1
|
Zhang Y, Hong S, Zhang F, Yao K, Jin S, Gao S, Liu Y, Li Y, Zhang C. Immunoproteasome subunit PSMB8 promotes skeletal muscle regeneration by regulating macrophage phenotyping switch in mice. Am J Physiol Cell Physiol 2025; 328:C1716-C1729. [PMID: 40241316 DOI: 10.1152/ajpcell.00965.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and cell differentiation. However, its precise role in skeletal muscle regeneration remains unclear. In this study, we found that expression of the immunoproteasome subunit, PSMB8, increased significantly in young muscles after cardiotoxin-induced injury, whereas its expression was downregulated in injured aged mice. Genetic knockout or pharmacological inhibition of the immunoproteasome subunit, PSMB8, resulted in impaired muscle regeneration and increased interstitial fibrosis. PSMB8 inhibition by short interfering RNA (siRNA) or inhibitor decreased the differentiation ability of myoblasts. There was increased infiltration of inflammatory cells, especially Ly6Chi proinflammatory macrophages, in Psmb8 deficient muscles. In vitro, Psmb8-deficient macrophages expressed higher levels of proinflammatory cytokines and lower levels of anti-inflammatory cytokines after phagocytosis of myoblast debris, which was associated with increased activation of the NF-κB signaling pathway. Inhibition of the NF-κB pathway improves the regeneration ability and attenuates interstitial fibrosis in Psmb8-deficient muscles after injury. The overexpression of Psmb8 by adenovirus could also improve the regenerative ability of aged muscles.NEW & NOTEWORTHY The immunoproteasome subunit, PSMB8, is essential for efficient muscle regeneration and may be a new therapeutic target for age-related muscle atrophy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Kexin Yao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shuhui Jin
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
2
|
Dong H, Lyu Y, Huang CY, Tsai SY. Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle. Autophagy 2025; 21:1212-1227. [PMID: 39878121 PMCID: PMC12087647 DOI: 10.1080/15548627.2025.2457925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While in vitro studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.Abbreviations: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; Myl1/Mlc1f-Cre: myosin, light polypeptide 1 (promoter driving Cre recombinase); mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NFE2L1/NRF1: nuclear factor, erythroid derived 2, like 1; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB1/NFκB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; OXPHOS: oxidative phosphorylation; PPARGC1A/PGC1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; PSMB6: proteasome (prosome, macropain) subunit, beta type 6; PSMB7: proteasome (prosome, macropain) subunit, beta type 7; PSMB8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7); PSMB9: proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2); PSMB10: proteasome (prosome, macropain) subunit, beta type 10; PSME1: proteasome (prosome, macropain) activator subunit 1 (PA28 alpha); PSME2: proteasome (prosome, macropain) activator subunit 2 (PA28 beta); RBX1: ring-box 1; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1; STAT3: signal transducer and activator of transcription 3; TRIM63/MURF1: tripartite motif-containing 63; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yifan Lyu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chien-Yung Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Jenkins TW, Fitzgerald JE, Park J, Wilson AM, Berry KL, Wong KS, Houry WA, Lee I, Maksimenko AV, Panizzi PR, Maxuitenko YY, Loop MS, Mitra AK, Kisselev AF. Highly specific Immunoproteasome inhibitor M3258 induces proteotoxic stress and apoptosis in KMT2A::AFF1 driven acute lymphoblastic leukemia. Sci Rep 2025; 15:17284. [PMID: 40389585 PMCID: PMC12089620 DOI: 10.1038/s41598-025-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Proteasome inhibitors (PIs) bortezomib, carfilzomib and ixazomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have clinical activity in acute lymphoblastic leukemia (ALL). The predominant form of proteasome in these hematologic malignancies is the lymphoid tissue-specific immunoproteasome. FDA-approved PIs inhibit immunoproteasomes and ubiquitously expressed constitutive proteasomes causing on-target toxicities in non-hematological tissues. Replacing PIs with selective immunoproteasome inhibitors (IPIs) should reduce these toxicities. We have previously shown that IPI ONX-0914 causes apoptosis of ALL cells expressing the KMT2A::AFF1 (MLL-AF4) fusion protein but did not elucidate the mechanism. Here we show that a novel, highly specific IPI M3258 induces rapid apoptosis in ALL cells in vitro and is comparable to bortezomib in its ability to reduce tumor growth and to cause tumor regression when combined with chemotherapy in vivo. Treatment of KMT2A::AFF1 ALL cells with M3258, ONX-0914, and bortezomib induced proteotoxic stress that was prevented by the protein synthesis inhibitor cycloheximide, which dramatically desensitized cells to PI-induced apoptosis. Thus, similar to multiple myeloma, ALL cells are sensitive to PIs and IPIs due to increased proteotoxic stress caused by elevated rates of protein synthesis.
Collapse
Affiliation(s)
- Tyler W Jenkins
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacquelyn Elise Fitzgerald
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jieun Park
- Division of Research, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Addison M Wilson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Kristy L Berry
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Irene Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Andrey V Maksimenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Matthew Shane Loop
- Department of Health Outcomes and Research Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
- Auburn University, 720 S. Donahue Dr., Auburn, 36849-5503, AL, USA.
| |
Collapse
|
4
|
Ishikawa C, Barreyro L, Sampson AM, Hueneman KM, Choi K, Philbrook SY, Choi I, Bolanos LC, Wunderlich M, Volk AG, Watowich SS, Greis KD, Starczynowski DT. Ubiquitin-conjugating enzyme UBE2N modulates proteostasis in immunoproteasome-positive acute myeloid leukemia. J Clin Invest 2025; 135:e184665. [PMID: 40371639 PMCID: PMC12077902 DOI: 10.1172/jci184665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/06/2025] [Indexed: 05/16/2025] Open
Abstract
Altered protein homeostasis through proteasomal degradation of ubiquitinated proteins is a hallmark of many cancers. Ubiquitination, coordinated by E1, E2, and E3 enzymes, involves up to 40 E2-conjugating enzymes in humans to specify substrates and ubiquitin linkages. In a screen for E2 dependencies in acute myeloid leukemia (AML), ubiquitin conjugating enzyme E2 N (UBE2N) emerged as the top candidate. To investigate UBE2N's role in AML, we characterized an enzymatically defective mouse model of UBE2N, revealing UBE2N's requirement in AML without an impact on normal hematopoiesis. Unlike other E2s, which mediate lysine-48 (K48) polyubiquitination and degradation of proteins, UBE2N primarily synthesizes K63-linked chains, stabilizing or altering protein function. Proteomic analyses and a whole-genome CRISPR-activation screen in pharmacologically and genetically UBE2N-inhibited AML cells unveiled a network of UBE2N-regulated proteins, many of which are implicated in cancer. UBE2N inhibition reduced their protein levels, leading to increased K48-linked ubiquitination and degradation through the immunoproteasome and revealing UBE2N activity is enriched in immunoproteasome-positive AML. Furthermore, an interactome screen identified tripartite motif-containing protein 21 (TRIM21) as the E3 ligase partnering with activated UBE2N in AML to modulate UBE2N-dependent proteostasis. In conclusion, UBE2N maintains proteostasis in AML by stabilizing target proteins through K63-linked ubiquitination and prevention of K48 ubiquitin-mediated degradation by the immunoproteasome. Thus, inhibition of UBE2N catalytic function suppresses leukemic cells through selective degradation of critical proteins in immunoproteasome-positive AML.
Collapse
Affiliation(s)
- Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Avery M. Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kathleen M. Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sophia Y. Philbrook
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Issac Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lyndsey C. Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew G. Volk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- University of Cincinnati Cancer Center, Cincinnati, USA
| |
Collapse
|
5
|
Oliveri F, Mink D, Muchamuel T, Basler M. Immunoproteasome Inhibition Impairs Differentiation but Not Survival of T Helper 17 Cells. Cells 2025; 14:689. [PMID: 40422192 DOI: 10.3390/cells14100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Autoimmune and inflammatory diseases are characterized by aberrant immune responses. The immunoproteasome was proposed as a target for such Th cell-mediated diseases due to its role in the activation, differentiation and function of T cells. Even though many studies demonstrated reductions in Th17 cells upon immunoproteasome inhibition, it is still unclear if the differentiation or survival of these cells is affected. Therefore, this study used DSS-induced colitis and house dust mite airway inflammation mouse models to investigate the effect of immunoproteasome inhibition on Th17 cells and Tregs at different time points. Th17 cells were almost abolished when immunoproteasome inhibition was applied continuously in DSS-induced colitis. In contrast, immunoproteasome inhibition did not decrease levels of already differentiated Th17 cells and did not enhance Treg induction. Dendritic cells were barely affected by immunoproteasome inhibition. Moreover, immunoproteasome inhibition reduced T cell activation in vitro and in vivo, suggesting impaired activation as the underlying mechanism for reduced Th17 differentiation. In conclusion, immunoproteasome inhibition reduces Th17 differentiation by impairing the activation of naïve T cells, but it does not affect the survival of already-differentiated Th17 cells and Tregs.
