1
|
Currin-Ross D, Al-Izzi SC, Noordstra I, Yap AS, Morris RG. Advecting scaffolds: Controlling the remodeling of actomyosin with anillin. Phys Rev E 2025; 111:024403. [PMID: 40103056 DOI: 10.1103/physreve.111.024403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/13/2024] [Indexed: 03/20/2025]
Abstract
We propose and analyze an active hydrodynamic theory that characterizes the effects of the scaffold protein anillin. Anillin is found at major sites of cortical activity, such as adherens junctions and the cytokinetic furrow, where the canonical regulator of actomyosin remodeling is the small GTPase, RhoA. RhoA acts via intermediary "effectors" to increase both the rates of activation of myosin motors and the polymerization of actin filaments. Anillin has been shown to scaffold this action of RhoA-improving critical rates in the signaling pathway without altering the essential biochemistry-but its contribution to the wider spatiotemporal organization of the cortical cytoskeleton remains poorly understood. Here we combine analytics and numerics to show how anillin can nontrivially regulate the cytoskeleton at hydrodynamic scales. At short times, anillin can amplify or dampen existing contractile instabilities, as well as alter the parameter ranges over which they occur. At long times, it can change both the size and speed of steady-state traveling pulses. The primary mechanism that underpins these behaviors is established to be the advection of anillin by myosin II motors, with the specifics relying on the values of two coupling parameters. These codify anillin's effect on local signaling kinetics and can be traced back to its interaction with the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP_{2}), thereby establishing a putative connection between actomyosin remodeling and membrane composition.
Collapse
Affiliation(s)
- Denni Currin-Ross
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, Sydney 2052, Australia
| | - Sami C Al-Izzi
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Node, Sydney, NSW 2052, Australia
| | - Ivar Noordstra
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
| | - Alpha S Yap
- The University of Queensland, Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, Brisbane 4000, Australia
| | - Richard G Morris
- UNSW, School of Physics, Sydney, NSW 2052, Australia
- UNSW, EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, Sydney 2052, Australia
- UNSW, ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Node, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Balasubramaniam L, Jain S, Dang T, Lagoutte E, Marc Mège R, Chavrier P, Ladoux B, Rossé C. Different Biomechanical Cell Behaviors in an Epithelium Drive Collective Epithelial Cell Extrusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401573. [PMID: 39291385 PMCID: PMC11558136 DOI: 10.1002/advs.202401573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/30/2024] [Indexed: 09/19/2024]
Abstract
In vertebrates, many organs, such as the kidney and the mammary gland form ductal structures based on the folding of epithelial sheets. The development of these organs relies on coordinated sorting of different cell lineages in both time and space, through mechanisms that remain largely unclear. Tissues are composed of several cell types with distinct biomechanical properties, particularly at cell-cell and cell-substrate boundaries. One hypothesis is that adjacent epithelial layers work in a coordinated manner to shape the tissue. Using in vitro experiments on model epithelial cells, differential expression of atypical Protein Kinase C iota (aPKCi), a key junctional polarity protein, is shown to reinforce cell epithelialization and trigger sorting by tuning cell mechanical properties at the tissue level. In a broader perspective, it is shown that in a heterogeneous epithelial monolayer, in which cell sorting occurs, forces arising from epithelial cell growth under confinement by surrounding cells with different biomechanical properties are sufficient to promote collective cell extrusion and generate emerging 3D organization related to spheroids and buds. Overall, this research sheds light on the role of aPKCi and the biomechanical interplay between distinct epithelial cell lineages in shaping tissue organization, providing insights into the understanding of tissue and organ development.
Collapse
Affiliation(s)
- Lakshmi Balasubramaniam
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Wellcome/Cancer Research UK Gurdon InstituteCambridgeUK
| | - Shreyansh Jain
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Present address:
Transgene S.A.Illkirch–GraffenstadenFrance
| | - Tien Dang
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | - Emilie Lagoutte
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| | - René Marc Mège
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
| | | | - Benoit Ladoux
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Department of PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91058ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Carine Rossé
- Université Paris CitéCNRS, Institut Jacques MonodParisF‐75013France
- Institut CurieCNRS, UMR144PSL Research UniversityParis75005France
| |
Collapse
|
3
|
Mai Y, Kobayashi Y, Kitahata H, Seo T, Nohara T, Itamoto S, Mai S, Kumamoto J, Nagayama M, Nishie W, Ujiie H, Natsuga K. Patterning in stratified epithelia depends on cell-cell adhesion. Life Sci Alliance 2024; 7:e202402893. [PMID: 39025524 PMCID: PMC11258421 DOI: 10.26508/lsa.202402893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Epithelia consist of proliferating and differentiating cells that often display patterned arrangements. However, the mechanism regulating these spatial arrangements remains unclear. Here, we show that cell-cell adhesion dictates multicellular patterning in stratified epithelia. When cultured keratinocytes, a type of epithelial cell in the skin, are subjected to starvation, they spontaneously develop a pattern characterized by areas of high and low cell density. Pharmacological and knockout experiments show that adherens junctions are essential for patterning, whereas the mathematical model that only considers local cell-cell adhesion as a source of attractive interactions can form regions with high/low cell density. This phenomenon, called cell-cell adhesion-induced patterning (CAIP), influences cell differentiation and proliferation through Yes-associated protein modulation. Starvation, which induces CAIP, enhances the stratification of the epithelia. These findings highlight the intrinsic self-organizing property of epithelial cells.
