1
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
3
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Jiang P, Li SS, Xu XF, Yang C, Cheng C, Wang JS, Zhou PZ, Liu SW. TRPV4 channel is involved in HSV-2 infection in human vaginal epithelial cells through triggering Ca 2+ oscillation. Acta Pharmacol Sin 2023; 44:811-821. [PMID: 36151392 PMCID: PMC10042832 DOI: 10.1038/s41401-022-00975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 μM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.
Collapse
Affiliation(s)
- Ping Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Song-Shan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Feng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Shen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping-Zheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Tolstykh GP, Valdez CM, Montgomery ND, Cantu JC, Sedelnikova A, Ibey BL. Intrinsic properties of primary hippocampal neurons contribute to PIP 2 depletion during nsEP-induced physiological response. Bioelectrochemistry 2021; 142:107930. [PMID: 34450563 DOI: 10.1016/j.bioelechem.2021.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
High-energy, short-duration electric pulses (EPs) are known to be effective in neuromodulation, but the biological mechanisms underlying this effect remain unclear. Recently, we discovered that nanosecond electric pulses (nsEPs) could initiate the phosphatidylinositol4,5-bisphosphate (PIP2) depletion in non-excitable cells identical to agonist-induced activation of the Gq11 coupled receptors. PIP2 is the precursor for multiple intracellular second messengers critically involved in the regulation of intracellular Ca2+ homeostasis and plasma membrane (PM) ion channels responsible for the control of neuronal excitability. In this paper we demonstrate a novel finding that five day in vitro (DIV5) primary hippocampal neurons (PHNs) undergo significantly higher PIP2 depletion after 7.5 kV/cm 600 ns EP exposure than DIV1 PHNs and day 1-5 (D1-D5) non-excitable Chinese hamster ovarian cells with muscarinic receptor 1 (CHO-hM1). Despite the age of development, the stronger 15 kV/cm 600 ns or longer 7.5 kV/cm 12 µs EP initiated profound PIP2 depletion in all cells studied, outlining damage of the cellular PM and electroporation. Therefore, the intrinsic properties of PHNs in concert with nanoporation explain the stronger neuronal response to nsEP at lower intensity exposures. PIP2 reduction in neurons could be a primary biological mechanism responsible for the stimulation or inhibition of neuronal tissues.
Collapse
Affiliation(s)
- Gleb P Tolstykh
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
| | - Christopher M Valdez
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Noel D Montgomery
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Jody C Cantu
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | | | - Bennett L Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
6
|
Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K. longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. Development 2021; 148:dev199384. [PMID: 34061172 PMCID: PMC8217709 DOI: 10.1242/dev.199384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.
Collapse
Affiliation(s)
- Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Heather K. Le Bleu
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Gabriel A. Yette
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Astra L. Henner
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Amy E. Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Joshua A. Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| |
Collapse
|
7
|
Emrich SM, Yoast RE, Xin P, Arige V, Wagner LE, Hempel N, Gill DL, Sneyd J, Yule DI, Trebak M. Omnitemporal choreographies of all five STIM/Orai and IP 3Rs underlie the complexity of mammalian Ca 2+ signaling. Cell Rep 2021; 34:108760. [PMID: 33657364 PMCID: PMC7968378 DOI: 10.1016/j.celrep.2021.108760] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stromal-interaction molecules (STIM1/2) sense endoplasmic reticulum (ER) Ca2+ depletion and activate Orai channels. However, the choreography of interactions between native STIM/Orai proteins under physiological agonist stimulation is unknown. We show that the five STIM1/2 and Orai1/2/3 proteins are non-redundant and function together to ensure the graded diversity of mammalian Ca2+ signaling. Physiological Ca2+ signaling requires functional interactions between STIM1/2, Orai1/2/3, and IP3Rs, ensuring that receptor-mediated Ca2+ release is tailored to Ca2+ entry and nuclear factor of activated T cells (NFAT) activation. The N-terminal Ca2+-binding ER-luminal domains of unactivated STIM1/2 inhibit IP3R-evoked Ca2+ release. A gradual increase in agonist intensity and STIM1/2 activation relieves IP3R inhibition. Concomitantly, activated STIM1/2 C termini differentially interact with Orai1/2/3 as agonist intensity increases. Thus, coordinated and omnitemporal functions of all five STIM/Orai and IP3Rs translate the strength of agonist stimulation to precise levels of Ca2+ signaling and NFAT induction, ensuring the fidelity of complex mammalian Ca2+ signaling.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Nadine Hempel
- Department of Pharmacology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Rao A. Scientific divagations: from signaling and transcription to chromatin changes in T cells. Nat Immunol 2021; 21:1473-1476. [PMID: 33173218 DOI: 10.1038/s41590-020-00823-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
9
|
Ge M, Molina J, Ducasa GM, Mallela SK, Varona Santos J, Mitrofanova A, Kim JJ, Liu X, Sloan A, Mendez AJ, Banerjee S, Liu S, Szeto HH, Shin MK, Hoek M, Kopp JB, Fontanesi F, Merscher S, Fornoni A. APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Hum Mol Genet 2021; 30:182-197. [PMID: 33517446 DOI: 10.1093/hmg/ddab022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Shaoyi Liu
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Hazel H Szeto
- Social Profit Network Research Lab, Alexandria Launch Labs, New York, New York 10016, USA
| | - Myung K Shin
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Maarten Hoek
- Merck & Company, Inc., Kennilworth, New Jersey 07033, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, Maryland 20892, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
10
|
Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci 2020; 21:ijms21218323. [PMID: 33171939 PMCID: PMC7664196 DOI: 10.3390/ijms21218323] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) is a major second messenger in cells and is essential for the fate and survival of all higher organisms. Different Ca2+ channels, pumps, or exchangers regulate variations in the duration and levels of intracellular Ca2+, which may be transient or sustained. These changes are then decoded by an elaborate toolkit of Ca2+-sensors, which translate Ca2+ signal to intracellular operational cell machinery, thereby regulating numerous Ca2+-dependent physiological processes. Alterations to Ca2+ homoeostasis and signaling are often deleterious and are associated with certain pathological states, including cancer. Altered Ca2+ transmission has been implicated in a variety of processes fundamental for the uncontrolled proliferation and invasiveness of tumor cells and other processes important for cancer progression, such as the development of resistance to cancer therapies. Here, we review what is known about Ca2+ signaling and how this fundamental second messenger regulates life and death decisions in the context of cancer, with particular attention directed to cell proliferation, apoptosis, and autophagy. We also explore the intersections of Ca2+ and the therapeutic targeting of cancer cells, summarizing the therapeutic opportunities for Ca2+ signal modulators to improve the effectiveness of current anticancer therapies.
