1
|
Shatila M, Sperling G, Machado AP, Vohra M, Baerman E, Toni END, Török HP, Zhao D, Zhou Y, Shafi MA, Thomas AS, Alasadi M, Wang Y. Helicobacter pylori infection negatively affects response of gastric cancer to immunotherapy. Ann Gastroenterol 2025; 38:262-269. [PMID: 40371204 PMCID: PMC12070332 DOI: 10.20524/aog.2025.0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Helicobacter pylori (H. pylori) is a known risk factor for gastric cancer, possibly via the PD-1/L1 pathway, and this infection may reduce the efficacy of immune checkpoint inhibitors (ICIs). This study explored the effects of H. pylori infection status on survival outcomes in patients with gastric cancer. Methods This single-center, retrospective study included patients with gastric adenocarcinoma between June 1985 and August 2022. Patients with different histological subtypes were excluded. Primary variables of interest included H. pylori infection status and treatment with ICIs. Other clinical information included demographics, cancer histology, the presence of other cancers, and vital status. Results A total of 2930 patients were included, of whom 206 (7.0%) received ICIs, 196 (6.7%) had prior H. pylori infection, and 1037 (35.4%) had a diffuse subtype. Diffuse cancer subtypes were associated with better survival (P<0.05) at 3 and 5 years compared to intestinal-type adenocarcinomas. Diffuse cancers demonstrated better survival outcomes than intestinal cancers at 10 years, but only among H. pylori-positive patients (P=0.013). H. pylori positivity was associated with worse survival at 3 years (P=0.041) among patients taking ICIs, but not in those not receiving ICIs (P=0.325). Conclusions These findings suggest H. pylori infection may be an obstacle to successful immunotherapy, and may interact with cancer subtypes to differentially impact survival. Future studies are needed to validate the potential prognostic value of H. pylori positivity in gastric cancer.
Collapse
Affiliation(s)
- Malek Shatila
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Gabriel Sperling
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA (Gabriel Sperling)
| | - Antonio Pizuorno Machado
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA (Antonio Pizuorno Machado, Muhammad Vohra)
| | - Muhammad Vohra
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA (Antonio Pizuorno Machado, Muhammad Vohra)
| | - Elliot Baerman
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA (Elliot Baerman)
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany (Enrico N. De Toni, Helga-Paula Török)
| | - Helga-Paula Török
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany (Enrico N. De Toni, Helga-Paula Török)
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Dan Zhao)
| | - Yan Zhou
- Department of Hospital Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Yan Zhou)
| | - Mehnaz A. Shafi
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Mazen Alasadi
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| |
Collapse
|
2
|
He QC, Huang ZN, Lv CB, Wu YH, Qiu WW, Ma YB, Wu J, Zheng CY, Lin GS, Li P, Wang JB, Lin JX, Lin M, Tu RH, Zheng CH, Huang CM, Cao LL, Xie JW. Effect of Helicobacter pylori infection on survival outcomes of patients undergoing radical gastrectomy after neoadjuvant chemotherapy: a multicenter study in China. BMC Cancer 2025; 25:460. [PMID: 40082850 PMCID: PMC11907980 DOI: 10.1186/s12885-025-13840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) has been confirmed to improve the prognosis of patients with advanced gastric cancer (AGC). However, no study has investigated whether Helicobacter pylori (HP) infection affects the postoperative survival of patients who receive NAC. METHODS This retrospective cohort study included 307 patients with AGC who underwent laparoscopic radical gastrectomy after NAC at three hospitals in China between January 1, 2016, and April 31, 2020. Cox regression was used to assess prognostic factors for survival. Kaplan-Meier was used for survival analysis. RESULTS The HP + and the HP- group included 141 and 166 cases. The 3-year overall survival (OS) and disease-free survival (DFS) of the HP + group were significantly better than the HP- group (3-year OS: 75.9% vs. 60.2%, 3-year DFS: 70.2% vs. 52.3%; All P < 0.001). For the HP + group, ypTNM Stage III (HR, 4.00; 95% CI, 1.11-14.39; P = 0.034), NAC ≥ 4 cycles (HR, 0.43; 95% CI, 0.20-0.90; P = 0.026), and adjuvant chemotherapy (AC) ≥ 4 cycles (HR, 0.20; 95% CI, 0.09-0.48; P < 0.001) are independent prognostic factors for OS. In the cohort of HP + patients who received ≥ 4 cycles of NAC, the prognosis of patients who received ≥ 4 cycles of AC after surgery was better than that of patients who received < 4 cycles of AC (3-year OS: 92.5% vs 71.4%; P = 0.042). CONCLUSIONS Following NAC, HP + patients with AGC exhibit better prognosis than that of HP- counterparts. For potentially resectable HP + AGC patients, radical surgery following ≥ 4 cycles of NAC with ≥ 4 cycles of sequential AC might be recommended to improve survival.
Collapse
Affiliation(s)
- Qi-Chen He
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Ze-Ning Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chen-Bin Lv
- Department of Gastrointestinal Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yong-He Wu
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, ZhangZhou, China
| | - Wen-Wu Qiu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Bin Ma
- Department of Gastrointestinal Surgery, Qinghai University Affiliated Hospital, Xining, China
| | - Ju Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chang-Yue Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Putian University, Putian, China
| | - Guo-Sheng Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Rd, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Subsomwong P, Asano K, Akada J, Matsumoto T, Nakane A, Yamaoka Y. Proteomic Profiling of Extracellular Vesicles Reveals Potential Biomarkers for Helicobacter pylori Infection and Gastric Cancer. Helicobacter 2025; 30:e70022. [PMID: 40033163 PMCID: PMC11876490 DOI: 10.1111/hel.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) has been identified as a type I carcinogen and contributes to a high rate of gastric cancer (GC), especially in Eastern Asia. Extracellular vesicles (EVs) have the potential to be used to detect various cancer types and diseases. However, the protein markers in EVs for the prognosis of H. pylori infection and GC are unknown. We aim to identify the proteins within EVs derived from a gastric epithelial cell line (AGS) infected with H. pylori by using LC-MS/MS. MATERIALS AND METHODS EVs were isolated from AGS cells infected with high- and low-virulence H. pylori (strains TN2wt and Tx30a) by ultracentrifugation. Proteins within these EVs were identified and analyzed for potential marker candidates through bioinformatics. Proteins in H. pylori-derived EVs (HpEVs) from bacterial culture supernatant and HpEVs derived from H. pylori-infected AGS cells were elucidated. RESULTS Differentially expressed proteins by proteomic analysis in AGSEVs-Tx30a vs. AGSEVs-noninfected (NI) and AGSEVs-TN2wt vs. AGSEVs-NI were 107 and 55 proteins, respectively. Bioinformatics of these proteomes revealed that essential proteins for H. pylori survival and pathogenicity including outer membrane proteins, metabolism-related, host cell infection-related, and virulence-related proteins were observed in HpEVs. Interestingly, EVs derived from AGS cells infected with H. pylori TN2wt significantly contained multiple proteins related to GC (ATP6V0A1, GAPDH, HINT1, LYZ, and RBX1). CONCLUSION This study provides a comprehensive protein profile of EVs from H. pylori-infected AGS cells and HpEVs, which could serve as liquid-based biomarkers in the future for screening H. pylori infection, especially GC-related.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
| | - Krisana Asano
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
- Research Center for Global and Local Infectious DiseasesOita UniversityYufuJapan
| | - Akio Nakane
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
- Research Center for Global and Local Infectious DiseasesOita UniversityYufuJapan
- Department of Medicine, Gastroenterology and Hepatology SectionBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
4
|
