1
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
2
|
Rafii P, Cruz PR, Ettich J, Seibel C, Padrini G, Wittich C, Lang A, Petzsch P, Köhrer K, Moll JM, Floss DM, Scheller J. Engineered interleukin-6-derived cytokines recruit artificial receptor complexes and disclose CNTF signaling via the OSMR. J Biol Chem 2024; 300:107251. [PMID: 38569939 PMCID: PMC11039321 DOI: 10.1016/j.jbc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Rodrigues Cruz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
4
|
Yuan Y, Li K, Ye X, Wen S, Zhang Y, Teng F, Zhou X, Deng Y, Yang X, Wang W, Lin J, Luo S, Zhang P, Shi G, Zhang H. CLCF1 inhibits energy expenditure via suppressing brown fat thermogenesis. Proc Natl Acad Sci U S A 2024; 121:e2310711121. [PMID: 38190531 PMCID: PMC10801846 DOI: 10.1073/pnas.2310711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Kangli Li
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing400037, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Shiyi Wen
- Department of Endocrinology and Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, China
| | - Yanan Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xuan Zhou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xiaoyu Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Weiwei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510630, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
5
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Rafii P, Seibel C, Weitz HT, Ettich J, Minafra AR, Petzsch P, Lang A, Floss DM, Behnke K, Köhrer K, Moll JM, Scheller J. Cytokimera GIL-11 rescued IL-6R deficient mice from partial hepatectomy-induced death by signaling via non-natural gp130:LIFR:IL-11R complexes. Commun Biol 2023; 6:418. [PMID: 37061565 PMCID: PMC10105715 DOI: 10.1038/s42003-023-04768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common β receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Feng C, Jiang Y, Wu G, Shi Y, Ge Y, Li B, Cheng X, Tang X, Zhu J, Le G. Dietary Methionine Restriction Improves Gastrocnemius Muscle Glucose Metabolism through Improved Insulin Secretion and H19/IRS-1/Akt Pathway in Middle-Aged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5655-5666. [PMID: 36995760 DOI: 10.1021/acs.jafc.2c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methionine restriction (MR) improves glucose metabolism. In skeletal muscle, H19 is a key regulator of insulin sensitivity and glucose metabolism. Therefore, this study aims to reveal the underlying mechanism of H19 upon MR on glucose metabolism in skeletal muscle. Middle-aged mice were fed MR diet for 25 weeks. Mouse islets β cell line β-TC6 cells and mouse myoblast cell line C2C12 cells were used to establish the apoptosis or insulin resistance model. Our findings showed that MR increased B-cell lymphoma-2 (Bcl-2) expression, deceased Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate-specific proteinase-3 (Caspase-3) expression in pancreas, and promoted insulin secretion of β-TC6 cells. Meanwhile, MR increased H19 expression, insulin Receptor Substrate-1/insulin Receptor Substrate-2 (IRS-1/IRS-2) value, protein Kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK3β) phosphorylation, and hexokinase 2 (HK2) expression in gastrocnemius muscle and promoted glucose uptake in C2C12 cells. But these results were reversed after H19 knockdown in C2C12 cells. In conclusion, MR alleviates pancreatic apoptosis and promotes insulin secretion. And MR enhances gastrocnemius muscle insulin-dependent glucose uptake and utilization via the H19/IRS-1/Akt pathway, thereby ameliorating blood glucose disorders and insulin resistance in high-fat-diet (HFD) middle-aged mice.
Collapse
Affiliation(s)
- Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuge Jiang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yonghui Shi
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yueting Ge
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianjin Zhu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Gonzalez P, Dos Santos A, Darnaud M, Moniaux N, Rapoud D, Lacoste C, Nguyen TS, Moullé VS, Deshayes A, Amouyal G, Amouyal P, Bréchot C, Cruciani-Guglielmacci C, Andréelli F, Magnan C, Faivre J. Antimicrobial protein REG3A regulates glucose homeostasis and insulin resistance in obese diabetic mice. Commun Biol 2023; 6:269. [PMID: 36918710 PMCID: PMC10015038 DOI: 10.1038/s42003-023-04616-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.
Collapse
Affiliation(s)
- Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | - Valentine S Moullé
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France
| | | | | | | | | | - Fabrizio Andréelli
- Sorbonne Université, INSERM, NutriOmics team, Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, 75013, France
| | - Christophe Magnan
- Université of Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, 75013, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, 94800, France.
- Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, 94270, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP). Université Paris Saclay, Medical-University Department (DMU) Biology, Genetics, Pharmacy, Paul-Brousse Hospital, Villejuif, 94800, France.
| |
Collapse
|
9
|
Mengeste AM, Nikolić N, Dalmao Fernandez A, Feng YZ, Nyman TA, Kersten S, Haugen F, Kase ET, Aas V, Rustan AC, Thoresen GH. Insight Into the Metabolic Adaptations of Electrically Pulse-Stimulated Human Myotubes Using Global Analysis of the Transcriptome and Proteome. Front Physiol 2022; 13:928195. [PMID: 35874526 PMCID: PMC9298736 DOI: 10.3389/fphys.2022.928195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuan Z Feng
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Fred Haugen
- Department of Work Psychology and Physiology, STAMI-The National Institute of Occupational Health, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Perugini J, Di Mercurio E, Giuliani A, Sabbatinelli J, Bonfigli AR, Tortato E, Severi I, Cinti S, Olivieri F, le Roux CW, Gesuita R, Giordano A. Ciliary neurotrophic factor is increased in the plasma of patients with obesity and its levels correlate with diabetes and inflammation indices. Sci Rep 2022; 12:8331. [PMID: 35585213 PMCID: PMC9117681 DOI: 10.1038/s41598-022-11942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
To establish whether obesity involves activation of endogenous ciliary neurotrophic factor (CNTF) signalling, we evaluated its plasma levels in patients with obesity and correlated its values with the major clinical and haematological indices of obesity, insulin resistance and systemic inflammation. This study involved 118 subjects: 39 healthy controls (19 men), 39 subjects with obesity (19 men) and 40 subjects with obesity and diabetes (20 men). Plasma CNTF and CNTF receptor α (CNTFRα) were measured using commercial ELISA kits. The results showed that plasma CNTF was significantly higher in males and females with obesity with and without diabetes than in healthy subjects. Women consistently exhibited higher levels of circulating CNTF. In both genders, CNTF levels correlated significantly and positively with obesity (BMI, WHR, leptin), diabetes (fasting insulin, HOMA index and HbA1c) and inflammation (IL-6 and hsCRP) indices. Circulating CNTFRα and the CNTF/CNTFRα molar ratio tended to be higher in the patient groups than in controls. In conclusion, endogenous CNTF signalling is activated in human obesity and may help counteract some adverse effects of obesity. Studies involving a higher number of selected patients may reveal circulating CNTF and/or CNTFRα as potential novel diagnostic and/or prognostic markers of obesity, diabetes and associated diseases.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- Laboratory Medicine Unit, United Hospitals, Ancona, Italy
| | | | | | - Ilenia Severi
- Department of Experimental and Clinical Medicine, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy
- Center of Obesity, Marche Polytechnic University-United Hospitals, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Rosaria Gesuita
- Center of Epidemiology and Biostatistics, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, School of Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
- Center of Obesity, Marche Polytechnic University-United Hospitals, Ancona, Italy.
