmodium multiplies quickly, they start to decline, hindering further growth. In addition, it is also involved in the growth, proliferation, and operation of various types of immune cell and correlated with levels of cytokines associated with the immune response to malaria. TGF-β levels were positively connected with the anti-inflammatory cytokine interleukin-10 (IL-10), but negatively correlated with the proinflammatory cytokines interferon-γ (IFN-γ) and IL-6 in individuals with severe malaria. Thus, TGF-β might balance immune-mediated pathological damage and the regulation and clearance of infectious pathogens. Numerous domestic and international studies have demonstrated that TGF-β maintains a dynamic balance between anti-inflammation and pro-inflammation in malaria immunity by acting as an anti-inflammatory factor when inflammation levels are too high and as a pro-inflammatory factor when inflammation levels are deficient. Such information could be of relevance to the design of urgently needed vaccines and medications to meet the emerging risks associated with the increasing spread of malaria and the development of drug resistance.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin District, Shandong Province, Weifang 261061, China
| | - Shuang Tan
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Guoyan Liao
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Yinyi Lv
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People's Hospital, No 2 Shuinan East Road, Tiantai Country, Taizhou 317200, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, China.
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, China.
| |
Collapse
|
7
|
Olson WJ, Derudder E. The miR-142 miRNAs: Shaping the naïve immune system. Immunol Lett 2023; 261:37-46. [PMID: 37459958 DOI: 10.1016/j.imlet.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Immunity in a naïve organism is tightly controlled. Adequate proportions of the many immune cell subsets must be produced to mount efficient responses to eventual challenges. In addition, a functioning immune system is highly dynamic at steady state. Mature immune cells must be positioned properly and/or circulate to facilitate the detection of dangers. They must also be poised to promptly react to unusual encounters, while ignoring innocuous germs and self. Numerous regulatory mechanisms act at the molecular level to generate such an exquisite structure, including miRNA-mediated repression of protein synthesis. Notably, the miRNAs from the miR-142 locus are preferentially expressed in hematopoietic cells. Their importance is underscored by the deeply disturbed immune system seen upon inactivation of the locus in mice. In this review, we explore reported roles for the miR-142 miRNAs in the shaping of immunity in vertebrates, discussing in particular their contributions to the generation, migration and survival of hematopoietic cells.
Collapse
Affiliation(s)
- William J Olson
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Patnana PK, Liu L, Frank D, Nimmagadda SC, Behrens M, Ahmed H, Xie X, Liebmann M, Wei L, Gerdemann A, Thivakaran A, Humpf HU, Klotz L, Dugas M, Varghese J, Trajkovic-Arsic M, Siveke JT, Hanenberg H, Opalka B, Dührsen U, Reinhardt HC, Guenther U, von Bubnoff N, Khandanpour C. Dose-dependent expression of GFI1 alters metabolism in the haematopoietic progenitors and MLL::AF9-induced leukaemic cells. Br J Haematol 2023; 202:1033-1048. [PMID: 37423893 DOI: 10.1111/bjh.18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.
Collapse
Affiliation(s)
- Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | | | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Helmut Hanenberg
- Clinic for Pediatrics III, University Hospital Essen, Essen, Germany
- Pediatric Oncology, Hematology & Immunology, Heinrich Heine University, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Guenther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
10
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
11
|
Naito M, Nakanishi Y, Motomura Y, Takamatsu H, Koyama S, Nishide M, Naito Y, Izumi M, Mizuno Y, Yamaguchi Y, Nojima S, Okuzaki D, Kumanogoh A. Semaphorin 6D-expressing mesenchymal cells regulate IL-10 production by ILC2s in the lung. Life Sci Alliance 2022; 5:5/11/e202201486. [PMID: 36038260 PMCID: PMC9434704 DOI: 10.26508/lsa.202201486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) have features specific to the niches in which they reside, and we found that semaphorin 6D signaling in the lung niche controls IL-10 production by ILC2s. Group 2 innate lymphoid cells (ILC2s) have been implicated in both physiologic tissue remodeling and allergic pathology, yet the niche signaling required for ILC2 properties is poorly understood. Here, we show that an axonal guidance cue semaphorin 6D (Sema6D) plays critical roles in the maintenance of IL-10–producing ILC2s. Sema6d−/− mice exhibit a severe steady-state reduction in ILC2s in peripheral sites such as the lung, visceral adipose tissue, and mesentery. Interestingly, loss of Sema6D results in suppressed alarmin-driven type 2 cytokine production but increased IL-10 production by lung ILC2s both in vitro and in vivo. Consequently, Sema6d−/− mice are resistant to the development of allergic lung inflammation. We further found that lung mesenchymal cells highly express Sema6D, and that niche-derived Sema6D is responsible for these phenotypes through plexin A1. Collectively, these findings suggest that niche-derived Sema6D is implicated in physiological and pathological characteristics of ILC2s.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, WPI, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan .,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
12
|
Venkatadri R, Sabapathy V, Dogan M, Sharma R. Targeting Regulatory T Cells for Therapy of Lupus Nephritis. Front Pharmacol 2022; 12:806612. [PMID: 35069220 PMCID: PMC8775001 DOI: 10.3389/fphar.2021.806612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by circulating autoantibodies, immune-complex deposition, immune dysregulation and defects in regulatory T cell (Tregs). Treatment options rely on general immunosuppressants and steroids that have serious side effects. Approaches to target immune cells, such as B cells in particular, has had limited success and new approaches are being investigated. Defects in Tregs in the setting of autoimmunity is well known and Treg-replacement strategies are currently being explored. The aim of this minireview is to rekindle interest on Treg-targeting strategies. We discuss the existing evidences for Treg-enhancement strategies using key cytokines interleukin (IL)-2, IL-33 and IL-6 that have shown to provide remission in LN. We also discuss strategies for indirect Treg-modulation for protection from LN.