Collapse
|
11
|
Shi W, Huang Y, Zhao X, Xie Z, Dong W, Li R, Chen Y, Li Z, Wang W, Ye Z, Liu S, Zhang L, Liang X. Histone deacetylase 4 mediates high glucose-induced podocyte apoptosis via upregulation of calcineurin. Biochem Biophys Res Commun 2020; 533:1061-1068. [PMID: 33019979 DOI: 10.1016/j.bbrc.2020.09.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 01/28/2023]
Abstract
Hyperglycemia promotes podocyte apoptosis and plays an important role in the pathogenesis of diabetic nephropathy (DN). Calcium/calcineurin (CaN) signaling is critical for podocyte apoptosis. Therefore, it is essential to elucidate the mechanisms underlying the regulation of CaN signaling. Recent studies reported that histone deacetylase 4 (HDAC4) is involved in podocyte apoptosis in DN. The aim of this study was to determine whether HDAC4 mediates the regulation of CaN and to elucidate the function of HDAC4 in high glucose (HG)-induced podocyte apoptosis. First, we identified the expression of HDAC4 was upregulated in podocytes of patients with DN. In vitro, the results also indicate that the mRNA and protein expression levels of HDAC4 were increased in HG-cultured podocytes. Silencing and overexpression of HDAC4 markedly decreased and increased CaN expression, respectively. Meanwhile, HG-induced podocyte apoptosis was abrogated by HDAC4-knockdown with subsequent decreased Bax expression and increased Bcl-2 expression. In contrast, overexpression of HDAC4 increased podocyte apoptosis and Bax expression, as well as decreased Bcl-2 expression. In addition, podocyte apoptosis induced by HDAC4 overexpression was effectively rescued by FK506, a pharmacological inhibitor of CaN, which was accompanied by decreased Bax and increased Bcl-2 expression. As a novel finding, HG-induced podocyte apoptosis is mediated by the HDAC4/CaN signaling pathway, which presents a promising target for therapeutic intervention in DN.
Collapse
Affiliation(s)
- Wanxin Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ying Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiyong Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wei Dong
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Xinling Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Rayees S, Rochford I, Joshi JC, Joshi B, Banerjee S, Mehta D. Macrophage TLR4 and PAR2 Signaling: Role in Regulating Vascular Inflammatory Injury and Repair. Front Immunol 2020; 11:2091. [PMID: 33072072 PMCID: PMC7530636 DOI: 10.3389/fimmu.2020.02091] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a central role in dictating the tissue response to infection and orchestrating subsequent repair of the damage. In this context, macrophages residing in the lungs continuously sense and discriminate among a wide range of insults to initiate the immune responses important to host-defense. Inflammatory tissue injury also leads to activation of proteases, and thereby the coagulation pathway, to optimize injury and repair post-infection. However, long-lasting inflammatory triggers from macrophages can impair the lung's ability to recover from severe injury, leading to increased lung vascular permeability and neutrophilic injury, hallmarks of Acute Lung Injury (ALI). In this review, we discuss the roles of toll-like receptor 4 (TLR4) and protease activating receptor 2 (PAR2) expressed on the macrophage cell-surface in regulating lung vascular inflammatory signaling.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Ian Rochford
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Somenath Banerjee
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| |
Collapse
|
13
|
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca 2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Rep 2020; 27:793-805.e4. [PMID: 30995477 DOI: 10.1016/j.celrep.2019.03.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca2+ entry through the TRPV4 channel. Deletion of PAR2 and thus the accompanying cAMP generation augments Ca2+ entry via TRPV4, causing sustained activation of the transcription factor NFAT to produce long-lasting TLR4-mediated inflammatory lung injury. Rescuing thrombin-sensitive PAR2 expression or blocking TRPV4 activity in PAR2-null AMs restores their capacity to resolve inflammation and reverse lung injury. Thus, activation of the thrombin-induced PAR2-cAMP cascade in AMs suppresses TLR4 inflammatory signaling to reinstate tissue integrity.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mohammad Tauseef
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Sukriti Baweja
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Ian Rochford
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Wang L, Cheng N, Wang P, Li J, Jia A, Li W, Zhang N, Yin Y, Tong L, Wei Q, Liu G, Li Z, Luo J. A novel peptide exerts potent immunosuppression by blocking the two-site interaction of NFAT with calcineurin. J Biol Chem 2020; 295:2760-2770. [PMID: 31941790 DOI: 10.1074/jbc.ra119.010254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/06/2020] [Indexed: 11/06/2022] Open
Abstract
The calcineurin/nuclear factor of activated T cell (CN/NFAT) signaling pathway plays a critical role in the immune response. Therefore, inhibition of the CN/NFAT pathway is an important target for inflammatory disease. The conserved PXIXIT and LXVP motifs of CN substrates and targeting proteins have been recognized. Based on the affinity ability and inhibitory effect of these docking sequences on CN, we designed a bioactive peptide (named pep3) against the CN/NFAT interaction, which has two binding sites derived from the RCAN1-PXIXIT motif and the NFATc1-LXVP motif. The shortest linker between the two binding sites in pep3 is derived from A238L, a physiological binding partner of CN. Microscale thermophoresis revealed that pep3 has two docking sites on CN. Pep3 also has the most potent inhibitory effect on CN. It is suggested that pep3 contains an NFATc1-LXVP-substrate recognition motif and RCAN1-PXIXIT-mediated anchoring to CN. Expression of this peptide significantly suppresses CN/NFAT signaling. Cell-permeable 11-arginine-modified pep3 (11R-pep3) blocks the NFAT downstream signaling pathway. Intranasal administration of the 11R-pep3 peptide inhibits airway inflammation in an ovalbumin-induced asthma model. Our results suggest that pep3 is promising as an immunosuppressive agent and can be used in topical remedies.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Cheng
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ping Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Anna Jia
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenying Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanxia Yin
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Guangwei Liu
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, China.
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci 2019; 20:ijms20163981. [PMID: 31426273 PMCID: PMC6719140 DOI: 10.3390/ijms20163981] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (HH) signaling pathway is central to the regulation of bone development and homeostasis. HH signaling is not only involved in osteoblast differentiation from bone marrow mesenchymal stem cells (BM-MSCs), but also acts upstream within osteoblasts via the OPG/RANK/RANKL axis to control the expression of RANKL. HH signaling has been found to up-regulate parathyroid hormone related protein (PTHrP) expression in osteoblasts, which in turn activates its downstream targets nuclear factor of activated T cells (NFAT) and cAMP responsive element binding protein (CREB), and as a result CREB and NFAT cooperatively increase RANKL expression and osteoclastogenesis. Osteoblasts must remain in balance with osteoclasts in order to avoid excessive bone formation or resorption, thereby maintaining bone homeostasis. This review systemically summarizes the mechanisms whereby HH signaling induces osteoblast development and controls RANKL expression through PTHrP in osteoblasts. Proper targeting of HH signaling may offer a therapeutic option for treating bone homeostasis disorders.