Kodama M, Oda M, Mizukami K, Ogawa R, Hirashita Y, Fukuda M, Okamoto K, Fukuda K, Fuchino T, Ozaka S, Okimoto T, Abe H, Inaba K, Tokoro M, Arita K, Nishikiori H, Abe T, Nagai T, Yamashita S, Murakami K. Comparison of Genetic Mutations of Gastric Cancer Diagnosed before or after Helicobacter pylori Eradication and between Differentiated and Undifferentiated Types Using Next-Generation Sequencing. Dig Dis 2025; 43:158-169. [PMID: 39827855 PMCID: PMC11965840 DOI: 10.1159/000543645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Genetic abnormalities specific to post-Helicobacter pylori eradication gastric cancer (GC), especially those associated with undifferentiated post-eradication GC, are unknown. We conducted next-generation sequencing of GC diagnosed either before or after eradication to investigate the carcinogenesis of post-eradication GC. METHODS Five cases of post-eradication differentiated GC [HP(-)-D group], five cases of H. pylori-positive differentiated GC [HP(+)-D group], four cases of post-eradication undifferentiated GC [HP(-)-U group], and six cases of H. pylori-positive undifferentiated GC [HP(+)-U group] underwent analysis. DNA was extracted from tumor samples, and non-tumor samples of all subjects. Next-generation target sequencing was conducted using the Ion AmpliSeq Library Kit 2.0 with the Ion AmpliSeq Cancer Hotspot Panel v2. Next-generation targeted sequencing results of the cancer part were subtracted from the results of the non-cancer part. RESULTS The HP(-)-D group displayed significantly fewer SNPs in hotspot than the other groups (p < 0.01). Definitive DNA mutations were identified by sequencing of cancerous and non-cancerous tissues. 5 of 20 patients had specific somatic mutations, with different TP53 mutations in the HP(+)-D and HP(-)-U groups, CTNNB1 mutations in the HP(+)-U group, and ATM mutations in the HP(+)-U group, but no mutations in the HP(-)-D group. CONCLUSION Several definite genetic mutations involved in GC were observed. Mutations were less frequent in post-eradication differentiated GC. However, because of small number of cases analyzed to identify carcinogenic differences, further analysis with a large number of cases and with strictly grading GC samples is needed. INTRODUCTION Genetic abnormalities specific to post-Helicobacter pylori eradication gastric cancer (GC), especially those associated with undifferentiated post-eradication GC, are unknown. We conducted next-generation sequencing of GC diagnosed either before or after eradication to investigate the carcinogenesis of post-eradication GC. METHODS Five cases of post-eradication differentiated GC [HP(-)-D group], five cases of H. pylori-positive differentiated GC [HP(+)-D group], four cases of post-eradication undifferentiated GC [HP(-)-U group], and six cases of H. pylori-positive undifferentiated GC [HP(+)-U group] underwent analysis. DNA was extracted from tumor samples, and non-tumor samples of all subjects. Next-generation target sequencing was conducted using the Ion AmpliSeq Library Kit 2.0 with the Ion AmpliSeq Cancer Hotspot Panel v2. Next-generation targeted sequencing results of the cancer part were subtracted from the results of the non-cancer part. RESULTS The HP(-)-D group displayed significantly fewer SNPs in hotspot than the other groups (p < 0.01). Definitive DNA mutations were identified by sequencing of cancerous and non-cancerous tissues. 5 of 20 patients had specific somatic mutations, with different TP53 mutations in the HP(+)-D and HP(-)-U groups, CTNNB1 mutations in the HP(+)-U group, and ATM mutations in the HP(+)-U group, but no mutations in the HP(-)-D group. CONCLUSION Several definite genetic mutations involved in GC were observed. Mutations were less frequent in post-eradication differentiated GC. However, because of small number of cases analyzed to identify carcinogenic differences, further analysis with a large number of cases and with strictly grading GC samples is needed.
Collapse
Affiliation(s)
- Masaaki Kodama
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Manami Oda
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryo Ogawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuka Hirashita
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masahide Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhisa Okamoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kensuke Fukuda
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takafumi Fuchino
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Sotaro Ozaka
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hisanori Abe
- Abe Gastrointestinal Endoscopic Clinic, Katashima, Oita, Japan
| | - Kazumi Inaba
- Arita Gastrointestinal Hospital, Maki-machi, Oita, Japan
| | | | - Keiko Arita
- Arita Gastrointestinal Hospital, Maki-machi, Oita, Japan
| | | | - Takashi Abe
- Oita Kouseiren Tsurumi Hospital, Tsurumi, Beppu, Japan
| | | | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
5
|
Subramani K, Huang HS, Chen PC, Ding DC, Chu TY. Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium. Neoplasia 2025; 59:101085. [PMID: 39637685 DOI: 10.1016/j.neo.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination. METHODS The mutagenic activity of FF toward premalignant and malignant FTE cells was determined using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay with or without AID knockdown. The sequential activation of AID, including expressional induction, nuclear localization, DNA binding, and deamination, was determined. AID inducers in FF were identified, and the times of action and signaling pathways were determined. RESULTS FF induced AID activation and de novo FTE cell mutagenesis in two waves of activity in accordance with post-ovulation FF exposure. The ERK-mediated early activity started at 2 min and peaked at 45 min, and the NF-κB-mediated late activity started at 6 h and peaked at 8.5 h after exposure. ROS, TNF-α, and estradiol, which are abundant in FF, all induced the two activities, while all activities were abolished by antioxidant cotreatment. AID physically bound to and biochemically deaminated the TP53 gene, regardless of known mutational hotspots. It did not act on other prevalent tumor-suppressor genes of HGSC. CONCLUSION This study revealed the ROS-dependent AID-mediated mutagenic activity of the ovulatory FF. The results filled up the missing link between ovulation and the initial TP53 mutation and invited a strategy of antioxidation in prevention of HGSC.
Collapse
Affiliation(s)
- Kanchana Subramani
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Dah-Ching Ding
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC.
| |
Collapse
|
6
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Malik K, Kodgire P. Insights into the molecular mechanisms of H. pylori-associated B-cell lymphoma. Crit Rev Microbiol 2024; 50:879-895. [PMID: 38288575 DOI: 10.1080/1040841x.2024.2305439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 10/09/2024]
Abstract
Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying H. pylori-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic H. pylori infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of H. pylori in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with H. pylori infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.
Collapse
Affiliation(s)
- Kritika Malik
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
8
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
10
|
Abbondio M, Tanca A, De Diego L, Sau R, Bibbò S, Pes GM, Dore MP, Uzzau S. Metaproteomic assessment of gut microbial and host functional perturbations in Helicobacter pylori-infected patients subjected to an antimicrobial protocol. Gut Microbes 2023; 15:2291170. [PMID: 38063474 PMCID: PMC10730194 DOI: 10.1080/19490976.2023.2291170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The impact of therapeutic interventions on the human gut microbiota (GM) is a clinical issue of paramount interest given the strong interconnection between microbial dynamics and human health. Orally administered antibiotics are known to reduce GM biomass and modify GM taxonomic profile. However, the impact of antimicrobial therapies on GM functions and biochemical pathways has scarcely been studied. Here, we characterized the fecal metaproteome of 10 Helicobacter pylori-infected patients before (T0) and after 10 days (T1) of a successful quadruple therapy (bismuth, tetracycline, metronidazole, and rabeprazole) and 30 days after therapy cessation (T2), to investigate how GM and host functions change during the eradication and healing processes. At T1, the abundance ratio between microbial and host proteins was reversed compared with that at T0 and T2. Several pathobionts (including Klebsiella, Proteus, Enterococcus, Muribaculum, and Enterocloster) were increased at T1. Therapy reshaped the relative contributions of the functions required to produce acetate, propionate, and butyrate. Proteins related to the uptake and processing of complex glycans were increased. Microbial cross-feeding with sialic acid, fucose, and rhamnose was enhanced, whereas hydrogen sulfide production was reduced. Finally, microbial proteins involved in antibiotic resistance and inflammation were more abundant after therapy. Moreover, a reduction in host proteins with known roles in inflammation and H. pylori-mediated carcinogenesis was observed. In conclusion, our results support the use of metaproteomics to monitor drug-induced remodeling of GM and host functions, opening the way for investigating new antimicrobial therapies aimed at preserving gut environmental homeostasis.
