1
|
Gao H, Fang Q, Bai Y, Hu C, Chou HH. Biosynthesis of 12-aminododecanoic acid from biomass sugars. Metab Eng 2025; 89:87-96. [PMID: 39999943 DOI: 10.1016/j.ymben.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Biosynthesis of 12-aminododecanoic acid (ADDA) directly from biomass-derived sugars would enable a more sustainable process for manufacturing the engineering polymer Nylon 12. ADDA biosynthesis is currently hindered by the cytotoxicity of dodecanoic acid (DDA) to growing cells, and the accumulation of the overoxidized byproduct dodecanedioic acid (DDDA). In this study, these challenges were addressed by engineering an autoinducible system to better control in vivo DDA synthesis without impacting growth, and deleting aldehyde dehydrogenases and oxidases to reduce DDDA accumulation. As a result, a one-step fermentation process was established to synthesize ADDA from glucose and cellobiose. Finally, batch fermentation achieved 1035 mg/L ADDA and 5% yield, which is the highest titer and yield accomplished directly from sugar to date. This research contributes to the mechanistic understanding of microbial DDA, ADDA, and DDDA synthesis, as well as the goal of developing more sustainable processes for nylon production.
Collapse
Affiliation(s)
- Haixin Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Qiang Fang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Yanfen Bai
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Chunyue Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
2
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Wen X, Lin J, Yang C, Li Y, Cheng H, Liu Y, Zhang Y, Ma H, Mao Y, Liao X, Wang M. Automated characterization and analysis of expression compatibility between regulatory sequences and metabolic genes in Escherichia coli. Synth Syst Biotechnol 2024; 9:647-657. [PMID: 38817827 PMCID: PMC11137365 DOI: 10.1016/j.synbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Utilizing standardized artificial regulatory sequences to fine-tuning the expression of multiple metabolic pathways/genes is a key strategy in the creation of efficient microbial cell factories. However, when regulatory sequence expression strengths are characterized using only a few reporter genes, they may not be applicable across diverse genes. This introduces great uncertainty into the precise regulation of multiple genes at multiple expression levels. To address this, our study adopted a fluorescent protein fusion strategy for a more accurate assessment of target protein expression levels. We combined 41 commonly-used metabolic genes with 15 regulatory sequences, yielding an expression dataset encompassing 520 unique combinations. This dataset highlighted substantial variation in protein expression level under identical regulatory sequences, with relative expression levels ranging from 2.8 to 176-fold. It also demonstrated that improving the strength of regulatory sequences does not necessarily lead to significant improvements in the expression levels of target proteins. Utilizing this dataset, we have developed various machine learning models and discovered that the integration of promoter regions, ribosome binding sites, and coding sequences significantly improves the accuracy of predicting protein expression levels, with a Spearman correlation coefficient of 0.72, where the promoter sequence exerts a predominant influence. Our study aims not only to provide a detailed guide for fine-tuning gene expression in the metabolic engineering of Escherichia coli but also to deepen our understanding of the compatibility issues between regulatory sequences and target genes.
Collapse
Affiliation(s)
- Xiao Wen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Jiawei Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunhe Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Ye Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Yufeng Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Xiaoping Liao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Meng Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| |
Collapse
|
4
|
Costan SA, Ryan PM, Kim H, Wolgemuth CW, Riedel-Kruse IH. Biophysical characterization of synthetic adhesins for predicting and tuning engineered living material properties. MATTER 2024; 7:2125-2143. [PMID: 39165662 PMCID: PMC11335339 DOI: 10.1016/j.matt.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Bacterial synthetic multicellular systems are promising platforms for engineered living materials (ELMs) for medical, biosynthesis, environmental, and smart materials applications. Recent advancements in genetically encoded adhesion toolkits have enabled precise manipulation of cell-cell adhesion and the design and patterning of self-assembled multicellular materials. However, in contrast to gene regulation in synthetic biology, the characterization and control of synthetic adhesins remains limited. Here, we demonstrate the quantitative characterization of a bacterial synthetic adhesion toolbox through various biophysical methods. We determine key parameters, including number of adhesins per cell, in-membrane diffusion constant, production and decay rates, and bond-breaking force between adhesins. With these parameters, we demonstrate the bottom-up prediction and quantitative tuning of macroscopic ELM properties (tensile strength) and, furthermore, that cells inside ELMs are connected only by a small fraction of available adhesins. These results enable the rational engineering, characterization, and modeling of other synthetic and natural adhesins and multicellular consortia.