Collapse
|
16
|
Fu R, Xia Y, Li M, Mao R, Guo C, Zhou M, Tan H, Liu M, Wang S, Yang N, Zhao J. Pim-1 as a Therapeutic Target in Lupus Nephritis. Arthritis Rheumatol 2019; 71:1308-1318. [PMID: 30791224 DOI: 10.1002/art.40863] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Lupus nephritis (LN) is a major determinant of morbidity and mortality in systemic lupus erythematosus (SLE). Pim-1 regulates lymphocyte proliferation and activation. The role of Pim-1 in autoimmune disease remains unclear. This study was undertaken to test the hypothesis that inhibition of Pim-1 would have therapeutic potential in patients with LN. METHODS Pim-1 expression was analyzed in lupus-prone (NZB × NZW)F1 mice (n = 6), human peripheral blood mononuclear cells (PBMCs) from SLE patients (n = 10), and glomeruli from patients with LN (n = 8). The therapeutic effect of the Pim-1 inhibitor AZD1208 was assessed in the same murine lupus model (n = 10 mice per group). In vitro analysis was conducted to explore the mechanisms of action of Pim-1 in mouse and human podocytes after Pim-1 expression had been induced by anti-double-stranded DNA (anti-dsDNA) antibody-positive serum. Finally, MRL/lpr mice were used to confirm the therapeutic effects of Pim-1 inhibition in vivo (n = 10 mice per group). RESULTS Up-regulation of Pim-1 was seen in renal lysates from diseased (NZB × NZW)F1 mice and in PBMCs from patients with SLE and renal biopsy tissue from patients with LN, relative to their control counterparts (each P < 0.05). The Pim-1 inhibitor AZD1208 reduced the severity of proteinuria, glomerulonephritis, renal immune complex deposits, and serum anti-dsDNA antibody levels, concomitant with the suppression of NFATc1 expression and NLRP3 inflammasome activation, in diseased (NZB × NZW)F1 mice (each P < 0.05 versus controls). Moreover, in mouse and human podocytes, Pim-1 knockdown with targeted small interfering RNA (siRNA) suppressed NFATc1 and NLRP3 inflammasome signaling in the presence of anti-dsDNA-positive serum (each P < 0.05 versus control siRNA). Mechanistically, Pim-1 modulated NLRP3 inflammasome activation through intracellular Ca2+ (P < 0.05 versus normal controls). The therapeutic effect of Pim-1 blockade was replicated in MRL/lpr mice. CONCLUSION These data identify Pim-1 as a critical regulator of LN pathogenesis in patients with SLE. Targeting of the Pim-1/NFATc1/NLRP3 pathway might therefore have therapeutic potential in human LN.
Collapse
Affiliation(s)
- Rong Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Xia
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meirong Li
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renxiang Mao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hechang Tan
- Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Meiling Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jijun Zhao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Transcriptome analysis of Xenopus orofacial tissues deficient in retinoic acid receptor function. BMC Genomics 2018; 19:795. [PMID: 30390632 PMCID: PMC6215681 DOI: 10.1186/s12864-018-5186-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Development of the face and mouth is orchestrated by a large number of transcription factors, signaling pathways and epigenetic regulators. While we know many of these regulators, our understanding of how they interact with each other and implement changes in gene expression during orofacial development is still in its infancy. Therefore, this study focuses on uncovering potential cooperation between transcriptional regulators and one important signaling pathway, retinoic acid, during development of the midface. RESULTS Transcriptome analyses was performed on facial tissues deficient for retinoic acid receptor function at two time points in development; early (35 hpf) just after the neural crest migrates and facial tissues are specified and later (60 hpf) when the mouth has formed and facial structures begin to differentiate. Functional and network analyses revealed that retinoic acid signaling could cooperate with novel epigenetic factors and calcium-NFAT signaling during early orofacial development. At the later stage, retinoic acid may work with WNT and BMP and regulate homeobox containing transcription factors. Finally, there is an overlap in genes dysregulated in Xenopus embryos with median clefts with human genes associated with similar orofacial defects. CONCLUSIONS This study uncovers novel signaling pathways required for orofacial development as well as pathways that could interact with retinoic acid signaling during the formation of the face. We show that frog faces are an important tool for studying orofacial development and birth defects.
Collapse
|
18
|
The interaction between calcineurin and α-synuclein is regulated by calcium and calmodulin. Biochem Biophys Res Commun 2018; 496:1109-1114. [PMID: 29409956 DOI: 10.1016/j.bbrc.2018.01.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/11/2023]
Abstract
Calcineurin (CN) is a protein phosphatase and widely distributed in eukaryotes, with an extremely high level of expression in mammalian brain. Alpha-synuclein (α-syn) is a small soluble protein expressed primarily at presynaptic terminals in the central nervous system. In our present study, we explored the interactions between CN and α-syn in vitro. Based on the data from microscale thermophoresis, GST pull-down assays, and co-immunoprecipitation, we found that CN binds α-syn. Furthermore, this interaction is mediated by calcium/calmodulin (Ca2+/CaM) signaling. Additionally, thapsigargin (TG) triggered an increase in CN activity and α-syn aggregation in HEK293 cells stably transfected with α-syn. Our previous study in vivo suggest that overexpression of α-syn in transgenic mice significantly promoted CN activity and subsequent nuclear translocation of nuclear factor of activated T-cells (NFAT) in the midbrain dopaminergic (mDA) neurons. These in vivo and in vitro studies have been complementary with each other, representing the changes in the CN-dependent pathway affected by overexpression of α-syn.
Collapse
|
19
|
Song R, Li J, Zhang J, Wang L, Tong L, Wang P, Yang H, Wei Q, Cai H, Luo J. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif. Biochimie 2017; 142:158-167. [PMID: 28890387 DOI: 10.1016/j.biochi.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments.
Collapse
Affiliation(s)
- Ruiwen Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huan Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
20
|
Liu W, Deng J, Ding W, Wang G, Shen Y, Zheng J, Zhang X, Luo Y, Lv C, Wang Y, Chen L, Yan D, Boudreau RL, Song LS, Liu J. Decreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.003960. [PMID: 28611128 DOI: 10.1161/circheartfailure.117.003960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS We found that cardiac KCNE2 expression was significantly decreased in phenylephrine-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes and in transverse aortic constriction-induced cardiac hypertrophy in mice, as well as in dilated cardiomyopathy in human. Knockdown of KCNE2 in neonatal rat ventricular myocytes reproduced hypertrophy by increasing the expression of ANP (atrial natriuretic peptide) and β-MHC (β-myosin heavy chain), and cell surface area, whereas overexpression of KCNE2 attenuated phenylephrine-induced cardiomyocyte hypertrophy. Knockdown of KCNE2 increased intracellular Ca2+ transient, calcineurin activity, and nuclear NFAT (nuclear factor of activated T cells) protein levels, and pretreatment with inhibitor of L-type Ca2+ channel (nifedipine) or calcineurin (FK506) attenuated the activation of calcineurin-NFAT pathway and cardiomyocyte hypertrophy. Meanwhile, the phosphorylation levels of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase were increased, and inhibiting the 3 cascades of mitogen-activated protein kinase reduced cardiomyocyte hypertrophy induced by KCNE2 knockdown. Overexpression of KCNE2 in heart by ultrasound-microbubble-mediated gene transfer suppressed the development of hypertrophy and activation of calcineurin-NFAT and mitogen-activated protein kinase pathways in transverse aortic constriction mice. CONCLUSIONS This study demonstrates that cardiac KCNE2 expression is decreased and contributes to the development of hypertrophy via activation of calcineurin-NFAT and mitogen-activated protein kinase pathways. Targeting KCNE2 is a potential therapeutic strategy for the treatment of hypertrophy.