Collapse
Affiliation(s)
- Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Department of Mathematics, Faculty of Science, Josai University, Sakado, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takashi Seo
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sota Itamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shoko Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Kumamoto
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Zhang Y, Huang S, Cao Y, Li L, Yang J, Zhao M. New Opportunities for Electric Fields in Promoting Wound Healing: Collective Electrotaxis. Adv Wound Care (New Rochelle) 2024. [PMID: 38780799 DOI: 10.1089/wound.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Significance: It has long been hypothesized that naturally occurring electric fields (EFs) aid wound healing by guiding cell migration. Consequently, the application of EFs has significant potential for promoting wound healing. However, the mechanisms underlying the cellular response to EFs remain unclear. Recent Advances: Although the directed migration of isolated single cells under EFs has been studied for decades, only recently has experimental evidence demonstrated the distinct collective migration of large sheets of keratinocytes and corneal epithelial cells in response to applied EFs. Accumulating evidence suggests that the emergent properties of cell groups in response to EF guidance offer new opportunities for EF-assisted directional migration. Critical Issues: In this review, we provide an overview of the field of collective electrotaxis, highlighting key advances made in recent years. We also discuss advanced engineering strategies utilized to manipulate collective electrotaxis. Future Directions: We outline a series of unanswered questions in this field and propose potential applications of collective electrotaxis in developing electrical stimulation technologies for wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Shiwen Huang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Yifei Cao
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Min Zhao
- Department of Ophthalmology and Vision Science, University of California, Davis, California, USA
- Department of Dermatology, University of California, Davis, California, USA
| |
Collapse
|
5
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Davidson LA. Gears of life: A primer on the simple machines that shape the embryo. Curr Top Dev Biol 2024; 160:87-109. [PMID: 38937032 DOI: 10.1016/bs.ctdb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A simple machine is a basic of device that takes mechanical advantage to apply force. Animals and plants self-assemble through the operation of a wide variety of simple machines. Embryos of different species actuate these simple machines to drive the geometric transformations that convert a disordered mass of cells into organized structures with discrete identities and function. These transformations are intrinsically coupled to sequential and overlapping steps of self-organization and self-assembly. The processes of self-organization have been explored through the molecular composition of cells and tissues and their information networks. By contrast, efforts to understand the simple machines underlying self-assembly must integrate molecular composition with the physical principles of mechanics. This primer is concerned with effort to elucidate the operation of these machines, focusing on the "problem" of morphogenesis. Advances in understanding self-assembly will ultimately connect molecular-, subcellular-, cellular- and meso-scale functions of plants and animals and their ability to interact with larger ecologies and environmental influences.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
7
|
Zhang D, Wu W, Zhang W, Feng Q, Zhang Q, Liang H. Nuclear deformation and cell division of single cell on elongated micropatterned substrates fabricated by DMD lithography. Biofabrication 2024; 16:035001. [PMID: 38471164 DOI: 10.1088/1758-5090/ad3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Cells sense mechanical signals from the surrounding environment and transmit them to the nucleus through mechanotransduction to regulate cellular behavior. Microcontact printing, which utilizes elastomer stamps, is an effective method for simulating the cellular microenvironment and manipulating cell morphology. However, the conventional fabrication process of silicon masters and elastomer stamps requires complex procedures and specialized equipment, which restricts the widespread application of micropatterning in cell biology and hinders the investigation of the role of cell geometry in regulating cell behavior. In this study, we present an innovative method for convenient resin stamp microfabrication based on digital micromirror device planar lithography. Using this method, we generated a series of patterns ranging from millimeter to micrometer scales and validated their effectiveness in controlling adhesion at both collective and individual cell levels. Additionally, we investigated mechanotransduction and cell behavior on elongated micropatterned substrates. We then examined the effects of cell elongation on cytoskeleton organization, nuclear deformation, focal adhesion formation, traction force generation, nuclear mechanics, and the growth of HeLa cells. Our findings reveal a positive correlation between cell length and mechanotransduction. Interestingly, HeLa cells with moderate length exhibit the highest cell division and proliferation rates. These results highlight the regulatory role of cell elongation in mechanotransduction and its significant impact on cancer cell growth. Furthermore, our methodology for controlling cell adhesion holds the potential for addressing fundamental questions in both cell biology and biomedical engineering.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230000, People's Republic of China
- School of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People's Republic of China
- IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
8
|
Laha S, Dhar D, Adak M, Bandopadhyay A, Das S, Chatterjee J, Chakraborty S. Electric field-mediated adhesive dynamics of cells inside bio-functionalised microchannels offers important cues for active control of cell-substrate adhesion. SOFT MATTER 2024; 20:2610-2623. [PMID: 38426537 DOI: 10.1039/d4sm00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adhesive dynamics of cells plays a critical role in determining different biophysical processes orchestrating health and disease in living systems. While the rolling of cells on functionalised substrates having similarity with biophysical pathways appears to be extensively discussed in the literature, the effect of an external stimulus in the form of an electric field on the same remains underemphasized. Here, we bring out the interplay of fluid shear and electric field on the rolling dynamics of adhesive cells in biofunctionalised micro-confinements. Our experimental results portray that an electric field, even restricted to low strengths within the physiologically relevant regimes, can significantly influence the cell adhesion dynamics. We quantify the electric field-mediated adhesive dynamics of the cells in terms of two key parameters, namely, the voltage-altered rolling velocity and the frequency of adhesion. The effect of the directionality of the electric field with respect to the flow direction is also analysed by studying cellular migration with electrical effects acting both along and against the flow. Our experiment, on one hand, demonstrates the importance of collagen functionalisation in the adhesive dynamics of cells through micro channels, while on the other hand, it reveals how the presence of an axial electric field can lead to significant alteration in the kinetic rate of bond breakage, thereby modifying the degree of cell-substrate adhesion and quantifying in terms of the adhesion frequency of the cells. Proceeding further forward, we offer a simple theoretical explanation towards deriving the kinetics of cellular bonding in the presence of an electric field, which corroborates favourably with our experimental outcome. These findings are likely to offer fundamental insights into the possibilities of local control of cellular adhesion via electric field mediated interactions, bearing critical implications in a wide variety of medical conditions ranging from wound healing to cancer metastasis.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Dhruba Dhar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Adak
- National Institute of Technology, Tiruchirappalli, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
9
|
Luciano M, Versaevel M, Kalukula Y, Gabriele S. Mechanoresponse of Curved Epithelial Monolayers Lining Bowl-Shaped 3D Microwells. Adv Healthc Mater 2024; 13:e2203377. [PMID: 37820698 DOI: 10.1002/adhm.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 10/13/2023]
Abstract
The optimal functioning of many organs relies on the curved architecture of their epithelial tissues. However, the mechanoresponse of epithelia to changes in curvature remains misunderstood. Here, bowl-shaped microwells in hydrogels are designed via photopolymerization to faithfully replicate the shape and dimensions of lobular structures. Leveraging these hydrogel-based microwells, curved epithelial monolayers are engineered, and how in-plane and Gaussian curvatures at the microwell entrance influence epithelial behavior is investigated. Cells and nuclei around the microwell edge display a more pronounced centripetal orientation as the in-plane curvature decreases, and enhanced cell straightness and speed. Moreover, cells reorganize their actin cytoskeleton by forming a supracellular actin cable at the microwell edge, with its size becoming more pronounced as the in-plane curvature decreases. The Gaussian curvature at the microwell entrance enhances the maturation of the supracellular actin cable architecture and leads to a vertical orientation of nuclei toward the bottom of the microwell. Increasing Gaussian curvature results in flattened and elongated nuclear morphologies characterized by highly compacted chromatin states. This approach provides better understanding of the mechanoresponse of curved epithelial monolayers curvatures lining lobular structures. In addition, bowl-shaped microwells offer a powerful platform to study curvature-dependent mechanotransduction pathways in anatomically relevant 3D structures.