Collapse
Affiliation(s)
- Franziska Oliveri
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Mink
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Tony Muchamuel
- Department of Research, Kezar Life Sciences, Inc., South San Francisco, CA 94080, USA
| | - Michael Basler
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Burov A, Rezvykh A, Vedernikova V, Belogurov A, Prassolov V, Spirin P, Funikov S, Morozov A, Karpov V. Caffeine modulates immunoproteasome activity and content in colorectal adenocarcinoma cells. Biochimie 2025; 235:1-13. [PMID: 40349826 DOI: 10.1016/j.biochi.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Proteasomes hydrolyze most intracellular proteins. Immunoproteasome is a form of proteasome implicated in inflammation, cancer and autoimmune diseases. Modulation of immunoproteasome activity is a promising approach against several pathologies. Using previously obtained reporter colorectal cancer cell lines, we tested how commonly used compounds including ibuprofen, acetylsalicylic acid, vitamin C, caffeine and others, affect immunoproteasome expression. Flow cytometry, qPCR and Western blot were used to evaluate immunoproteasome subunit expression. Proteasome activity was tested using fluorogenic substrates and the activity-based probe. Transcriptome analysis was performed to identify patterns of gene expression changes. Interestingly, caffeine was the only drug that stimulated modest reduction in quantity of immunoproteasomes. The effect of caffeine varied between cell lines and was stronger as a result of prolonged treatment. The reduction of immunoproteasome content in cells coincided with decreased expression of immunoproteasome subunits, genes encoding the Nrf3 transcription factor and a PAC4 proteasome assembly chaperone, as well as the reduced levels of oxidative stress. Caffeine did not affect the degradation of immunoproteasomes by autophagy. Obtained results uncover novel biological effects of caffeine, our data might help to optimize existing and develop new strategies for the treatment of colorectal cancer and several autoimmune diseases.
Collapse
Affiliation(s)
- Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| | - Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia; Moscow Center for Advanced Studies, Kulakova Street 20, 123592, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997, Moscow, Russia; Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, Staromonetnyy Ln., 5, 119017, Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| | - Sergey Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia.
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991, Moscow, Russia
| |
Collapse
|
7
|
Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D. MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis. MOLECULAR BIOMEDICINE 2025; 6:28. [PMID: 40335825 PMCID: PMC12058589 DOI: 10.1186/s43556-025-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.
Collapse
Affiliation(s)
- Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Mok CC. Targeting the ubiquitin-proteasome pathway in systemic lupus erythematosus. Expert Rev Clin Immunol 2025; 21:531-542. [PMID: 40266558 DOI: 10.1080/1744666x.2025.2497845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) is the major non-lysosomal mechanism for selective degradation of intracellular proteins that is essential for the regulation of cellular functions and survival. Modulation of the proteasomes and cereblon E3 ligase promotes degradation of polyubiquitin-tagged transcription factors and oncoproteins, leading to depletion of long-lived plasma cells, diminished autoantibody and interferon-α production, reduced T-cell polarization to the proinflammatory phenotypes and increased regulatory T-cell activity that are relevant to the therapy of systemic lupus erythematosus (SLE). AREAS COVERED Selective immunoproteasome inhibitors and newer generation cereblon modulators have improved safety profiles compared to conventional compounds. This article summarizes the literature regarding the modulation of the UPS in murine and human SLE. EXPERT OPINION Bortezomib and the selective immunoproteasome inhibitors, ONX-0914 and zetomipzomib, ameliorate renal disease in murine lupus models. While clinically effective in refractory SLE, bortezomib is limited by its toxicities. Zetomipzomib shows promising data in phase Ib/II studies of SLE and lupus nephritis. Thalidomide and lenalidomide are effective in refractory cutaneous lupus but again limited by their off-target effects. A phase II RCT of iberdomide shows favorable results in SLE, especially chronic and subacute cutaneous lesions. These molecules should be further explored in larger clinical trials of renal and cutaneous SLE.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR, China
| |
Collapse
|
9
|
Sanaullah B, Truong NV, Nguyen TK, Han ET. Combating Malaria: Targeting the Ubiquitin-Proteasome System to Conquer Drug Resistance. Trop Med Infect Dis 2025; 10:94. [PMID: 40278767 PMCID: PMC12031434 DOI: 10.3390/tropicalmed10040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Malaria primarily affects developing nations and is one of the most destructive and pervasive tropical parasite infections. Antimalarial drug resistance, characterized by a parasite's ability to survive and reproduce despite recommended medication doses, poses a significant challenge. Along with resistance to antimalarial drugs, the rate of mutation a parasite undergoes, overall parasite load, drug potency, adherence to treatment, dosing accuracy, drug bioavailability, and the presence of poor-quality counterfeit drugs are some of the contributing factors that elicit opposition to treatment. The ubiquitin-proteasome system (UPS) has become a promising drug target for malaria because of its central importance in the parasite's life cycle and its contribution to artemisinin resistance. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are the best-known markers for artemisinin resistance and are associated with a highly active UPS. Certain proteasome inhibitors, which are the other key players of the UPS, have demonstrated activity against malarial parasites and the ability to work with artemisinin. This work describes how, through targeting the UPS, the greater effectiveness of antimalarial drugs-especially where there is strong resistance-can be achieved, which contributes to overcoming the drug resistance phenomenon in malaria.
Collapse
Affiliation(s)
| | | | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
10
|
Su QY, Cao YX, Zhang HY, Li YZ, Zhang SX. Leveraging machine learning for drug repurposing in rheumatoid arthritis. Drug Discov Today 2025; 30:104327. [PMID: 40081521 DOI: 10.1016/j.drudis.2025.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi-Xin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - Yong-Zhi Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Shanxi Province, Taiyuan, China.
| |
Collapse
|
11
|
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int J Mol Sci 2025; 26:2943. [PMID: 40243560 PMCID: PMC11988683 DOI: 10.3390/ijms26072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to the destruction of peripheral joint cartilage and bone tissue. Despite the advent of biological therapies in the past decades, the complete remission of RA patients is still out of reach. Therefore, the search for novel therapeutic approaches is still open in the field of RA. Proteasome inhibitors (PIs) were originally designed to be used in hematological malignancies like multiple myeloma. However, evidence has shown that they are potent inhibitors of the NF-κB pathway, which plays a pivotal role in inflammatory processes and RA. Furthermore, inhibition of cell activation and induction of apoptosis was also reported about PIs. In the present review, we summarize the current knowledge about the potential effects of PIs in RA based on reports from animal and human studies. We believe that there is substantial potential in the use of PIs in RA therapy either alone or in combination with the medications already used.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Fanni Rátky
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| |
Collapse
|
12
|
Schaunaman N, Cervantes D, Ferrington DA, Chu HW. Degradation of IL-4Ralpha by Immunoproteasome: implication in airway type 2 inflammation and hyperresponsiveness. Front Immunol 2025; 16:1501898. [PMID: 40170850 PMCID: PMC11958175 DOI: 10.3389/fimmu.2025.1501898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Immunoproteasome (IP) is induced by pro-inflammatory stimuli such as interferon gamma to regulate inflammation and immunity. Asthma patients with airway type 2 high inflammation (e.g., IL-13) demonstrate more eosinophils and airway hyperresponsiveness (AHR) with less interferon gamma. The role of IP in regulating airway eosinophilic inflammation and AHR has not been investigated. Methods This study was aimed to determine how IP regulates type 2 inflammation and AHR using LMP7 (a subunit of IP) deficient mouse lungs, precision-cut lung slices (PCLS), and cultured human airway epithelial cells treated with IL-13 in the absence or presence of an IP inhibitor ONX-0914 or exogenous IP. Results LMP7 KO mouse lungs had significantly more IL-4Rα protein expression than the wildtype (WT) mice. Following IL-13 treatment in PCLS, LMP7 KO mice had significantly more airway contraction than WT mice, which was coupled with increased eotaxin-2 levels. IP inhibition by ONX-0914 in IL-13 treated human airway epithelial cells resulted in significantly more IL-4Rα protein expression and eotaxin-3 release. IP inhibition in human PCLS significantly increased AHR. Conclusion Collectively, these data demonstrated that IP promotes degradation of IL-4Rα, while inhibits type 2 inflammation and AHR. Enhancement of IP expression or activity may serve as an alternative approach to reduce the severity of type 2 inflammation and AHR.