Collapse
Affiliation(s)
- Wenjuan Liu
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Jianxin Deng
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Wenwen Ding
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Gang Wang
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Yuanyuan Shen
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Junmeng Zheng
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Xiaoming Zhang
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Yizhi Luo
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Chifei Lv
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Yonghui Wang
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Liqing Chen
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Dewen Yan
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Ryan L Boudreau
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Long-Sheng Song
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.)
| | - Jie Liu
- From the Department of Pathophysiology, School of Medicine (W.L., G.W., Y.L., C.L., Y.W., L.C., J.L.); Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (J.D., D.Y.), Center for Diabetes, Obesity and Metabolism (J.D., D.Y.), and Department of Biomedical Engineering, School of Medicine (Y.S.), Shenzhen University, China; Department of Pathology, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.); Zhongshan People's Hospital, China (J.Z.); and Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City (X.Z., R.L.B., L.-S.S.).
| |
Collapse
|
21
|
The STIM-Orai Pathway: Light-Operated Ca 2+ Entry Through Engineered CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:117-138. [PMID: 28900912 DOI: 10.1007/978-3-319-57732-6_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ca2+ signals regulate a plethora of cellular functions that include muscle contraction, heart beating, hormone secretion, lymphocyte activation, gene expression, and metabolism. To study the impact of Ca2+ signals on biological processes, pharmacological tools and caged compounds have been commonly applied to induce fluctuations of intracellular Ca2+ concentrations. These conventional approaches, nonetheless, lack rapid reversibility and high spatiotemporal resolution. To overcome these disadvantages, we and others have devised a series of photoactivatable genetically encoded Ca2+ actuators (GECAs) by installing light sensitivities into a bona fide highly selective Ca2+ channel, the Ca2+ release-activated Ca2+ (CRAC) channel. Store-operated CRAC channel serves as a major route for Ca2+ entry in many cell types. These GECAs enable remote and precise manipulation of Ca2+ signaling in both excitable and non-excitable cells. When combined with nanotechnology, it becomes feasible to wirelessly photo-modulate Ca2+-dependent activities in vivo. In this chapter, we briefly review most recent advances in engineering CRAC channels to achieve optical control over Ca2+ signaling, outline their design principles and kinetic features, and present exemplary applications of GECAs engineered from CRAC channels.
Collapse
|
22
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
23
|
Zhao Y, Zhang J, Shi X, Li J, Wang R, Song R, Wei Q, Cai H, Luo J. Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression. Biochimie 2016; 127:50-8. [PMID: 27109380 DOI: 10.1016/j.biochi.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents.
Collapse
Affiliation(s)
- Yane Zhao
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Xiaoyu Shi
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Ruiwen Song
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Life Science Institute, Beijing Normal University, 100875 Beijing, China.
| |
Collapse
|
24
|
Gutiérrez OM. Connecting the dots on fibroblast growth factor 23 and left ventricular hypertrophy. Nephrol Dial Transplant 2016; 31:1031-3. [PMID: 26786549 DOI: 10.1093/ndt/gfv445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/29/2023] Open
Affiliation(s)
- Orlando M Gutiérrez
- Departments of Medicine and Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
25
|
Leifheit-Nestler M, Große Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer DC, Faul C, Haffner D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant 2015; 31:1088-99. [PMID: 26681731 DOI: 10.1093/ndt/gfv421] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In chronic kidney disease (CKD), serum concentrations of fibroblast growth factor 23 (FGF23) increase progressively as glomerular filtration rate declines, while renal expression of the FGF23 coreceptor Klotho decreases. Elevated circulating FGF23 levels are strongly associated with mortality and with left ventricular hypertrophy (LVH), which is a major cause of cardiovascular death in CKD patients. The cardiac FGF23/FGF receptor (FGFR) system and its role in the development of LVH in humans have not been addressed previously. METHODS We conducted a retrospective case-control study in 24 deceased patients with childhood-onset end-stage renal disease (dialysis: n = 17; transplanted: n = 7), and 24 age- and sex-matched control subjects. Myocardial autopsy samples of the left ventricle were evaluated for expression of endogenous FGF23, FGFR isoforms, Klotho, calcineurin and nuclear factor of activated T-cells (NFAT) by immunohistochemistry, immunofluorescence microscopy, qRT-PCR and western blotting. RESULTS The majority of patients presented with LVH (67%). Human cardiomyocytes express full-length FGF23, and cardiac FGF23 is excessively high in patients with CKD. Enhanced myocardial expression of FGF23 in concert with Klotho deficiency strongly correlates with the presence of LVH. Cardiac FGF23 levels associate with time-averaged serum phosphate levels, up-regulation of FGFR4 and activation of the calcineurin-NFAT signaling pathway, an established mediator of cardiac remodelling and LVH. These changes are detected in patients on dialysis but not in those with a functioning kidney transplant. CONCLUSIONS Our results indicate a strong association between LVH and enhanced expression levels of FGF23, FGFR4 and calcineurin, activation of NFAT and reduced levels of soluble Klotho in the myocardium of patients with CKD. These alterations are not observed in kidney transplant patients.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert Große Siemer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kathrin Flasbart
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Felix Kirchhoff
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Wolfgang H Ziegler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Klintschar
- Institute for Forensic Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, University Hospital Rostock, Strempelstr. 14, 18055 Rostock, Germany
| | - Christoph Aufricht
- Division of Pediatric Nephrology, University Children's Hospital Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Tomas Seeman
- Division of Pediatric Nephrology, University Children's Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, University Hospital Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Avenue (R-762), Miami, FL 33136, USA
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
26
|
Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathog 2015; 11:e1005220. [PMID: 26513362 PMCID: PMC4634230 DOI: 10.1371/journal.ppat.1005220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. Filoviruses (Ebola and Marburg viruses) and arenaviruses (Lassa and Junín viruses) are high-priority pathogens that hijack host proteins and pathways to complete their replication cycles and spread from cell to cell. Here we provide genetic and pharmacological evidence to demonstrate that the host calcium channel protein Orai1 and ER calcium sensor protein STIM1 regulate efficient budding and spread of BSL-4 pathogens Ebola, Marburg, Lassa, and Junín viruses. Our findings are of broad significance as they provide new mechanistic insight into fundamental, immutable, and conserved mechanisms of hemorrhagic fever virus pathogenesis. Moreover, this strategy of targeting highly conserved host cellular protein(s) and mechanisms required by these viruses to complete their life cycle should elicit minimal drug resistance.