Collapse
Affiliation(s)
- Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rosangela Sau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Bibbò
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Pina Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Saeed MK, Al-Ofairi BA, Hassan MA, Al-Jahrani MA, Abdulkareem AM. The clinical significance of some serum tumor markers among chronic patients with Helicobacter pylori infections in Ibb Governorate, Yemen. Infect Agent Cancer 2023; 18:60. [PMID: 37828556 PMCID: PMC10571253 DOI: 10.1186/s13027-023-00542-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a carcinogenic bacterium, it is the greatest risk factor for gastric cancer (GC), according to these evidences, there may be a certain association between chronic H. pylori infections and serum levels of tumor markers. This study was conducted to determine serum levels of some tumor markers, namely carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9) and cancer antigen 72-4 (CA72-4) in patients with chronic H. pylori infections and evaluate the association between serum tumor marker levels and chronic patients with H. pylori infections in Ibb Governorate, Yemen. SUBJECTS AND METHODS This study involved 200 patients who had been diagnosed with H. pylori infections using a serum immunochromatography antibody test. Stool and blood samples were collected from all patients to confirm the presence of H. pylori through detection of serum H. pylori IgG antibody and stool antigen test (SAT). Additionally, serum samples were analyzed to measurement the level of certain tumor markers CEA, CA19-9 and CA72-4. These tests were conducted at various Hospitals, Gastroenterology and Hepatology clinics in Ibb governorate, Yemen from October 2019 to November 2020. RESULTS The findings of current study showed that the prevalence of H. pylori infections by rapid anti H. pylori test were 200 (100%), 157 (78.5%) by serum H. pylori IgG antibody and 108 (54%) by SAT. In addition, the results showed that 42 (21%) of the patients had abnormal level of CEA, 30 (15%) had abnormal level of CA19-9 and 31 (15.5%) had abnormal level of CA72-4. Most importantly, the results indicated that the serum tumor marker levels CEA, CA19-9 and CA72-4 were correlated with the levels of serum H. pylori IgG antibody as well as positive results from the SAT (P < 0.05). Furthermore, the results indicated that serum tumor marker levels were associated with different infection status. Finally, the results indicated that the serum levels of tumor markers were associated with older ages, symptomatic patients and long duration of H. pylori infections (P < 0.05). CONCLUSION The findings of this study indicated that there is a significant association between chronic H. pylori infections and the serum levels of tumor markers (CEA, CA19-9 and CA72-4). This suggests that the patients with active chronic H. pylori infection may have an increased risk of developing GC. Therefore, monitoring and early detection of H. pylori infection and tumor markers levels in these patients may be crucial for identifying individuals at higher risk and implementing appropriate interventions.
Collapse
Affiliation(s)
- Marwan K Saeed
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Sana'a University, Sana'a, Yemen.
- Department of Medical Laboratories, University of Science and Technology, Ibb, Yemen.
| | - B A Al-Ofairi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Sana'a University, Sana'a, Yemen
- Departement of Medical Laboratory, Faculty of Medical Sciences, Queen Arwa University, Sana'a, Yemen
| | - Mohammed A Hassan
- Pathology Department, Faculty of Medicine, Taiz University, Taiz, Yemen
| | - M A Al-Jahrani
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Ahmed M Abdulkareem
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Sana'a University, Sana'a, Yemen
| |
Collapse
|
12
|
Ando K, Nakamura Y, Kitao H, Shimokawa M, Kotani D, Bando H, Nishina T, Yamada T, Yuki S, Narita Y, Hara H, Ohta T, Esaki T, Hamamoto Y, Kato K, Yamamoto Y, Minashi K, Ohtsubo K, Izawa N, Kawakami H, Kato T, Satoh T, Okano N, Tsuji A, Yamazaki K, Yoshino T, Maehara Y, Oki E. Mutational spectrum of TP53 gene correlates with nivolumab treatment efficacy in advanced gastric cancer (TP53MUT study). Br J Cancer 2023; 129:1032-1039. [PMID: 37532830 PMCID: PMC10491760 DOI: 10.1038/s41416-023-02378-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Although nivolumab has a high efficacy, reliable biomarkers are needed to predict the efficacy. We evaluated the nivolumab efficacy according to the TP53 mutation in advanced gastric cancer patients enrolled in the GI-SCREEN project. METHODS Sequence data of tumour specimens and clinicopathological information of 913 patients with advanced gastric cancer who were enrolled between April 2015 and March 2017 were obtained from the GI-SCREEN database. The follow-up information of 266 patients treated with nivolumab was also provided. RESULTS Among 266 patients treated with nivolumab, the objective response rate (ORR) of TP53 wild type (wt) patients (24.6%) was higher than that of TP53 mutant patients (14.8%). Among TP53 mutant patients, the ORR of the frameshift type tended to be higher than the transition and transversion type (23.1%, 13.6%, and 13.0%, respectively). The median progression-free survival (PFS) was statistically longer in TP53 wt patients than in mutant patients (3.3 vs 2.1 months, HR 1.4, 95% CI 1.1-1.9). Among TP53 mutant patients, PFS was statistically longer in the frameshift type than in the transversion type. CONCLUSION Nivolumab showed better efficacy in TP53 wt patients than in mutant patients. Among TP53 mutant patients, the frameshift type may have efficacy from nivolumab treatment.
Collapse
Affiliation(s)
- Koji Ando
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | | | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroki Hara
- Department of Gastroenterology, Saitama Cancer Center, Kitaadachi-gun, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology and Hepatology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Keiko Minashi
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoki Izawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Hospital, Osakasayama, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Kagawa University Hospital, Kita-gun, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shunto-gun, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Balendra V, Amoroso C, Galassi B, Esposto J, Bareggi C, Luu J, Scaramella L, Ghidini M. High-Salt Diet Exacerbates H. pylori Infection and Increases Gastric Cancer Risks. J Pers Med 2023; 13:1325. [PMID: 37763093 PMCID: PMC10533117 DOI: 10.3390/jpm13091325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.
Collapse
Affiliation(s)
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Barbara Galassi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, ON K9L0G2, Canada;
| | - Claudia Bareggi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Jennie Luu
- The University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX 78235, USA;
| | - Lucia Scaramella
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| |
Collapse
|
14
|
Farmanbar A, Kneller R, Firouzi S. Mutational signatures reveal mutual exclusivity of homologous recombination and mismatch repair deficiencies in colorectal and stomach tumors. Sci Data 2023; 10:423. [PMID: 37393385 PMCID: PMC10314920 DOI: 10.1038/s41597-023-02331-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Decomposing somatic mutation spectra into mutational signatures and their corresponding etiologies provides a powerful approach for investigating the mechanism of DNA damage and repair. Assessing microsatellite (in)stability (MSI/MSS) status and interpreting their clinical relevance in different malignancies offers significant diagnostic and prognostic value. However, little is known about microsatellite (in)stability and its interactions with other DNA repair mechanisms such as homologous recombination (HR) in different cancer types. Based on whole-genome/exome mutational signature analysis, we showed HR deficiency (HRd) and mismatch repair deficiency (MMRd) occur in a significantly mutually exclusive manner in stomach and colorectal adenocarcinomas. ID11 signature with currently unknown etiology was prevalent in MSS tumors, co-occurred with HRd and was mutually exclusive with MMRd. Apolipoprotein B mRNA editing enzyme, Catalytic polypeptide-like (APOBEC) signature co-occurred with HRd and was mutually exclusive with MMRd in stomach tumors. The HRd signature in MSS tumors and the MMRd signature in MSI tumors were the first or second dominant signatures wherever detected. HRd may drive a distinct subgroup of MSS tumors and lead to poor clinical outcome. These analyses offer insight into mutational signatures in MSI and MMS tumors and reveal opportunities for improved clinical diagnosis and personalized treatment of MSS tumors.