Collapse
Affiliation(s)
| | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Deborah A. Ferrington
- Doheny Eye Institute, Pasadena, CA and University of California, Los Angeles, Los Angeles, CA, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
13
|
Goldberg K, Lobov A, Antonello P, Shmueli MD, Yakir I, Weizman T, Ulman A, Sheban D, Laser E, Kramer MP, Shteinvil R, Chen G, Ibraheem A, Sysoeva V, Fishbain-Yoskovitz V, Mohapatra G, Abramov A, Shimshi S, Ogneva K, Nandy M, Amidror S, Bootz-Maoz H, Kuo SH, Dezorella N, Kacen A, Javitt A, Lau GW, Yissachar N, Hayouka Z, Merbl Y. Cell-autonomous innate immunity by proteasome-derived defence peptides. Nature 2025; 639:1032-1041. [PMID: 40044870 PMCID: PMC11946893 DOI: 10.1038/s41586-025-08615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
For decades, antigen presentation on major histocompatibility complex class I for T cell-mediated immunity has been considered the primary function of proteasome-derived peptides1,2. However, whether the products of proteasomal degradation play additional parts in mounting immune responses remains unknown. Antimicrobial peptides serve as a first line of defence against invading pathogens before the adaptive immune system responds. Although the protective function of antimicrobial peptides across numerous tissues is well established, the cellular mechanisms underlying their generation are not fully understood. Here we uncover a role for proteasomes in the constitutive and bacterial-induced generation of defence peptides that impede bacterial growth both in vitro and in vivo by disrupting bacterial membranes. In silico prediction of proteome-wide proteasomal cleavage identified hundreds of thousands of potential proteasome-derived defence peptides with cationic properties that may be generated en route to degradation to act as a first line of defence. Furthermore, bacterial infection induces changes in proteasome composition and function, including PSME3 recruitment and increased tryptic-like cleavage, enhancing antimicrobial activity. Beyond providing mechanistic insights into the role of proteasomes in cell-autonomous innate immunity, our study suggests that proteasome-cleaved peptides may have previously overlooked functions downstream of degradation. From a translational standpoint, identifying proteasome-derived defence peptides could provide an untapped source of natural antibiotics for biotechnological applications and therapeutic interventions in infectious diseases and immunocompromised conditions.
Collapse
Affiliation(s)
- Karin Goldberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Arseniy Lobov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Paola Antonello
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Yakir
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Weizman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Laser
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Shteinvil
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Guoyun Chen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Angham Ibraheem
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Sysoeva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Abramov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshi
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kseniia Ogneva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Madhurima Nandy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Amidror
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadar Bootz-Maoz
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shanny H Kuo
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Gee W Lau
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nissan Yissachar
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Evangelakou Z, Schwaiger S, Gianniou DD, Trougakos IP, Stuppner H. Neolignan Kadsurenin F Modulates Proteostatic Pathways and Possesses Potent Anti-Inflammatory Properties. Chem Biodivers 2025; 22:e202401848. [PMID: 39578962 PMCID: PMC11908775 DOI: 10.1002/cbdv.202401848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Kadsurenin F, a natural neolignan-type compound, has been described as a constituent of various members of the Lauraceae family such as Aniba spp. or Nectandra spp., but can also be found in various Piper species such as Piper kadsura Ohwi (Piperaceae). This species is traditionally used to treat asthma, rheumatic pain, arthritis, and digestive problems. Recently, several studies have highlighted the significant anti-inflammatory potential of P. kadsura extracts and secondary metabolites. Here, we report the isolation of kadsurenin F as an active component of P. kadsura. We found that kadsurenin F increases oxidative load and suppresses proteasome functionality in normal diploid human fibroblasts, and after administration in Drosophila flies. Moreover, kadsurenin F likely possesses anti-inflammatory properties, as apart from suppressing proteasome activity, it reversed inflammatory phenotypes and inhibited NO production in RAW 264.7 macrophage cells when administered in parallel with LPS. Our findings suggest that the kadsurenin F scaffold can be used for the development of novel highly bioactive proteasome inhibitors and/or anti-inflammatory compounds.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and BiophysicsFaculty of BiologyNational and Kapodistrian University of AthensAthens15784Greece
| | - Stefan Schwaiger
- Institute of Pharmacy/PharmacognosyUniversity of InnsbruckCCB, Innrain 80–826020InnsbruckAustria
| | - Despoina D. Gianniou
- Department of Cell Biology and BiophysicsFaculty of BiologyNational and Kapodistrian University of AthensAthens15784Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and BiophysicsFaculty of BiologyNational and Kapodistrian University of AthensAthens15784Greece
| | - Hermann Stuppner
- Institute of Pharmacy/PharmacognosyUniversity of InnsbruckCCB, Innrain 80–826020InnsbruckAustria
| |
Collapse
|
15
|
Steigmann JC, Zhou X, Suttenberg LN, Salman I, Rehmathullah ZF, Weinberg JB. Effects of immunoproteasome inhibition on acute respiratory infection with murine hepatitis virus strain 1. J Virol 2024; 98:e0123824. [PMID: 39508578 PMCID: PMC11650983 DOI: 10.1128/jvi.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1. IP inhibition using ONX-0914 did not affect MHV-1 replication in bone marrow-derived dendritic cells in vitro. IP inhibition in vivo exacerbated virus-induced weight loss and mortality but had no effect on virus replication in lungs or livers. IP inhibition had minimal effect on virus-induced pulmonary inflammation but led to substantially increased liver pathology, including greater upregulation of pro-inflammatory cytokines and histological evidence of inflammation and necrosis. Those findings were associated with evidence of increased endoplasmic reticulum stress although not with accumulation of ubiquitinated protein. Our results indicate that the IP is a protective host factor during acute MHV-1 infection. IMPORTANCE Inflammatory responses triggered by acute infection by respiratory viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drive morbidity and mortality. Infection of mice with murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, is a useful model to study the pathogenesis of coronavirus respiratory infections. The immunoproteasome is an inducible component of the ubiquitin proteasome system that is poised to contribute to multiple aspects of immune function, inflammation, and protein homeostasis during an infection. We used the MHV-1 model to define the role of the immunoproteasome in coronavirus pathogenesis. We found that immunoproteasome subunit expression increases in the lungs and the liver during acute MHV-1 respiratory infection. Inhibition of immunoproteasome activity did not affect MHV-1 replication but increased MHV-1-induced weight loss, mortality, and inflammation in lungs and livers. Thus, our findings indicate that the immunoproteasome is a critical protective host factor during coronavirus respiratory infection.
Collapse
Affiliation(s)
- Jacob C. Steigmann
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaofeng Zhou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren N. Suttenberg
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Irha Salman
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Zainab F. Rehmathullah
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason B. Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Guo B, Shi X, Jiang Q, Pan Y, Yang Y, Liu Y, Chen S, Zhu W, Ren L, Liang R, Chen X, Xu H, Wei L, Lin Y, Wang J, Qiu C, Zhou H, Rao L, Wang L, Chen R, Chen S. Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405318. [PMID: 39356034 PMCID: PMC11600198 DOI: 10.1002/advs.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Indexed: 10/03/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Bingxin Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Qiong Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yuqiong Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yuanyuan Liu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Wenjiao Zhu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Xue Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laiyou Wei
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yongjian Lin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
17
|
Basler M, Schliehe C. In memory of Prof. Dr. Marcus Groettrup (1964-2022). Eur J Immunol 2024; 54:e2451341. [PMID: 39540575 DOI: 10.1002/eji.202451341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Schliehe
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
19
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
21
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
22
|
Schaftenaar FH, van Dam AD, de Bruin G, Depuydt MA, de Mol J, Amersfoort J, Douna H, Meijer M, Kröner MJ, van Santbrink PJ, Bernabé Kleijn MN, van Puijvelde GH, Florea BI, Slütter B, Foks AC, Bot I, Rensen PC, Kuiper J. Immunoproteasomal Inhibition With ONX-0914 Attenuates Atherosclerosis and Reduces White Adipose Tissue Mass and Metabolic Syndrome in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1346-1364. [PMID: 38660806 PMCID: PMC11188635 DOI: 10.1161/atvbaha.123.319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects. METHODS We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr-/- and APOE*3-Leiden.CETP mice. RESULTS ONX-0914 treatment significantly reduced atherosclerosis, reduced dendritic cell and macrophage levels and their activation, as well as the levels of antigen-experienced T cells during early plaque formation, and Th1 cells in advanced atherosclerosis in young and aged mice in various immune compartments. Additionally, ONX-0914 treatment led to a strong reduction in white adipose tissue mass and adipocyte progenitors, which coincided with neutrophil and macrophage accumulation in white adipose tissue. ONX-0914 reduced intestinal triglyceride uptake and gastric emptying, likely contributing to the reduction in white adipose tissue mass, as ONX-0914 did not increase energy expenditure or reduce total food intake. Concomitant with the reduction in white adipose tissue mass upon ONX-0914 treatment, we observed improvements in markers of metabolic syndrome, including lowered plasma triglyceride levels, insulin levels, and fasting blood glucose. CONCLUSIONS We propose that immunoproteasomal inhibition reduces 3 major causes underlying cardiovascular disease, dyslipidemia, metabolic syndrome, and inflammation and is a new target in drug development for atherosclerosis treatment.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/drug therapy
- Atherosclerosis/immunology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Metabolic Syndrome/drug therapy
- Metabolic Syndrome/immunology
- Disease Models, Animal
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/pathology
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Proteasome Endopeptidase Complex/metabolism
- Mice, Inbred C57BL
- Male
- Proteasome Inhibitors/pharmacology
- Apolipoprotein E3/genetics
- Apolipoprotein E3/metabolism
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Plaque, Atherosclerotic
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice, Knockout, ApoE
- Mice
- Energy Metabolism/drug effects
- Oligopeptides
Collapse
Affiliation(s)
- Frank H. Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Andrea D. van Dam
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Gerjan de Bruin
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Marie A.C. Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Jacob Amersfoort
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Hidde Douna
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Menno Meijer
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mara J. Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Peter J. van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Mireia N.A. Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Gijs H.M. van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Bogdan I. Florea
- Department of Chemical Biology, Leiden Institute of Chemistry, the Netherlands (G.d.B., B.I.F.)