Collapse
Affiliation(s)
- Stefana A. Costan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Paul M. Ryan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | - Honesty Kim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Charles W. Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
- Lead contact
| |
Collapse
|
5
|
Liu C, Lv X, Liu L, Li J, Du G, Chen J, Liu Y. Constructing an Antibiotic-Free Protein Expression System for Ovalbumin Biosynthesis in Probiotic Escherichia coli Nissle 1917. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8693-8703. [PMID: 38574273 DOI: 10.1021/acs.jafc.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Ovalbumin (OVA) is the principal protein constituent of eggs. As an alternative to eggs, cell-cultured OVA can reduce the environmental impact of global warming and land use. Escherichia coli Nissle 1917 (EcN), a probiotic with specific endogenous cryptic plasmids that stably exist in cells without the addition of antibiotics, was chosen as the host for the efficient heterologous expression of the OVA. OVA yield reached 20 mg·L-1 in shake flasks using the OVA expression cassette containing a tac promoter (Ptac) upstream of the OVA-coding sequences on the endogenous plasmid pMUT2. Subsequently, we improved the level of the expression of the OVA by employing a dual promoter (PP5 combined with Ptac via a sigma factor binding site 24) and ribosome binding site (RBS) substitution. These enhancements increased the level of production of OVA in shake flasks to 30 and 42 mg·L-1, respectively. OVA by EcNP-P28 harboring plasmid L28 equipped with both dual promoter and the strong RBS8 reached 3.70 g·L-1 in a 3 L bioreactor. Recombinant OVA and natural OVA showed similar biochemical characteristics, including secondary structure, isoelectric point, amino acid composition, and thermal stability. This is currently the highest OVA production reported among prokaryotes. We successfully constructed an antibiotic-free heterologous protein expression system for EcN.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
6
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Mishra S, Perkovich PM, Mitchell WP, Venkataraman M, Pfleger BF. Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production. J Ind Microbiol Biotechnol 2024; 51:kuae008. [PMID: 38366943 PMCID: PMC10926325 DOI: 10.1093/jimb/kuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The Gram-negative betaproteobacterium Cupriavidus necator is a chemolithotroph that can convert carbon dioxide into biomass. Cupriavidus necator has been engineered to produce a variety of high-value chemicals in the past. However, there is still a lack of a well-characterized toolbox for gene expression and genome engineering. Development and optimization of biosynthetic pathways in metabolically engineered microorganisms necessitates control of gene expression via functional genetic elements such as promoters, ribosome binding sites (RBSs), and codon optimization. In this work, a set of inducible and constitutive promoters were validated and characterized in C. necator, and a library of RBSs was designed and tested to show a 50-fold range of expression for green fluorescent protein (gfp). The effect of codon optimization on gene expression in C. necator was studied by expressing gfp and mCherry genes with varied codon-adaptation indices and was validated by expressing codon-optimized variants of a C12-specific fatty acid thioesterase to produce dodecanoic acid. We discuss further hurdles that will need to be overcome for C. necator to be widely used for biosynthetic processes.
Collapse
Affiliation(s)
- Shivangi Mishra
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul M Perkovich
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Moon S, Saboe A, Smanski MJ. Using design of experiments to guide genetic optimization of engineered metabolic pathways. J Ind Microbiol Biotechnol 2024; 51:kuae010. [PMID: 38490746 PMCID: PMC10981448 DOI: 10.1093/jimb/kuae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges. ONE-SENTENCE SUMMARY This is a review of literature related to applying Design of Experiments for genetic optimization.
Collapse
Affiliation(s)
- Seonyun Moon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Anna Saboe
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St Paul, MN 55108, USA
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
9
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. Nat Struct Mol Biol 2023; 30:1816-1825. [PMID: 37957305 DOI: 10.1038/s41594-023-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Siddall A, Williams AA, Sanders J, Denton JA, Madden D, Schollar J, Bryk J. Unigems: plasmids and parts to facilitate teaching on assembly, gene expression control and logic in E. coli. Access Microbiol 2023; 5:000596.v3. [PMID: 37841098 PMCID: PMC10569648 DOI: 10.1099/acmi.0.000596.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/04/2023] [Indexed: 10/17/2023] Open
Abstract
Synthetic biology enables the creative combination of engineering and molecular biology for exploration of fundamental aspects of biological phenomena. However, there are limited resources available for such applications in the educational context, where straightforward setup, easily measurable phenotypes and extensibility are of particular importance. We developed unigems, a set of ten plasmids that enable classroom-based investigation of gene-expression control and biological logic gates to facilitate teaching synthetic biology and genetic engineering. It is built on a high-copy plasmid backbone and is easily extensible thanks to a common primer set that facilitates Gibson assembly of PCR-generated or synthesized DNA parts into the target vector. It includes two reporter genes with either two constitutive (high- or low-level) or two inducible (lactose- or arabinose-) promoters, as well as a single-plasmid implementation of an AND logic gate. The set can readily be employed in undergraduate teaching settings, during outreach events and for training of iGEM teams. All plasmids have been deposited in Addgene.