| |
Collapse
|
11
|
Hu MM, Chen JH, Zhang QQ, Song ZY, Shaukat H, Qin H. Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism. Food Nutr Res 2022; 66:8231. [PMID: 35382382 PMCID: PMC8941404 DOI: 10.29219/fnr.v66.8231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022] Open
Abstract
Background Globally, obesity is a significant public problem, especially when aging. Sesamol, a phenolic lignan present in sesame seeds, might have a positive effect on high-fat diet (HFD)-induced obesity associated with aging. Objective The purpose of current research study was to explore salutary effects and mechanisms of sesamol in treating alimentary obesity and associated metabolic syndrome in middle-aged mice. Methods C57BL/6J mice aged 4–6 weeks and 6–8 months were assigned to the young normal diet group, middle-aged normal diet group, middle-aged HFD group, and middle-aged HFD + sesamol group. At the end of experiment, glucose tolerance test and insulin tolerance test were performed; the levels of lipids and oxidative stress-related factors in the serum and skeletal muscle were detected using chemistry reagent kits; lipid accumulation in skeletal muscle was observed by oil red O staining; the expressions of muscular glucose and lipid metabolism associated proteins were measured by Western blotting. Results Sesamol decreased the body weight and alleviated obesity-associated metabolism syndrome in middle-aged mice, such as glucose intolerance, insulin resistance, dyslipidemia, and oxidative stress. Moreover, muscular metabolic disorders were attenuated after treatment with sesamol. It increased the expression of glucose transporter type-4 and down-regulated the protein levels of pyruvate dehydrogenase kinase isozyme 4, implying the increase of glucose uptake and oxidation. Meanwhile, sesamol decreased the expression of sterol regulatory element binding protein 1c and up-regulated the phosphorylation of hormone-sensitive lipase and the level of carnitine palmityl transferase 1α, which led to the declined lipogenesis and the increased lipolysis and lipid oxidation. In addition, the SIRT1/AMPK signaling pathway was triggered by sesamol, from which it is understood how sesamol enhances glucose and lipid metabolism. Conclusions Sesamol counteracts on metabolic disorders of middle-aged alimentary obese mice through regulating skeletal muscle glucose and lipid metabolism, which might be associated with the stimulation of the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Min-Min Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Hua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Quan-Quan Zhang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zi-Yu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
12
|
Nardo WD, Miotto PM, Bayliss J, Nie S, Keenan SN, Montgomery MK, Watt MJ. Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism. Mol Metab 2022; 60:101491. [PMID: 35381388 PMCID: PMC9034320 DOI: 10.1016/j.molmet.2022.101491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. Methods C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. Results Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. Conclusions Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD. Exercise training remodels hepatokine secretion. Exercise regulated secreted factors improve insulin action in skeletal muscle. Syndecan-4 (SDC4) is a novel exercise-induced hepatokine. SDC4 reduces hepatic fatty acid uptake and hepatic steatosis.
Collapse
|
13
|
Hu MM, Zheng WY, Cheng MH, Song ZY, Shaukat H, Atta M, Qin H. Sesamol Reverses Myofiber-Type Conversion in Obese States via Activating the SIRT1/AMPK Signal Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2253-2264. [PMID: 35166533 DOI: 10.1021/acs.jafc.1c08036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects. The present research aimed to explore the therapeutic effects of sesamol on obesity-related skeletal muscle-fiber-type conversion and elucidate the underlying molecular mechanisms through utilizing a high-fat-diet-induced obese C57BL/6J mice model and palmitic acid-exposed C2C12 myotubes. The results showed that sesamol attenuated obesity-related metabolic disturbances, elevated exercise endurance of obese mice, and decreased lipid accumulation and insulin resistance in skeletal muscle. After the treatment with sesamol, the muscular mitochondrial content and biogenesis were increased, accompanied by the enzyme activities and myosin heavy-chain isoform changed from type II fiber to type I fiber. Mechanistic studies revealed that the effects of sesamol on reversing skeletal muscle-fiber-type conversion in obese states were associated with the stimulation of the muscular sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signal pathway, and these effects could be inhibited by a specific inhibitor of SIRT1, EX-527. In conclusion, our research provided novel evidence that sesamol could regulate myofiber-type conversion to treat obesity and obesity-related metabolic disorders by stimulating the muscular SIRT1/AMPK signal pathway.
Collapse
Affiliation(s)
- Min-Min Hu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Wen-Ya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Ming-Hui Cheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Zi-Yu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Horia Shaukat
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Mahnoor Atta
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha 410078, Hunan Province China
| |
Collapse
|
14
|
Maffei M, Giordano A. Leptin, the brain and energy homeostasis: From an apparently simple to a highly complex neuronal system. Rev Endocr Metab Disord 2022; 23:87-101. [PMID: 33822303 DOI: 10.1007/s11154-021-09636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Leptin, produced and secreted by white adipose tissue in tight relationship with adipose mass, informs the brain about the status of the energy stores serving as the main peripheral signal for energy balance regulation through interaction with a multitude of highly interconnected neuronal populations. Most obese patients display resistance to the anorectic effect of the hormone. The present review unravels the multiple levels of complexity that trigger hypothalamic response to leptin with the objective of highlighting those critical hubs that, mainly in the hypothalamic arcuate nucleus, may undergo obesity-induced alterations and create an obstacle to leptin action. Several mechanisms underlying leptin resistance have been proposed, possibly representing useful targets to empower leptin effects. Among these, a special focus is herein dedicated to detail how leptin gains access into the brain and how neuronal plasticity may interfere with leptin function.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy.
- Obesity and Lipodystrophy Center, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
15
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
16
|
Zumbaugh MD, Yen CN, Bodmer JS, Shi H, Gerrard DE. Skeletal Muscle O-GlcNAc Transferase Action on Global Metabolism Is Partially Mediated Through Interleukin-15. Front Physiol 2021; 12:682052. [PMID: 34326778 PMCID: PMC8313823 DOI: 10.3389/fphys.2021.682052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
Besides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the Il15 promoter. However, whether there is a causal relationship between OGT ablation-induced IL-15 secretion and the lean phenotype remains unknown. To address this question, we generated muscle specific OGT and interleukin-15 receptor alpha subunit (IL-15rα) double knockout mice (mDKO). Deletion of IL-15rα in skeletal muscle impaired IL-15 secretion. When fed with a high-fat diet, mDKO mice were no longer protected against HFD-induced obesity compared to wild-type mice. After 22 weeks of HFD feeding, mDKO mice had an intermediate body weight and glucose sensitivity compared to wild-type and OGT knockout mice. Taken together, these data suggest that OGT action is partially mediated by muscle IL-15 production and provides some clarity into how disrupting the O-GlcNAc nutrient signaling pathway leads to a lean phenotype. Further, our work suggests that interfering with the OGT-IL15 nutrient sensing axis may provide a new avenue for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Con-Ning Yen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jocelyn S Bodmer
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
17
|
IL-6 family cytokines as potential therapeutic strategies to treat metabolic diseases. Cytokine 2021; 144:155549. [PMID: 33962843 DOI: 10.1016/j.cyto.2021.155549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Metabolic disease is highly prevalent. Here we discuss the therapeutic utility of using gp130 receptor ligands as a therapeutic strategy to treat metabolic disease.