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands (A.D.D., P.C.N.R.)
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, the Netherlands (F.H.S., M.A.C.D., J.d.M., J.A., H.D., M.M., M.J.K., P.J.v.S., M.N.A.B.K., G.H.M.v.P., B.S., A.C.F., I.B., J.K.)
| |
Collapse
|
23
|
Ott C. Mapping the interplay of immunoproteasome and autophagy in different heart failure phenotypes. Free Radic Biol Med 2024; 218:149-165. [PMID: 38570171 DOI: 10.1016/j.freeradbiomed.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.
Collapse
Affiliation(s)
- Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Park JE, Chaudhary CL, Bhattarai D, Kim KB. Brain-Permeable Immunoproteasome-Targeting Macrocyclic Peptide Epoxyketones for Alzheimer's Disease. J Med Chem 2024; 67:7146-7157. [PMID: 38636481 PMCID: PMC11733980 DOI: 10.1021/acs.jmedchem.3c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Previously, we demonstrated that linear peptide epoxyketones targeting the immunoproteasome (iP) could ameliorate cognitive deficits in mouse models of Alzheimer's disease (AD) independently of amyloid deposition. We also reported the first iP-targeting macrocyclic peptide epoxyketones, which exhibit improved metabolic stability compared with their linear counterparts. Here, we prepared additional macrocyclic peptide epoxyketones and compared them with existing macrocyclic iP inhibitors by assessing Caco2 cell-based permeability and microsomal stability, providing the four best macrocyclic iP inhibitors. We then evaluated the four compounds using the Ames test and the potency assays in BV2 cells, selecting compound 5 as our AD drug lead. When 5 was administered intravenously (40 mg/kg) or orally (150 mg/kg) into healthy BALB/c mice, we observed considerable iP inhibition in the mouse brain, indicating good blood-brain barrier permeability and target engagement. Combined results suggest that 5 is a promising AD drug lead that may need further investigation.
Collapse
Affiliation(s)
- Ji Eun Park
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987, United States
| | - Chhabi L. Chaudhary
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Kyung Bo Kim
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987, United States; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
25
|
Bhattarai D, Lee SO, Joshi N, Jun SR, Lo S, Jiang L, Gokden N, Parajuli N. Cold Storage Followed by Transplantation Induces Immunoproteasome in Rat Kidney Allografts: Inhibition of Immunoproteasome Does Not Improve Function. KIDNEY360 2024; 5:743-752. [PMID: 38303110 PMCID: PMC11146655 DOI: 10.34067/kid.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Key Points Cold storage (CS) increases the severity of graft dysfunction in a time-dependent manner, and prolonged CS decreases animal survival. CS plus transplant increases iproeasome levels/assembly in renal allografts; IFN-γ is a potential inducer of the iproteasome. Inhibiting iproteasome ex vivo during renal CS did not confer graft protection after transplantation. Background It is a major clinical challenge to ensure the long-term function of transplanted kidneys. Specifically, the injury associated with cold storage (CS) of kidneys compromises the long-term function of the grafts after transplantation. Therefore, the molecular mechanisms underlying CS-related kidney injury are attractive therapeutic targets to prevent injury and improve long-term graft function. Previously, we found that constitutive proteasome function was compromised in rat kidneys after CS followed by transplantation. Here, we evaluated the role of the immunoproteasome (i proteasome), a proteasome variant, during CS followed by transplantation. Methods Established in vivo rat kidney transplant model with or without CS containing vehicle or iproteasome inhibitor (ONX 0914) was used in this study. The i proteasome function was performed using rat kidney homogenates and fluorescent-based peptide substrate specific to β 5i subunit. Western blotting and quantitative RT-PCR were used to assess the subunit expression/level of the i proteasome (β 5i) subunit. Results We demonstrated a decrease in the abundance of the β 5i subunit of the i proteasome in kidneys during CS, but β 5i levels increased in kidneys after CS and transplant. Despite the increase in β 5i levels and its peptidase activity within kidneys, inhibiting β 5i during CS did not improve graft function after transplantation. Summary These results suggest that the pharmacologic inhibition of immunoproteasome function during CS does not improve graft function or outcome. In light of these findings, future studies targeting immunoproteasomes during both CS and transplantation may define the role of immunoproteasomes on short-term and long-term kidney transplant outcomes.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Seong-Ok Lee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neelam Joshi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
26
|
Lee Y, Yoon B, Son S, Cho E, Kim KB, Choi EY, Kim DE. Inhibition of Immunoproteasome Attenuates NLRP3 Inflammasome Response by Regulating E3 Ubiquitin Ligase TRIM31. Cells 2024; 13:675. [PMID: 38667290 PMCID: PMC11048918 DOI: 10.3390/cells13080675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the pathogenesis of inflammatory bowel disease (IBD). TNFα has also been known to induce the formation of immunoproteasome (IP), which incorporates immunosubunits LMP2, LMP7, and MECL-1. Inhibition of IP activity using the IP subunit LMP2-specific inhibitor YU102, a peptide epoxyketone, decreased the protein levels of NLRP3 and increased the K48-linked polyubiquitination levels of NLRP3 in TNFα-stimulated intestinal epithelial cells. We observed that inhibition of IP activity caused an increase in the protein level of the ubiquitin E3 ligase, tripartite motif-containing protein 31 (TRIM31). TRIM31 facilitated K48-linked polyubiquitination and proteasomal degradation of NLRP3 with an enhanced interaction between NLRP3 and TRIM31 in intestinal epithelial cells. In addition, IP inhibition using YU102 ameliorated the symptoms of colitis in the model mice inflicted with dextran sodium sulfate (DSS). Administration of YU102 in the DSS-treated colitis model mice caused suppression of the NLRP3 protein levels and accompanied inflammatory cytokine release in the intestinal epithelium. Taken together, we demonstrated that inhibiting IP under inflammatory conditions induces E3 ligase TRIM31-mediated NLRP3 degradation, leading to attenuation of the NLRP3 inflammatory response that triggers disruption of intestinal barrier.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Sumin Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| | - Kyung Bo Kim
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Eun Young Choi
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Center for Translational Science at Port St. Lucie, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA;
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (Y.L.); (B.Y.); (S.S.); (E.C.)