Collapse
Affiliation(s)
- Amir Farmanbar
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Robert Kneller
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Sanaz Firouzi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Villarroel-Espindola F, Ejsmentewicz T, Gonzalez-Stegmaier R, Jorquera RA, Salinas E. Intersections between innate immune response and gastric cancer development. World J Gastroenterol 2023; 29:2222-2240. [PMID: 37124883 PMCID: PMC10134417 DOI: 10.3748/wjg.v29.i15.2222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastric cancer (GC) is the fifth most commonly diagnosed malignancy. It has a reduced prevalence but has maintained its poor prognosis being the fourth leading cause of deaths related to cancer. The highest mortality rates occur in Asian and Latin American countries, where cases are usually diagnosed at advanced stages. Overall, GC is viewed as the consequence of a multifactorial process, involving the virulence of the Helicobacter pylori (H. pylori) strains, as well as some environmental factors, dietary habits, and host intrinsic factors. The tumor microenvironment in GC appears to be chronically inflamed which promotes tumor progression and reduces the therapeutic opportunities. It has been suggested that inflammation assessment needs to be measured qualitatively and quantitatively, considering cell-infiltration types, availability of receptors to detect damage and pathogens, and presence or absence of aggressive H. pylori strains. Gastrointestinal epithelial cells express several Toll-like receptors and determine the first defensive line against pathogens, and have been also described as mediators of tumorigenesis. However, other molecules, such as cytokines related to inflammation and innate immunity, including immune checkpoint molecules, interferon-gamma pathway and NETosis have been associated with an increased risk of GC. Therefore, this review will explore innate immune activation in the context of premalignant lesions of the gastric epithelium and established gastric tumors.
Collapse
Affiliation(s)
- Franz Villarroel-Espindola
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Troy Ejsmentewicz
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roxana Gonzalez-Stegmaier
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Roddy A Jorquera
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| | - Esteban Salinas
- Translational Medicine Unit, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 7500000, Metropolitan region, Chile
| |
Collapse
|
18
|
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell 2023; 186:1541-1563. [PMID: 37059064 DOI: 10.1016/j.cell.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.
Collapse
Affiliation(s)
- Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
19
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
20
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
21
|
Nishizuka SS, Nakatochi M, Koizumi Y, Hishida A, Okada R, Kawai S, Sutoh Y, Koeda K, Shimizu A, Naito M, Wakai K. Anti-Helicobacter pylori antibody status is associated with cancer mortality: A longitudinal analysis from the Japanese DAIKO prospective cohort study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001125. [PMID: 36962964 PMCID: PMC10022139 DOI: 10.1371/journal.pgph.0001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023]
Abstract
Paradoxically, patients with advanced stomach cancer who are Helicobacter pylori-positive (HP+) have a higher survival rate than those who are HP-. This finding suggests that HP infection has beneficial effects for cancer treatment. The present study examines whether HP+ individuals have a lower likelihood of death from cancer than those who are HP-. Prospective cohort data (n = 4,982 subjects enrolled in the DAIKO study between 2008-2010) were used to assess whether anti-HP antibody status was associated with cancer incidence. The median age in the primary registry was 53 years-old (range 35-69 years-old). Over the 8-year observation period there were 234 (4.7%) cancer cases in the cohort and 88 (1.8%) all-cause deaths. Urine anti-HP antibody data was available for all but one participant (n = 4,981; 99.98%). The number of HP+ and HP- individuals was 1,825 (37%) and 3,156 (63%), respectively. Anti-HP antibody distribution per birth year revealed that earlier birth year was associated with higher HP+ rates. With a birth year-matched cohort (n = 3,376), all-cancer incidence was significantly higher in HP+ individuals than those who were HP- (p = 0.00328), whereas there was no significant difference in the cancer death rate between HP+ and HP- individuals (p = 0.888). Cox regression analysis for prognostic factors revealed that the hazards ratio of HP+ was 1.59-fold (95%CI 1.17-2.26) higher than HP- in all-cancer incidence. Potential systemic effects of HP+ status may contribute to reduced likelihood of death for patients after an initial diagnosis of cancer.
Collapse
Affiliation(s)
- Satoshi S Nishizuka
- Division of Biomedical Research & Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Masahiro Nakatochi
- Department of Integrated Health Sciences, Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Koizumi
- Division of Biomedical Research & Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Japan
| | - Keisuke Koeda
- Department of Medical Safety Science, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Japan
- Division of Biomedical Information Analysis, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Wang H, Zhao M, Shi F, Zheng S, Xiong L, Zheng L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front Cell Infect Microbiol 2023; 13:1062803. [PMID: 37124036 PMCID: PMC10140366 DOI: 10.3389/fcimb.2023.1062803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Gastric cancer (GC), a common and high-mortality disease, still occupies an important position in current cancer research, and Helicobacter pylori (H. pylori) infection as its important risk factor has been a hot and challenging research area. Among the numerous pathogenic factors of H. pylori, the virulence protein CagA has been widely studied as the only bacterial-derived oncoprotein. It was found that CagA entering into gastric epithelial cells (GECs) can induce the dysregulation of multiple cellular pathways such as MAPK signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, Wnt/β-catenin signaling pathway, JAK-STAT signaling pathway, Hippo signaling pathway through phosphorylation and non-phosphorylation. These disordered pathways cause pathological changes in morphology, adhesion, polarity, proliferation, movement, and other processes of GECs, which eventually promotes the occurrence of GC. With the deepening of H. pylori-related research, the research on CagA-induced abnormal signaling pathway has been updated and deepened to some extent, so the key signaling pathways activated by CagA are used as the main stem to sort out the pathogenesis of CagA in this paper, aiming to provide new strategies for the H. pylori infection and treatment of GC in the future.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
23
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156:113932. [DOI: 10.1016/j.biopha.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
25
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
26
|
Liang L, Chai Y, Chai F, Liu H, Ma N, Zhang H, Zhang S, Nong L, Li T, Zhang B. Expression of SASP, DNA Damage Response, and Cell Proliferation Factors in Early Gastric Neoplastic Lesions: Correlations and Clinical Significance. Pathol Oncol Res 2022; 28:1610401. [PMID: 36061145 PMCID: PMC9437220 DOI: 10.3389/pore.2022.1610401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated senescence-associated secretory phenotype (SASP) pathway has recently been identified in the suppression and promotion of cancers. However, its practical role in carcinogenesis remains to be comprehensively elucidated. Here, we describe an investigation analysing SASP activity and its correlations with DNA damage response (DDR), genomic mutations, and cell proliferation in gastric carcinogenesis among 30 cases with available endoscopic submucosal dissection (ESD) specimens of early neoplastic lesions (including low-grade dysplasia [LGD], high-grade dysplasia [HGD], and intramucosal carcinoma). The positive cells of senescence-associated β-galactosidase staining and cGAS, STING, interferon-regulatory factor 3 (IRF3), and signal transducer and activator of transcription 6 (STAT6) expression levels using immunostaining were elevated in HGD and in cancers. Similarly, increased expression of the Fanconi anemia group D2 (FANCD2) protein, tumour suppressor p53 binding protein 1 (TP53BP1), and replication protein A (RPA2) (i.e., primary DDR factors) was detected in HGD and in cancers; these increased expression levels were closely correlated with high expression of Ki67 and minichromosome maintenance complex component 7 (MCM7) proteins. Moreover, genomic mutations in TP53 gene were detected in 56.67% of the evaluated cases (17/30) using next-generation sequencing, and positive staining was verified in HGD and in cancers. Statistical analysis revealed that cell proliferation closely correlated with the expression of DDR factors, of which TP53BP1 was positively associated with SASP factors and IRF3 was positively correlated with cell proliferation. In addition, an analysis evaluating clinical features demonstrated that STAT6-positive cases showed a longer progression-free survival time than STAT6-negative cases. Our evaluation, conducted using a limited number of specimens, suggests SASP may be prevalent in early gastric neoplastic lesions and could be activated by accelerated cell proliferation-induced DDR. The clinical significance of SASP still needs to be determined.