Collapse
Affiliation(s)
- Marine Luciano
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Marie Versaevel
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Yohalie Kalukula
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, Research Institute for Biosciences, University of Mons, 20 Place du Parc, Mons, B-7000, Belgium
| |
Collapse
|
10
|
Riedemann HI, Marquardt Y, Jansen M, Baron JM, Huth S. Biological effect of laser-assisted scar healing (LASH) on standardized human three-dimensional wound healing skin models using fractional non-ablative 1540 nm Er:Glass or 1550 nm diode lasers. Lasers Surg Med 2024; 56:100-106. [PMID: 37855626 DOI: 10.1002/lsm.23731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE In postoperative wound healing after surgical operations or ablative laser treatments, recent studies suggest the timely use of non-ablative fractional laser treatments with the aim to improve wound healing and prevent pathological scar formation. However, the underlying molecular mechanisms are poorly understood. The aim of this study was to investigate the effects of laser-assisted scar healing (LASH) at the molecular level and to combine it with already established wound healing-promoting local treatments. METHODS We irradiated full-thickness 3D skin models with a fractional ablative Er:YAG laser to set standardized lesions to the epidermal and upper dermal layer. Subsequently, LASH was induced by irradiating the models with either a fractional non-ablative 1540 nm Er:Glass or 1550 nm diode laser. In addition, we tested the combination of non-ablative fractional laser treatment and topical aftercare with a dexpanthenol-containing ointment (DCO). RESULTS Histological analysis revealed that models irradiated with the 1540 nm Er:Glass or 1550 nm diode laser exhibited accelerated but not complete wound closure after 16 h. In contrast, additional topical posttreatment with DCO resulted in complete wound closure. At gene expression level, both non-ablative laser systems showed similar effects on epidermal differentiation and mild anti-inflammatory properties. The additional posttreatment with DCO enhanced the wound-healing effects of LASH, especially the upregulation of epidermal differentiation markers and anti-inflammatory cytokines at the gene expression level. CONCLUSION This in vitro study deciphers the biological effects of LASH with a fractional non-ablative 1540 nm Er:Glass or a 1550 nm diode laser in 3D skin models. These data help to better understand the biological properties of the LASH technique and is important to optimize its application.
Collapse
Affiliation(s)
- Helena I Riedemann
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Manuela Jansen
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens M Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Regeneration in calcareous sponge relies on 'purse-string' mechanism and the rearrangements of actin cytoskeleton. Cell Tissue Res 2023; 394:107-129. [PMID: 37466725 DOI: 10.1007/s00441-023-03810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The crucial step in any regeneration process is epithelization, i.e. the restoration of an epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the formation of a temporary structure, called regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| |
Collapse
|
12
|
Jun M, Lee YL, Zhou T, Maric M, Burke B, Park S, Low BC, Chiam KH. Subcellular Force Imbalance in Actin Bundles Induces Nuclear Repositioning and Durotaxis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43387-43402. [PMID: 37674326 DOI: 10.1021/acsami.3c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Durotaxis is a phenomenon in which cells migrate toward substrates of increasing stiffness. However, how cells assimilate substrate stiffness as a directional cue remains poorly understood. In this study, we experimentally show that mouse embryonic fibroblasts can discriminate between different substrate stiffnesses and develop higher traction forces at regions of the cell adhering to the stiffer pillars. In this way, the cells generate a force imbalance between adhesion sites. It is this traction force imbalance that drives durotaxis by providing directionality for cell migration. Significantly, we found that traction forces are transmitted via LINC complexes to the cell nucleus, which serves to maintain the global force imbalance. In this way, LINC complexes play an essential role in anterograde nuclear movement and durotaxis. This conclusion is supported by the fact that LINC complex-deficient cells are incapable of durotaxis and instead migrate randomly on substrates featuring a stiffness gradient.
Collapse
Affiliation(s)
- Myeongjun Jun
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Yin Loon Lee
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Tianxun Zhou
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| | - Martina Maric
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Brian Burke
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Boon Chuan Low
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117558, Singapore
- NUS college, National University of Singapore, Singapore 117558, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| |
Collapse
|
13
|
Ruppel A, Wörthmüller D, Misiak V, Kelkar M, Wang I, Moreau P, Méry A, Révilloud J, Charras G, Cappello G, Boudou T, Schwarz US, Balland M. Force propagation between epithelial cells depends on active coupling and mechano-structural polarization. eLife 2023; 12:e83588. [PMID: 37548995 PMCID: PMC10511242 DOI: 10.7554/elife.83588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/07/2023] [Indexed: 08/08/2023] Open
Abstract
Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.
Collapse
Affiliation(s)
- Artur Ruppel
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg UniversityHeidelbergGermany
- BioQuant–Center for Quantitative Biology, Heidelberg UniversityHeidelbergGermany
| | | | - Manasi Kelkar
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
| | - Irène Wang
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | | | - Adrien Méry
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | | | - Guillaume Charras
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institute for the Physics of Living Systems, University College LondonLondonUnited Kingdom
| | | | - Thomas Boudou
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg UniversityHeidelbergGermany
- BioQuant–Center for Quantitative Biology, Heidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
14
|
Xu H, Huo Y, Zhou Q, Wang LA, Cai P, Doss B, Huang C, Hsia KJ. Geometry-mediated bridging drives nonadhesive stripe wound healing. Proc Natl Acad Sci U S A 2023; 120:e2221040120. [PMID: 37098071 PMCID: PMC10161107 DOI: 10.1073/pnas.2221040120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
Wound healing through reepithelialization of gaps is of profound importance to the medical community. One critical mechanism identified by researchers for closing non-cell-adhesive gaps is the accumulation of actin cables around concave edges and the resulting purse-string constriction. However, the studies to date have not separated the gap-edge curvature effect from the gap size effect. Here, we fabricate micropatterned hydrogel substrates with long, straight, and wavy non-cell-adhesive stripes of different gap widths to investigate the stripe edge curvature and stripe width effects on the reepithelialization of Madin-Darby canine kidney (MDCK) cells. Our results show that MDCK cell reepithelization is closely regulated by the gap geometry and may occur through different pathways. In addition to purse-string contraction, we identify gap bridging either via cell protrusion or by lamellipodium extension as critical cellular and molecular mechanisms for wavy gap closure. Cell migration in the direction perpendicular to wound front, sufficiently small gap size to allow bridging, and sufficiently high negative curvature at cell bridges for actin cable constriction are necessary/sufficient conditions for gap closure. Our experiments demonstrate that straight stripes rarely induce cell migration perpendicular to wound front, but wavy stripes do; cell protrusion and lamellipodia extension can help establish bridges over gaps of about five times the cell size, but not significantly beyond. Such discoveries deepen our understanding of mechanobiology of cell responses to curvature and help guide development of biophysical strategies for tissue repair, plastic surgery, and better wound management.
Collapse
Affiliation(s)
- Hongmei Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Yucheng Huo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Quan Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Lianghao Abraham Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing211166, PR China
| | - Bryant Doss
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
15
|
Zhang H, Xu H, Sun W, Fang X, Qin P, Huang J, Fang J, Lin F, Xiong C. Purse-string contraction guides mechanical gradient-dictated heterogeneous migration of epithelial monolayer. Acta Biomater 2023; 159:38-48. [PMID: 36708850 DOI: 10.1016/j.actbio.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.