| |
Collapse
|
27
|
van der Made CI, Kersten S, Chorin O, Engelhardt KR, Ramakrishnan G, Griffin H, Schim van der Loeff I, Venselaar H, Rothschild AR, Segev M, Schuurs-Hoeijmakers JHM, Mantere T, Essers R, Esteki MZ, Avital AL, Loo PS, Simons A, Pfundt R, Warris A, Seyger MM, van de Veerdonk FL, Netea MG, Slatter MA, Flood T, Gennery AR, Simon AJ, Lev A, Frizinsky S, Barel O, van der Burg M, Somech R, Hambleton S, Henriet SSV, Hoischen A. Expanding the PRAAS spectrum: De novo mutations of immunoproteasome subunit β-type 10 in six infants with SCID-Omenn syndrome. Am J Hum Genet 2024; 111:791-804. [PMID: 38503300 PMCID: PMC11023912 DOI: 10.1016/j.ajhg.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Mutations in proteasome β-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome β2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired β-ring/β-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Odelia Chorin
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Karin R Engelhardt
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Gayatri Ramakrishnan
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helen Griffin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanka Venselaar
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annick Raas Rothschild
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Meirav Segev
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rick Essers
- Maastricht University Medical Centre MUMC+, Department of Clinical Genetics, Maastricht, the Netherlands; GROW School for Oncology and Developmental Biology, Department of Genetics and Cell Biology, Maastricht, the Netherlands
| | - Masoud Zamani Esteki
- Maastricht University Medical Centre MUMC+, Department of Clinical Genetics, Maastricht, the Netherlands; GROW School for Oncology and Developmental Biology, Department of Genetics and Cell Biology, Maastricht, the Netherlands
| | - Amir L Avital
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peh Sun Loo
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK; Department of Paediatric Infectious Diseases, Great Ormond Street Hospital, London, UK
| | - Marieke M Seyger
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Mary A Slatter
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Terry Flood
- Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Shirley Frizinsky
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Raz Somech
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stefanie S V Henriet
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Inholz K, Anderl JL, Klawitter M, Goebel H, Maurits E, Kirk CJ, Fan RA, Basler M. Proteasome composition in immune cells implies special immune‐cell‐specific immunoproteasome function. Eur J Immunol 2024; 54:e2350613. [PMID: 38458995 DOI: 10.1002/eji.202350613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Immunoproteasomes are a special class of proteasomes, which can be induced with IFN-γ in an inflammatory environment. In recent years, it became evident that certain immune cell types constitutively express high levels of immunoproteasomes. However, information regarding the basal expression of proteolytically active immunoproteasome subunits in different types of immune cells is still rare. Hence, we quantified standard proteasome subunits (β1c, β2c, β5c) and immunoproteasome subunits (LMP2, MECL-1, LMP7) in the major murine (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD11c+ dendritic cells, CD49d+ natural killer cells, Ly-6G+ neutrophils) and human immune cell (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD1c+CD141+ myeloid dendritic cells, CD56+ natural killer cells, granulocytes) subsets. The different human immune cell types were isolated from peripheral blood and the murine immune cell subsets from spleen. We found that proteasomes of most immune cell subsets mainly consist of immunoproteasome subunits. Our data will serve as a reference and guideline for immunoproteasome expression and imply a special role of immunoproteasomes in immune cells.
Collapse
Affiliation(s)
- Katharina Inholz
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Janet L Anderl
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - Moritz Klawitter
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Christopher J Kirk
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - R Andrea Fan
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
29
|
Hsieh Y, Augur ZM, Arbery M, Ashour N, Barrett K, Pearse RV, Tio ES, Duong DM, Felsky D, De Jager PL, Bennett DA, Seyfried NT, Young‐Pearse TL. Person-specific differences in ubiquitin-proteasome mediated proteostasis in human neurons. Alzheimers Dement 2024; 20:2952-2967. [PMID: 38470006 PMCID: PMC11032531 DOI: 10.1002/alz.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.
Collapse
Affiliation(s)
- Yi‐Chen Hsieh
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Zachary M. Augur
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mason Arbery
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Nancy Ashour
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Katharine Barrett
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Richard V. Pearse
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Earvin S. Tio
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Felsky
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Krembil Centre for NeuroinformaticsCentre for Addiction and Mental HealthTorontoOntarioCanada
| | - Philip L. De Jager
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Tracy L. Young‐Pearse
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
30
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
31
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
32
|
Hou L, Zhang Y. Peripheral blood mononuclear cell low molecular mass protein 7 in acute ischemic stroke: vertical change from admission to discharge and correlation with disability, stroke recurrence, and death. Front Immunol 2024; 15:1296835. [PMID: 38404572 PMCID: PMC10885349 DOI: 10.3389/fimmu.2024.1296835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Objective Low molecular mass protein 7 (LMP7) aggravates abnormal T cell differentiation and atherosclerosis, but its clinical role in acute ischemic stroke (AIS) is still unclear. This study aimed to investigate the correlation of peripheral blood mononuclear cell (PBMC) LMP7 with T cell subsets, disease severity, and prognosis in AIS patients. Methods A total of 162 AIS patients were enrolled for detecting PBMC LMP7 and T helper (Th) 1, Th2, and Th17 cells via reverse transcriptase-polymerase chain reaction and flow cytometry, respectively. In addition, PBMC LMP7 at discharge was also quantified. Results Increased LMP7 at admission was associated with decreased Th2 cells (P=0.014), elevated Th17 cells (P<0.001), C-reactive protein (P=0.005), National Institutes of Health Stroke Scale (NIHSS) score (P=0.007), and disease severity (defined by NIHSS score) (P=0.010). LMP7 at admission reflected a high risk of stroke recurrence (area under curve (AUC): 0.748, 95% confidence interval (CI): 0.564-0.932), but not mRS score at month 3 (M3) >2 (AUC: 0.585, 95%CI: 0.479-0.691), or death (AUC: 0.723, 95%CI: 0.338-1.000). LMP7 at discharge was reduced compared to that at admission (P<0.001). LMP7 at discharge was positively correlated with the risk of stroke recurrence (AUC: 0.849, 95%CI: 0.735-0.963) and death (AUC: 0.919, 95%CI: 0.836-1.000), but had a weak capacity to reflect mRS score at M3 >2 (AUC: 0.671, 95%CI: 0.578-0.765). Conclusion PBMC LMP7 positively correlates with Th17 cells, inflammation, and disease severity in AIS patients, meanwhile, its level at discharge shows a good ability to reflect the risks of stroke recurrence and death.
Collapse
Affiliation(s)
- Lujia Hou
- Department of Neurology, YongJia People’s Hospital, Wenzhou, China
| | - Yanlei Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Leister H, Krause FF, Gil B, Prus R, Prus I, Hellhund-Zingel A, Mitra M, Da Rosa Gerbatin R, Delanty N, Beausang A, Brett FM, Farrell MA, Cryan J, O’Brien DF, Henshall DC, Helmprobst F, Pagenstecher A, Steinhoff U, Visekruna A, Engel T. Immunoproteasome deficiency results in age-dependent development of epilepsy. Brain Commun 2024; 6:fcae017. [PMID: 38317856 PMCID: PMC10839634 DOI: 10.1093/braincomms/fcae017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ruslan Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Inna Prus
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Anne Hellhund-Zingel
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Rogerio Da Rosa Gerbatin
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Department of Neurology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Francesca M Brett
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Michael A Farrell
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - Donncha F O’Brien
- Department of Neurosurgery, Beaumont Hospital, D09V2N0 Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Frederik Helmprobst
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, 35043 Marburg, Germany
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps-University, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, 35043 Marburg, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
34
|
Tubío-Santamaría N, Jayavelu AK, Schnoeder TM, Eifert T, Hsu CJ, Perner F, Zhang Q, Wenge DV, Hansen FM, Kirkpatrick JM, Jyotsana N, Lane SW, von Eyss B, Deshpande AJ, Kühn MWM, Schwaller J, Cammann C, Seifert U, Ebstein F, Krüger E, Hochhaus A, Heuser M, Ori A, Mann M, Armstrong SA, Heidel FH. Immunoproteasome function maintains oncogenic gene expression in KMT2A-complex driven leukemia. Mol Cancer 2023; 22:196. [PMID: 38049829 PMCID: PMC10694946 DOI: 10.1186/s12943-023-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.
Collapse
Affiliation(s)
- Nuria Tubío-Santamaría
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Ashok Kumar Jayavelu
- Max-Planck-Institute of Biochemistry, Munich, Germany
- Proteomics and Cancer Cell Signaling Group, DKFZ, Heidelberg, Germany
| | - Tina M Schnoeder
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Theresa Eifert
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Chen-Jen Hsu
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Florian Perner
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Qirui Zhang
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Daniela V Wenge
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Fynn M Hansen
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | | | - Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Steven W Lane
- Queensland Institute for Medical Research (QIMR), Brisbane, Australia
| | - Björn von Eyss
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | | | - Michael W M Kühn
- Medizinische Klinik 3, Hämatologie, Onkologie und Pneumologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Clemens Cammann
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institut für Medizinische Mikrobiologie - Virologie, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Frédéric Ebstein
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | - Elke Krüger
- Department of Biochemistry, Universitätsmedizin Greifswald, 17475, Greifswald, Germany
| | | | - Michael Heuser
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Alessandro Ori
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, 02215, USA
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, 17475, Greifswald, Germany.
- Leibniz Institute On Aging, Fritz-Lipmann Institute, 07745, Jena, Germany.