Collapse
Affiliation(s)
- Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Yijie Chai
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fei Chai
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Shuang Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- *Correspondence: Bo Zhang,
| |
Collapse
|
27
|
Inflammation and Gastric Cancer. Diseases 2022; 10:diseases10030035. [PMID: 35892729 PMCID: PMC9326573 DOI: 10.3390/diseases10030035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer remains a major killer globally, although its incidence has declined over the past century. It is the fifth most common cancer and the third most common reason for cancer-related deaths worldwide. Gastric cancer is the outcome of a complex interaction between environmental, host genetic, and microbial factors. There is significant evidence supporting the association between chronic inflammation and the onset of cancer. This association is particularly robust for gastrointestinal cancers in which microbial pathogens are responsible for the chronic inflammation that can be a triggering factor for the onset of those cancers. Helicobacter pylori is the most prominent example since it is the most widespread infection, affecting nearly half of the world’s population. It is well-known to be responsible for inducing chronic gastric inflammation progressing to atrophy, metaplasia, dysplasia, and eventually, gastric cancer. This review provides an overview of the association of the factors playing a role in chronic inflammation; the bacterial characteristics which are responsible for the colonization, persistence in the stomach, and triggering of inflammation; the microbiome involved in the chronic inflammation process; and the host factors that have a role in determining whether gastritis progresses to gastric cancer. Understanding these interconnections may improve our ability to prevent gastric cancer development and enhance our understanding of existing cases.
Collapse
|
28
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
29
|
Koizumi Y, Ahmad S, Ikeda M, Yashima-Abo A, Espina G, Sugimoto R, Sugai T, Iwaya T, Tamura G, Koeda K, Liotta LA, Takahashi F, Nishizuka SS. Helicobacter pylori modulated host immunity in gastric cancer patients with S-1 adjuvant chemotherapy. J Natl Cancer Inst 2022; 114:1149-1158. [PMID: 35437596 PMCID: PMC9360472 DOI: 10.1093/jnci/djac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Paradoxically, Helicobacter pylori-positive (HP+) advanced gastric cancer patients have a better prognosis than those who are HP-negative (HP-). Immunologic and statistical analyses can be used to verify whether systemic mechanisms modulated by HP are involved in this more favorable outcome. METHODS A total of 658 advanced gastric cancer patients who underwent gastrectomy were enrolled. HP infection, mismatch repair, programmed death-ligand 1 (PD-L1), and CD4/CD8 proteins, and microsatellite instability were analyzed. Overall survival (OS) and relapse free survival (RFS) rates were analyzed after stratifying clinicopathological factors. Cox proportional hazards regression analysis was performed to identify independent prognostic factors. RESULTS Among 491 cases that were analyzed, 175 (36%) and 316 (64%) cases were HP+ and HP⁻, respectively. Analysis of RFS indicated an interaction of HP status among the subgroups for S-1 dose (Pinteraction=0.0487) and PD-L1 (P = .016). HP+ patients in the PD-L1⁻ group had significantly higher five-year OS and RFS than HP- patients (81% vs. 68%; P = .0011; HR 0.477; 95% CI, 0.303-0.751 and 76% vs. 63% P = .0011; HR 0.508; 95% CI, 0.335-0.771, respectively). The five-year OS and RFS was also significantly higher for HP+ compared to HP- patients in the PD-L1-/S-1-reduced group (86% vs. 46%; P = .0014; HR 0.205; 95% CI, 0.07-0.602 and 83% vs. 34%; P = .001; HR 0.190; 95% CI, 0.072-0.498, respectively). Thus, HP status was identified as one of the most potentially important independent factors to predict prolonged survival. CONCLUSION This retrospective study suggests that an HP-modulated host immune system may contribute to prolonged survival in the absence of immune escape mechanisms of gastric cancer.
Collapse
Affiliation(s)
- Yuka Koizumi
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Sheny Ahmad
- Aspirating Scientists Summer Internship Program, George Mason University, Manassas, VA USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Miyuki Ikeda
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Akiko Yashima-Abo
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Ginny Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Takeshi Iwaya
- Molecular Therapeutics Laboratory, Department of Surgery, Iwate Medical University School of Medicine
| | - Gen Tamura
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Keisuke Koeda
- Department of Medical Safety Science, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Fumiaki Takahashi
- Division of Medical Engineering, Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | | |
Collapse
|
30
|
Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP, Sahebkar A. Curcumin: A therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog 2022; 166:105552. [DOI: 10.1016/j.micpath.2022.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
|
31
|
Kumagai K, Shimizu T, Takai A, Kakiuchi N, Takeuchi Y, Hirano T, Takeda H, Mizuguchi A, Teramura M, Ito T, Iguchi E, Nikaido M, Eso Y, Takahashi K, Ueda Y, Miyamoto SI, Obama K, Ogawa S, Marusawa H, Seno H. Expansion of gastric intestinal metaplasia with copy number aberrations contributes to field cancerization. Cancer Res 2022; 82:1712-1723. [PMID: 35363856 DOI: 10.1158/0008-5472.can-21-1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
Abstract
Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; nineteen single glands in the non-inflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. Additionally, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and the Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired copy number aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable to those of IGC, contributing to field cancerization.
Collapse
Affiliation(s)
- Ken Kumagai
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Atsushi Takai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - Haruhiko Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Aya Mizuguchi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mari Teramura
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takahiko Ito
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | | | - Yuji Eso
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yoshihide Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Seno
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Murata-Kamiya N, Hatakeyama M. Helicobacter pylori-induced DNA double-strand break in the development of gastric cancer. Cancer Sci 2022; 113:1909-1918. [PMID: 35359025 PMCID: PMC9207368 DOI: 10.1111/cas.15357] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Infection with cagA-positive Helicobacter pylori strains plays an etiological role in the development of gastric cancer. The CagA protein is injected into gastric epithelial cells through a bacterial Type IV secretion system. Inside the host cells, CagA promiscuously associates with multiple host cell proteins including the prooncogenic phosphatase SHP2 that is required for full activation of the RAS-ERK pathway. CagA-SHP2 interaction aberrantly activates SHP2 and thereby deregulates RAS-ERK signaling. Cancer is regarded as a disease of the genome, indicating that H. pylori-mediated gastric carcinogenesis is also associated with genomic alterations in the host cell. Indeed, accumulating evidence has indicated that H. pylori infection provokes DNA double-strand breaks (DSBs) by both CagA-dependent and -independent mechanisms. DSBs are repaired by either error-free homologous recombination (HR) or error-prone non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ). Infection with cagA-positive H. pylori inhibits RAD51 expression while dampening cytoplasmic-to-nuclear translocalization of BRCA1, causing replication fork instability and HR defects (known as "BRCAness"), which collectively provoke genomic hypermutation via non-HR-mediated DSB repair. H. pylori also subverts multiple DNA damage responses including DNA repair systems. Infection with H. pylori additionally inhibits the function of the p53 tumor suppressor, thereby dampening DNA damage-induced apoptosis while promoting proliferation of CagA-delivered cells. Thus, H. pylori cagA-positive strains promote abnormal expansion of cells with BRCAness, which dramatically increases the chance of generating driver gene mutations in the host cells. Once such driver mutations are acquired, H. pylori CagA is no longer required for subsequent gastric carcinogenesis (Hit-and-Run carcinogenesis).
Collapse
Affiliation(s)
- Naoko Murata-Kamiya
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
33
|
Shilova ON, Tsyba DL, Shilov ES. Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Mol Biol 2022; 56:46-58. [PMID: 35194245 PMCID: PMC8852905 DOI: 10.1134/s002689332201006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Proteins of the AID/APOBEC family are capable of cytidine deamination in nucleic acids forming uracil. These enzymes are involved in mRNA editing, protection against viruses, the introduction of point mutations into DNA during somatic hypermutation, and antibody isotype switching. Since these deaminases, especially AID, are potent mutagens, their expression, activity, and specificity are regulated by several intracellular mechanisms. In this review, we discuss the mechanisms of impaired expression and activation of AID/APOBEC proteins in human tumors and their role in carcinogenesis and tumor progression. Also, the diagnostic and potential therapeutic value of increased expression of AID/APOBEC in different types of tumors is analyzed. We assume that in the case of solid tumors, increased expression of endogenous deaminases can serve as a marker of response to immunotherapy since multiple point mutations in host DNA could lead to amino acid substitutions in tumor proteins and thereby increase the frequency of neoepitopes.