Collapse
Affiliation(s)
- Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Murat Dogan
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Abstract
Inflammatory bowel disease (IBD) is a chronic and nonspecific intestinal inflammatory condition with high relapse rate. Its pathogenesis has been linked to dysbacteriosis, genetic and environmental factors. In recent years, a new type of lymphocytes, termed innate lymphoid cells, has been described and classified into three subtypes of innate lymphoid cells-group 1, group 2 and group 3. An imbalance among these subsets' interaction with gut microbiome, and other immune cells affects intestinal mucosal homeostasis. Understanding the role of innate lymphoid cells may provide ideas for developing novel and targeted approaches for treatment of IBD.
Collapse
|
15
|
Grimaldi A, Pietropaolo G, Stabile H, Kosta A, Capuano C, Gismondi A, Santoni A, Sciumè G, Fionda C. The Regulatory Activity of Noncoding RNAs in ILCs. Cells 2021; 10:cells10102742. [PMID: 34685721 PMCID: PMC8534545 DOI: 10.3390/cells10102742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concurs to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.
Collapse
Affiliation(s)
- Alessio Grimaldi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- Correspondence: ; Tel.: +39-0649255118; Fax: +39-0644340632
| |
Collapse
|
16
|
Fraszczak J, Arman KM, Lacroix M, Vadnais C, Gaboury L, Möröy T. Severe Inflammatory Reactions in Mice Expressing a GFI1 P2A Mutant Defective in Binding to the Histone Demethylase KDM1A (LSD1). THE JOURNAL OF IMMUNOLOGY 2021; 207:1599-1615. [PMID: 34408010 DOI: 10.4049/jimmunol.2001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
GFI1 is a DNA-binding transcription factor that regulates hematopoiesis by repressing target genes through its association with complexes containing histone demethylases such as KDM1A (LSD1) and histone deacetylases (HDACs). To study the consequences of the disruption of the complex between GFI1 and histone-modifying enzymes, we have used knock-in mice harboring a P2A mutation in GFI1 coding region that renders it unable to bind LSD1 and associated histone-modifying enzymes such as HDACs. GFI1P2A mice die prematurely and show increased numbers of memory effector and regulatory T cells in the spleen accompanied by a severe systemic inflammation with high serum levels of IL-6, TNF-α, and IL-1β and overexpression of the gene encoding the cytokine oncostatin M (OSM). We identified lung alveolar macrophages, CD8 T cell from the spleen and thymic eosinophils, and monocytes as the sources of these cytokines in GFI1P2A mice. Chromatin immunoprecipitation showed that GFI1/LSD1 complexes occupy sites at the Osm promoter and an intragenic region of the Tnfα gene and that a GFI1P2A mutant still remains bound at these sites even without LSD1. Methylation and acetylation of histone H3 at these sites were enriched in cells from GFI1P2A mice, the H3K27 acetylation being the most significant. These data suggest that the histone modification facilitated by GFI1 is critical to control inflammatory pathways in different cell types, including monocytes and eosinophils, and that a disruption of GFI1-associated complexes can lead to systemic inflammation with fatal consequences.