Collapse
Affiliation(s)
- Haihui Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peiwu Qin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Callens SJP, Fan D, van Hengel IAJ, Minneboo M, Díaz-Payno PJ, Stevens MM, Fratila-Apachitei LE, Zadpoor AA. Emergent collective organization of bone cells in complex curvature fields. Nat Commun 2023; 14:855. [PMID: 36869036 PMCID: PMC9984480 DOI: 10.1038/s41467-023-36436-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sebastien J P Callens
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands. .,Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Daniel Fan
- Department of Precision and Microsystems Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Ingmar A J van Hengel
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands.,Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
17
|
Kawaue T, Yow I, Pan Y, Le AP, Lou Y, Loberas M, Shagirov M, Teng X, Prost J, Hiraiwa T, Ladoux B, Toyama Y. Inhomogeneous mechanotransduction defines the spatial pattern of apoptosis-induced compensatory proliferation. Dev Cell 2023; 58:267-277.e5. [PMID: 36800994 DOI: 10.1016/j.devcel.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/09/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The number of cells in tissues is controlled by cell division and cell death, and its misregulation could lead to pathological conditions such as cancer. To maintain the cell numbers, a cell-elimination process called apoptosis also stimulates the proliferation of neighboring cells. This mechanism, apoptosis-induced compensatory proliferation, was originally described more than 40 years ago. Although only a limited number of the neighboring cells need to divide to compensate for the apoptotic cell loss, the mechanisms that select cells to divide have remained elusive. Here, we found that spatial inhomogeneity in Yes-associated protein (YAP)-mediated mechanotransduction in neighboring tissues determines the inhomogeneity of compensatory proliferation in Madin-Darby canine kidney (MDCK) cells. Such inhomogeneity arises from the non-uniform distribution of nuclear size and the non-uniform pattern of mechanical force applied to neighboring cells. Our findings from a mechanical perspective provide additional insight into how tissues precisely maintain homeostasis.
Collapse
Affiliation(s)
- Takumi Kawaue
- Mechanobiology Institute, National University of Singapore, Singapore; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Ivan Yow
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yuping Pan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yuting Lou
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Mavis Loberas
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Murat Shagirov
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Jacques Prost
- Physico Chimie Curie, Institut Curie, CNRS, UMR 168, 75005 Paris, France
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Da Costa ADS, Subbiah R, Oh SJ, Jeong H, Na JI, Park K, Choi IS, Shin JH. Fibroblasts Close a Void in Free Space by a Purse-String Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40522-40534. [PMID: 36036800 DOI: 10.1021/acsami.2c07952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism by which stromal cells fill voids in injured tissue remains a fundamental question in regenerative medicine. While it is well-established that fibroblasts fill voids by depositing extracellular matrix (ECM) proteins as they migrate toward the wound site, little is known about their ability to adopt an epithelial-like purse-string behavior. To investigate fibroblast behavior during gap closure, we created an artificial wound with a large void space. We discovered that fibroblasts could form a free-standing bridge over deep microvoids, closing the void via purse-string contraction, a mechanism previously thought to be unique to epithelial wound closure. The findings also revealed that myosin II mediated contractility and intercellular adherent junctions were required for the closure of the fibroblast gap in our fabricated three-dimensional artificial wound. To fulfill their repair function under the specific microenvironmental conditions of wounds, fibroblasts appeared to acquire the structural features of epithelial cells, namely, contractile actin bundles that span over multiple cells along the boundary. These findings shed light on a novel mechanism by which stromal cells bridge the 3D gap during physiological processes such as morphogenesis and wound healing.
Collapse
Affiliation(s)
- Avelino Dos Santos Da Costa
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University (OHSU), Portland, Oregon 97201, United States
| | - Seung Ja Oh
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - In-Suk Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Wang XH, Liu Y, Kang B, Xu JJ, Chen HY. Cell mechanics and energetic costs of collective cell migration under confined microchannels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kim J, Inagaki T, Sunaga J, Adachi T, Matsumoto T. Effect of chemically induced osteogenesis supplements on multicellular behavior of osteocytic spheroids. Biochem Biophys Res Commun 2022; 622:79-85. [PMID: 35870328 DOI: 10.1016/j.bbrc.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Understanding in multicellular behaviors in three-dimensional (3D) culture models such as organoids is important to help us better comprehend the mechanisms of the morphogenesis and functions of diverse organs in vivo cellular environment. In this study, we elucidated the multicellular behaviors of the osteocytic spheroids in response to the chemically induced osteogenesis supplements (OS). Particularly, we conducted 1) size change measurement, 2) fusion experiment, and 3) collagen embedding experiment of spheroids, in response to the OS. We found out that the OS alters the multicellular behaviors of the spheroid by greater reduction in the size change measurement and slowing down the speed of fusion experiment and collagen embedding experiment of the spheroids. We also highlighted that the driving force of these changes was the tight actin filaments generated on the surface of the spheroids. Hence, the results altogether indicate that the spheroid model exerted the different multicellular behaviors against the differentiation capability. This study will contribute to understanding the multicellular behaviors of the 3D culture model reconstructed by the cells with greater cell-cell interaction force.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| | - Takashi Inagaki
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Junko Sunaga
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeo Matsumoto
- Department of Mechanical Systems Engineering, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
21
|
Cell Chirality Regulates Coherent Angular Motion on Small Circular Substrates. Biophys J 2022; 121:1931-1939. [DOI: 10.1016/j.bpj.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
|
22
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
23
|
Li B. Chemo-mechanical feedback in collective cell migration. Biophys J 2022; 121:1117-1118. [PMID: 35279223 PMCID: PMC9034287 DOI: 10.1016/j.bpj.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Chakraborty M, Mukherjee B, N N, Biswas A, Nayak RK, Sinha B. Effect of heterogeneous substrate adhesivity of follower cells on speed and tension profile of leader cells in primary keratocyte collective cell migration. Biol Open 2022; 11:274357. [PMID: 35146504 PMCID: PMC8918985 DOI: 10.1242/bio.058893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
In single keratocyte motility, membrane tension is reported to be high at cell-fronts and believed to establish front coherence. To understand role of membrane mechanics in collective cell migration, we study membrane height fluctuations in cell sheets from fish scales using interference reflection microscopy (IRM). We report the monolayer to have cells lacking substrate adhesion and show that such ‘non-sticky’ cells can form bridges between leader cells and far-away follower cells. Do such interactions alter motility and membrane mechanics in such leaders? We find non-significant, but reduced speed for leaders with ‘non-sticky’ followers in comparison to other leaders. Cells show high phenotypic variability in their membrane fluctuation tension profiles. On average, this tension is found to be lower at cell fronts than the mid-section. However, leaders with non-sticky followers are more prone to display higher tension at their front and have a negative correlation between cell speed and front-mid tension difference. Thus, we conclude that intracellular tension gradients are heterogeneous in cell sheets and substrate adhesivity of followers can control the coupling of the gradient to cell speed. Summary: Understanding how leading cells in keratocyte cell sheets are affected when their followers ‘ride’ on them and how this alters their basal membrane's height fluctuations and fluctuation tension.