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
35
|
Liu Q, Shen J, Wang J, Xia J, Yin J, Cheng G, Qian X, Jiang Y, Ge X, Wang Q. PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4 + T cell imbalance. Int Immunopharmacol 2023; 124:110860. [PMID: 37716163 DOI: 10.1016/j.intimp.2023.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Low molecular mass polypeptide 7 (LMP7) is an immunoproteasome subunit that regulates T cell amplification, differentiation, and inflammation and is involved in rheumatoid arthritis (RA) progression. This study intended to apply PR-957 (an anti-LMP7 agent) for RA treatment in vitro and in vivo and evaluate its interaction with LMP7-mediated CD4+ T cell imbalance. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 30 RA patients and 30 healthy controls. RA fibroblast-like synoviocytes (RA-FLSs) and CD4+ T cells were isolated from RA patients and then cocultured with PR-957 and/or LMP7 overexpression adenovirus (Ad-LMP7). Collagen-induced arthritis (CIA) mice were constructed and then treated with PR-957 and/or Ad-LMP7. RESULTS LMP7 was higher in RA patients (versus healthy controls) and positively correlated with T helper (Th)1 cells, the Th1/Th2 ratio, Th17 cells, and the Th17/Treg ratio but not with Th2 or T regulatory (Treg) cells. PR-957 reduced Th1 and Th17 cells but increased Th2 and Treg cells in RA-CD4+ T cells, and this effect was partially reversed by Ad-LMP7 transfection. Interestingly, when cocultured with RA-CD4+ T cells, PR-957 increased RA-FLS apoptosis and decreased its invasive ability, viability, and inflammation, as suggested by IL-6, CCL2, MMP1, and MMP3; however, these phenomena were weakened in RA-FLSs without RA-CD4+ T cell coculture. In addition, Ad-LMP7 transfection attenuated the above effects of PR-957. In CIA mice, PR-957 decreased the arthritis score, synovial hyperproliferation and articular injury, inflammation in the synovium and serum, and the imbalance of Th1/Th2 and Th17/Treg in the spleen, and these effects were attenuated by Ad-LMP7. CONCLUSION PR-957 ameliorates RA progression and inflammation by repressing LMP7-mediated CD4+ T cell imbalance.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jin Shen
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Wang
- Department of Joint Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Jian Yin
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Guowei Cheng
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Ximing Qian
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Yun Jiang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China.
| |
Collapse
|
36
|
Vatte S, Ugale R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 2023; 170:105605. [PMID: 37657765 DOI: 10.1016/j.neuint.2023.105605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic window of the only approved therapies like intravenous thrombolysis and thrombectomy. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke by regulating multiple pathways including glucose metabolism, angiogenesis, neuronal survival, neuroinflammation and blood brain barrier regulation. Here, we give a brief overview of the HIF-1α-targeting strategies currently under investigation and summarise recent research on how HIF-1α is regulated in various brain cells, including neurons and microglia, at various stages in ischemic stroke. The roles of HIF-1 in stroke varies with ischemic time and degree of ischemia, are still up for debate. More focus has been placed on prospective HIF-1α targeting drugs, such as HIF-1α activator, HIF-1α stabilizers, and natural compounds. In this review, we have highlighted the regulation of HIF-1α in the novel therapeutic approaches for treatment of stroke.
Collapse
Affiliation(s)
- Sneha Vatte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
37
|
Rutkowska J, Kasacka I, Rogowski M, Olszewska E. Immunohistochemical Identification and Assessment of the Location of Immunoproteasome Subunits LMP2 and LMP7 in Acquired Cholesteatoma. Int J Mol Sci 2023; 24:14137. [PMID: 37762439 PMCID: PMC10531666 DOI: 10.3390/ijms241814137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cholesteatoma, accompanied by chronic inflammatory response, is characterized by invasive growth and osteolytic activity. As specific proteasome isoforms, the immunoproteasomes serve as an important modulator of inflammatory responses. The aim of the present study was to determine the biological activity of cholesteatoma through the analysis of the expression and localization of immunoproteasome subunits of low molecule weight protein (LMP) 2 and LMP7. Cholesteatoma specimens were obtained from 15 adults who underwent ear surgery due to acquired attic cholesteatoma. Normal skin specimens were taken from retro-auricular skin incisions from the same patients. The specimens were stained with anti-LMP7 antibody, using immunohistochemistry techniques based on the binding of biotinylated secondary antibody with the enzyme-labeled streptavidin and the Envision FLEX system. In all specimens of cholesteatoma, the immunohistochemical reaction with the antibody against the LMP2 was positive, in both the cytoplasm of the cholesteatoma matrix and the perimatrix. A negative reaction with anti-LMP2 was observed in the cytoplasm and nuclei of control skin cells. A positive nuclear and cytoplasmic immunohistochemical reaction with anti-LMP7 has been demonstrated in numerous cells, in both the matrix and perimatrix of cholesteatoma. We present evidence of the presence of expressions of LMP2 and LMP7 within cholesteatoma tissue. Our results might bring new information concerning immunoproteasome-dependent pathophysiologic mechanisms in cholesteatoma.
Collapse
Affiliation(s)
- Justyna Rutkowska
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Białystok, Poland; (M.R.); (E.O.)
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Marek Rogowski
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Białystok, Poland; (M.R.); (E.O.)
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Białystok, Poland; (M.R.); (E.O.)
| |
Collapse
|
38
|
Wang M, Liu Y, Dai L, Zhong X, Zhang W, Xie Y, Zeng H, Wang H. ONX0914 inhibition of immunoproteasome subunit LMP7 ameliorates diabetic cardiomyopathy via restraining endothelial-mesenchymal transition. Clin Sci (Lond) 2023; 137:1297-1309. [PMID: 37551616 DOI: 10.1042/cs20230732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic metabolic disease with few effective therapeutic options. Immunoproteasome is an inducible proteasome that plays an important role in the regulation of many cardiovascular diseases, while its role in DCM remains under discussion. The present study aims to demonstrate whether inhibiting immunoproteasome subunit low molecular weight polypeptide 7 (LMP7) could alleviate DCM. Here, we established a type I diabetes mellitus mouse model by streptozotocin (STZ) in 8-week-old male wild-type C57BL/6J mice. We found that immunoproteasome subunit LMP7 was overexpressed in the heart of diabetic mice, while inhibiting LMP7 with pharmacological inhibitor ONX0914 significantly alleviated myocardial fibrosis and improved cardiac function. Besides, compared with diabetic mice, ONX0914 treatment reduced protein levels of mesenchymal markers (Vimentin, α-smooth muscle actin, and SM22α) and increased endothelial markers (VE-cadherin and CD31). In TGFβ1 stimulated HUVECs, we also observed that ONX0914 could inhibit endothelial-mesenchymal transition (EndMT). Mechanistically, we prove that ONX0914 could regulate autophagy activity both in vivo and vitro. Meanwhile, the protective effect of ONX0914 on TGFβ1 stimulated HUVECs could be abolished by 3-methyladenine (3MA) or hydroxychloroquine (CQ). All in all, our data highlight that inhibition of LMP7 with ONX0914 could ameliorate EndMT in diabetic mouse hearts at least in part via autophagy activation. Thus, LMP7 may be a potential therapeutic target for the DCM.
Collapse
Affiliation(s)
- Mengwen Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yujian Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Lei Dai
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaodan Zhong
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Wenjun Zhang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yang Xie
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hesong Zeng
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hongjie Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| |
Collapse
|
39
|
Begum R, Thota S, Batra S. Interplay between proteasome function and inflammatory responses in e-cig vapor condensate-challenged lung epithelial cells. Arch Toxicol 2023; 97:2193-2208. [PMID: 37344694 DOI: 10.1007/s00204-023-03504-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023]
Abstract
Exposure to cigarettes and other nicotine-based products results in persistent inflammation in the lung. In recent years, electronic cigarettes (e-cigs) have become extremely popular among adults and youth alike. E-cigarette vapor-induced oxidative stress promotes protein breakdown, DNA damage and cell death, culminating in a variety of respiratory diseases. The proteasome, a multi-catalytic protease, superintends protein degradation within the cell. When cells are stimulated with inflammatory cytokines such as IFN-γ and TNF-α, the constitutive catalytic proteasome subunits are replaced by the inducible subunits-low-molecular mass polypeptide (LMP)2 (β1i), multi-catalytic endopeptidase complex-like (MECL)1 (β2i), and LMP7 (β5i), which are required for the production of certain MHC class I-restricted T-cell epitopes. In this study, we used human alveolar epithelial cells (A549) and exposed them to filtered air or (1%) tobacco-flavored (TF) electronic cigarette vapor condensate (ECVC) ± nicotine (6 mg/ml) (TF-ECVC ± N) for 24 h. We observed an increase in the levels of IFN-γ, TNF-α, and inducible proteasome subunits (LMP7/PSMB8, LMP2/PSMB9, MECL1/PSMB10), and a reduced expression of constitutive proteasome subunits (β1/PSMB6 and β2/PSMB7) in challenged A549 cells. Interestingly, knockdown of the inducible proteasome subunit LMP7 reversed ECVC-induced expression of NADPH oxidase and immunoproteasome subunits in A549 cells. In addition, pre-exposure to an LMP7 inhibitor (ONX-0914) abrogated the mRNA expression of several NOX subunits and rescued the excessive production/release of inflammatory cytokines/chemokines (IL-6, IL-8, CCL2, and CCL5) in ECVC-challenged cells. Our findings suggest an important role of LMP7 in regulating the expression of inflammatory mediators during ECVC exposure. Overall, our results provide evidence for proteasome-dependent ROS-mediated inflammation in ECVC-challenged cells.