Collapse
Affiliation(s)
| | - Kaifee Mohammad Arman
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Marion Lacroix
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Charles Vadnais
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Louis Gaboury
- Unité de Recherche en Histologie et Pathologie Moléculaire, Institut de Recherche en Immunologie et en Cancérologie, Montreal, Canada.,Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Canada; and
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Canada.,Département de Microbiologie Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
17
|
Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, Sperling AI, Bendelac A. A Gata3 enhancer necessary for ILC2 development and function. Proc Natl Acad Sci U S A 2021; 118:e2106311118. [PMID: 34353913 PMCID: PMC8364216 DOI: 10.1073/pnas.2106311118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Maile K Hollinger
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | | | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637;
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
18
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
19
|
Zaini A, Fulford TS, Grumont RJ, Runting J, Rodrigues G, Ng J, Gerondakis S, Zaph C, Scheer S. c-Rel Is Required for IL-33-Dependent Activation of ILC2s. Front Immunol 2021; 12:667922. [PMID: 34194431 PMCID: PMC8236704 DOI: 10.3389/fimmu.2021.667922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are emerging as important cellular regulators of homeostatic and disease-associated immune processes. The cytokine interleukin-33 (IL-33) promotes ILC2-dependent inflammation and immunity, with IL-33 having been shown to activate NF-κB in a wide variety of cell types. However, it is currently unclear which NF-κB members play an important role in IL-33-dependent ILC2 biology. Here, we identify the NF-κB family member c-Rel as a critical component of the IL-33-dependent activation of ILC2s. Although c-Rel is dispensable for ILC2 development, it is critical for ILC2 function in the lung, with c-Rel-deficient (c-Rel-/- ) mice present a significantly reduced response to papain- and IL-33-induced lung inflammation. We also show that the absence of c-Rel reduces the IL-33-dependent expansion of ILC2 precursors and lower levels of IL-5 and IL-13 cytokine production by mature ILC2s in the lung. Together, these results identify the IL-33-c-Rel axis as a central control point of ILC2 activation and function.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Thomas S. Fulford
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Raelene J. Grumont
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Grace Rodrigues
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Judy Ng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Roberts LB, Jowett GM, Read E, Zabinski T, Berkachy R, Selkirk ME, Jackson I, Niazi U, Anandagoda N, Araki M, Araki K, Kasturiarachchi J, James C, Enver T, Nimmo R, Reis R, Howard JK, Neves JF, Lord GM. MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:2725-2739. [PMID: 34021046 PMCID: PMC7610861 DOI: 10.4049/jimmunol.2000647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA-142 isoforms critically regulate ILC2 homeostasis and effector functions. MicroRNA-142 isoforms regulate the ILC2 lineage cell intrinsically. Socs1 and Gfi1 are miR-142 isoform regulated targets in ILC2s.
Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor–biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Tomas Zabinski
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom
| | - Nelomi Anandagoda
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Jagath Kasturiarachchi
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Chela James
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Tariq Enver
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rachael Nimmo
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rita Reis
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Jane K Howard
- School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; .,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Bartemes KR, Kita H. Roles of innate lymphoid cells (ILCs) in allergic diseases: The 10-year anniversary for ILC2s. J Allergy Clin Immunol 2021; 147:1531-1547. [PMID: 33965091 DOI: 10.1016/j.jaci.2021.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
In the 12 years since the discovery of innate lymphoid cells (ILCs), our knowledge of their immunobiology has expanded rapidly. Group 2 ILCs (ILC2s) respond rapidly to allergen exposure and environmental insults in mucosal organs, producing type 2 cytokines. Early studies showed that epithelium-derived cytokines activate ILC2s, resulting in eosinophilia, mucus hypersecretion, and remodeling of mucosal tissues. We now know that ILC2s are regulated by other cytokines, eicosanoids, and neuropeptides as well, and interact with both immune and stromal cells. Furthermore, ILC2s exhibit plasticity by adjusting their functions depending on their tissue environment and may consist of several heterogeneous subpopulations. Clinical studies show that ILC2s are involved in asthma, allergic rhinitis, chronic rhinosinusitis, food allergy, and eosinophilic esophagitis. However, much remains unknown about the immunologic mechanisms involved. Beneficial functions of ILCs in maintenance or restoration of tissue well-being and human health also need to be clarified. As our understanding of the crucial functions ILCs play in both homeostasis and disease pathology expands, we are poised to make tremendous strides in diagnostic and therapeutic options for patients with allergic diseases. This review summarizes discoveries in immunobiology of ILCs and their roles in allergic diseases in the past 5 years, discusses controversies and gaps in our knowledge, and suggests future research directions.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, Minn; Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minn
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic, Rochester, Minn; Division of Allergy, Asthma, and Immunology and Department of Medicine, Mayo Clinic, Scottsdale, Ariz.
| |
Collapse
|
22
|
Ghaedi M, Takei F. Innate lymphoid cell development. J Allergy Clin Immunol 2021; 147:1549-1560. [PMID: 33965092 DOI: 10.1016/j.jaci.2021.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Innate lymphoid cells (ILCs) mainly reside at barrier surfaces and regulate tissue homeostasis and immunity. ILCs are divided into 3 groups, group 1 ILCs, group 2 ILCs, and group 3 ILC3, on the basis of their similar effector programs to T cells. The development of ILCs from lymphoid progenitors in adult mouse bone marrow has been studied in detail, and multiple ILC progenitors have been characterized. ILCs are mostly tissue-resident cells that develop in the perinatal period. More recently, ILC progenitors have also been identified in peripheral tissues. In this review, we discuss the stepwise transcription factor-directed differentiation of mouse ILC progenitors into mature ILCs, the critical time windows in ILC development, and the contribution of bone marrow versus tissue ILC progenitors to the pool of mature ILCs in tissues.