Collapse
Affiliation(s)
- O. N. Shilova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - D. L. Tsyba
- Pavlov First State Medical University, 197022 St. Petersburg, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - E. S. Shilov
- Faculty of Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
34
|
Uhl B, Prochazka KT, Fechter K, Pansy K, Greinix HT, Neumeister P, Deutsch AJA. Impact of the microenvironment on the pathogenesis of mucosa-associated lymphoid tissue lymphomas. World J Gastrointest Oncol 2022; 14:153-162. [PMID: 35116108 PMCID: PMC8790412 DOI: 10.4251/wjgo.v14.i1.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphomas of mucosa-associated lymphoid tissue (MALT), also known as MALT lymphomas. These arise at a wide range of different extranodal sites, with most cases affecting the stomach, the lung, the ocular adnexa and the thyroid. The small intestine is involved in a lower percentage of cases. Lymphoma growth in the early stages is associated with long-lasting chronic inflammation provoked by bacterial infections (e.g., Helicobacter pylori or Chlamydia psittaci infections) or autoimmune conditions (e.g., Sjögren’s syndrome or Hashimoto thyroiditis). While these inflammatory processes trigger lymphoma cell proliferation and/or survival, they also shape the microenvironment. Thus, activated immune cells are actively recruited to the lymphoma, resulting in either direct lymphoma cell stimulation via surface receptor interactions and/or indirect lymphoma cell stimulation via secretion of soluble factors like cytokines. In addition, chronic inflammatory conditions cause the acquisition of genetic alterations resulting in autonomous lymphoma cell growth. Recently, novel agents targeting the microenvironment have been developed and clinically tested in MALT lymphomas as well as other lymphoid malignancies. In this review, we aim to describe the composition of the microenvironment of MALT lymphoma, the interaction of activated immune cells with lymphoma cells and novel therapeutic approaches in MALT lymphomas using immunomodulatory and/or microenvironment-targeting agents.
Collapse
Affiliation(s)
- Barbara Uhl
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Peter Neumeister
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | |
Collapse
|
35
|
HomA and HomB, outer membrane proteins of Helicobacter pylori down-regulate activation-induced cytidine deaminase (AID) and Ig switch germline transcription and thereby affect class switch recombination (CSR) of Ig genes in human B-cells. Mol Immunol 2021; 142:37-49. [PMID: 34959071 DOI: 10.1016/j.molimm.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/28/2021] [Accepted: 12/19/2021] [Indexed: 12/26/2022]
Abstract
H. pylori is one of the major causes of chronic gastritis, peptic ulcer disease (PUD), gastric mucosa-associated lymphoid tissue lymphoma (MALT) and gastric carcinoma. H. pylori toxin VacA is responsible for host cell apoptosis, whereas CagA is known to aberrantly induce expression of activation-induced cytidine deaminase (AID) in gastric epithelial cells that causes mutations in oncogenes and tumour suppressor genes, leading to the transformation of normal cells into cancerous cells. Although, a significant amount of research has been conducted to understand the role of bacterial factors modulating deregulated host cell pathways, the interaction between H. pylori and immune cells of the marginal zone and its consequences are still not well understood. HomB and HomA, outer membrane proteins (OMPs) from H. pylori, which assist in the adhesion of bacteria to host cells, are found to be associated with H. pylori virulent strains and promote inflammation. Interestingly, we observed that the interaction of HomB/HomA OMPs with B-cells transiently downregulates AID expression and Ig switch germline transcription. Downregulation of AID leads to impairment of class switch recombination (CSR), resulting in significantly reduced switching to IgG and IgA antibodies. Besides, we examined the immune-suppressive response of B-cells and observed that the cells stimulated with HomA/B show upregulation in the levels of IL10, IL35, as well as PDL1, a T-cell inhibition marker. Our study suggests the potential role of OMPs in immune response modulation strategies used by the pathogen to evade the immune response. These results provide a better understanding of H. pylori pathogenesis and assist in identifying novel targets for therapy.
Collapse
|
36
|
Mehrotra T, Devi TB, Kumar S, Talukdar D, Karmakar SP, Kothidar A, Verma J, Kumari S, Alexander SM, Retnakumar RJ, Devadas K, Ray A, Mutreja A, Nair GB, Chattopadhyay S, Das B. Antimicrobial resistance and virulence in Helicobacter pylori: Genomic insights. Genomics 2021; 113:3951-3966. [PMID: 34619341 DOI: 10.1016/j.ygeno.2021.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/10/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022]
Abstract
Microbes evolve rapidly by modifying their genome through mutations or acquisition of genetic elements. Antimicrobial resistance in Helicobacter pylori is increasingly prevalent in India. However, limited information is available about the genome of resistant H. pylori isolated from India. Our pan- and core-genome based analyses of 54 Indian H. pylori strains revealed plasticity of its genome. H. pylori is highly heterogenous both in terms of the genomic content and DNA sequence homology of ARGs and virulence factors. We observed that the H. pylori strains are clustered according to their geographical locations. The presence of point mutations in the ARGs and absence of acquired genetic elements linked with ARGs suggest target modifications are the primary mechanism of its antibiotic resistance. The findings of the present study would help in better understanding the emergence of drug-resistant H. pylori and controlling gastric disorders by advancing clinical guidance on selected treatment regimens.
Collapse
Affiliation(s)
- Tanshi Mehrotra
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - T Barani Devi
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Shakti Kumar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Daizee Talukdar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonali Porey Karmakar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Akansha Kothidar
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Sneha Mary Alexander
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - R J Retnakumar
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Animesh Ray
- Department of Medicine, All India Institute of Medical, Science, New Delhi, India
| | - Ankur Mutreja
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India; Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge CB20QQ, United Kingdom
| | - G Balakrish Nair
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Santanu Chattopadhyay
- Microbiome Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
37
|
Nikaido M, Kakiuchi N, Miyamoto S, Hirano T, Takeuchi Y, Funakoshi T, Yokoyama A, Ogasawara T, Yamamoto Y, Yamada A, Setoyama T, Shimizu T, Kato Y, Uose S, Sakurai T, Minamiguchi S, Obama K, Sakai Y, Muto M, Chiba T, Ogawa S, Seno H. Indolent feature of Helicobacter pylori-uninfected intramucosal signet ring cell carcinomas with CDH1 mutations. Gastric Cancer 2021; 24:1102-1114. [PMID: 33961152 DOI: 10.1007/s10120-021-01191-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND In Helicobacter pylori (Hp)-uninfected individuals, diffuse-type gastric cancer (DGC) was reported as the most common type of cancer. However, the carcinogenic mechanism of Hp-uninfected sporadic DGC is largely unknown. METHODS We performed whole-exome sequencing of Hp-uninfected DGCs and Hp-uninfected normal gastric mucosa. For advanced DGCs, external datasets were also analyzed. RESULTS Eighteen patients (aged 29-78 years) with DGCs and nine normal subjects (28-77 years) were examined. The mutation burden in intramucosal DGCs (10-66 mutations per exome) from individuals aged 29-73 years was not very different from that in the normal gastric glands, which showed a constant mutation accumulation rate (0.33 mutations/exome/year). Unbiased dN/dS analysis showed that CDH1 somatic mutation was a driver mutation for intramucosal DGC. CDH1 mutation was more frequent in intramucosal DGCs (67%) than in advanced DGCs (27%). In contrast, TP53 mutation was more frequent in advanced DGCs (52%) than in intramucosal DGCs (0%). This discrepancy in mutations suggests that CDH1-mutated intramucosal DGCs make a relatively small contribution to advanced DGC formation. Among the 16 intramucosal DGCs (median size, 6.5 mm), 15 DGCs were pure signet ring cell carcinoma (SRCC) with reduced E-cadherin expression and a low proliferative capacity (median Ki-67 index, 2.4%). Five SRCCs reviewed endoscopically over 2-5 years showed no progression. CONCLUSIONS Impaired E-cadherin function due to CDH1 mutation was considered as an early carcinogenic event of Hp-uninfected intramucosal SRCC. Genetic and clinical analyses suggest that Hp-uninfected intramucosal SRCCs may be less likely to develop into advanced DGCs.