Collapse
Affiliation(s)
- Alex Siddall
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Abbie Ann Williams
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Jason Sanders
- School of Art, Design and Architecture, University of Huddersfield, Huddersfield, UK
| | - Jai A. Denton
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institute of Vector-borne Disease, Monash University, Clayton, Australia
| | - Dean Madden
- National Centre for Biotechnology Education, University of Reading, Reading, UK
| | - John Schollar
- National Centre for Biotechnology Education, University of Reading, Reading, UK
| | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- National Centre for Biotechnology Education, University of Reading, Reading, UK
| |
Collapse
|
11
|
Xu Q, Du Q, Gao J, Chen L, Dong X, Li J. A robust genetic toolbox for fine-tuning gene expression in the CO 2-Fixing methanogenic archaeon Methanococcus maripaludis. Metab Eng 2023; 79:130-145. [PMID: 37495072 DOI: 10.1016/j.ymben.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Libraries of well-characterized genetic elements for fine-tuning gene expression are essential for biological and biotechnological research and applications. The fast-growing and genetically tractable methanogen, Methanococcus maripaludis, is a promising host organism for biotechnological conversion of carbon dioxide and renewable hydrogen into fuels and value-added products, as well as fundamental biological studies of archaea. However, the lack of molecular tools for gene expression has hindered its application as a workhorse to fine-tune gene and metabolic pathway expressions. In this study, we developed a genetic toolbox, including libraries of promoters, ribosome binding sites (RBS), and neutral sites for chromosomal integration, to facilitate precise gene expression in M. maripaludis. We generated a promoter library consisting of 81 constitutive promoters with expression strengths spanning a ∼104-fold dynamic range. Importantly, we identified a base composition rule for strong archaeal promoters and successfully remodeled weak promoters, enhancing their activities by up to 120-fold. We also established an RBS library containing 42 diverse RBS sequences with translation strengths covering a ∼100-fold dynamic range. Additionally, we identified eight neutral sites and developed a one-step, Cas9-based marker-less knock-in approach for chromosomal integration. We successfully applied the characterized promoter and RBS elements to significantly improve recombinant protein expression by 41-fold and modulate essential gene expression to generate corresponding physiological changes in M. maripaludis. Therefore, this work establishes a solid foundation for utilizing this autotrophic methanogen as an ideal workhorse for archaeal biology and biotechnological studies and applications.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Du
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Jian Gao
- School of Basic Medical Sciences and School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
12
|
Hsu SY, Lee J, Sychla A, Smanski MJ. Rational search of genetic design space for a heterologous terpene metabolic pathway in Streptomyces. Metab Eng 2023; 77:1-11. [PMID: 36863605 DOI: 10.1016/j.ymben.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Modern tools in DNA synthesis and assembly give genetic engineers control over the nucleotide-level design of complex, multi-gene systems. Systematic approaches to explore genetic design space and optimize the performance of genetic constructs are lacking. Here we explore the application of a five-level Plackett-Burman fractional factorial design to improve the titer of a heterologous terpene biosynthetic pathway in Streptomyces. A library of 125 engineered gene clusters encoding the production of diterpenoid ent-atiserenoic acid (eAA) via the methylerythritol phosphate pathway was constructed and introduced into Streptomyces albidoflavus J1047 for heterologous expression. The eAA production titer varied within the library by over two orders of magnitude and host strains showed unexpected and reproducible colony morphology phenotypes. Analysis of Plackett-Burman design identified expression of dxs, the gene encoding the first and the flux-controlling enzyme, having the strongest impact on eAA titer, but with a counter-intuitive negative correlation between dxs expression and eAA production. Finally, simulation modeling was performed to determine how several plausible sources of experimental error/noise and non-linearity impact the utility of Plackett-Burman analyses.
Collapse
Affiliation(s)
- Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology, and Biophysics, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jihaeng Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Fristot E, Bessede T, Camacho Rufino M, Mayonove P, Chang HJ, Zuniga A, Michon AL, Godreuil S, Bonnet J, Cambray G. An optimized electrotransformation protocol for Lactobacillus jensenii. PLoS One 2023; 18:e0280935. [PMID: 36800374 PMCID: PMC9937494 DOI: 10.1371/journal.pone.0280935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Engineered bacteria are promising candidates for in situ detection and treatment of diseases. The female uro-genital tract presents several pathologies, such as sexually transmitted diseases or genital cancer, that could benefit from such technology. While bacteria from the gut microbiome are increasingly engineered, the use of chassis isolated from the female uro-genital resident flora has been limited. A major hurdle to implement the experimental throughput required for efficient engineering in these non-model bacteria is their low transformability. Here we report an optimized electrotransformation protocol for Lactobacillus jensenii, one the most widespread species across vaginal microflora. Starting from classical conditions, we optimized buffers, electric field parameters, cuvette type and DNA quantity to achieve an 80-fold improvement in transformation efficiency, with up to 3.5·103 CFUs/μg of DNA in L. jensenii ATCC 25258. We also identify several plasmids that are maintained and support reporter gene expression in L. jensenii. Finally, we demonstrate that our protocol provides increased transformability in three independent clinical isolates of L. jensenii. This work will facilitate the genetic engineering of L. jensenii and enable its use for addressing challenges in gynecological healthcare.