Collapse
|
18
|
Siebert JC, Stanislawski MA, Zaman A, Ostendorf DM, Konigsberg IR, Jambal P, Ir D, Bing K, Wayland L, Scorsone JJ, Lozupone CA, Görg C, Frank DN, Bessesen D, MacLean PS, Melanson EL, Catenacci VA, Borengasser SJ. Multiomic Predictors of Short-Term Weight Loss and Clinical Outcomes During a Behavioral-Based Weight Loss Intervention. Obesity (Silver Spring) 2021; 29:859-869. [PMID: 33811477 PMCID: PMC8085074 DOI: 10.1002/oby.23127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Identifying predictors of weight loss and clinical outcomes may increase understanding of individual variability in weight loss response. We hypothesized that baseline multiomic features, including DNA methylation (DNAme), metabolomics, and gut microbiome, would be predictive of short-term changes in body weight and other clinical outcomes within a comprehensive weight loss intervention. METHODS Healthy adults with overweight or obesity (n = 62, age 18-55 years, BMI 27-45 kg/m2 , 75.8% female) participated in a 1-year behavioral weight loss intervention. To identify baseline omic predictors of changes in clinical outcomes at 3 and 6 months, whole-blood DNAme, plasma metabolites, and gut microbial genera were analyzed. RESULTS A network of multiomic relationships informed predictive models for 10 clinical outcomes (body weight, waist circumference, fat mass, hemoglobin A1c , homeostatic model assessment of insulin resistance, total cholesterol, triglycerides, C-reactive protein, leptin, and ghrelin) that changed significantly (P < 0.05). For eight of these, adjusted R2 ranged from 0.34 to 0.78. Our models identified specific DNAme sites, gut microbes, and metabolites that were predictive of variability in weight loss, waist circumference, and circulating triglycerides and that are biologically relevant to obesity and metabolic pathways. CONCLUSIONS These data support the feasibility of using baseline multiomic features to provide insight for precision nutrition-based weight loss interventions.
Collapse
Affiliation(s)
- Janet C. Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Adnin Zaman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle M. Ostendorf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Bing
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liza Wayland
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jared J. Scorsone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Catherine A. Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Bessesen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S. MacLean
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward L. Melanson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO, USA
| | - Victoria A. Catenacci
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr Disord 2021; 21:80. [PMID: 33902539 PMCID: PMC8074411 DOI: 10.1186/s12902-021-00718-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. METHODS To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. RESULTS A total of 820 DEGs were identified between healthy obese and metabolically unhealthy obese, among 409 up regulated and 411 down regulated genes. The GO enrichment analysis results showed that these DEGs were significantly enriched in ion transmembrane transport, intrinsic component of plasma membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway enrichment analysis results showed that these DEGs were significantly enriched in integration of energy metabolism and extracellular matrix organization. The hub genes CEBPD, TP73, ESR2, TAB1, MAP 3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play an essential role in obesity associated type 2 diabetes mellitus was further screened. CONCLUSIONS The present study could deepen the understanding of the molecular mechanism of obesity associated type 2 diabetes mellitus, which could be useful in developing therapeutic targets for obesity associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka, 582209, India
| |
Collapse
|
20
|
Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol 2021; 188:114557. [PMID: 33844985 DOI: 10.1016/j.bcp.2021.114557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Valdecoxib (VAL), a non-steroidal anti-inflammatory drug, has been widely used for treatment of rheumatoid arthritis, osteoarthritis, and menstrual pain. It is a selective cyclooxygenase-2 inhibitor. The suppressive effects of VAL on cardiovascular diseases and neuroinflammation have been documented; however, its impact on insulin signaling in skeletal muscle has not been studied in detail. The aim of this study was to investigate the effects of VAL on insulin resistance in mouse skeletal muscle. Treatment of C2C12 myocytes with VAL reversed palmitate-induced aggravation of insulin signaling and glucose uptake. Further, VAL attenuated palmitate-induced inflammation and endoplasmic reticulum (ER) stress in a concentration-dependent manner. Treatment with VAL concentration-dependently upregulated AMP-activated protein kinase (AMPK) and heat shock protein beta 1 (HSPB1) expression. In line with in vitro experiments, treatment with VAL augmented AMPK phosphorylation and HSPB1 expression, thereby alleviating high-fat diet-induced insulin resistance along with inflammation and ER stress in mouse skeletal muscle. However, small interfering RNA-mediated inhibition of AMPK abolished the effects of VAL on insulin resistance, inflammation, and ER stress. These results suggest that VAL alleviates insulin resistance through AMPK/HSPB1-mediated inhibition of inflammation and ER stress in skeletal muscle under hyperlipidemic conditions. Hence, VAL could be used as an effective pharmacotherapeutic agent for management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Zhu Y, Mao H, Peng G, Zeng Q, Wei Q, Ruan J, Huang J. Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens. Anim Biosci 2021; 34:143-153. [PMID: 32106651 PMCID: PMC7888496 DOI: 10.5713/ajas.19.0874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. METHODS We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. RESULTS We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. CONCLUSION These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.
Collapse
Affiliation(s)
- Yaling Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Department of Pathophysiology, Anhui Medical University, Hefei 230000, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei 230000, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Gang Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
22
|
Rauen M, Bollheimer LC, Nourbakhsh M. Underlying mechanisms of sarcopenic obesity. SARCOPENIA 2021:231-248. [DOI: 10.1016/b978-0-12-822146-4.00005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Guo S, Gong L, Shen Q, Xing D. Photobiomodulation reduces hepatic lipogenesis and enhances insulin sensitivity through activation of CaMKKβ/AMPK signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112075. [PMID: 33152638 DOI: 10.1016/j.jphotobiol.2020.112075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation (PBM) could improve systemic blood glucose and insulin resistance in diet-induced diabetic mice. A few possible molecular mechanisms for the beneficial effects of PBM on diabetes have been proposed, but there is still an urgent need to explore the underlying mechanisms that support the application of PBM in the treatment of diabetes. Our study aimed to evaluate the effects of PBM on lipid metabolism in the liver of high-fat diet (HFD)-induced mice and explore the potential mechanisms of PBM on obesity and type 2 diabetes. Here, we administered PBM therapy (wavelength: 635 nm, energy density: 8 J/cm2) daily for eight weeks to HFD-induced mice. We detected that eight-week daily administration of PBM ameliorated HFD-induced gain weight, hyperlipidemia, and hyperglycemia, but also protected against diet-induced hepatic steatosis and insulin resistance. Furthermore, PBM increased AMP-activated protein kinase (AMPK) activation, lowered nuclear translocation of sterol regulatory element binding protein 1 (SREBP1), decreased aberrant lipogenesis, and enhanced insulin sensitive in HFD-induced mice livers. We also observed that Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation was responsible for AMPK activation in insulin-resistant HepG2 cells exposed to PBM. In summary, PBM at 635 nm and 8 J/cm2 improved hepatic lipid metabolism and inhibited the development of HFD-induced obesity and type 2 diabetes. Moreover, increased intracellular Ca2+ content and CaMKKβ-dependent AMPK activation were possible molecular mechanisms underlying the PBM-induced improvement on obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shuang Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China; College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
24
|
Jiang H, Zhang N, Ji C, Meng X, Qian K, Zheng Y, Wang J. Metabolic and transcriptome responses of RNAi-mediated AMPKα knockdown in Tribolium castaneum. BMC Genomics 2020; 21:655. [PMID: 32967608 PMCID: PMC7510082 DOI: 10.1186/s12864-020-07070-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background The AMP-activated protein kinase (AMPK) is an intracellular fuel sensor for lipid and glucose metabolism. In addition to the short-term regulation of metabolic enzymes by phosphorylation, AMPK may also exert long-term effects on the transcription of downstream genes through the regulation of transcription factors and coactivators. In this study, RNA interference (RNAi) was conducted to investigate the effects of knockdown of TcAMPKα on lipid and carbohydrate metabolism in the red flour beetle, Tribolium castaneum, and the transcriptome profiles of dsTcAMPKα-injected and dsEGFP-injected beetles under normal conditions were compared by RNA-sequencing. Results RNAi-mediated suppression of TcAMPKα increased whole-body triglyceride (TG) level and the ratio between glucose and trehalose, as was confirmed by in vivo treatment with the AMPK-activating compound, 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR). A total of 1184 differentially expressed genes (DEGs) were identified between dsTcAMPKα-injected and dsEGFP-injected beetles. These include genes involved in lipid and carbohydrate metabolism as well as insulin/insulin-like growth factor signaling (IIS). Real-time quantitative polymerase chain reaction analysis confirmed the differential expression of selected genes. Interestingly, metabolism-related transcription factors such as sterol regulatory element-binding protein 1 (SREBP1) and carbohydrate response element-binding protein (ChREBP) were also significantly upregulated in dsTcAMPKα-injected beetles. Conclusions AMPK plays a critical role in the regulation of beetle metabolism. The findings of DEGs involved in lipid and carbohydrate metabolism provide valuable insight into the role of AMPK signaling in the transcriptional regulation of insect metabolism.