Collapse
Affiliation(s)
- Mitsuhiro Nikaido
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihata-Cho, Fushimi, Kyoto, 612-8555, Japan.
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taro Funakoshi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yokoyama
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki Ogasawara
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Yamada
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Setoyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gastroenterology, Osaka Red Cross Hospital, Osaka, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukari Kato
- Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Suguru Uose
- Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology, Kansai Electric Power Hospital, Osaka, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J Pharm Anal 2021; 12:394-405. [PMID: 35811622 PMCID: PMC9257438 DOI: 10.1016/j.jpha.2021.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. NF-κB plays a pivotal role in the maintenance of homeostasis and various inflammation-mediated pathologies. NF-κB is involved in cancer development and progression by modulating growth signaling and apoptosis pathways. Phytochemicals modulating NF-κB activity should be exploited to design anticancer drugs with minimal side effects. Use of these phytochemicals in adjunctive chemotherapy may enhance the chemosensitivity of existing chemotherapeutic drugs.
Collapse
Affiliation(s)
- Akansha Chauhan
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridayesh Prakash
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sandhya Singh
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
- Corresponding author.
| |
Collapse
|
39
|
Illescas O, Rodríguez-Sosa M, Gariboldi M. Mediterranean Diet to Prevent the Development of Colon Diseases: A Meta-Analysis of Gut Microbiota Studies. Nutrients 2021; 13:nu13072234. [PMID: 34209683 PMCID: PMC8308215 DOI: 10.3390/nu13072234] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic approach for the prevention of multiple diseases, and one of its mechanisms of action is the modulation of the microbiota. We aimed to determine whether MD can be used as a preventive measure against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted. We observed that the microbiota associated with MD was enriched in bacteria that promote an anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including cancer. Some of these differences were maintained even when MD was compared to healthy controls without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method against cancer and other gut-related diseases.
Collapse
Affiliation(s)
- Oscar Illescas
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla C.P. 54090, MEX, Mexico;
| | - Manuela Gariboldi
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-2-23902042
| |
Collapse
|
40
|
Mori H, Masahata K, Umeda S, Morine Y, Ishibashi H, Usui N, Shimada M. Risk of carcinogenesis in the biliary epithelium of children with congenital biliary dilatation through epigenetic and genetic regulation. Surg Today 2021; 52:215-223. [PMID: 34132887 DOI: 10.1007/s00595-021-02325-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSES Congenital biliary dilatation (CBD), defined as pancreaticobiliary maljunction (PBM) with biliary dilatation, is a high risk factor for biliary tract cancer (BTC). KRAS and p53 mutations reportedly affect this process, but the mechanisms are unclear, as is the likelihood of BTC later in life in children with CBD. We investigated potential carcinogenetic pathways in children with CBD compared with adults. METHODS The subjects of this study were nine children with CBD and 13 adults with PBM (10 dilated, 3 non-dilated) without BTC who underwent extrahepatic bile duct resections, as well as four control patients who underwent pancreaticoduodenectomy for non-biliary cancer. We evaluated expressions of Ki-67, KRAS, p53, histone deacetylase (HDAC) and activation-induced cytidine deaminase (AID) in the biliary tract epithelium immunohistochemically. RESULTS The Ki-67 labeling index (LI) and expressions of KRAS, p53, HDAC, and AID in the gallbladder epithelium were significantly higher or tended to be higher in both the children with CBD and the adults with PBM than in the controls. CONCLUSIONS BTC may develop later in children with CBD and in adults with PBM, via HDAC and AID expression and through epigenetic and genetic regulation.
Collapse
Affiliation(s)
- Hiroki Mori
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Satoshi Umeda
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroki Ishibashi
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Noriaki Usui
- Department of Pediatric Surgery, Osaka Women's and Children's Hospital, Murodoucho 840, Izumi, Osaka, 594-1101, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
41
|
Elagan SK, Almalki SJ, Alharthi MR, Mohamed MS, EL-Badawy MF. Role of Bacteria in the Incidence of Common GIT Cancers: The Dialectical Role of Integrated Bacterial DNA in Human Carcinogenesis. Infect Drug Resist 2021; 14:2003-2014. [PMID: 34103947 PMCID: PMC8179827 DOI: 10.2147/idr.s309051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the wide medical knowledge about the direct role of many viruses in the pathogenesis of certain cancers, there is still ambiguity and hazy vision about the direct role of bacteria in cancer incidence. Understanding the role of bacteria in carcinogenesis is no longer a scientific luxury, but it has become an urgent and extremely important necessity to realize the pathogenesis of cancer caused by oncogenic bacteria as an attempt to overcome the oncogenic mechanisms exhibited by these oncogenic bacteria. This review shed the light on the indirect role of the host's inflammatory and immunological responses in the pathogenesis of bacteria-induced cancer. Also, this review discussed the indirect role of the bacterial toxins and virulence factors in the induction of common gastrointestinal cancers, such as gallbladder cancer (GBC), colorectal cancer (CRC), and gastric cancer (GC). Finally, this review dealt with the debate about the possibility of bacterial DNA integration into the human genome and cancer incidence.
Collapse
Affiliation(s)
- Sayed K Elagan
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Saad J Almalki
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - M R Alharthi
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed S Mohamed
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed F EL-Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, 32958, Egypt
| |
Collapse
|
42
|
Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, Takahashi-Kanemitsu A, Knight CT, Kunita A, Suzuki N, Del Valle AA, Tsuboi M, Hata M, Hayakawa Y, Ohnishi N, Ueda K, Fukayama M, Ushiku T, Ishikawa S, Hatakeyama M. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe 2021; 29:941-958.e10. [PMID: 33989515 DOI: 10.1016/j.chom.2021.04.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Infection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation. It hereby induces BRCAness that promotes DNA double-strand breaks (DSBs) while disabling error-free homologous recombination-mediated DNA repair. The CagA/PAR1b interaction also stimulates Hippo signaling that circumvents apoptosis of DNA-damaged cells, giving cells time to repair DSBs through error-prone mechanisms. The DSB-activated p53-p21Cip1 axis inhibits proliferation of CagA-delivered cells, but the inhibition can be overcome by p53 inactivation. Indeed, sequential pulses of CagA in TP53-mutant cells drove somatic mutation with BRCAness-associated genetic signatures. Expansion of CagA-delivered cells with BRCAness-mediated genome instability, from which CagA-independent cancer-predisposing cells arise, provides a plausible "hit-and-run mechanism" of H. pylori CagA for gastric carcinogenesis.
Collapse
Affiliation(s)
- Satoshi Imai
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Murata-Kamiya
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Kamrunnesa Tahmina
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Weida Wu
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | | | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Adriana A Del Valle
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Ohnishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
43
|
Kinoshita K, Uemura M, Shimizu T, Kinoshita S, Marusawa H. Stepwise generation of AID knock-in and conditional knockout mice from a single gene-targeting event. Int Immunol 2021; 33:387-398. [PMID: 33903914 DOI: 10.1093/intimm/dxab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) encoded by the Aicda gene initiates class-switch recombination and somatic hypermutation of immunoglobulin genes. In addition to this function, AID is also implicated in the epigenetic regulation in pluripotent stem cells and in the oncogenesis of lymphoid and non-lymphoid origins. To examine AID's role in specific cell types, we developed mouse strains of conditional knockout (Aicda-FL) and knock-in with a red fluorescent protein gene (RFP) inserted into the Aicda locus (Aicda-RFP). These two strains were obtained from a single targeting event in embryonic stem cells by a three-loxP or tri-lox strategy. Partial and complete recombination among the three loxP sites in the Aicda-RFP locus gave rise to Aicda-FL and AID-deficient loci (Aicda-KO), respectively, after mating Aicda-RFP mice with Cre-expressing mice driven by tissue-non-specific alkaline phosphate promoter. We confirmed RFP expression in B cells of germinal centers of intestine-associated lymphoid tissue. Mice homozygous for each allele were obtained and were checked for AID activity by class-switch and hypermutation assays. AID activity was normal for Aicda-FL but partially and completely absent for Aicda-RFP and Aicda-KO, respectively. Aicda-FL and Aicda-RFP mice would be useful for studying AID function in subpopulations of B cells and in non-lymphoid cells.