Collapse
|
27
|
Patel N, Nizami S, Song L, Mikami M, Hsu A, Hickernell T, Chandhanayingyong C, Rho S, Compton JT, Caldwell JM, Kaiser PB, Bai H, Lee HG, Fischer CR, Lee FY. CA-074Me compound inhibits osteoclastogenesis via suppression of the NFATc1 and c-FOS signaling pathways. J Orthop Res 2015; 33:1474-86. [PMID: 25428830 DOI: 10.1002/jor.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
The osteoclast is an integral cell of bone resorption. Since osteolytic disorders hinge on the function and dysfunction of the osteoclast, understanding osteoclast biology is fundamental to designing new therapies that curb osteolytic disorders. The identification and study of lysosomal proteases, such as cathepsins, have shed light on mechanisms of bone resorption. For example, Cathepsin K has already been identified as a collagen degradation protease produced by mature osteoclasts with high activity in the acidic osteoclast resorption pits. Delving into the mechanisms of cathepsins and other osteoclast related compounds provides new targets to explore in osteoclast biology. Through our anti-osteoclastogenic compound screening experiments we encountered a modified version of the Cathepsin B inhibitor CA-074: the cell membrane-permeable CA-074Me (L-3-trans-(Propylcarbamoyl) oxirane-2-carbonyl]-L-isoleucyl-L-proline Methyl Ester). Here we confirm that CA-074Me inhibits osteoclastogenesis in vivo and in vitro in a dose-dependent manner. However, Cathepsin B knockout mice exhibited unaltered osteoclastogenesis, suggesting a more complicated mechanism of action than Cathepsin B inhibition. We found that CA-074Me exerts its osteoclastogenic effect within 24 h of osteoclastogenesis stimulation by suppression of c-FOS and NFATc1 pathways.
Collapse
Affiliation(s)
- Neel Patel
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Saqib Nizami
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Lee Song
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Maya Mikami
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York.,Department of Anesthesiology, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Anny Hsu
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Thomas Hickernell
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | | | - Shim Rho
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Jocelyn T Compton
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York.,Department of Medicine, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Jon-Michael Caldwell
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Philip B Kaiser
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York.,Department of Medicine, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Hanying Bai
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Heon Goo Lee
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Charla R Fischer
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| | - Francis Y Lee
- Department of Orthopaedic Surgery, Columbia University, 650 West 168th Street BB14-1412, NY, 10032, New York
| |
Collapse
|
28
|
Guo Q, Tripathi P, Manson SR, Austin PF, Chen F. Transcriptional dysregulation in the ureteric bud causes multicystic dysplastic kidney by branching morphogenesis defect. J Urol 2015; 193:1784-90. [PMID: 25301096 PMCID: PMC4504205 DOI: 10.1016/j.juro.2014.08.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE The calcineurin-NFAT signaling pathway regulates the transcription of genes important for development. It is impacted by various genetic and environmental factors. We investigated the potential role of NFAT induced transcriptional dysregulation in the pathogenesis of congenital abnormalities of the kidneys and urinary tract. MATERIALS AND METHODS A murine model of conditional NFATc1 activation in the ureteric bud was generated and examined for histopathological changes. Metanephroi were also cultured in vitro to analyze branching morphogenesis in real time. RESULTS NFATc1 activation led to defects resembling multicystic dysplastic kidney. These mutants showed severe disorganization of branching morphogenesis characterized by decreased ureteric bud branching and the disconnection of ureteric bud derivatives from the main collecting system. The orphan ureteric bud derivatives may have continued to induce nephrogenesis and likely contributed to the subsequent formation of blunt ended filtration units and cysts. The ureter also showed irregularities consistent with impaired epithelial-mesenchymal interaction. CONCLUSIONS This study reveals the profound effects of NFAT signaling dysregulation on the ureteric bud and provides insight into the pathogenesis of multicystic dysplastic kidney. Our results suggest that the obstruction hypothesis and the bud theory may not be mutually exclusive to explain the pathogenesis of multicystic dysplastic kidney. Ureteric bud dysfunction such as that induced by NFAT activation can disrupt ureteric bud-metanephric mesenchyma interaction, causing primary defects in branching morphogenesis, subsequent dysplasia and cyst formation. Obstruction of the main collecting system can further enhance these defects, producing the pathological changes associated with multicystic dysplastic kidney.
Collapse
Affiliation(s)
- Qiusha Guo
- Washington University School of Medicine, St. Louis, Missouri
| | - Piyush Tripathi
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Scott R Manson
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Paul F Austin
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Feng Chen
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
29
|
Huang XD, Wei GJ, Zhang H, He MX. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2015; 42:108-113. [PMID: 25449375 DOI: 10.1016/j.fsi.2014.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-Xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
30
|
Ding W, Dong M, Deng J, Yan D, Liu Y, Xu T, Liu J. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway. Am J Physiol Heart Circ Physiol 2014; 307:H792-802. [DOI: 10.1152/ajpheart.00017.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polydatin (PD), a resveratrol glucoside extracted from the perennial herbage Polygonum cuspidatum, has been suggested to have wide cardioprotective effects. This study aimed to explore the direct antihypertrophic role of PD in cultured neonatal rat ventricular myocytes (NRVMs) and its therapeutic effects against pressure overload (PO)-induced hypertrophic remodeling and heart failure. Furthermore, we investigated the mechanisms underlying the actions of PD. Treatment of NRVMs with phenylephrine for 72 h induced myocyte hypertrophy, where the cell surface area and protein levels of atrial natriuretic peptide and β-myosin heavy chain (β-MHC) were significantly increased. The amplitude of systolic Ca2+ transient was increased, and sarcoplasmic reticulum Ca2+ recycling was prolonged. Concomitantly, calcineurin activity was increased and NFAT protein was imported into the nucleus. PD treatment restored Ca2+ handling and inhibited calcineurin-NFAT signaling, thus attenuating the hypertrophic remodeling in NRVMs. PO-induced cardiac hypertrophy was produced by transverse aortic constriction (TAC) in C57BL/6 mice, where the left ventricular posterior wall thickness and heart-to-body weight ratio were significantly increased. The cardiac function was increased at 5 wk of TAC, but significantly decreased at 13 wk of TAC. The amplitude of Ca2+ transient and calcineurin activity were increased at 5 wk of TAC. PD treatment largely abolished TAC-induced hypertrophic remodeling by inhibiting the Ca2+-calcineurin pathway. Surprisingly, PD did not inhibit myocyte contractility despite that the amplitude of Ca2+ transient was decreased. The cardiac function remained intact at 13 wk of TAC. In conclusion, PD is beneficial against PO-induced cardiac hypertrophy and heart failure largely through inhibiting the Ca2+-calcineurin pathway without compromising cardiac contractility.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| | - Ming Dong
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| | - Dewen Yan
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yun Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Teng Xu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
31
|
Ma Y, Jiang G, Wang Q, Sun Y, Zhao Y, Tong L, Luo J. Enzymatic and thermodynamic analysis of calcineurin inhibition by RCAN1. Int J Biol Macromol 2014; 72:254-60. [PMID: 25193101 DOI: 10.1016/j.ijbiomac.2014.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023]
Abstract
Calcineurin (CN) is the target of the immunophilin-immunosuppressant complex, cyclophilin/cyclosporin A (CyP/CsA). RCAN1 has recently been shown to be an endogenous regulator of CN activity. We determined the enzymatic and thermodynamic aspects of CN inhibition by RCAN1. The IC50 values of isoforms RCAN1-1L and RCAN1-4 for CN were 2.7 μM and 2.6 μM, respectively. Two deletions in the CN catalytic subunit, one a deletion of Val314 in the Loop7 domain (ΔV314) and the other in the autoinhibitory domain (CNAabc), increased the sensitivity of CN to inhibition by RCAN1-1L. The IC50s of RCAN1-1L and RCAN1-4 for CN in homogenates of mouse brain were 141 nM and 100 nM, respectively. Using isothermal titration calorimetry (ITC), we found that the RCAN1-1L/CN or CyP/CsA/CN interactions were exothermic with a dissociation constant of 0.46 μM or 0.17 μM, respectively. Our ITC results show that the interactions between CN and its two inhibitors were both characterized by a favorable binding enthalpy change. We also confirmed that overexpression of RCAN1-1L could inhibit the transcriptional activation of an NFAT-dependent promoter in response to PMA and ionomycin by inhibiting CN activity in HEK293T cells. Our data should contribute to our understanding of the regulation of CN activity by endogenous inhibitors.