Collapse
Affiliation(s)
- Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fumio Takei
- the Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada; Terry Fox Laboratory, B.C. Cancer, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
24
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
25
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nat Commun 2021; 12:836. [PMID: 33547321 PMCID: PMC7864916 DOI: 10.1038/s41467-021-21113-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic regulation of intestinal cell differentiation is crucial for both homeostasis and the response to injury or inflammation. Sprouty2, an intracellular signaling regulator, controls pathways including PI3K and MAPKs that are implicated in differentiation and are dysregulated in inflammatory bowel disease. Here, we ask whether Sprouty2 controls secretory cell differentiation and the response to colitis. We report that colonic epithelial Sprouty2 deletion leads to expanded tuft and goblet cell populations. Sprouty2 loss induces PI3K/Akt signaling, leading to GSK3β inhibition and epithelial interleukin (IL)-33 expression. In vivo, this results in increased stromal IL-13+ cells. IL-13 in turn induces tuft and goblet cell expansion in vitro and in vivo. Sprouty2 is downregulated by acute inflammation; this appears to be a protective response, as VillinCre;Sprouty2F/F mice are resistant to DSS colitis. In contrast, Sprouty2 is elevated in chronic colitis and in colons of inflammatory bowel disease patients, suggesting that this protective epithelial-stromal signaling mechanism is lost in disease. Dynamic regulation of colonic secretory cell numbers is a critical component of the response to intestinal injury and inflammation. Here, the authors show that loss of the intracellular signalling regulator Sprouty2 in the intestinal epithelial cells is a protective response to injury that leads to increased secretory cell numbers, thus limiting colitis severity.
Collapse
|
28
|
Santoso CS, Li Z, Lal S, Yuan S, Gan KA, Agosto LM, Liu X, Pro SC, Sewell JA, Henderson A, Atianand MK, Fuxman Bass JI. Comprehensive mapping of the human cytokine gene regulatory network. Nucleic Acids Res 2020; 48:12055-12073. [PMID: 33179750 PMCID: PMC7708076 DOI: 10.1093/nar/gkaa1055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Proper cytokine gene expression is essential in development, homeostasis and immune responses. Studies on the transcriptional control of cytokine genes have mostly focused on highly researched transcription factors (TFs) and cytokines, resulting in an incomplete portrait of cytokine gene regulation. Here, we used enhanced yeast one-hybrid (eY1H) assays to derive a comprehensive network comprising 1380 interactions between 265 TFs and 108 cytokine gene promoters. Our eY1H-derived network greatly expands the known repertoire of TF–cytokine gene interactions and the set of TFs known to regulate cytokine genes. We found an enrichment of nuclear receptors and confirmed their role in cytokine regulation in primary macrophages. Additionally, we used the eY1H-derived network as a framework to identify pairs of TFs that can be targeted with commercially-available drugs to synergistically modulate cytokine production. Finally, we integrated the eY1H data with single cell RNA-seq and phenotypic datasets to identify novel TF–cytokine regulatory axes in immune diseases and immune cell lineage development. Overall, the eY1H data provides a rich resource to study cytokine regulation in a variety of physiological and disease contexts.
Collapse
Affiliation(s)
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Sneha Lal
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samson Yuan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Kok Ann Gan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xing Liu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Andrew Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maninjay K Atianand
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|
30
|
Drake LY, Prakash YS. Contributions of IL-33 in Non-hematopoietic Lung Cells to Obstructive Lung Disease. Front Immunol 2020; 11:1798. [PMID: 32903501 PMCID: PMC7438562 DOI: 10.3389/fimmu.2020.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung diseases including asthma and chronic obstructive pulmonary disease (COPD). There is substantial interest in identifying and characterizing cellular sources vs. targets of IL-33, and downstream signaling pathways involved in disease pathophysiology. While epithelial and immune cells have largely been the focus, in this review, we summarize current knowledge of expression, induction, and function of IL-33 and its receptor ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal conditions, epithelial cells and endothelial cells are thought to be the primary resident cell types that express high levels of IL-33 and serve as ligand sources compared to mesenchymal cells (smooth muscle cells and fibroblasts). Under inflammatory conditions, IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial, endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by inflammation in these non-hematopoietic lung cells which may then participate in chronic inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream effects of IL-33 may occur via direct receptor activation or indirect interactions with the immune system, overall contributing to lung inflammation, airway hyper-responsiveness and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective, targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
31
|
Abstract
Although, as the major organ of gas exchange, the lung is considered a nonlymphoid organ, an interconnected network of lung-resident innate cells, including epithelial cells, dendritic cells, macrophages, and natural killer cells is crucial for its protection. These cells provide defense against a daily assault by airborne bacteria, viruses, and fungi, as well as prevent the development of cancer, allergy, and the outgrowth of commensals. Our understanding of this innate immune environment has recently changed with the discovery of a family of innate lymphoid cells (ILCs): ILC1s, ILC2s, and ILC3s. All lack adaptive antigen receptors but can provide a substantial and rapid source of IFN-γ, IL-5 and IL-13, and IL-17A or IL-22, respectively. Their ability to afford immediate protection to the lung and to influence subsequent adaptive immune responses highlights the importance of understanding ILC-regulated immunity for the design of future therapeutic interventions.