Collapse
Affiliation(s)
- Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Caihong Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Nano Chromium Picolinate Improves Gene Expression Associated with Insulin Signaling in Porcine Skeletal Muscle and Adipose Tissue. Animals (Basel) 2020; 10:ani10091685. [PMID: 32961883 PMCID: PMC7552722 DOI: 10.3390/ani10091685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Dietary chromium has been shown to reduce fat deposition and improve insulin action whereas dietary fat can increase fat deposition and cause insulin resistance. This study found that dietary nanoparticles of chromium picolinate, an organic form of chromium, caused changes in the genes involved in insulin action in both muscle and fat tissue that indicated improved insulin action. Conversely, a moderate increase in dietary fat caused changes consistent with increased fat deposition and reduced insulin action. In conclusion, nanoparticles of chromium picolinate offer a means of supplementing pigs diets to improve growth performance and carcass composition. Abstract The aim of this study was to investigate the interactive effects of dietary nano chromium picolinate (nCrPic) and dietary fat on genes involved in insulin signaling in skeletal muscle and subcutaneous adipose tissue of pigs. Forty-eight gilts were stratified on body weight into four blocks of four pens of three pigs and then within each block each pen was randomly allocated to four treatment groups in a 2 × 2 factorial design. The respective factors were dietary fat (22 or 57 g/kg) and dietary nCrPic (0 or 400 ppb nCrPic) fed for six weeks. Skeletal muscle samples were collected from the Longissimus thoracis and subcutaneous adipose tissue collected from above this muscle. Dietary nCrPic increased adiponectin, uncoupling protein 3 (UCP3) and serine/threonine protein kinase (AKT) mRNA expression, whereas dietary fat decreased adiponectin and increased leptin, tumor necrosis factor-α (TNF-α), peroxisome proliferator-activated receptors γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) mRNA expression in adipose tissue. In skeletal muscle, dietary nCrPic increased phosphatidylinositol 3 kinase (PI3K), AKT, UCP3 and interleukin-15 (IL-15), as well as decreased suppressor of cytokine signaling 3 (SOCS3) mRNA expression. The improvement in insulin signaling and muscle mass and the reduction in carcass fatness by dietary nCrPic may be via decreased SOCS3 and increased UCP3 and IL-15 in skeletal muscle and increased adiponectin in subcutaneous adipose tissue.
Collapse
|
26
|
Taylor RA, Farrelly SG, Clark AK, Watt MJ. Early intervention exercise training does not delay prostate cancer progression in Pten -/- mice. Prostate 2020; 80:906-914. [PMID: 32519789 DOI: 10.1002/pros.24024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is convincing evidence that men with advanced prostate cancer experience improved quality of life as a result of exercise therapy, although there is limited preclinical, and no clinical, data to directly support the notion that exercise training improves prostate cancer prognosis or outcome. The aim of this study was to investigate the effect of regular exercise training on the early stages of prostate cancer progression, as well as assessing whether alterations to prostate cancer metabolism are induced by exercise. METHODS Mice with prostate-specific deletion of Pten (Pten-/- ) remained sedentary or underwent 6 weeks of endurance exercise training or high-intensity exercise training involving treadmill running. At the conclusion of the training period, the prostate lobes were excised. A portion of fresh tissue was used to assess glucose, glutamine, and fatty acid metabolism by radiometric techniques and a second portion was fixed for histopathology. RESULTS Despite the implementation of an effective exercise regime, as confirmed by improvements in running capacity, neither prostate mass, cell proliferation or the incidence of high-grade prostate intraepithelial hyperplasia or noninvasive carcinoma in situ were significantly different between groups. Similarly, neither glucose uptake, oxidation and de novo lipogenesis, glutamine oxidation, or fatty acid uptake, oxidation and storage into various lipids were significantly different in prostate tissue obtained from untrained and exercise trained mice. CONCLUSIONS These results show that 6 weeks of moderate or high-intensity exercise training does not alter substrate metabolism in the prostate or slow the progression of Pten-null prostate cancer. These results question whether exercise is a useful therapy to prevent or delay prostate cancer progression.
Collapse
Affiliation(s)
- Renea A Taylor
- Department of Physiology, Monash Biomedicine Discovery Institute, Cancer Program, Monash University, Clayton, Victoria, Australia
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon G Farrelly
- Department of Physiology, Monash Biomedicine Discovery Institute, Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med 2020; 11:11/478/eaau5758. [PMID: 30728288 DOI: 10.1126/scitranslmed.aau5758] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten-/- mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia. .,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa R Haynes
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarah T Whitby
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer Lo
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kimberley E Anderson
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Poornima R Wijayaratne
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Maria Matzaris
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Magdalene K Montgomery
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sam Norden
- TissuPath, Mount Waverley, VIC 3149, Australia
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
28
|
Ma D, Wang Y, Zhou G, Wang Y, Li X. Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function. Inflammation 2019; 42:790-798. [PMID: 30661143 DOI: 10.1007/s10753-019-00959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
29
|
Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 2019; 9:biom9120850. [PMID: 31835423 PMCID: PMC6995523 DOI: 10.3390/biom9120850] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a multiprotein complex that acts to enhance inflammatory responses by promoting the production and secretion of key cytokines. The best-known inflammasome is the NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin domain-containing 3) inflammasome. The evidence has shown that the NLRP3 inflammasome, IL-1β, thioredoxin-interacting protein (TXNIP), and pyroptosis play vital roles in the development of diabetes. This review summarizes the regulation of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) by NLRP3 via modulation of glucose tolerance, insulin resistance, inflammation, and apoptosis mediated by endoplasmic reticulum stress in adipose tissue. Moreover, NLRP3 participates in intestinal homeostasis and inflammatory conditions, and NLRP3-deficient mice experience intestinal lesions. The diversity of an individual's gut microbiome and the resultant microbial metabolites determines the extent of their involvement in the physiological and pathological mechanisms within the gut. As such, further study of the interaction between the NLRP3 inflammasome and the complex intestinal environment in disease development is warranted to discover novel therapies for the treatment of diabetes.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
| | - Sheng Xu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong, China;
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, Hunan, China
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| | - Hongmei Jang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China; (S.D.); (Y.M.)