Collapse
Affiliation(s)
- Yipeng Ma
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Guohua Jiang
- Analytical and Testing Center, Beijing Normal University, 100875 Beijing, China
| | - Qianru Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Yue Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Yane Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China.
| |
Collapse
|
32
|
Luo J, Sun L, Lin X, Liu G, Yu J, Parisiadou L, Xie C, Ding J, Cai H. A calcineurin- and NFAT-dependent pathway is involved in α-synuclein-induced degeneration of midbrain dopaminergic neurons. Hum Mol Genet 2014; 23:6567-74. [PMID: 25051958 DOI: 10.1093/hmg/ddu377] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD), the most common degenerative movement disorder, is caused by a preferential loss of midbrain dopaminergic (mDA) neurons. Both α-synuclein (α-syn) missense and multiplication mutations have been linked to PD. However, the underlying intracellular signalling transduction pathways of α-syn-mediated mDA neurodegeneration remain elusive. Here, we show that transgenic expression of PD-related human α-syn A53T missense mutation promoted calcineurin (CN) activity and the subsequent nuclear translocation of nuclear factor of activated T cells (NFATs) in mDA neurons. α-syn enhanced the phosphatase activity of CN in both cell-free assays and cell lines transfected with either human wild-type or A53T α-syn. Furthermore, overexpression of α-syn A53T mutation significantly increased the CN-dependent nuclear import of NFATc3 in the mDA neurons of transgenic mice. More importantly, a pharmacological inhibition of CN by cyclosporine A (CsA) ameliorated the α-syn-induced loss of mDA neurons. These findings demonstrate an active involvement of CN- and NFAT-mediated signalling pathway in α-syn-mediated degeneration of mDA neurons in PD.
Collapse
Affiliation(s)
- Jing Luo
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing 100875, China, Transgenics Section and and
| | | | | | | | - Jia Yu
- Transgenics Section and and
| | | | | | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Yan L, Yao X, Bachvarov D, Saifudeen Z, El-Dahr SS. Genome-wide analysis of gestational gene-environment interactions in the developing kidney. Physiol Genomics 2014; 46:655-70. [PMID: 25005792 DOI: 10.1152/physiolgenomics.00035.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The G protein-coupled bradykinin B2 receptor (Bdkrb2) plays an important role in regulation of blood pressure under conditions of excess salt intake. Our previous work has shown that Bdkrb2 also plays a developmental role since Bdkrb2(-/-) embryos, but not their wild-type or heterozygous littermates, are prone to renal dysgenesis in response to gestational high salt intake. Although impaired terminal differentiation and apoptosis are consistent findings in the Bdkrb2(-/-) mutant kidneys, the developmental pathways downstream of gene-environment interactions leading to the renal phenotype remain unknown. Here, we performed genome-wide transcriptional profiling on embryonic kidneys from salt-stressed Bdkrb2(+/+) and Bdkrb2(-/-) embryos. The results reveal significant alterations in key pathways regulating Wnt signaling, apoptosis, embryonic development, and cell-matrix interactions. In silico analysis reveal that nearly 12% of differentially regulated genes harbor one or more Pax2 DNA-binding sites in their promoter region. Further analysis shows that metanephric kidneys of salt-stressed Bdkrb2(-/-) have a significant downregulation of Pax2 gene expression. This was corroborated in Bdkrb2(-/-);Pax2(GFP+/tg) mice, demonstrating that Pax2 transcriptional activity is significantly repressed by gestational salt-Bdkrb2 interactions. We conclude that gestational gene (Bdkrb2) and environment (salt) interactions cooperate to impact gene expression programs in the developing kidney. Suppression of Pax2 likely contributes to the defects in epithelial survival, growth, and differentiation in salt-stressed BdkrB2(-/-) mice.
Collapse
Affiliation(s)
- Lei Yan
- Section of Pediatric Nephrology, Department of Pediatrics, and The Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Xiao Yao
- Section of Pediatric Nephrology, Department of Pediatrics, and The Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | | | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, and The Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Samir S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, and The Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| |
Collapse
|
34
|
Greineisen WE, Speck M, Shimoda LMN, Sung C, Phan N, Maaetoft-Udsen K, Stokes AJ, Turner H. Lipid body accumulation alters calcium signaling dynamics in immune cells. Cell Calcium 2014; 56:169-80. [PMID: 25016314 DOI: 10.1016/j.ceca.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Lori M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Carl Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Nolwenn Phan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Kristina Maaetoft-Udsen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Alexander J Stokes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States.
| |
Collapse
|
35
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Webb SE, Miller AL. Calcium signaling in extraembryonic domains during early teleost development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 304:369-418. [PMID: 23809440 DOI: 10.1016/b978-0-12-407696-9.00007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It is becoming recognized that the extraembryonic domains of developing vertebrates, that is, those that make no cellular contribution to the embryo proper, act as important signaling centers that induce and pattern the germ layers and help establish the key embryonic axes. In the embryos of teleost fish, in particular, significant progress has been made in understanding how signaling activity in extraembryonic domains, such as the enveloping layer, the yolk syncytial layer, and the yolk cell, might help regulate development via a combination of inductive interactions, cellular dynamics, and localized gene expression. Ca(2+) signaling in a variety of forms that include propagating waves and standing gradients is a feature found in all three teleostean extraembryonic domains. This leads us to propose that in addition to their other well-characterized signaling activities, extraembryonic domains are well suited (due to their relative stability and continuity) to act as Ca(2+) signaling centers and conduits.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
37
|
Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 2014; 306:H856-66. [PMID: 24441548 DOI: 10.1152/ajpheart.00353.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF). We tested the hypothesis that UcnII differentially regulates NFAT activity in cardiac myocytes from both normal and failing hearts through the PI3K/Akt/eNOS/NO pathway. Isoforms NFATc1 and NFATc3 revealed different basal subcellular distribution in normal and HF rabbit ventricular myocytes with a nuclear NFATc1 and a cytosolic localization of NFATc3. However, in HF, the nuclear localization of NFATc1 was less pronounced, whereas the nuclear occupancy of NFATc3 was increased. In normal myocytes, UcnII induced nuclear export of NFATc1 and attenuated NFAT-dependent transcriptional activity but did not affect the distribution of NFATc3. In HF UcnII facilitated nuclear export of both isoforms and reduced transcriptional activity. NFAT regulation was mediated by a PI3K/Akt/eNOS/NO signaling cascade that converged on the activation of several kinases, including glycogen synthase kinase-3β (GSK3β), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated kinase (p38), and PKG, resulting in phosphorylation, deactivation, and nuclear export of NFAT. In conclusion, while NFATc1 and NFATc3 reveal distinct subcellular distribution patterns, both are regulated by the UcnII-PI3K/Akt/eNOS/NO pathway that converges on the activation of NFAT kinases and NFAT inactivation. The data reconcile cardioprotective and prohypertrophic UcnII effects mediated by different NFAT isoforms.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | |
Collapse
|
38
|
He FF, Chen S, Su H, Meng XF, Zhang C. Actin-associated Proteins in the Pathogenesis of Podocyte Injury. Curr Genomics 2014; 14:477-84. [PMID: 24396279 PMCID: PMC3867723 DOI: 10.2174/13892029113146660014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023] Open
Abstract
Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies.