Collapse
Affiliation(s)
- R Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA
| | - S Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA
| | - S Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, 129 Health Research Center, Baton Rouge, Louisiana, 70813, USA.
| |
Collapse
|
40
|
Antony ML, Chang D, Noble-Orcutt KE, Kay A, Jensen JL, Mohei H, Myers CL, Sachs K, Sachs Z. CD69 marks a subpopulation of acute myeloid leukemia with enhanced colony forming capacity and a unique signaling activation state. Leuk Lymphoma 2023; 64:1262-1274. [PMID: 37161853 DOI: 10.1080/10428194.2023.2207698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/10/2023] [Accepted: 04/09/2023] [Indexed: 05/11/2023]
Abstract
In acute myeloid leukemia (AML), leukemia stem cells (LSCs) have self-renewal potential and are responsible for relapse. We previously showed that, in Mll-AF9/NRASG12V murine AML, CD69 expression marks an LSC-enriched subpopulation with enhanced in vivo self-renewal capacity. Here, we used CyTOF to define activated signaling pathways in LSC subpopulations in Mll-AF9/NRASG12V AML. Furthermore, we compared the signaling activation states of CD69High and CD36High subsets of primary human AML. The human CD69High subset expresses low levels of Ki67 and high levels of NFκB and pMAPKAPKII. Additionally, the human CD69High AML subset also has enhanced colony-forming capacity. We applied Bayesian network modeling to compare the global signaling network within the human AML subsets. We find that distinct signaling states, distinguished by NFκB and pMAPKAPKII levels, correlate with divergent functional subsets, defined by CD69 and CD36 expression, in human AML. Targeting NFκB with proteasome inhibition diminished colony formation.
Collapse
Affiliation(s)
- Marie Lue Antony
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Chang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Anna Kay
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeffrey L Jensen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hesham Mohei
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Karen Sachs
- Next Generation Analytics, Palo Alto, CA, USA
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
41
|
Imbesi C, Ettari R, Irrera N, Zappalà M, Pallio G, Bitto A, Mannino F. Blunting Neuroinflammation by Targeting the Immunoproteasome with Novel Amide Derivatives. Int J Mol Sci 2023; 24:10732. [PMID: 37445907 DOI: 10.3390/ijms241310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Neuroinflammation is an inflammatory response of the nervous tissue mediated by the production of cytokines, chemokines, and reactive oxygen species. Recent studies have shown that an upregulation of immunoproteasome is highly associated with various diseases and its inhibition attenuates neuroinflammation. In this context, the development of non-covalent immunoproteasome-selective inhibitors could represent a promising strategy for treating inflammatory diseases. Novel amide derivatives, KJ3 and KJ9, inhibit the β5 subunit of immunoproteasome and were used to evaluate their possible anti-inflammatory effects in an in vitro model of TNF-α induced neuroinflammation. Differentiated SH-SY5Y and microglial cells were challenged with 10 ng/mL TNF-α for 24 h and treated with KJ3 (1 µM) and KJ9 (1 µM) for 24 h. The amide derivatives showed a significant reduction of oxidative stress and the inflammatory cascade triggered by TNF-α reducing p-ERK expression in treated cells. Moreover, the key action of these compounds on the immunoproteasome was further confirmed by halting the IkB-α phosphorylation and the consequent inhibition of NF-kB. As downstream targets, IL-1β and IL-6 expression resulted also blunted by either KJ3 and KJ9. These preliminary results suggest that the effects of these two compounds during neuroinflammatory response relies on the reduced expression of pro-inflammatory targets.
Collapse
Affiliation(s)
- Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
42
|
Mamrosh JL, Sherman DJ, Cohen JR, Johnston JA, Joubert MK, Li J, Lipford JR, Lomenick B, Moradian A, Prabhu S, Sweredoski MJ, Vander Lugt B, Verma R, Deshaies RJ. Quantitative measurement of the requirement of diverse protein degradation pathways in MHC class I peptide presentation. SCIENCE ADVANCES 2023; 9:eade7890. [PMID: 37352349 PMCID: PMC10289651 DOI: 10.1126/sciadv.ade7890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.
Collapse
Affiliation(s)
- Jennifer L. Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - David J. Sherman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Joseph R. Cohen
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael J. Sweredoski
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rati Verma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Raymond J. Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
43
|
Sharland AF, Hill AE, Son ET, Scull KE, Mifsud NA, Purcell AW. Are Induced/altered Self-peptide Antigens Responsible for De Novo Autoreactivity in Transplantation? Transplantation 2023; 107:1232-1236. [PMID: 36706066 PMCID: PMC10205114 DOI: 10.1097/tp.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Alexandra F. Sharland
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra E. Hill
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Eric T. Son
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katherine E. Scull
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
44
|
Maltsev A, Funikov S, Rezvykh A, Teterina E, Nebogatikov V, Burov A, Bal N, Ustyugov A, Karpov V, Morozov A. Chronic Administration of Non-Constitutive Proteasome Inhibitor Modulates Long-Term Potentiation and Glutamate Signaling-Related Gene Expression in Murine Hippocampus. Int J Mol Sci 2023; 24:ijms24098172. [PMID: 37175876 PMCID: PMC10179285 DOI: 10.3390/ijms24098172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Proteasomes degrade most intracellular proteins. Several different forms of proteasomes are known. Little is known about the role of specific proteasome forms in the central nervous system (CNS). Inhibitors targeting different proteasome forms are used in clinical practice and were shown to modulate long-term potentiation (LTP) in hippocampal slices of untreated animals. Here, to address the role of non-constitutive proteasomes in hippocampal synaptic plasticity and reveal the consequences of their continuous inhibition, we studied the effect of chronic administration of the non-constitutive proteasome inhibitor ONX-0914 on the LTP induced by two different protocols: tetanic stimulation and theta-burst stimulation (TBS). Both the tetanus- and TBS-evoked potentiation contribute to the different forms of hippocampal-dependent memory and learning. Field-excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from control animals and animals treated with DMSO or ONX-0914 were compared. LTP induced by the TBS was not affected by ONX-0914 administration; however, chronic injections of ONX-0914 led to a decrease in fEPSP slopes after tetanic stimulation. The observed effects correlated with differential expression of genes involved in synaptic plasticity, glutaminergic synapse, and synaptic signaling. Obtained results indicate that non-constitutive proteasomes are likely involved in the tetanus-evoked LTP, but not the LTP occurring after TBS, supporting the relevance and complexity of the role of specific proteasomes in synaptic plasticity, memory, and learning.