- Correspondence: (G.L.); (H.J.); (J.F.); Tel.:+86-731-8461-9706 (G.L.); +86-731-8461-3600 (J.F.)
| |
Collapse
|
30
|
Perugini J, Di Mercurio E, Tossetta G, Severi I, Monaco F, Reguzzoni M, Tomasetti M, Dani C, Cinti S, Giordano A. Biological Effects of Ciliary Neurotrophic Factor on hMADS Adipocytes. Front Endocrinol (Lausanne) 2019; 10:768. [PMID: 31781039 PMCID: PMC6861295 DOI: 10.3389/fendo.2019.00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Administration of ciliary neurotrophic factor (CNTF) to experimental animals exerts anti-obesity effects by acting on multiple targets. In white adipose tissue CNTF reduces lipid content, promotes fatty acid (FA) oxidation and improves insulin sensitivity. This study was performed to establish whether CNTF exerts similar effects on human white adipocytes. To this end, adipose differentiation was induced in vitro in human multipotent adipose-derived stem (hMADS) cells. CNTF receptor α (CNTFRα) expression was assessed in hMADS cells and adipocytes by qRT-PCR, Western blotting, and immunocytochemistry. After administration of human recombinant CNTF, signaling pathways and gene expression were evaluated by Western blotting and qRT-PCR. Glucose uptake was assessed by measuring 2-nitrobenzodeoxyglucose uptake with a fluorescence plate reader. Lastly, CNTF-induced anti-inflammatory responses were evaluated in hMADS adipocytes stressed with tumor necrosis factor α (TNFα) for 24 h. Results showed that CNTFRα protein expression was higher in undifferentiated hMADS cells than in hMADS adipocytes, where it was however clearly detectable. In hMADS adipocytes, 1 nM CNTF strongly activated the JAK-STAT3 (Janus kinase-signaling transducer and activator of transcription 3) pathway and acutely and transiently activated the AMPK (AMP-activated protein kinase) and AKT (protein kinase B) pathways. Acute CNTF treatment for 20 min significantly increased basal glucose uptake and was associated with increased AKT phosphorylation. Longer-term (24 and 48 h) treatment reduced the expression of lipogenic markers (FA synthase and sterol regulatory element-binding protein-1) and increased the expression of lipolytic [hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL)] and mitochondrial (peroxisome proliferator-activated receptor γ coactivator-1α and carnitine palmitoyltransferase 1) markers. In TNFα-treated hMADS adipocytes, CNTF significantly reduced the expression of monocyte chemoattractant protein 1 and TNFα-induced AKT inhibition. Collectively, these findings demonstrate for the first time that CNTF plays a role also in human adipocytes, driving their metabolism toward a less lipid-storing and more energy-consuming phenotype.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, Nice, France
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
- Center of Obesity, United Hospitals, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
31
|
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature 2019; 574:63-68. [DOI: 10.1038/s41586-019-1601-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/21/2019] [Indexed: 01/11/2023]
|
33
|
Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Front Pharmacol 2019; 10:661. [PMID: 31258478 PMCID: PMC6587894 DOI: 10.3389/fphar.2019.00661] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a condition in which insulin sensitivity is reduced and the insulin signaling pathway is impaired. Although often expressed as an increase in insulin concentration, the disease is characterized by a decrease in insulin action. This increased workload of the pancreas and the consequent decompensation are not only the main mechanisms for the development of type 2 diabetes (T2D), but also exacerbate the damage of metabolic diseases, including obesity, nonalcoholic fatty liver disease, polycystic ovary syndrome, metabolic syndrome, and others. Many clinical trials have suggested the potential role of herbs in the treatment of insulin resistance, although most of the clinical trials included in this review have certain flaws and bias risks in their methodological design, including the generation of randomization, the concealment of allocation, blinding, and inadequate reporting of sample size estimates. These studies involve not only the single-flavored herbs, but also herbal formulas, extracts, and active ingredients. Numerous of in vitro and in vivo studies have pointed out that the role of herbal medicine in improving insulin resistance is related to interventions in various aspects of the insulin signaling pathway. The targets involved in these studies include insulin receptor substrate, phosphatidylinositol 3-kinase, glucose transporter, AMP-activated protein kinase, glycogen synthase kinase 3, mitogen-activated protein kinases, c-Jun-N-terminal kinase, nuclear factor-kappaB, protein tyrosine phosphatase 1B, nuclear factor-E2-related factor 2, and peroxisome proliferator-activated receptors. Improved insulin sensitivity upon treatment with herbal medicine provides considerable prospects for treating insulin resistance. This article reviews studies of the target mechanisms of herbal treatments for insulin resistance.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weitian Yan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Findeisen M, Egan C, Kimber E, Adams T, Rose-John S, Febbraio MA. The designer cytokine IC7Fc improves metabolic homeostasis in db/db mice. Obes Res Clin Pract 2019. [DOI: 10.1016/j.orcp.2018.11.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Biochemical Changes in Blood of Patients with Duchenne Muscular Dystrophy Treated with Granulocyte-Colony Stimulating Factor. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4789101. [PMID: 31001554 PMCID: PMC6436375 DOI: 10.1155/2019/4789101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
Introduction In addition to the “gold standard” of therapy—steroids and gene therapy–there are experimental trials using granulocyte-colony stimulating factor (G-CSF) for patients with Duchenne muscular dystrophy (DMD). The aim of this study was to present the biochemical changes in blood after repeating cycles of granulocyte-colony stimulating factor G-CSF therapy in children with DMD. Materials and Methods Nineteen patients, aged 5 to 15 years, with diagnosed DMD confirmed by genetic tests, participated; nine were in wheelchairs, and ten were mobile and independent. Patients had a clinical assessment and laboratory tests to evaluate hematological parameters and biochemistry. G-CSF (5μg/kg/day) was given subcutaneously for five days during five nonconsecutive months over the course of a year. Results We found a significant elevation of white blood cells, and the level of leucocytes returned to norm after each cycle. No signs of any inflammatory process were found by monitoring C-reactive protein. We did not detect significant changes in red blood cells, hemoglobin, and platelet levels or coagulation parameters. We found a significant elevation of uric acid, with normalization after finishing each treatment cycle. A significant decrease of the mean value activity of aspartate transaminase (AST) and alanine transaminase (ALT) of the G-CSF treatment was noted. After each five days of therapy, the level of cholesterol was significantly lowered. Also, glucose concentration significantly decreased after the fourth cycle. Conclusions G-SCF decreased the aminotransferases activity, cholesterol level, and glucose level in patients with DMD, which may be important for patients with DMD and metabolic syndrome.