Collapse
Affiliation(s)
- Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
39
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
40
|
Martínez-Høyer S, Aranguren-Ibáñez Á, García-García J, Serrano-Candelas E, Vilardell J, Nunes V, Aguado F, Oliva B, Itarte E, Pérez-Riba M. Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin–NFATc signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2311-21. [DOI: 10.1016/j.bbamcr.2013.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/28/2022]
|
41
|
Wu B, Baldwin HS, Zhou B. Nfatc1 directs the endocardial progenitor cells to make heart valve primordium. Trends Cardiovasc Med 2013; 23:294-300. [PMID: 23669445 DOI: 10.1016/j.tcm.2013.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/26/2022]
Abstract
Heart valves arise from the cardiac endocardial cushions located at the atrioventricular canal (AVC) and cardiac outflow tract (OFT) during development. A subpopulation of cushion endocardial cells undergoes endocardial to mesenchymal transformation (EMT) and generates the cushion mesenchyme, which is then remodeled into the interstitial tissue of the mature valves. The cushion endocardial cells that do not undertake EMT proliferate to elongate valve leaflets. During EMT and the post-EMT valve remodeling, endocardial cells at the cushions highly express nuclear factor in activated T cell, cytoplasmic 1 (Nfatc1), a transcription factor required for valve formation in mice. In this review, we present the current knowledge of Nfatc1 roles in the ontogeny of heart valves with a focus on the fate decision of the endocardial cells in the processes of EMT and valve remodeling.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of Genetics, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA; Department of Pediatrics, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA; Department of Medicine, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | |
Collapse
|
42
|
Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 2013; 33:1840-9. [PMID: 23624921 DOI: 10.1038/onc.2013.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/09/2022]
Abstract
NFAT (the nuclear factor of activated T cells) upregulation has been linked to cellular transformation intrinsically, but it is unclear whether and how tissue cells with NFAT activation change the local environment for tumor initiation and progression. Direct evidence showing NFAT activation initiates primary tumor formation in vivo is also lacking. Using inducible transgenic mouse systems, we show that tumors form in a subset of, but not all, tissues with NFATc1 activation, indicating that NFAT oncogenic effects depend on cell types and tissue contexts. In NFATc1-induced skin and ovarian tumors, both cells with NFATc1 activation and neighboring cells without NFATc1 activation have significant upregulation of c-Myc and activation of Stat3. Besides known and suspected NFATc1 targets, such as Spp1 and Osm, we have revealed the early upregulation of a number of cytokines and cytokine receptors, as key molecular components of an inflammatory microenvironment that promotes both NFATc1(+) and NFATc1(-) cells to participate in tumor formation. Cultured cells derived from NFATc1-induced tumors were able to establish a tumorigenic microenvironment, similar to that of the primary tumors, in an NFATc1-dependent manner in nude mice with T-cell deficiency, revealing an addiction of these tumors to NFATc1 activation and downplaying a role for T cells in the NFATc1-induced tumorigenic microenvironment. These findings collectively suggest that beyond the cell autonomous effects on the upregulation of oncogenic proteins, NFATc1 activation has non-cell autonomous effects through the establishment of a promitogenic microenvironment for tumor growth. This study provides direct evidence for the ability of NFATc1 in inducing primary tumor formation in vivo and supports targeting NFAT signaling in anti-tumor therapy.
Collapse
|
43
|
Is the antiproteinuric effect of cyclosporine a independent of its immunosuppressive function in T cells? Int J Nephrol 2012; 2012:809456. [PMID: 22778954 PMCID: PMC3384901 DOI: 10.1155/2012/809456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
The antiproteinuric effect of cyclosporine A(CsA) has been believed to result from its immunosuppressive effect on the transcription factor NFAT in T cells. However, current evidences supporting this hypothesis are missing. A recent study showed that CsA has a direct antiproteinuric effect on podocytes, suggesting a novel non-immunosuppressive mechanism for CsA's antiproteinuric effect. Conditional NFATc1 activation in podoyctes per se is sufficient to induce proteinuria in mice, indicating that NFAT activation in podocytes is a critical pathogenic molecular event leading to podocyte injury and proteinuria. Meanwhile, evidence showed that TRPC6-mediated Ca(2+) influx stimulates NFAT-dependent TRPC6 expression. Altogether, these advances in podocyte research indicate that calcineurin-NFAT signal or calcineurin-synaptopodin axis has a direct proteinuric effect on podocytes which raises the possibility of developing specific antiproteinuric drugs that lack the unwanted effects of calcineurin or NFAT inhibition.
Collapse
|
44
|
Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 2012; 336:604-8. [PMID: 22556257 DOI: 10.1126/science.1216753] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca(2+)-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells.
Collapse
Affiliation(s)
- Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
45
|
Binder AK, Grammer JC, Herndon MK, Stanton JD, Nilson JH. GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Mol Endocrinol 2012; 26:873-86. [PMID: 22446101 DOI: 10.1210/me.2012-1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GnRH binds to its receptor on gonadotropes and activates multiple members of the MAPK signaling family that in turn regulates the expression of several immediate early genes (IEGs) including Jun, Fos, Atf3, and Egr1. These IEGs confer hormonal responsiveness to gonadotrope-specific genes including Gnrhr, Cga, Fshb, and Lhb. In this study we tested the hypothesis that GnRH specifically regulates the accumulation of Jun and Atf3 mRNA through a pathway that includes intracellular Ca²⁺, calcineurin, and nuclear factor of activated T cells (NFAT). Our results indicate that pretreatment of murine LβT2 cells with 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)-ester, a Ca²⁺ chelator, reduced the expression of all the IEGs to varying degrees, whereas treatment with thapsigargin, an intracellular Ca²⁺ protein pump inhibitor, increased the expression of the IEG. Furthermore, cyclosporin A, a calcineurin-specific inhibitor, reduced the ability of GnRH to regulate accumulation of Jun and Atf3 mRNA and to a lesser extent Fos. In contrast, Egr1 mRNA was unaffected. NFATs are transcription factors regulated by calcineurin and were detected in LβT2 cells. GnRH increased luciferase activity of an NFAT-dependent promoter reporter that was dependent on intracellular Ca²⁺ and calcineurin activity. Additionally, although small interfering RNA specific for Nfat4 only marginally reduced GnRH regulation of Jun, Fos, and Atf3 mRNA accumulation, activity of an activator protein-1-responsive reporter construct was reduced by 48%. Together these data suggest that calcineurin and NFAT are new members of the gonadotrope transcriptional network that confer hormonal responsiveness to several key genes required for gonadotropin synthesis and secretion.