Collapse
Affiliation(s)
- Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| |
Collapse
|
32
|
Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, Kita H, Boyd KL, Peebles RS. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 2020; 75:1606-1617. [PMID: 31975538 PMCID: PMC7354889 DOI: 10.1111/all.14196] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
Background The epithelial cell‐derived danger signal mediators thymic stromal lymphopoietin (TSLP) and IL‐33 are consistently associated with adaptive Th2 immune responses in asthma. In addition, TSLP and IL‐33 synergistically promoted group 2 innate lymphoid cell (ILC2) activation to induce innate allergic inflammation. However, the mechanism of this synergistic ILC2 activation is unknown. Methods BALB/c WT and TSLP receptor‐deficient (TSLPR−/−) mice were challenged intranasally with Alternaria extract (Alt‐Ext) or PBS for 4 consecutive days to evaluate innate airway allergic inflammation. WT mice pre‐administered with rTSLP or vehicle, TSLPR−/− mice, and IL‐33 receptor‐deficient (ST2−/−) mice were challenged intranasally with Alt‐Ext or vehicle once or twice to evaluate IL‐33 release and TSLP expression in the lung. TSLPR and ST2 expression on lung ILC2 were measured by flow cytometry after treatment of rTSLP, rIL‐33, rTSLP + rIL‐33, or vehicle. Results Thymic stromal lymphopoietin receptor deficient mice had significantly decreased the number of lung ILC2 expressing IL‐5 and IL‐13 following Alt‐Ext‐challenge compared to WT mice. Further, eosinophilia, protein level of lung IL‐4, IL‐5, and IL‐13, and airway mucus score were also significantly decreased in TSLPR−/− mice compared to WT mice. Endogenous and exogenous TSLP increased Alt‐Ext‐induced IL‐33 release into BALF, and ST2 deficiency decreased Alt‐Ext‐induced TSLP expression in the lung. Further, rTSLP and rIL‐33 treatment reciprocally increased each other's receptor expression on lung ILC2 in vivo and in vitro. Conclusion Thymic stromal lymphopoietin and IL‐33 signaling reciprocally enhanced each other's protein release and expression in the lung following Alt‐Ext‐challenge and each other's receptor expression on lung ILC2 to enhance ILC2 activation.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| | - Baohua Zhou
- Wells Center for Pediatric Research Department of Pediatrics Indiana University School of Medicine Indianapolis IN USA
| | - Hirohito Kita
- Division of Allergic Diseases Department of Internal Medicine Mayo Clinic Rochester MN USA
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| | - Ray S. Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine Vanderbilt University School of Medicine Nashville TN USA
- Department of Pathology, Microbiology, and Immunology Vanderbilt University School of Medicine Nashville TN USA
| |
Collapse
|
33
|
Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res 2020; 30:475-491. [PMID: 32376911 PMCID: PMC7264134 DOI: 10.1038/s41422-020-0323-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
The multifaceted organization of the immune system involves not only patrolling lymphocytes that constantly monitor antigen-presenting cells in secondary lymphoid organs but also immune cells that establish permanent tissue-residency. The integration in the respective tissue and the adaption to the organ milieu enable tissue-resident cells to establish signaling circuits with parenchymal cells to coordinate immune responses and maintain tissue homeostasis. Innate lymphoid cells (ILCs) are tissue-resident innate immune cells that have a similar functional diversity to T cells including lineage-specifying transcription factors that drive certain effector programs. Since their formal discovery 10 years ago, it has become clear that ILCs are present in almost every tissue but strongly enriched at barrier surfaces, where they regulate immunity to infection, chronic inflammation, and tissue maintenance. In this context, recent research has identified ILCs as key in orchestrating tissue homeostasis through their ability to sustain bidirectional interactions with epithelial cells, neurons, stromal cells, adipocytes, and many other tissue-resident cells. In this review, we provide a comprehensive discussion of recent studies that define the development and heterogeneity of ILC populations and their impact on innate and adaptive immunity. Further, we discuss emerging research on the influence of the nervous system, circadian rhythm, and developmental plasticity on ILC function. Uncovering the signaling circuits that control development and function of ILCs will provide an integrated view on how immune responses in tissues are synchronized with functional relevance far beyond the classical view of the role of the immune system in discrimination between self/non-self and host defense.
Collapse
|
34
|
Portelli MA, Dijk FN, Ketelaar ME, Shrine N, Hankinson J, Bhaker S, Grotenboer NS, Obeidat M, Henry AP, Billington CK, Shaw D, Johnson SR, Pogson ZE, Fogarty A, McKeever TM, Nickle DC, Bossé Y, van den Berge M, Faiz A, Brouwer S, Vonk JM, de Vos P, Brandsma CA, Vermeulen CJ, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Niven R, Simpson A, Blakey JD, Tobin MD, Postma DS, Hall IP, Wain LV, Nawijn MC, Brightling CE, Koppelman GH, Sayers I. Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight 2020; 5:132446. [PMID: 32324168 PMCID: PMC7205441 DOI: 10.1172/jci.insight.132446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33–driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.