Collapse
Affiliation(s)
- Madhura Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| | - Baishali Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| | - Nanditha N
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| | - Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| | - Rajesh Kumble Nayak
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India.,Center of Excellence in Space Sciences, India; Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, India
| |
Collapse
|
25
|
Bonfanti A, Duque J, Kabla A, Charras G. Fracture in living tissues. Trends Cell Biol 2022; 32:537-551. [DOI: 10.1016/j.tcb.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
26
|
Fang C, Yao J, Zhang Y, Lin Y. Active chemo-mechanical feedbacks dictate the collective migration of cells on patterned surfaces. Biophys J 2022; 121:1266-1275. [PMID: 35183521 PMCID: PMC9034249 DOI: 10.1016/j.bpj.2022.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Recent evidence has demonstrated that, when cultured on micro-patterned surfaces, living cells can move in a coordinated manner and form distinct migration patterns, including flowing chain, suspended propagating bridge, rotating vortex, etc. However, the fundamental question of exactly how and why cells migrate in these fashions remains elusive. Here, we present a theoretical investigation to show that the tight interplay between internal cellular activities, such as chemo-mechanical feedbacks and polarization, and external geometrical constraints are behind these intriguing experimental observations. In particular, on narrow strip patterns, strongly force-dependent cellular contractility and intercellular adhesion were found to be critical for reinforcing the leading edge of the migrating cell monolayer and eventually result in the formation of suspended cell bridges flying over nonadhesive regions. On the other hand, a weak force-contractility feedback led to the movement of cells like a flowing chain along the adhesive strip. Finally, we also showed that the random polarity forces generated in migrating cells are responsible for driving them into rotating vortices on strips with width above a threshold value (~10 times the size of the cell).
Collapse
|
27
|
Xu J, Xu X, Li X, He S, Li D, Ji B. Cellular mechanics of wound formation in single cell layer under cyclic stretching. Biophys J 2022; 121:288-299. [PMID: 34902328 PMCID: PMC8790211 DOI: 10.1016/j.bpj.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
Wounds can be produced when cells and tissues are subjected to excessive forces, for instance, under pathological conditions or nonphysiological loading. However, the cellular behaviors in the wound formation process are not clear. Here we tested the behaviors of wound formation in the epithelial layer with an in-suit uniaxial stretching device. We found that the wound often nucleates at the position where the cells are dividing. The polarization direction of cells near the wound is preferentially along the wound edge, whereas the cells far from the wound are preferentially perpendicular to the stretching direction. The larger the wound area is, the higher is the aspect ratio of the cells around the wound. Increasing the cell density will strengthen the cell layer. The higher the cell density is, the smaller is the area of the wounds, and the weaker is the effect of stretching on the polarization of the cells. Furthermore, we built a coarse-grained cell model that can explicitly consider the elasticity and viscoelasticity of cells, cell-cell interaction, and cell active stress, by which we simulated the wound formation process and quantitatively analyzed the force and stress fields in the cell layer, particularly around the wound. These analyses reveal the cellular mechanisms of wound formation behaviors in the cell layer under stretching and shed useful light on tissue engineering and regenerative medicine for biomedical applications.
Collapse
Affiliation(s)
- Jiayi Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China,Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiangyu Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China,Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojun Li
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Shijie He
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China,Corresponding author
| | - Baohua Ji
- Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China,Department of Engineering Mechanics, Zhejiang University, Hangzhou, China,Corresponding author
| |
Collapse
|
28
|
Choi D, Gonzalez Z, Ho SY, Bermudez A, Lin NY. Cell-cell adhesion impacts epithelia response to substrate stiffness: Morphology and gene expression. Biophys J 2022; 121:336-346. [PMID: 34864047 PMCID: PMC8790207 DOI: 10.1016/j.bpj.2021.11.2887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/04/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Monolayer epithelial cells interact constantly with the substrate they reside on and their surrounding neighbors. As such, the properties of epithelial cells are profoundly governed by the mechanical and molecular cues that arise from both the substrate and contiguous cell neighbors. Although both cell-substrate and cell-cell interactions have been studied individually, these results are difficult to apply to native confluent epithelia, in which both jointly regulate the cell phenotype. Specifically, it remains poorly understood about the intertwined contributions from intercellular adhesion and substrate stiffness on cell morphology and gene expression, two essential microenvironment properties. Here, by adjusting the substrate modulus and altering the intercellular adhesion within confluent kidney epithelia, we found that cell-substrate and cell-cell interactions can mask each other's influence. For example, we found that epithelial cells exhibit an elongated morphological phenotype only when the substrate modulus and intercellular adhesions are both reduced, whereas their motility can be upregulated by either reduction. These results illustrate that combinatorial changes of the physical microenvironment are required to alter cell morphology and gene expression.
Collapse
Affiliation(s)
- David Choi
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Corresponding author
| | - Zachary Gonzalez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Physics and Astronomy, University of California, Los Angeles, California
| | - Sum Yat Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Chemistry and Biochemistry, University of California, Los Angeles, California
| | - Alexandra Bermudez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Bioengineering, University of California, Los Angeles, California
| | - Neil Y.C. Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Bioengineering, University of California, Los Angeles, California,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles
| |
Collapse
|
29
|
Chen Y, Gao Q, Li J, Mao F, Tang R, Jiang H. Activation of Topological Defects Induces a Brittle-to-Ductile Transition in Epithelial Monolayers. PHYSICAL REVIEW LETTERS 2022; 128:018101. [PMID: 35061486 DOI: 10.1103/physrevlett.128.018101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Epithelial monolayers are subjected to various mechanical forces, such as stretching, shearing, and compression. Thus, its mechanical response to external loadings is essential for its biological functions. However, the mechanism of the fracture failure of the epithelial monolayer remains poorly understood. Here, by introducing a new type of topological transition, i.e., detach transition or T4 transition, we develop a modified cellular vertex model to investigate the rupture of the cell monolayer. Interestingly, we find a brittle-to-ductile transition in epithelial monolayers, which is controlled by the mechanical properties of single cells and cell-cell contacts. We reveal that the external loadings can activate cell rearrangement in ductile cell monolayers. The plastic deformation results from the nucleation and propagation of "pentagon-heptagon defects" in analogy with the topological defects commonly seen in 2D materials. By using a simplified four-cell model, we further demonstrate that the brittle-to-ductile transition is induced by the competition between cell rearrangement and cell detachment. Our work provides a new theoretical framework to study the rupture of living tissues and may have important implications for many other biological processes, such as wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Yixia Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qigan Gao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingchen Li
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangtao Mao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruowen Tang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
|
31
|
Yeo T, She DT, Nai MH, Marcelo Valerio VL, Pan Y, Middha E, Lim CT, Liu B. Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS NANO 2021; 15:17412-17425. [PMID: 34767716 DOI: 10.1021/acsnano.1c03060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phospholipid nanocarriers have been widely explored for theranostic and nanomedicine applications. These amphiphilic nanocarriers possess outstanding cargo encapsulation efficiency, high water dispersibility, and excellent biocompatibility, which render them promising for drug delivery and bioimaging applications. While the biological applications of phospholipid nanocarriers have been well documented, the fundamental aspects of the phospholipid-cell interactions beyond cytotoxicity have been less investigated. In particular, the effect of phospholipid nanocarriers on collective cell behaviors has not been elucidated. Herein, we evaluate the interactions of phospholipid nanocarriers possessing different functional groups and sizes with normal and cancerous immortalized breast epithelial cell sheets with varying metastatic potential. Specifically, we examine the impact of nanocarrier treatments on the collective migratory dynamics of these cell sheets. We observe that phospholipid nanocarriers induce differential collective cell migratory behaviors, where the migration speed of normal and cancerous breast epithelial cell sheets is retarded and accelerated, respectively. To a certain extent, the nanocarriers are able to alter the migration trajectory of the cancerous breast epithelial cells. Furthermore, phospholipid nanocarriers could modulate the stiffness of the nuclei, cytoplasm, and cell-cell junctions of the breast epithelial cell sheets, remodel their actin filament arrangement, and regulate the expressions of the actin-related proteins. We anticipate that this work will further shed light on nanomaterial-cell interactions and provide guidelines for rational and safer designs and applications of phospholipid nanocarriers for cancer theranostics and nanomedicine.