Collapse
|
36
|
Ruebel ML, Piccolo BD, Mercer KE, Pack L, Moutos D, Shankar K, Andres A. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. Am J Physiol Endocrinol Metab 2019; 316:E383-E396. [PMID: 30601701 PMCID: PMC6459300 DOI: 10.1152/ajpendo.00401.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023]
Abstract
Although obesity negatively influences the metabolic homeostasis of cells within a broad range of tissues, its impact on oocyte metabolism is not fully understood. Prior evidence suggests that obesity increases expression of oocyte genes associated with inflammation, oxidative stress, and lipid metabolism; however, the metabolic impact of these genetic differences is not known. To address this gap, we conducted an exploratory assessment of the follicular fluid (FF) metabolome in eight overweight/obese (OW) and nine normal-weight (NW) women undergoing in vitro fertilization. FF and serum were collected and analyzed by untargeted metabolomics using gas chromatography-quadrupole time-of-flight mass spectrometry and charged-surface hybrid column-electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Untargeted metabolomics identified obesity-associated changes in FF metabolites related to oxidative stress/antioxidant capacity, xenometabolism/amino acid biosynthesis, and lipid metabolism. Discriminant FF metabolites included elevated uric acid, isothreonic acid, one unknown primary metabolite, and six unknown complex lipids in OW compared with NW women. Conversely, 2-ketoglucose dimethylacetal, aminomalonate, two unknown primary metabolites, and two unknown complex lipids were decreased in FF of OW relative to NW women. Indole-3-propionic acid (IPA), a bacteria-derived metabolite, was also decreased in both FF and serum of OW women ( P < 0.05). The significant correlation between antioxidant IPA in serum and FF ( R = 0.95, P < 0.0001) suggests a potential serum biomarker of FF antioxidant status or reflection of the gut metabolism interaction with the follicle. These results suggest that obesity has important consequences for the follicular environment during the preconception period, a window of time that may be important for lifestyle interventions to ameliorate obesity-associated risk factors.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Lindsay Pack
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
| | - Dean Moutos
- Arkansas Fertility and Gynecology Associates , Little Rock, Arkansas
| | - Kartik Shankar
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Aline Andres
- Arkansas Children's Nutrition Center , Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
37
|
|
38
|
Liu Y, Neumann D, Glatz JFC, Luiken JJFP. Molecular mechanism of lipid-induced cardiac insulin resistance and contractile dysfunction. Prostaglandins Leukot Essent Fatty Acids 2018; 136:131-141. [PMID: 27372802 DOI: 10.1016/j.plefa.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/04/2023]
Abstract
Long-chain fatty acids are the main cardiac substrates from which ATP is generated continually to serve the high energy demand and sustain the normal function of the heart. Under healthy conditions, fatty acid β-oxidation produces 50-70% of the energy demands with the remainder largely accounted for by glucose. Chronically increased dietary lipid supply often leads to excess lipid accumulation in the heart, which is linked to a variety of maladaptive phenomena, such as insulin resistance, cardiac hypertrophy and contractile dysfunction. CD36, the predominant cardiac fatty acid transporter, has a key role in setting the heart on a road to contractile dysfunction upon the onset of chronic lipid oversupply by translocating to the cell surface and opening the cellular 'doors' for fatty acids. The sequence of events after the CD36-mediated myocellular lipid accumulation is less understood, but in general it has been accepted that the excessively imported lipids cause insulin resistance, which in turn leads to contractile dysfunction. There are several gaps of knowledge in this proposed order of events which this review aims to discuss. First, the molecular mechanisms underlying lipid-induced insulin resistance are not yet completely disclosed. Specifically, several mediators have been proposed, such as diacylglycerols, ceramides, peroxisome proliferator-activated receptors (PPAR), inflammatory kinases and reactive oxygen species (ROS), but their relative contributions to the onset of insulin resistance and their putatively synergistic actions are topics of controversy. Second, there are also pieces of evidence that lipids can induce contractile dysfunction independently of insulin resistance. Perhaps, a more integrative view is needed, in which several lipid-induced pathways operate synergistically or in parallel to induce contractile dysfunction. Unraveling of these processes is expected to be important in designing effective therapeutic strategies to protect the lipid-overloaded heart.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
39
|
Mitani T, Nagano T, Harada K, Yamashita Y, Ashida H. Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes. J Nutr Sci Vitaminol (Tokyo) 2018; 63:331-338. [PMID: 29225318 DOI: 10.3177/jnsv.63.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Caffeine is a methylxanthine derived from plant foods such as coffee beans and tea leaves, and has multiple biological activities against physiological response and several diseases. Although there are some reports about the direct effect of caffeine against anti-lipid accumulation in vitro, the effect of caffeine on lipid accumulation in adipocytes through stimulating intestinal epithelial cells is unknown. Since direct treatment with caffeine to 3T3-L1 cells did not affect lipid accumulation, we determined whether caffeine-stimulated intestinal epithelial Caco-2 cells influence the lipid accumulation in 3T3-L1 adipocytes. Caco-2 cells were cultured on a transwell insert with or without caffeine for 24 h. Subsequently, the basolateral component of the Caco-2 cell culture on the transwell was collected and termed caffeine-conditioning medium (CCM). When 3T3-L1 adipocytes were incubated with CCM, CCM decreased lipid accumulation and suppressed gene expression of proliferator activated receptor (PPAR) γ and CCAAT/enhancer binding protein (C/EBP) α in 3T3-L1 adipocytes. Furthermore, CCM decreased the expression of C/EBPβ and C/EBPδ at the protein level, but not at the mRNA level. We observed that a proteasome inhibitor, MG132, inhibited CCM-caused down-expression of C/EBPβ and C/EBPδ proteins, and that CCM promoted the ubiquitination level of C/EBPβ and C/EBPδ proteins. Protein microarray analysis showed caffeine suppresses the secretion of inflammatory cytokines, interleukin-8 and plasminogen activator inhibitor-1 from Caco-2 cells. These results suggest that caffeine indirectly suppresses lipid accumulation in 3T3-L1 adipocytes through decreasing secretion of inflammatory cytokines from Caco-2 cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Tomoya Nagano
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Kiyonari Harada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
40
|
Bussey CT, Thaung HPA, Hughes G, Bahn A, Lamberts RR. Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK. Exp Physiol 2018; 103:1067-1075. [PMID: 29873129 DOI: 10.1113/ep087054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023]
Abstract
NEW FINDINGS What is the central question of the study? Is the reduced signalling of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in the heart, responsible for the reduced β-adrenergic responsiveness of the heart in obesity? What is the main finding and its importance? Inhibition of AMPK in isolated hearts prevented the reduced cardiac β-adrenergic responsiveness of obese rats, which was accompanied by reduced phosphorylation of AMPK, a proxy of AMPK activity. This suggests a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart, and it suggests that AMPK might be an important target to restore the β-adrenergic responsiveness in the heart in obesity. ABSTRACT The obesity epidemic impacts heavily on cardiovascular health, in part owing to changes in cardiac metabolism. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in the heart and is regulated by β-adrenoceptors (β-ARs) in normal conditions. In obesity, chronic sympathetic overactivation leads to impaired cardiac β-AR responsiveness, although it is unclear whether AMPK signalling, downstream of β-ARs, contributes to this dysfunction. Therefore, we aimed to determine whether reduced AMPK signalling is responsible for the reduced β-AR responsiveness in obesity. In isolated hearts of lean and obese Zucker rats, we tested β-AR responsiveness to the β1 -AR agonist isoprenaline (ISO, 1 × 10-10 to 5 × 10-8 m) in the absence and presence of the AMPK inhibitor, compound C (CC, 10 μm). The β1 -AR expression and AMPK phosphorylation were assessed by Western blot. β-Adrenergic responsiveness was reduced in the hearts of obese rats (logEC50 of ISO-developed pressure dose-response curves: lean -8.53 ± 0.13 × 10x m versus obese -8.35 ± 0.10 × 10x m ; P < 0.05 lean versus obese, n = 6 per group). This difference was not apparent after AMPK inhibition (logEC50 of ISO-developed pressure curves: lean CC -8.19 ± 0.12 × 10x m versus obese CC 8.17 ± 0.13 × 10x m, P < 0.05, n = 6 per group). β1 -Adrenergic receptor expression and AMPK phosphorylation were reduced in hearts of obese rats (AMPK at Thr172 : lean 1.73 ± 0.17 a.u. versus lean CC 0.81 ± 0.13 a.u., and obese 1.18 ± 0.09 a.u. versus obese CC 0.81 ± 0.16 a.u., P < 0.05, n = 6 per group). Thus, a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart exists, and AMPK might be an important target to restore the reduced cardiac β-adrenergic responsiveness in obesity.