Collapse
Affiliation(s)
- April K Binder
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | |
Collapse
|
46
|
White M, Montezano AC, Touyz RM. Angiotensin II signalling and calcineurin in cardiac fibroblasts: differential effects of calcineurin inhibitors FK506 and cyclosporine A. Ther Adv Cardiovasc Dis 2011; 6:5-14. [PMID: 22184128 DOI: 10.1177/1753944711432901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cardiac remodelling is controlled by complex systems, including activation of the renin-angiotensin system (RAS) and signalling through MAP kinases and Ca2+-activated calcineurin. Whether Ang II, which increases [Ca2+]i and stimulates MAP kinases, mediates myocardial effects through calcineurin-dependent pathways remain unclear. We investigated effects of two calcineurin inhibitors, cyclosporine A (CsA) and tacrolimus (FK506) (10-10-10-6 mol/L, 20 mins) on activation of MAP kinases and on growth, pro-fibrotic and pro-inflammatory responses in Ang II-stimulated rat cardiac fibroblasts. METHODS AND RESULTS Ang II increased phosphorylation of ERK1/2 and p38MAPK (1.5-1.8-fold, p<0.05) without effect on JNK. FK506, but not CsA, attenuated Ang II-stimulated MAP kinase activation. Molecular indices of cell growth (proliferating cell nuclear antigen (PCNA)), fibrosis (fibronectin, pro-collagen) and inflammation (iNOS), were upregulated by Ang II (12 hrs). FK506 and CsA inhibited PCNA effects. Ang II-induced pro-fibrotic and pro-inflammatory responses were inhibited by CsA. Ang II receptors, AT1R and AT2R, were not influenced by calcineurin inhibitors. Our data indicate differential calcineurin inhibitor sensitivity of MAP kinases and cellular responses in Ang II-stimulated fibroblasts. p38MAP kinase and ERK1/2 are regulated in a FK506-sensitive manner, whereas fibrosis and inflammation are CsA-sensitive. Cell proliferation is inhibited by both FKC506 and CsA. These are post-receptor phenomena, since AT1R and AT2R status was unaltered by treatment. CONCLUSIONS Our findings identify an important role for calcineurin in MAP kinase/growth/pro-fibrotic/pro-inflammatory signalling by Ang II in cardiac fibroblasts. Although both FK506 and CsA inhibit calcineurin, they exert differential effects on molecular and cellular responses. Such differences may contribute to variable clinical responses of these agents.
Collapse
Affiliation(s)
- Michel White
- Montreal Heart Institute, University of Montreal, Montreal, QC, Canada
| | | | | |
Collapse
|
47
|
ORAI-mediated calcium influx in T cell proliferation, apoptosis and tolerance. Cell Calcium 2011; 50:261-9. [DOI: 10.1016/j.ceca.2011.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/25/2022]
|
48
|
Rinne A, Blatter LA. Activation of NFATc1 is directly mediated by IP3 in adult cardiac myocytes. Am J Physiol Heart Circ Physiol 2010; 299:H1701-7. [PMID: 20852052 DOI: 10.1152/ajpheart.00470.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca(2+)-sensitive nuclear factor of activated T cell (NFAT) transcription factors are implicated in cardiac development and cellular remodeling associated with cardiac disease. In adult myocytes it is not resolved what specific Ca(2+) signals control the activity of different NFAT isoforms in an environment that undergoes large changes of intracellular Ca(2+) concentration with every heart beat. Cardiac myocytes possess the complete inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)-signaling cassette; however, its physiological and pathological significance has been a matter of ongoing debate. Therefore, we tested the hypothesis whether IP(3) receptor activation regulates NFAT activity in cardiac myocytes. We used confocal microscopy to quantify the nuclear localization of NFATc1-green fluorescent protein (GFP) and NFATc3-GFP fusion proteins (quantified as the ratio of nuclear NFAT to cytoplasmic NFAT) in response to stimulation with neurohumoral agonists. In rabbit atrial myocytes, an overnight stimulation with endothelin-1, angiotensin II, and phenylephrine induced nuclear accumulation of NFATc1 that was sensitive to calcineurin inhibitors (cyclosporin A or inhibitor of NFAT-calcineurin association-6) and prevented by the IP(3) receptor inhibitor 2-aminoethoxydiphenyl borate. Furthermore, a direct elevation of intracellular IP(3) with a cell-permeable IP(3) acetoxymethyl ester (10 μM) induced nuclear localization of NFATc1. With a fluorescence-based in vivo assay, we showed that endothelin-1 also enhanced the transcriptional activity of NFATc1 in atrial cells. The agonists failed to activate NFATc1 in rabbit ventricular cells, which express IP(3) receptors at a lower density than atrial cells. They also did not activate NFATc3, an isoform that is highly influenced by nuclear export processes, in both cell types. Our data show that the second messenger IP(3) is directly involved in the activation of NFATc1 in adult atrial cardiomyocytes.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
49
|
Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR, Liapis H, Miner JH, Chen F. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 2010; 21:1657-66. [PMID: 20651158 DOI: 10.1681/asn.2009121253] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutant forms of TRPC6 can activate NFAT-dependent transcription in vitro via calcium influx and activation of calcineurin. The same TRPC6 mutants can cause FSGS, but whether this involves an NFAT-dependent mechanism is unknown. Here, we generated mice that allow conditional induction of NFATc1. Mice with NFAT activation in nascent podocytes in utero developed proteinuria and glomerulosclerosis postnatally, resembling FSGS. NFAT activation in adult mice also caused progressive proteinuria and FSGS. Ultrastructural studies revealed podocyte foot process effacement and deposition of extracellular matrix. NFAT activation did not initially affect expression of podocin, synaptopodin, and nephrin but reduced their expression as glomerular injury progressed. In contrast, we observed upregulation of Wnt6 and Fzd9 in the mutant glomeruli before the onset of significant proteinuria, suggesting a potential role for Wnt signaling in the pathogenesis of NFAT-induced podocyte injury and FSGS. These results provide in vivo evidence for the involvement of NFAT signaling in podocytes, proteinuria, and glomerulosclerosis. Furthermore, this study suggests that NFAT activation may be a key intermediate step in the pathogenesis of mutant TRPC6-mediated FSGS and that suppression of NFAT activity may contribute to the antiproteinuric effects of calcineurin inhibitors.
Collapse
Affiliation(s)
- Yinqiu Wang
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|