Collapse
Affiliation(s)
- Michael A Portelli
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - F Nicole Dijk
- Department of Pediatric Pulmonology and Pediatric Allergology, and
| | - Maria E Ketelaar
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jenny Hankinson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sangita Bhaker
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Néomi S Grotenboer
- Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Amanda P Henry
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zara Ek Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - David C Nickle
- Departments of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Sharon Brouwer
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Cornelis J Vermeulen
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Amisha Singapuri
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Experimental Medicine, Queens University of Belfast, Belfast, United Kingdom
| | - Adel H Mansur
- Department of Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, United Kingdom
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John W Holloway
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Gabrielle A Lockett
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Robert Niven
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Christopher E Brightling
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
35
|
Helfrich S, Duerr CU. Regulating the development of pulmonary Group 2 innate lymphoid cells. Biol Chem 2020; 400:1497-1507. [PMID: 31256061 DOI: 10.1515/hsz-2019-0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are members of the family of innate lymphoid cells and are innately committed to type 2 immune responses. In the lungs, ILC2s are the predominant population of innate lymphoid cells (ILCs) and their development is orchestrated by several different transcription factors ensuring lineage commitment by intrinsic regulation. ILC2s are present in the lungs from the foetal period onwards and are thus exposed to extrinsic regulation due to the airways' continuous morphological changes upon birth. In this review, we will briefly summarise the dependence of ILC2s on transcription factors and discuss recently described characteristics and function of early life ILC2s in the lungs.
Collapse
Affiliation(s)
- Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
| |
Collapse
|
36
|
|
37
|
Abstract
The molecular pathways underlying the development of innate lymphoid cells (ILCs) are mostly unknown. Here we show that TGF-β signaling programs the development of ILC2s from their progenitors. Specifically, the deficiency of TGF-β receptor II in bone marrow progenitors results in inefficient development of ILC2s, but not ILC1s or ILC3s. Mechanistically, TGF-β signaling is required for the generation and maintenance of ILC2 progenitors (ILC2p). In addition, TGF-β upregulates the expression of the IL-33 receptor gene Il1rl1 (encoding IL-1 receptor-like 1, also known as ST2) in ILC2p and common helper-like innate lymphoid progenitors (CHILP), at least partially through the MEK-dependent pathway. These findings identify a function of TGF-β in the development of ILC2s from their progenitors. TGF-β is thought to be important for group 2 innate lymphoid cell (ILC2) function. Here the authors show that TGF-β drives expression of ST2 specifically in ILC2 progenitors and thereby is also important for the development of ILC2s in the bone marrow.
Collapse
|
38
|
ILC2s in High Definition: Decoding the Logic of Tissue-Based Immunity. Trends Immunol 2020; 41:7-16. [DOI: 10.1016/j.it.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
39
|
Lo BC, Canals Hernaez D, Scott RW, Hughes MR, Shin SB, Underhill TM, Takei F, McNagny KM. The Transcription Factor RORα Preserves ILC3 Lineage Identity and Function during Chronic Intestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3209-3215. [PMID: 31676672 DOI: 10.4049/jimmunol.1900781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and tissue repair but can also contribute to chronic inflammatory diseases. The transcription factor RORα is required for ILC2 development but is also highly expressed by other ILC subsets where its function remains poorly defined. We previously reported that Rorasg/sg bone marrow chimeric mice (C57BL/6J) were protected from Salmonella-induced intestinal fibrosis due to defective ILC3 responses. In this study, single-cell RNA analysis of ILCs isolated from inflamed tissues indicates that RORα perturbation led to a reduction in ILC3 lineages. Furthermore, residual Rorasg/sg ILC3s have decreased expression of key signature genes, including Rorc and activating cytokine receptors. Collectively, our data suggest that RORα plays a key role in preserving functional ILC3s by modulating their ability to integrate environmental cues to efficiently produce cytokines.
Collapse
Affiliation(s)
- Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Fumio Takei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| |
Collapse
|
40
|
Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm 2019; 2019:7158014. [PMID: 31736655 PMCID: PMC6815589 DOI: 10.1155/2019/7158014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023] Open
Abstract
Background IL-33 belongs to the IL-1 family, playing a role in several biologic processes as well as in the pathogenesis of different diseases, including skin pathologies. It acts as an alarmin, released by damaged cells. Binding to a ST2 receptor, it stimulates many immune cells such as ILC2 and Th2 cells. IL-33/ST2 axis seems to be involved in Th17 response. According to this, a review was performed to analyze if IL-33 even interplay in the onset of psoriasis, a Th1/Th17 inflammatory disease. Methods Data obtained from the included articles are study author name, publication date, group studied, clinical and biological variables, laboratory tests, and outcome of interest of the study. Results Data are obtained from the 19 studies identified, which assessed the association between IL-33 and psoriasis. Discussion It seems to promote the innate-adaptive immune crosstalk: it could induce mast cells and neutrophil response after being released by injured keratinocytes and after stimulation by some cytokines, in particular TNFα, INFγ, and IL-17A. In addition, it seems to be involved from the onset of disease to the development of comorbidities, as psoriatic arthritis. Conclusion The core of the future research on psoriasis could be to fully understand the role of this complex cytokine, in order also to find a new therapeutic approach.