Collapse
Affiliation(s)
- Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Ekaterina Teterina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny Proezd, 1, 142432 Chernogolovka, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny Proezd, 1, 142432 Chernogolovka, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Natalia Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny Proezd, 1, 142432 Chernogolovka, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| |
Collapse
|
45
|
Wang H, Luo F, Shao X, Gao Y, Jiang N, Jia C, Li H, Chen R. Integrated Proteomics and Single-Cell Mass Cytometry Analysis Dissects the Immune Landscape of Ankylosing Spondylitis. Anal Chem 2023; 95:7702-7714. [PMID: 37126452 DOI: 10.1021/acs.analchem.3c00809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mass cytometry is a powerful single-cell technology widely adopted to depict immune cell heterogeneity in different contexts. However, this method is only capable of examining several dozens of proteins simultaneously and requires a prior knowledge of the markers to be analyzed. Here we propose that the integration of mass cytometry with shot-gun proteomics may serve as a valuable tool to achieve an in-depth understanding of the immune system. By implementing such a strategy, we investigated the immune landscape of ankylosing spondylitis (AS), a chronic inflammatory arthritis with unclear etiology. The proteome alteration in peripheral blood mononuclear cells (PBMCs) was investigated by quantitative proteomics, and then mass cytometry analysis was conducted to decipher the immunome by considering the signaling molecules identified with differential expression by proteomics. As a result, we identified a wide spectrum of proteins dysregulated in AS, e.g., upregulation of glycolytic enzymes, downregulation of lipid transporters, and dysregulation of chemokine signaling molecules involved in proinflammatory cytokine production and leucocyte migration. Moreover, the single-cell analysis showed the upregulation of chemokine signaling regulators in subclusters of both innate and adaptive immune cells in AS. In addition, correlation analysis unveiled the interplay among Phenograph-identified subclusters of monocytes, CD4+ T cells, and CD8+ T cells. Taken together, our findings demonstrated that the integration of mass spectrometry-based proteomics and single-cell mass cytometry may serve as a useful tool to reveal clinically relevant information regarding useful targets and cellular phenotypes that could be further exploited to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengting Luo
- Department of Clinical Laboratory, Tianjin Hospital, Tianjin 300142, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Hongle Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
46
|
Shafi AM, Végvári Á, Zubarev RA, Penha-Gonçalves C. Brain endothelial cells exposure to malaria parasites links type I interferon signalling to antigen presentation, immunoproteasome activation, endothelium disruption, and cellular metabolism. Front Immunol 2023; 14:1149107. [PMID: 36993973 PMCID: PMC10042232 DOI: 10.3389/fimmu.2023.1149107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionCerebral malaria (CM) lethality is attributable to induction of brain edema induction but the cellular mechanisms involving brain microvascular endothelium in CM pathogenesis are unexplored.ResultsActivation of the STING-INFb-CXCL10 axis in brain endothelial cells (BECs) is a prominent component of the innate immune response in CM development in mouse models. Using a T cell-reporter system, we show that Type 1 IFN signaling in BECs exposed to Plasmodium berghei-infected erythrocytes (PbA-IE), functionally enhances MHC Class-I antigen presentation through gamma-interferon independent immunoproteasome activation and impacted the proteome functionally related to vesicle trafficking, protein processing/folding and antigen presentation. In vitro assays showed that Type 1 IFN signaling and immunoproteasome activation are also involved in the dysfunction of the endothelial barrier through disturbing gene expression in the Wnt/ß-catenin signaling pathway. We demonstrate that IE exposure induces a substantial increase in BECs glucose uptake while glycolysis blockade abrogates INFb secretion impairing immunoproteasome activation, antigen presentation and Wnt/ß-catenin signaling.DiscussionMetabolome analysis show that energy demand and production are markedly increased in BECs exposed to IE as revealed by enriched content in glucose and amino acid catabolites. In accordance, glycolysis blockade in vivo delayed the clinical onset of CM in mice. Together the results show that increase in glucose uptake upon IE exposure licenses Type 1 IFN signaling and subsequent immunoproteasome activation contributing to enhanced antigen presentation and impairment of endothelial barrier function. This work raises the hypothesis that Type 1 IFN signaling-immunoproteasome induction in BECs contributes to CM pathology and fatality (1) by increasing antigen presentation to cytotoxic CD8+ T cells and (2) by promoting endothelial barrier dysfunction, that likely favor brain vasogenic edema.
Collapse
Affiliation(s)
| | - Ákos Végvári
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Penha-Gonçalves
- Disease Genetics, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- *Correspondence: Carlos Penha-Gonçalves,
| |
Collapse
|
47
|
Wang X, Zhang H, Wang Y, Bramasole L, Guo K, Mourtada F, Meul T, Hu Q, Viteri V, Kammerl I, Konigshoff M, Lehmann M, Magg T, Hauck F, Fernandez IE, Meiners S. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity. EMBO J 2023; 42:e110597. [PMID: 36912165 PMCID: PMC10106989 DOI: 10.15252/embj.2022110597] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8+ T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8+ T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8+ T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8+ T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huabin Zhang
- Neurosurgical Research, Department of Neurosurgery, University Hospital and Walter-Brendel-Centre of Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Wang
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Laylan Bramasole
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fatima Mourtada
- Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Qianjiang Hu
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Valeria Viteri
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Ilona Kammerl
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Melanie Konigshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.,Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Department of Medicine V, University Hospital, LMU Munich, Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany.,Research Center Borstel/Leibniz Lung Center, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
48
|
Muchamuel T, Fan RA, Anderl JL, Bomba DJ, Johnson HWB, Lowe E, Tuch BB, McMinn DL, Millare B, Kirk CJ. Zetomipzomib (KZR-616) attenuates lupus in mice via modulation of innate and adaptive immune responses. Front Immunol 2023; 14:1043680. [PMID: 36969170 PMCID: PMC10036830 DOI: 10.3389/fimmu.2023.1043680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Zetomipzomib (KZR-616) is a selective inhibitor of the immunoproteasome currently undergoing clinical investigation in autoimmune disorders. Here, we characterized KZR-616 in vitro and in vivo using multiplexed cytokine analysis, lymphocyte activation and differentiation, and differential gene expression analysis. KZR-616 blocked production of >30 pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs), polarization of T helper (Th) cells, and formation of plasmablasts. In the NZB/W F1 mouse model of lupus nephritis (LN), KZR-616 treatment resulted in complete resolution of proteinuria that was maintained at least 8 weeks after the cessation of dosing and was mediated in part by alterations in T and B cell activation, including reduced numbers of short and long-lived plasma cells. Gene expression analysis of human PBMCs and tissues from diseased mice revealed a consistent and broad response focused on inhibition of T, B, and plasma cell function and the Type I interferon pathway and promotion of hematopoietic cell lineages and tissue remodeling. In healthy volunteers, KZR-616 administration resulted in selective inhibition of the immunoproteasome and blockade of cytokine production following ex vivo stimulation. These data support the ongoing development of KZR-616 in autoimmune disorders such as systemic lupus erythematosus (SLE)/LN.
Collapse
|
49
|
Zhang J, Li W, Xiong Z, Zhu J, Ren X, Wang S, Kuang H, Lin X, Mora A, Li X. PDGF-D-induced immunoproteasome activation and cell-cell interactions. Comput Struct Biotechnol J 2023; 21:2405-2418. [PMID: 37066124 PMCID: PMC10090480 DOI: 10.1016/j.csbj.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) is abundantly expressed in ocular diseases. Yet, it remains unknown whether and how PDGF-D affects ocular cells or cell-cell interactions in the eye. In this study, using single-cell RNA sequencing (scRNA-seq) and a mouse model of PDGF-D overexpression in retinal pigment epithelial (RPE) cells, we found that PDGF-D overexpression markedly upregulated the key immunoproteasome genes, leading to increased antigen processing/presentation capacity of RPE cells. Also, more than 6.5-fold ligand-receptor pairs were found in the PDGF-D overexpressing RPE-choroid tissues, suggesting markedly increased cell-cell interactions. Moreover, in the PDGF-D-overexpressing tissues, a unique cell population with a transcriptomic profile of both stromal cells and antigen-presenting RPE cells was detected, suggesting PDGF-D-induced epithelial-mesenchymal transition of RPE cells. Importantly, administration of ONX-0914, an immunoproteasome inhibitor, suppressed choroidal neovascularization (CNV) in a mouse CNV model in vivo. Together, we show that overexpression of PDGF-D increased pro-angiogenic immunoproteasome activities, and inhibiting immunoproteasome pathway may have therapeutic value for the treatment of neovascular diseases.
Collapse
|
50
|
Li J, Liu N, Zhou H, Xian P, Song Y, Tang X, Li Y, Basler M. Immunoproteasome inhibition prevents progression of castration-resistant prostate cancer. Br J Cancer 2023; 128:1377-1390. [PMID: 36681728 PMCID: PMC10050322 DOI: 10.1038/s41416-022-02129-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment. This study aims to explore the effect and underlying mechanisms of immunoproteasome inhibition, a novel immunotherapy, on the progression of CRPC. METHODS The immunoproteasome subunit LMP7 was silenced by using gene knockout or inhibited by the epoxyketone inhibitor ONX 0914 in a mouse CRPC tumour graft model and in interferon-γ-pretreated human CRPC cell lines in vitro. RESULTS CRPC tissues reveal a significant "tumour-elicited" Th17-type inflammatory response which induces immunoproteasome subunit expression. LMP7 deficiency in host mice or in CRPC tumour grafts had no effect on the "tumour-elicited" Th17-type inflammatory response and tumour progression. However, the selective LMP7 inhibitor ONX 0914 strongly suppressed the "tumour-elicited" Th17-type inflammatory response and CRPC tumour progression. Treatment of wild-type mice receiving LMP7-deficient CRPC tumour grafts with ONX 0914 further suggested that immunoproteasome inhibition prevents CRPC progression through suppressing IL-17-induced angiogenesis and epithelial-mesenchymal transition via inactivation of COX-2/VEGF-A signalling and β-catenin/Snail signalling. Treatment of LMP7-deficient mice receiving wild-type CRPC tumour grafts with ONX 0914 and inhibition of LMP7 in PC3 and 22Rv.1 cells with ONX 0914 showed that immunoproteasome inhibition also prevents CRPC progression through inducing CRPC cell apoptosis via activation of the unfolded protein response. CONCLUSIONS We define a critical role of the immunoproteasome in CRPC and propose immunoproteasome inhibition as a promising therapeutic approach to suppress CRPC progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Nan Liu
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Hong Zhou
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Peng Xian
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yanping Song
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Xianli Tang
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Yuan Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany.
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.
| |
Collapse
|