Collapse
Affiliation(s)
- Carol T Bussey
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - H P Aye Thaung
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology - HeartOtago, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
41
|
André C, Catania C, Remus-Borel J, Ladeveze E, Leste-Lasserre T, Mazier W, Binder E, Gonzales D, Clark S, Guzman-Quevedo O, Abrous DN, Layé S, Cota D. mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain Behav Immun 2018; 70:325-334. [PMID: 29548998 DOI: 10.1016/j.bbi.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) potently decreases food intake and body weight in diet-induced obese mice by acting through neuronal circuits and pathways located in the arcuate nucleus (ARC) of the hypothalamus. CNTF also exerts pro-inflammatory actions within the brain. Here we tested whether CNTF modifies energy balance by inducing inflammatory responses in the ARC and whether these effects depend upon the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which regulates both energy metabolism and inflammation. To this purpose, chow- and high fat diet (HFD)- fed mice lacking the S6 kinase 1 (S6K1-/-), a downstream target of mTORC1, and their wild-type (WT) littermates received 12 days continuous intracerebroventricular (icv) infusion of the CNTF analogue axokine (CNTFAx15). Behavioral, metabolic and molecular effects were evaluated. Central chronic administration of CNTFAx15 decreased body weight and feed efficiency in WT mice only, when fed HFD, but not chow. These metabolic effects correlated with increased number of iba-1 positive microglia specifically in the ARC and were accompanied by significant increases of IL-1β and TNF-α mRNA expression in the hypothalamus. Hypothalamic iNOS and SOCS3 mRNA, molecular markers of pro-inflammatory response, were also increased by CNTFAx15. All these changes were absent in S6K1-/- mice. This study reveals that CNTFAx15 requires a functional S6K1 to modulate energy balance and hypothalamic inflammation in a diet-dependent fashion. Further investigations should determine whether S6K1 is a suitable target for the treatment of pathologies characterized by a high neuroinflammatory state.
Collapse
Affiliation(s)
- Caroline André
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Caterina Catania
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Julie Remus-Borel
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Elodie Ladeveze
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Wilfrid Mazier
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Elke Binder
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Delphine Gonzales
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Samantha Clark
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Omar Guzman-Quevedo
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Djoher Nora Abrous
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France; University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, F-33076 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
42
|
Pasquin S, Chehboun S, Dejda A, Meliani Y, Savin V, Warner GJ, Bosse R, Tormo A, Mayer G, Sharma M, Sapieha P, Martel C, Gauchat JF. Effect of human very low-density lipoproteins on cardiotrophin-like cytokine factor 1 (CLCF1) activity. Sci Rep 2018; 8:3990. [PMID: 29507344 PMCID: PMC5838168 DOI: 10.1038/s41598-018-22400-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023] Open
Abstract
The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity. We observed that CLCF1 forms complexes with the three major isoforms of ApoE in co-immunoprecipitation and proximity assays. FPLC analysis of mouse and human sera mixed with CLCF1 revealed that CLCF1 co-purifies with plasma lipoproteins. Studies with sera from ApoE-/- mice indicate that ApoE is not required for CLCF1-lipoprotein interactions. VLDL- and LDL-CLCF1 binding was confirmed using proximity and ligand blots assays. CLCF1-induced STAT3 phosphorylation was significantly reduced when the cytokine was complexed with VLDL. Physiological relevance of our findings was asserted in a mouse model of oxygen-induced retinopathy, where the beneficial anti-angiogenic properties of CLCF1 were abrogated when co-administrated with VLDL, indicating, that CLCF1 binds purified lipoproteins or lipoproteins in physiological fluids such as serum and behave as a "lipocytokine". Albeit it is clear that lipoproteins modulate CLCF1 activity, it remains to be determined whether lipoprotein binding directly contributes to its neurotrophic function and its roles in metabolic regulation.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Salma Chehboun
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Agnieszka Dejda
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Yasmine Meliani
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Virginia Savin
- Renal Division, KCVA Medical Center, Kansas City, MO, 64128-2226, USA
| | | | - Roger Bosse
- Perkin Elmer, 940 Winter Street, Waltham, MA, 02451, USA
| | - Aurélie Tormo
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Gaétan Mayer
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, Kansas City, MO, 64128-2226, USA
| | - Przemyslaw Sapieha
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Catherine Martel
- Département de Médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Jean-François Gauchat
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
43
|
Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, Høyer KF, Geisler HW, Sulek K, Kjøbsted R, Fisher T, Andersen MM, Shen Z, Hansen UK, England EM, Cheng Z, Højlund K, Wojtaszewski JFP, Yang X, Hulver MW, Helm RF, Treebak JT, Gerrard DE. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab 2018. [PMID: 29525407 PMCID: PMC6001359 DOI: 10.1016/j.molmet.2018.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Type 2 diabetic humans have elevated O-GlcNAc levels in skeletal muscle. Knockout of OGT in muscle elevates whole body insulin sensitivity. Knockout of OGT in muscle increases resistance to diet-induced obesity. Muscle-specific OGT knockout mice have elevated plasma IL-15 levels. OGT in muscle controls Il15 expression by O-GlcNAcylation and inhibition of EZH2.
Collapse
Affiliation(s)
- Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexander Munk
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Morgan R Daughtry
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Louise Larsson
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Shize Li
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kasper F Høyer
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, DK8000, Denmark
| | - Hannah W Geisler
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karolina Sulek
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Taylor Fisher
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marianne M Andersen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ulrik K Hansen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Eric M England
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Virginia Tech Metabolic Phenotyping Core, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark.