Collapse
Affiliation(s)
- Trifanny Yeo
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - David T She
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Von Luigi Marcelo Valerio
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
32
|
Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing. Nat Commun 2021; 12:6349. [PMID: 34732729 PMCID: PMC8566503 DOI: 10.1038/s41467-021-26717-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
An orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin's mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.
Collapse
|
33
|
Physics of liquid crystals in cell biology. Trends Cell Biol 2021; 32:140-150. [PMID: 34756501 DOI: 10.1016/j.tcb.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The past decade has witnessed a rapid growth in understanding of the pivotal roles of mechanical stresses and physical forces in cell biology. As a result, an integrated view of cell biology is evolving, where genetic and molecular features are scrutinised hand in hand with physical and mechanical characteristics of cells. Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology over the past few years, fuelled by an increasing identification of orientational order and topological defects in cell biology, spanning scales from subcellular filaments to individual cells and multicellular tissues. Here, we provide an account of the most recent findings and developments, together with future promises and challenges in this rapidly evolving interdisciplinary research direction.
Collapse
|
34
|
Strain maps characterize the symmetry of convergence and extension patterns during zebrafish gastrulation. Sci Rep 2021; 11:19357. [PMID: 34588480 PMCID: PMC8481280 DOI: 10.1038/s41598-021-98233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
During gastrulation of the zebrafish embryo, the cap of blastoderm cells organizes into the axial body plan of the embryo with left–right symmetry and head–tail, dorsal–ventral polarities. Our labs have been interested in the mechanics of early development and have investigated whether these large-scale cell movements can be described as tissue-level mechanical strain by a tectonics-based approach. The first step is to image the positions of all nuclei from mid-epiboly to early segmentation by digital sheet light microscopy, organize the surface of the embryo into multi-cell spherical domains, construct velocity fields from the movements of these domains and extract strain rate maps from the change in density of the domains. During gastrulation, tensile/expansive and compressive strains in the axial and equatorial directions are detected as anterior and posterior expansion along the anterior–posterior axis and medial–lateral compression across the dorsal–ventral axis and corresponds to the well characterized morphological movements of convergence and extension. Following gastrulation strain is represented by localized medial expansion at the onset of segmentation and anterior expansion at the onset of neurulation. In addition to linear strain, symmetric patterns of rotation/curl are first detected in the animal hemispheres at mid-epiboly and then the vegetal hemispheres by the end of gastrulation. In embryos treated with C59, a Wnt inhibitor that inhibits head and tail extension, the axial extension and vegetal curl are absent. By analysing the temporal sequence of large-scale movements, deformations across the embryo can be attributed to a combination of epiboly and dorsal convergence-extension.
Collapse
|
35
|
Balasubramaniam L, Doostmohammadi A, Saw TB, Narayana GHNS, Mueller R, Dang T, Thomas M, Gupta S, Sonam S, Yap AS, Toyama Y, Mège RM, Yeomans JM, Ladoux B. Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. NATURE MATERIALS 2021; 20:1156-1166. [PMID: 33603188 PMCID: PMC7611436 DOI: 10.1038/s41563-021-00919-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.
Collapse
Affiliation(s)
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Thuan Beng Saw
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
- National University of Singapore, Department of Biomedical Engineering, Singapore, Singapore
| | | | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Tien Dang
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
| | - Minnah Thomas
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
- D Y Patil International University, Pune, India
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yusuke Toyama
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| |
Collapse
|
36
|
Weakening of resistance force by cell-ECM interactions regulate cell migration directionality and pattern formation. Commun Biol 2021; 4:808. [PMID: 34183779 PMCID: PMC8239002 DOI: 10.1038/s42003-021-02350-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Collective migration of epithelial cells is a fundamental process in multicellular pattern formation. As they expand their territory, cells are exposed to various physical forces generated by cell-cell interactions and the surrounding microenvironment. While the physical stress applied by neighbouring cells has been well studied, little is known about how the niches that surround cells are spatio-temporally remodelled to regulate collective cell migration and pattern formation. Here, we analysed how the spatio-temporally remodelled extracellular matrix (ECM) alters the resistance force exerted on cells so that the cells can expand their territory. Multiple microfabrication techniques, optical tweezers, as well as mathematical models were employed to prove the simultaneous construction and breakage of ECM during cellular movement, and to show that this modification of the surrounding environment can guide cellular movement. Furthermore, by artificially remodelling the microenvironment, we showed that the directionality of collective cell migration, as well as the three-dimensional branch pattern formation of lung epithelial cells, can be controlled. Our results thus confirm that active remodelling of cellular microenvironment modulates the physical forces exerted on cells by the ECM, which contributes to the directionality of collective cell migration and consequently, pattern formation.
Collapse
|
37
|
Fang C, Wei X, Shao X, Lin Y. Force-mediated cellular anisotropy and plasticity dictate the elongation dynamics of embryos. SCIENCE ADVANCES 2021; 7:eabg3264. [PMID: 34193426 PMCID: PMC8245039 DOI: 10.1126/sciadv.abg3264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/17/2021] [Indexed: 05/06/2023]
Abstract
We developed a unified dynamic model to explain how cellular anisotropy and plasticity, induced by alignment and severing/rebundling of actin filaments, dictate the elongation dynamics of Caenorhabditis elegans embryos. It was found that the gradual alignment of F-actins must be synchronized with the development of intracellular forces for the embryo to elongate, which is then further sustained by muscle contraction-triggered plastic deformation of cells. In addition, we showed that preestablished anisotropy is essential for the proper onset of the process while defects in the integrity or bundling kinetics of actin bundles result in abnormal embryo elongation, all in good agreement with experimental observations.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
38
|
Regulation of collective cell polarity and migration using dynamically adhesive micropatterned substrates. Acta Biomater 2021; 126:291-300. [PMID: 33741539 DOI: 10.1016/j.actbio.2021.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Collective cell migration is a fundamental biological process in which groups of cells move together in a coordinated manner, and it is essential for tissue development and wound repair. However, the underlying mechanisms that orchestrate directionality in collectively migrating cells remain poorly understood. In this study, we employed dynamically adhesive micropatterned substrates to investigate the role of adhesive cues in directing epithelial migration. Our findings demonstrate that epithelial cells collectively polarize in response to asymmetric patterns of extracellular matrix (ECM), and the degree of polarization depends on the degree of asymmetry and requires calcium-dependent cell-cell adhesion. When released from the micropatterns, epithelial cells collectively migrate according to the direction of pre-established polarity, and cohesive migration specifically requires E-cadherin-containing adherens junctions. Finally, disruption of the microtubule network blocks collective polarization and functionally inhibits directed migration. Together, these results indicate that adhesive cues from the ECM guide collective epithelial polarity and migration, and this response depends on adherens junctions and microtubules. STATEMENT OF SIGNIFICANCE: This study employs a dynamically adhesive micropatterning platform to investigate the role of adhesive cues in directing the polarity and directional migration of epithelial cells. The findings demonstrate how asymmetric tissue geometry influences the collective directionality in simple epithelia and that this response is mediated by adherens junctions and the microtubule network. This work provides new insight into fundamental cellular processes involved in wound healing and has important implications for biomaterial and scaffold design.