Collapse
|
41
|
Burrows K, Ngai L, Wong F, Won D, Mortha A. ILC2 Activation by Protozoan Commensal Microbes. Int J Mol Sci 2019; 20:ijms20194865. [PMID: 31574995 PMCID: PMC6801642 DOI: 10.3390/ijms20194865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a member of the ILC family and are involved in protective and pathogenic type 2 responses. Recent research has highlighted their involvement in modulating tissue and immune homeostasis during health and disease and has uncovered critical signaling circuits. While interactions of ILC2s with the bacterial microbiome are rather sparse, other microbial members of our microbiome, including helminths and protozoans, reveal new and exciting mechanisms of tissue regulation by ILC2s. Here we summarize the current field on ILC2 activation by the tissue and immune environment and highlight particularly new intriguing pathways of ILC2 regulation by protozoan commensals in the intestinal tract.
Collapse
Affiliation(s)
- Kyle Burrows
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Louis Ngai
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Flora Wong
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
- Ranomics, Inc. Toronto, ON M5G 1X5, Canada.
| | - David Won
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Arthur Mortha
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
42
|
Kuai X, Li L, Chen R, Wang K, Chen M, Cui B, Zhang Y, Li J, Zhu H, Zhou H, Huang J, Qin J, Wang Z, Wei W, Gao D. SCF FBXW7/GSK3β-Mediated GFI1 Degradation Suppresses Proliferation of Gastric Cancer Cells. Cancer Res 2019; 79:4387-4398. [PMID: 31289136 DOI: 10.1158/0008-5472.can-18-4032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide. The regulatory mechanisms underlying gastric cancer cell proliferation are largely unclear. Here, we show that the transcription factor GFI1 is associated with advanced clinical gastric cancer progression and promoted gastric cancer cell proliferation partially through inhibition of gastrokine-2 (GKN2) transcription. GFI1 was a degrading substrate of FBXW7, whose loss was observed in gastric cancer. Mechanistically, GSK3β-mediated GFI1 S94/S98 phosphorylation triggered its interaction with FBXW7, resulting in SCFFBXW7-mediated ubiquitination and degradation. A nondegradable GFI1 S94A/S98A mutant was more potent in driving gastric cancer cell proliferation and tumorigenesis than wild-type GFI1. Overall, this study reveals the oncogenic role of GFI1 in gastric cancer and provides mechanistic insights into the tumor suppressor function of FBXW7. SIGNIFICANCE: These findings demonstrate the oncogenic role of the transcription factor GFI1 and the tumor suppressive function of FBXW7 in gastric cancer.
Collapse
Affiliation(s)
- Xiaoling Kuai
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Long Li
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ran Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Binghai Cui
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfei Huang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Jun Qin
- The Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Möröy T, Khandanpour C. Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Front Oncol 2019; 9:824. [PMID: 31508375 PMCID: PMC6718700 DOI: 10.3389/fonc.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Collapse
Affiliation(s)
- Tarik Möröy
- Department of Hematopoiesis and Cancer, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
44
|
Xiong J, Wang H, He J, Wang Q. Functions of Group 2 Innate Lymphoid Cells in Tumor Microenvironment. Front Immunol 2019; 10:1615. [PMID: 31354745 PMCID: PMC6635601 DOI: 10.3389/fimmu.2019.01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILCs), defined as a heterogeneous population of lymphocytes, have received much attention over recent years. They can be categorized into three subsets according to the expression profiles of transcription factors and differing levels of cytokine production. These cells are widely distributed in human organs and tissues, especially in mucosal tissue. The ILCs are involved in various physiological and pathological processes, including inflammation, worm expulsion, autoimmune disease and tumor progression, many of which have been investigated and clarified in recent studies. In the tumor microenvironment, group 2 innate lymphoid cells (ILC2s) have been proved to be able to either promote or inhibit tumor progression by producing different cytokines, recruiting diverse types of immune cells, expressing immunosuppressive molecules and by regulating the expression of certain inflammatory factors. This review summarizes recent research progress on the immunomodulatory functions of ILC2s in the tumor microenvironment and puts forward some perspectives for future study.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haofei Wang
- Department of Pharmacology, China Medical University School of Pharmacy, Shenyang, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Wallrapp A, Riesenfeld SJ, Burkett PR, Kuchroo VK. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. Immunol Rev 2019; 286:53-73. [PMID: 30294962 DOI: 10.1111/imr.12702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immunity against pathogens is tightly regulated to ensure appropriate inflammatory responses that clear infection and prevent excessive tissue damage. Recent research has shown that type 2 innate lymphoid cells (ILC2s) contribute to steady-state tissue integrity and exert tissue-specific functions. However, upon exposure to inflammatory stimuli, they also initiate and amplify type 2 inflammation by inducing mucus production, eosinophilia, and Th2 differentiation. In this review, we discuss the regulation of ILC2 activation by transcription factors and metabolic pathways, as well as by extrinsic signals such as cytokines, lipid mediators, hormones, and neuropeptides. We also review recent discoveries about ILC2 plasticity and heterogeneity in different tissues, as revealed partly through single-cell RNA sequencing of transcriptional responses to various stimuli. Understanding the tissue-specific pathways that regulate ILC2 diversity and function is a critical step in the development of potential therapies for allergic diseases.