Collapse
Affiliation(s)
- Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, 4-27-2 Kita-ando, Aoi-ku, Shizuoka 420-0881, Japan.,Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Munehiro Uemura
- Shiga Medical Center Research Institute, Moriyama 524-0022, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shun Kinoshita
- Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto 606-8501, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Genomic Uracil and Aberrant Profile of Demethylation Intermediates in Epigenetics and Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms22084212. [PMID: 33921666 PMCID: PMC8073381 DOI: 10.3390/ijms22084212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA of all living cells undergoes continuous structural and chemical alterations resulting from fundamental cellular metabolic processes and reactivity of normal cellular metabolites and constituents. Examples include enzymatically oxidized bases, aberrantly methylated bases, and deaminated bases, the latter largely uracil from deaminated cytosine. In addition, the non-canonical DNA base uracil may result from misincorporated dUMP. Furthermore, uracil generated by deamination of cytosine in DNA is not always damage as it is also an intermediate in normal somatic hypermutation (SHM) and class shift recombination (CSR) at the Ig locus of B-cells in adaptive immunity. Many of the modifications alter base-pairing properties and may thus cause replicative and transcriptional mutagenesis. The best known and most studied epigenetic mark in DNA is 5-methylcytosine (5mC), generated by a methyltransferase that uses SAM as methyl donor, usually in CpG contexts. Oxidation products of 5mC are now thought to be intermediates in active demethylation as well as epigenetic marks in their own rights. The aim of this review is to describe the endogenous processes that surround the generation and removal of the most common types of DNA nucleobase modifications, namely, uracil and certain epigenetic modifications, together with their role in the development of hematological malignances. We also discuss what dictates whether the presence of an altered nucleobase is defined as damage or a natural modification.
Collapse
|
45
|
Nakanishi R, Shimizu T, Kumagai K, Takai A, Marusawa H. Genetic Pathogenesis of Inflammation-Associated Cancers in Digestive Organs. Pathogens 2021; 10:453. [PMID: 33918902 PMCID: PMC8069378 DOI: 10.3390/pathogens10040453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Epidemiological, clinical, and biological studies convincingly demonstrate that chronic inflammation predisposes to the development of human cancers. In digestive organs, inflammation-associated cancers include colitis-associated colorectal cancers, Helicobacter pylori-associated gastric cancer, as well as Barrett's esophagus and esophageal adenocarcinoma associated with chronic duodenogastric-esophageal reflux. Cancer is a genomic disease, and stepwise accumulation of genetic and epigenetic alterations of tumor-related genes leads to the development of tumor cells. Recent genome analyses show that genetic alterations, which are evoked by inflammation, are latently accumulated in inflamed epithelial cells of digestive organs. Production of reactive oxygen and aberrant expression of activation-induced cytidine deaminase, a nucleotide-editing enzyme, could be induced in inflamed gastrointestinal epithelial cells and play a role as a genomic modulator of inflammation-associated carcinogenesis. Understanding the molecular linkage between inflammation and genetic alterations will open up a new field of tumor biology and provide a novel strategy for the prevention of inflammation-associated tumorigenesis.
Collapse
Affiliation(s)
- Risa Nakanishi
- Department of Gastroenterology, Red Cross Osaka Hospital, Osaka 543-8555, Japan;
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Red Cross Osaka Hospital, Osaka 543-8555, Japan;
| |
Collapse
|
46
|
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SA, El-Seedi HR, Abdel-Daim MM. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54000, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shaden A.M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
47
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
48
|
Activation-induced cytidine deaminase is a possible regulator of cross-talk between oocytes and granulosa cells through GDF-9 and SCF feedback system. Sci Rep 2021; 11:3833. [PMID: 33589683 PMCID: PMC7884688 DOI: 10.1038/s41598-021-83529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID, Aicda) is a master gene regulating class switching of immunoglobulin genes. In this study, we investigated the significance of AID expression in the ovary. Immunohistological study and RT-PCR showed that AID was expressed in murine granulosa cells and oocytes. However, using the Aicda-Cre/Rosa-tdRFP reporter mouse, its transcriptional history in oocytes was not detected, suggesting that AID mRNA in oocytes has an exogenous origin. Microarray and qPCR validation revealed that mRNA expressions of growth differentiation factor-9 (GDF-9) in oocytes and stem cell factor (SCF) in granulosa cells were significantly decreased in AID-knockout mice compared with wild-type mice. A 6-h incubation of primary granuloma cells markedly reduced AID expression, whereas it was maintained by recombinant GDF-9. In contrast, SCF expression was induced by more than threefold, whereas GDF-9 completely inhibited its increase. In the presence of GDF-9, knockdown of AID by siRNA further decreased SCF expression. However, in AID-suppressed granulosa cells and ovarian tissues of AID-knockout mice, there were no differences in the methylation of SCF and GDF-9. These findings suggest that AID is a novel candidate that regulates cross-talk between oocytes and granulosa cells through a GDF-9 and SCF feedback system, probably in a methylation-independent manner.
Collapse
|
49
|
Liu Z, Shi M, Li X, Song S, Liu N, Du H, Ye J, Li H, Zhang Z, Zhang L. HER2 copy number as predictor of disease-free survival in HER2-positive resectable gastric adenocarcinoma. J Cancer Res Clin Oncol 2021; 147:1315-1324. [PMID: 33543328 PMCID: PMC8021510 DOI: 10.1007/s00432-021-03522-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/10/2021] [Indexed: 01/28/2023]
Abstract
Purpose The identification of HER2 overexpression in a subset of gastric adenocarcinoma (GA) patients represents a significant step forward in unveiling the molecular complexity of this disease. The predictive and prognostic value of HER2 amplification in advanced HER2 inhibitor-treated GA patients has been investigated. However, its predictive value in resectable patients remains elusive. Methods We enrolled 98 treatment-naïve resectable Chinese GA patients with HER2 overexpression assessed using IHC. Capture-based targeted sequencing using a panel consisting of 41 gastrointestinal cancer-related genes was performed on tumor tissues. Furthermore, we also investigated the correlation between HER2 copy number (CN) and survival outcomes. Results Of the 98 HER2-overexpressed patients, 90 had HER2 CN amplification assessed using next-generation sequencing, achieving 92% concordance. The most commonly seen concurrent mutations were occurring in TP53, EGFR and PIK3CA. We found HER2 CN as a continuous variable was an independent predictor associated with DFS (p = 0.029). Our study revealed HER2 CN-high patients showed a trend of intestinal-type GA predominant (p = 0.075) and older age (p = 0.07). The median HER2 CN was 15.34, which was used to divide the cohort into CN-high and CN-low groups. Patients with high HER2 CN had a significantly shorter DFS than patients with low HER2 CN (p = 0.002). Furthermore, HER2 CN as a categorical variable was also an independent predictor associated with DFS in patients. Conclusion We elucidated the mutation spectrum of HER2-positive resectable Chinese GA patients and the association between HER2 CN and DFS. Our work revealed HER2 CN as an independent risk factor predicted unfavorable prognosis in HER2-positive GA patients and allowed us to further stratify HER2-positive resectable GA patients for disease management.
Collapse
Affiliation(s)
- Zimin Liu
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Mingpeng Shi
- Operating Room of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoxiao Li
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shanai Song
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ning Liu
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Haiwei Du
- Burning Rock Biotech, Guangzhou, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | - Haiyan Li
- Burning Rock Biotech, Guangzhou, China
| | | | - Lu Zhang
- Burning Rock Biotech, Guangzhou, China
| |
Collapse
|
50
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|