Collapse
|
39
|
Pramanik D, Jolly MK, Bhat R. Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. J Theor Biol 2021; 524:110733. [PMID: 33933478 DOI: 10.1016/j.jtbi.2021.110733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
The metastasis of malignant epithelial tumors begins with the egress of transformed cells from the confines of their basement membrane (BM) to their surrounding collagen-rich stroma. Invasion can be morphologically diverse: when breast cancer cells are separately cultured within BM-like matrix, collagen I (Coll I), or a combination of both, they exhibit collective-, dispersed mesenchymal-, and a mixed collective-dispersed (multimodal)- invasion, respectively. In this paper, we asked how distinct these invasive modes are with respect to the cellular and microenvironmental cues that drive them. A rigorous computational exploration of invasion was performed within an experimentally motivated Cellular Potts-based modeling environment. The model comprised of adhesive interactions between cancer cells, BM- and Coll I-like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM. The model outputs were parameters cognate to dispersed- and collective- invasion. A clustering analysis of the output distribution curated through a careful examination of subsumed phenotypes suggested at least four distinct invasive states: dispersed, papillary-collective, bulk-collective, and multimodal, in addition to an indolent/non-invasive state. Mapping input values to specific output clusters suggested that each of these invasive states are specified by distinct input signatures of proliferation, adhesion and ECM remodeling. In addition, specific input perturbations allowed transitions between the clusters and revealed the variation in the robustness between the invasive states. Our systems-level approach proffers quantitative insights into how the diversity in ECM microenvironments may steer invasion into diverse phenotypic modes during early dissemination of breast cancer and contributes to tumor heterogeneity.
Collapse
Affiliation(s)
- D Pramanik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - M K Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - R Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
40
|
Abstract
Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
Collapse
|
41
|
Zhang Q. The Research Advance of Cell Bridges in vitro. Front Bioeng Biotechnol 2020; 8:609317. [PMID: 33330439 PMCID: PMC7732536 DOI: 10.3389/fbioe.2020.609317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
The microenvironment in which cells reside in vivo dictates their biological and mechanical functioning is associated with morphogenetic and regenerative processes and may find implications in regenerative medicine and tissue engineering. The development of nano- and micro-fabricated technologies, three-dimensional (3D) printing technique, and biomimetic medical materials have enabled researchers to prepare novel advanced substrates mimicking the in vivo microenvironment. Most of the novel morphologies and behaviors of cells, including contact guidance and cell bridges which are observed in vivo but are not perceived in the traditional two-dimensional (2D) culture system, emerged on those novel substrates. Using cell bridges, cell can span over the surface of substrates to maintain mechanical stability and integrity of tissue, as observed in physiological processes, such as wound healing, regeneration and development. Compared to contact guidance, which has received increased attention and is investigated extensively, studies on cell bridges remain scarce. Therefore, in this mini-review, we have comprehensively summarized and classified different kinds of cell bridges formed on various substrates and highlighted possible biophysical mechanisms underlying cell bridge formation for their possible implication in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
42
|
Hirata H, Dobrokhotov O, Sokabe M. Coordination between Cell Motility and Cell Cycle Progression in Keratinocyte Sheets via Cell-Cell Adhesion and Rac1. iScience 2020; 23:101729. [PMID: 33225242 PMCID: PMC7662878 DOI: 10.1016/j.isci.2020.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Regulations of cell motility and proliferation are essential for epithelial development and homeostasis. However, it is not fully understood how these cellular activities are coordinated in epithelial collectives. In this study, we find that keratinocyte sheets exhibit time-dependent coordination of collective cell movement and cell cycle progression after seeding cells. Cell movement and cell cycle progression are coordinately promoted by Rac1 in the “early phase” (earlier than ∼30 h after seeding cells), which is not abrogated by increasing the initial cell density to a saturated level. The Rac1 activity is gradually attenuated in the “late phase” (later than ∼30 h after seeding cells), leading to arrests in cell motility and cell cycle. Intact adherens junctions are required for normal coordination between cell movement and cell cycle progression in both early and late phases. Our results unveil a novel basis for integrating motile and proliferative behaviors of epithelial collectives. Cell motility and cell cycle progression in keratinocyte sheets are temporally coordinated Rac1 promotes both cell motility and cell cycle progression in keratinocyte sheets Arrest of cell motility and cell cycle is associated with Rac1 deactivation Adherens junction is required for coordinating cell motility and cell cycle
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Oleg Dobrokhotov
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
43
|
Kozyrina AN, Piskova T, Di Russo J. Mechanobiology of Epithelia From the Perspective of Extracellular Matrix Heterogeneity. Front Bioeng Biotechnol 2020; 8:596599. [PMID: 33330427 PMCID: PMC7717998 DOI: 10.3389/fbioe.2020.596599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.
Collapse
Affiliation(s)
- Aleksandra N. Kozyrina
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- DWI – Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
44
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
45
|
A Biologist's Guide to Traction Force Microscopy Using Polydimethylsiloxane Substrate for Two-Dimensional Cell Cultures. STAR Protoc 2020; 1:100098. [PMID: 33111126 PMCID: PMC7580222 DOI: 10.1016/j.xpro.2020.100098] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular traction forces influence epithelial behavior, including wound healing and cell extrusion. Here, we describe a simple in vitro traction force microscopy (TFM) protocol using ECM protein-coated polydimethylsiloxane substrate and widefield fluorescence microscopy. We include detailed steps for analysis so readers can obtain traction forces to study the mechanobiology of epithelial cells. We also provide guidelines on when to adopt another common class of TFM protocols based on polyacrylamide hydrogels. For complete details on the use and execution of this protocol, please refer to Saw et al. (2017) and Teo et al. (2020).
Collapse
|
46
|
Almeida FV, Gammon L, Laly AC, Pundel OJ, Bishop CL, Connelly JT. High-Content Analysis of Cell Migration Dynamics within a Micropatterned Screening Platform. ACTA ACUST UNITED AC 2020; 3:e1900011. [PMID: 32648701 DOI: 10.1002/adbi.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/31/2019] [Indexed: 01/04/2023]
Abstract
Cell migration is a fundamental biological process that is dynamically regulated by complex interactions between the microenvironment and intrinsic gene expression programs. Here, a high-throughput cell migration assay is developed using micropatterned and dynamically adhesive polymer brush substrates, which support highly precise and consistent control over cell-matrix interactions within a 96-well cell culture plate format. This system is combined with automated imaging and quantitation of both cell motility and organization of the F-actin cytoskeleton for high-content analysis of cell migration phenotypes. Using this platform to screen a library of 147 epigenetic inhibitors identifies a set of EZH2-specific compounds that promote cytoskeletal remodeling and accelerates keratinocyte migration through derepression of an epithelial to mesenchymal transition-like gene expression program. Together, these studies establish the high-throughput, micropatterned assay as a powerful tool for discovery of novel therapeutic targets and for dissecting complex gene-environment interactions involved in wound repair.