Collapse
Affiliation(s)
- Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts
| |
Collapse
|
47
|
Multi-Method Molecular Characterisation of Human Dust-Mite-associated Allergic Asthma. Sci Rep 2019; 9:8912. [PMID: 31221987 PMCID: PMC6586825 DOI: 10.1038/s41598-019-45257-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the airways. Disease presentation varies greatly in terms of cause, development, severity, and response to medication, and thus the condition has been subdivided into a number of asthma phenotypes. There is still an unmet need for the identification of phenotype-specific markers and accompanying molecular tools that facilitate the classification of asthma phenotype. To this end, we utilised a range of molecular tools to characterise a well-defined group of female adults with poorly controlled atopic asthma associated with house dust mite (HDM) allergy, relative to non-asthmatic control subjects. Circulating messenger RNA (mRNA) and microRNA (miRNA) were sequenced and quantified, and a differential expression analysis of the two RNA populations performed to determine how gene expression and regulation varied in the disease state. Further, a number of circulating proteins (IL-4, 5, 10, 13, 17 A, Eotaxin, GM-CSF, IFNy, MCP-1, TARC, TNFα, Total IgE, and Endotoxin) were quantified to determine whether the protein profiles differed significantly dependent on disease state. Finally, we utilised a previously published assessment of the circulating “blood microbiome” performed using 16S rRNA amplification and sequencing. Asthmatic subjects displayed a range of significant alterations to circulating gene expression and regulation, relative to healthy control subjects, that may influence systemic immune activity. Notably, several circulating mRNAs were detected in just the asthma group or just in the control group, and many more were observed to be expressed at significantly different levels in the asthma group compared to the control group. Proteomic analysis revealed increased levels of inflammatory proteins within the serum, and decreased levels of the bacterial endotoxin protein in the asthmatic state. Comparison of blood microbiome composition revealed a significant increase in the Firmicutes phylum with asthma that was associated with a concomitant reduction in the Proteobacteria phylum. This study provides a valuable insight into the systemic changes evident in the HDM-associated asthma, identifies a range of molecules that are present in the circulation in a condition-specific manner (with clear biomarker potential), and highlights a range of hypotheses for further study.
Collapse
|
48
|
Shao L, Pan S, Zhang QP, Jamal M, Chen LH, Yin Q, Wu YJ, Xiong J, Xiao RJ, Kwong YL, Zhou FL, Lie AKW. An Essential Role of Innate Lymphoid Cells in the Pathophysiology of Graft-vs.-Host Disease. Front Immunol 2019; 10:1233. [PMID: 31244831 PMCID: PMC6563595 DOI: 10.3389/fimmu.2019.01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curative treatment for multiple hematologic malignancies and non-malignant hematological diseases. However, graft-vs.-host disease (GVHD), one of the main complications after allo-HSCT, remains the major reason for morbidity and non-relapse mortality. Emerging evidence has demonstrated that innate lymphoid cells (ILCs) play a non-redundant role in the pathophysiology of GVHD. In this review, we will summarize previously published data regarding the role of ILCs in the pathogenesis of GVHD.
Collapse
Affiliation(s)
- Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Hua Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ying-Jie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rui-Jing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yok-Lam Kwong
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| | - Fu-Ling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Albert K W Lie
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
49
|
Ebihara T, Taniuchi I. Transcription Factors in the Development and Function of Group 2 Innate Lymphoid Cells. Int J Mol Sci 2019; 20:ijms20061377. [PMID: 30893794 PMCID: PMC6470746 DOI: 10.3390/ijms20061377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells and are a major source of innate TH2 cytokine secretion upon allergen exposure or parasitic-worm infection. Accumulating studies have revealed that transcription factors, including GATA-3, Bcl11b, Gfi1, RORα, and Ets-1, play a role in ILC2 differentiation. Recent reports have further revealed that the characteristics and functions of ILC2 are influenced by the physiological state of the tissues. Specifically, the type of inflammation strongly affects the ILC2 phenotype in tissues. Inhibitory ILC2s, memory-like ILC2s, and ex-ILC2s with ILC1 features acquire their characteristic properties following exposure to their specific inflammatory environment. We have recently reported a new ILC2 population, designated as exhausted-like ILC2s, which emerges after a severe allergic inflammation. Exhausted-like ILC2s are featured with low reactivity and high expression of inhibitory receptors. Therefore, for a more comprehensive understanding of ILC2 function and differentiation, we review the recent knowledge of transcriptional regulation of ILC2 differentiation and discuss the roles of the Runx transcription factor in controlling the emergence of exhausted-like ILC2s. The concept of exhausted-like ILC2s sheds a light on a new aspect of ILC2 biology in allergic diseases.
Collapse
Affiliation(s)
- Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
50
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|