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
44
|
Xu K, Zhang X, Wang Z, Hu Y, Sinha R. Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biol Psychol 2018; 131:63-71. [PMID: 27826092 PMCID: PMC5419875 DOI: 10.1016/j.biopsycho.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Chronic stress has a significant impact on obesity. However, how stress influences obesity remains unclear. We conducted an epigenome-wide DNA methylation association analysis of obesity (N=510) and examined whether cumulative stress influenced the DNA methylation on body weight. We identified 20 CpG sites associated with body mass index at the false discovery rate q<0.05, including a novel site, cg18181703, in suppressor of cytokine signaling 3 (SOCS3) gene (coefficient β=-0.0022, FDR q=4.94×10-5). The interaction between cg18181703 and cumulative adverse life stress contributed to variations in body weight (p=0.002). Individuals with at least five major life events and lower methylation of cg1818703 showed a 1.38-fold higher risk of being obese (95%CI: 1.17-1.76). Our findings suggest that aberrant in DNA methylation is associated with body weight and that methylation of SOCS3 moderates the effect of cumulative stress on obesity.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Connecticut Veteran Health System, 950 Campbell Ave, Building 35, Room #43, West Haven, 06516, United States.
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Connecticut Veteran Health System, 950 Campbell Ave, Building 35, Room #43, West Haven, 06516, United States
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06511, United States
| | - Ying Hu
- Yale Stress Center, Yale University, 2 Church St S #209, New Haven, CT 06519, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT 06511, United States; Center for Biomedical Informatics and Information Technology, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, United States
| |
Collapse
|
45
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
46
|
Lombardi G, Sansoni V, Banfi G. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:299. [PMID: 28856139 PMCID: PMC5555982 DOI: 10.21037/atm.2017.07.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Lombardi G, Barbaro M, Locatelli M, Banfi G. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles. Endocrine 2017; 56:460-484. [PMID: 28181144 DOI: 10.1007/s12020-017-1239-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.
Collapse
Affiliation(s)
| | - Mosè Barbaro
- Laboratory Medicine Service, San Raffaele Hospital, Milano, Italy
| | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
48
|
Kurahashi K, Inoue S, Yoshida S, Ikeda Y, Morimoto K, Uemoto R, Ishikawa K, Kondo T, Yuasa T, Endo I, Miyake M, Oyadomari S, Matsumoto T, Abe M, Sakaue H, Aihara KI. The Role of Heparin Cofactor Ⅱ in the Regulation of Insulin Sensitivity and Maintenance of Glucose Homeostasis in Humans and Mice. J Atheroscler Thromb 2017; 24:1215-1230. [PMID: 28502917 PMCID: PMC5742367 DOI: 10.5551/jat.37739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Accelerated thrombin action is associated with insulin resistance. It is known that upon activation by binding to dermatan sulfate proteoglycans, heparin cofactor II (HCII) inactivates thrombin in tissues. Because HCII may be involved in glucose metabolism, we investigated the relationship between plasma HCII activity and insulin resistance. Methods and Results: In a clinical study, statistical analysis was performed to examine the relationships between plasma HCII activity, glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), and homeostasis model assessment-insulin resistance (HOMA-IR) in elderly Japanese individuals with lifestyle-related diseases. Multiple regression analysis showed significant inverse relationships between plasma HCII activity and HbA1c (p = 0.014), FPG (p = 0.007), and HOMA-IR (p = 0.041) in elderly Japanese subjects. In an animal study, HCII+/+ mice and HCII+/− mice were fed with a normal diet or high-fat diet (HFD) until 25 weeks of age. HFD-fed HCII+/− mice exhibited larger adipocyte size, higher FPG level, hyperinsulinemia, compared to HFD-fed HCII+/+ mice. In addition, HFD-fed HCII+/− mice exhibited augmented expression of monocyte chemoattractant protein-1 and tumor necrosis factor, and impaired phosphorylation of the serine/threonine kinase Akt and AMP-activated protein kinase in adipose tissue compared to HFD-fed HCII+/+ mice. The expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was also enhanced in the hepatic tissues of HFD-fed HCII+/− mice. Conclusions: The present studies provide evidence to support the idea that HCII plays an important role in the maintenance of glucose homeostasis by regulating insulin sensitivity in both humans and mice. Stimulators of HCII production may serve as novel therapeutic tools for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Seika Inoue
- Department of Nutrition and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Yasumasa Ikeda
- Department of Pharmacology, Tokushima University Graduate School of Biomedical Sciences
| | - Kana Morimoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Ryoko Uemoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Kazue Ishikawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Tomoyuki Yuasa
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Tokushima University Graduate School of Biomedical Sciences
| | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
49
|
Wang H, Shi L, Liang T, Wang B, Wu W, Su G, Wei J, Li P, Huang R. MiR-696 Regulates C2C12 Cell Proliferation and Differentiation by Targeting CNTFRα. Int J Biol Sci 2017; 13:413-425. [PMID: 28529450 PMCID: PMC5436562 DOI: 10.7150/ijbs.17508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022] Open
Abstract
Micro-696 (miR-696) has been previously known as an exercise related miRNA, which has a profound role in fatty acid oxidation and mitochondrial biogenesis of skeletal muscle. However, its role in skeletal myoblast proliferation and differentiation is still unclear. In this study, we found that miR-696 expressed highly in skeletal muscle and reduced during C2C12 myoblasts differentiation. MiR-696 overexpression repressed C2C12 myoblast proliferation and myofiber formation, while knockdown of endogenous miR-696 expression showed opposite results. During myogenesis, we observed an inversed expression pattern between miR-696 and CNTFRα in vitro, and demonstrated that miR-696 could specifically target CNTFRα and repress the expression of CNTFRα. Additionally, we further found that knockdown of CNTFRα suppressed the proliferation and differentiation of C2C12 cells. Taking all things together, we propose a novel insight that miR-696 down-regulates C2C12 cell myogenesis by inhibiting CNTFRα expression.
Collapse
Affiliation(s)
- Han Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Shi
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Liang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - BinBin Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WangJun Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Julong Wei
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
50
|
Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016; 54:284-305. [PMID: 26718191 DOI: 10.1007/s12020-015-0834-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
Physical inactivity has been recognized, by the World Health Organization as the fourth cause of death (5.5 % worldwide). On the contrary, physical activity (PA) has been associated with improved quality of life and decreased risk of several diseases (i.e., stroke, hypertension, myocardial infarction, obesity, malignancies). Bone turnover is profoundly affected from PA both directly (load degree is the key determinant for BMD) and indirectly through the activation of several endocrine axes. Several molecules, secreted by muscle (myokines) and adipose tissues (adipokines) in response to exercise, are involved in the fine regulation of bone metabolism in response to the energy availability. Furthermore, bone regulates energy metabolism by communicating its energetic needs thanks to osteocalcin which acts on pancreatic β-cells and adipocytes. The beneficial effects of exercise on bone metabolism depends on the intermittent exposure to myokines (i.e., irisin, IL-6, LIF, IGF-I) which, instead, act as inflammatory/pro-resorptive mediators when chronically elevated; on the other hand, the reduction in the circulating levels of adipokines (i.e., leptin, visfatin, adiponectin, resistin) sustains these effects as well as improves the whole-body metabolic status. The aim of this review is to highlight the newest findings about the exercise-dependent regulation of these molecules and their role in the fine regulation of bone metabolism.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | | | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|