Collapse
Affiliation(s)
- Filipe V Almeida
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ana C Laly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Oscar J Pundel
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
47
|
|
48
|
Jain S, Cachoux VM, Narayana GH, de Beco S, D’Alessandro J, Cellerin V, Chen T, Heuzé ML, Marcq P, Mège RM, Kabla AJ, Lim CT, Ladoux B. The role of single cell mechanical behavior and polarity in driving collective cell migration. NATURE PHYSICS 2020; 16:802-809. [PMID: 32641972 PMCID: PMC7343533 DOI: 10.1038/s41567-020-0875-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/11/2020] [Indexed: 05/19/2023]
Abstract
The directed migration of cell collectives is essential in various physiological processes, such as epiboly, intestinal epithelial turnover, and convergent extension during morphogenesis as well as during pathological events like wound healing and cancer metastasis. Collective cell migration leads to the emergence of coordinated movements over multiple cells. Our current understanding emphasizes that these movements are mainly driven by large-scale transmission of signals through adherens junctions. In this study, we show that collective movements of epithelial cells can be triggered by polarity signals at the single cell level through the establishment of coordinated lamellipodial protrusions. We designed a minimalistic model system to generate one-dimensional epithelial trains confined in ring shaped patterns that recapitulate rotational movements observed in vitro in cellular monolayers and in vivo in genitalia or follicular cell rotation. Using our system, we demonstrated that cells follow coordinated rotational movements after the establishment of directed Rac1-dependent polarity over the entire monolayer. Our experimental and numerical approaches show that the maintenance of coordinated migration requires the acquisition of a front-back polarity within each single cell but does not require the maintenance of cell-cell junctions. Taken together, these unexpected findings demonstrate that collective cell dynamics in closed environments as observed in multiple in vitro and in vivo situations can arise from single cell behavior through a sustained memory of cell polarity.
Collapse
Affiliation(s)
- Shreyansh Jain
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | | | - Simon de Beco
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
| | - Joseph D’Alessandro
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
| | - Victor Cellerin
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
| | - Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Mélina L. Heuzé
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
| | - Alexandre J. Kabla
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Division of Biomedical Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive, Singapore 117599
| | - Benoit Ladoux
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris 75013, France
- Correspondence to:
| |
Collapse
|
49
|
Yao X, Ding J. Effects of Microstripe Geometry on Guided Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27971-27983. [PMID: 32479054 DOI: 10.1021/acsami.0c05024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell migration on material surfaces is a fundament issue in the fields of biomaterials, cell biology, tissue engineering, regenerative medicine, etc. Herein, we aim to guide cell migration by flat microstripes with significant contrast of cell adhesion and varied geometric features of the adhesive stripes. To this end, we designed and fabricated cell-adhesive arginine-glycine-aspartate (RGD) microstripes on the nonfouling poly(ethylene glycol) (PEG) background and examined the microstripe-guided adhesion and migration of a few cell types. The migration of cell clusters adhering on the RGD regions was found to be significantly affected by the widths and arc radiuses of the guided microstripes. The cells migrated fastest on the straight microstripes with width of about 20 μm, which we defined as single file confined migration (SFCM). We also checked the possible left-right asymmetric bias of cell migration guided by combinatory microstripes with alternative wavy and quasi-straight stripes under a given width, and found that the velocity of CCW (counter clockwise) migration was higher than that of CW (clockwise) migration for primary rat mesenchymal stem cells (rMSCs), whereas no left-right asymmetric bias was observed for NIH3T3 (mouse embryonic fibroblast cell line) and Hela (human cervix epithelial carcinoma cell line) cells. Comparison of migration of cells on the nanotopological stripe and smooth surfaces further confirmed the importance of cell orientation coherence for guided cell migration and strengthened the superiority of SFCM.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
50
|
Beauchesne CC, Chabanon M, Smaniotto B, Ladoux B, Goyeau B, David B. Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography. Tissue Eng Regen Med 2020; 17:301-311. [PMID: 32314312 PMCID: PMC7260345 DOI: 10.1007/s13770-020-00246-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Perfusion bioreactors for tissue engineering hold great promises. Indeed, the perfusion of culture medium enhances species transport and mechanically stimulates the cells, thereby increasing cell proliferation and tissue formation. Nonetheless, their development is still hampered by a lack of understanding of the relationship between mechanical cues and tissue growth. METHODS Combining tissue engineering, three-dimensional visualization and numerical simulations, we analyze the morphological evolution of neo-tissue in a model bioreactor with respect to the local flow pattern. NIH-3T3 cells were grown under perfusion for one, two and three weeks on a stack of 2 mm polyacetal beads. The model bioreactor was then imaged by X-ray micro-tomography and local tissue morphology was analyzed. To relate experimental observations and mechanical stimulii, a computational fluid dynamics model of flow around spheres in a canal was developed and solved using the finite element method. RESULTS We observe a preferential tissue formation at the bioreactor periphery, and relate it to a channeling effect leading to regions of higher flow intensity. Additionally, we find that circular crater-like tissue patterns form in narrow channel regions at early culture times. Using computational fluid dynamic simulations, we show that the location and morphology of these patterns match those of shear stress maxima. Finally, the morphology of the tissue is qualitatively described as the tissue grows and reorganizes itself. CONCLUSION Altogether, our study points out the key role of local flow conditions on the tissue morphology developed on a stack of beads in perfusion bioreactors and provides new insights for effective design of hydrodynamic bioreactors for tissue engineering using bead packings.
Collapse
Affiliation(s)
- Claire C Beauchesne
- Lab. EM2C, UPR CNRS 288, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192, Gif-sur-Yvette Cedex, France
- Lab. MSSMat, UMR CNRS 8579, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192, Gif-sur-Yvette Cedex, France
| | - Morgan Chabanon
- Single Molecule Biophotonics Lab. ICFO, The Institute of Photonic Sciences, av. Carl Friedrich Gauss, 3, 08860, Castelldefels, Barcelona, Spain
| | - Benjamin Smaniotto
- ENS Paris Saclay, LMT, CNRS, UMR 8535, 61 avenue du Président Wilson, 94230, Cachan, France
| | - Benoît Ladoux
- Institut Jacques Monod (IJM), UMR CNRS 7592, Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France
| | - Benoît Goyeau
- Lab. EM2C, UPR CNRS 288, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192, Gif-sur-Yvette Cedex, France.
| | - Bertrand David
- Lab. MSSMat, UMR CNRS 8579, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot-Curie, 91192, Gif-sur-Yvette Cedex, France
| |
Collapse
|