Collapse
Affiliation(s)
- Elsa Fristot
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Thomas Bessede
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Miguel Camacho Rufino
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Hung-Ju Chang
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Ana Zuniga
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
| | - Anne-Laure Michon
- Diversité des Génomes et Interactions Microorganismes Insectes (DGIMI), University of Montpellier, INRAE UMR1333, Montpellier, France
| | - Sylvain Godreuil
- Service de Bactériologie, Hôpital Arnaud de Villeneuve—CHU de Montpellier, Montpellier, France
| | - Jérôme Bonnet
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
- * E-mail: (GC); (JB)
| | - Guillaume Cambray
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U 1054, CNRS UMR 5048, Montpellier, France
- Diversité des Génomes et Interactions Microorganismes Insectes (DGIMI), University of Montpellier, INRAE UMR1333, Montpellier, France
- * E-mail: (GC); (JB)
| |
Collapse
|
14
|
Mao Y, Jia L, Dong L, Shu XE, Qian SB. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528768. [PMID: 36824937 PMCID: PMC9949036 DOI: 10.1101/2023.02.15.528768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. The start codon-associated ribosome frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra unannotated from human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational "noise" in nutrient stress adaptation.
Collapse
|
15
|
Chen F, Cocaign-Bousquet M, Girbal L, Nouaille S. 5'UTR sequences influence protein levels in Escherichia coli by regulating translation initiation and mRNA stability. Front Microbiol 2022; 13:1088941. [PMID: 36620028 PMCID: PMC9810816 DOI: 10.3389/fmicb.2022.1088941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A set of 41 synthetic 5'UTRs with different theoretical translation initiation rates were generated to explore the role of 5'UTRs in the regulation of protein levels in Escherichia coli. The roles of the synthetic 5'UTRs in regulating the expression of different reporter genes were analyzed in vivo. Protein levels varied substantially between the different constructs but for most of the 5'UTRs, protein levels were not correlated with theoretical translation initiation rates. Large variations in mRNA concentrations were measured with the different 5'UTRs even though the same concentration of transcription inducer was used in each case. 5'UTRs were also found to strongly affect mRNA stability, and these changes in mRNA stability often contributed to observed differences in mRNA concentration. Unexpectedly, the effect of the 5'UTRs on mRNA half-lives was found to vary depending on the downstream reporter gene. These results clearly demonstrate that 5'UTRs contribute to gene expression regulation at the level of translation initiation and of mRNA stability, to an extent that depends on the nature of the downstream gene.
Collapse
|
16
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Autoinduction Expression Modules for Regulating Gene Expression in Bacillus subtilis. ACS Synth Biol 2022; 11:4220-4225. [PMID: 36468943 DOI: 10.1021/acssynbio.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quorum sensing (QS) promoters that can autonomously activate gene expression have been identified and engineered in Bacillus subtilis, researchers focus on quantifying individual promoters while ignoring the interaction between other genetic regulatory elements. Here, we constructed the autoinduction expression modules consisting of promoters responsive to QS ComQXPA, ribosome binding sites (RBSs), and terminators. Using superfolder green fluorescent protein (sfGFP) as a reporter gene, three individual element libraries were generated from 945 promoters, 12,000 RBSs, and 425 terminators by random mutation, de novo design, and database mining strategies, respectively. Then, the efficiency of three libraries in regulating gene expression was further enhanced by engineering the core region of each optimal element. After hybridizing the element libraries, the generated expression modules exhibited a 627-fold range in regulating gene expression without significantly affecting the autoinduction initiation. Here, the hybrid modules with broad expression strength may benefit the application of QS-based autoinduction systems in B. subtilis.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Komarova ES, Dontsova OA, Pyshnyi DV, Kabilov MR, Sergiev PV. Flow-Seq Method: Features and Application in Bacterial Translation Studies. Acta Naturae 2022; 14:20-37. [PMID: 36694903 PMCID: PMC9844084 DOI: 10.32607/actanaturae.11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 01/22/2023] Open
Abstract
The Flow-seq method is based on using reporter construct libraries, where a certain element regulating the gene expression of fluorescent reporter proteins is represented in many thousands of variants. Reporter construct libraries are introduced into cells, sorted according to their fluorescence level, and then subjected to next-generation sequencing. Therefore, it turns out to be possible to identify patterns that determine the expression efficiency, based on tens and hundreds of thousands of reporter constructs in one experiment. This method has become common in evaluating the efficiency of protein synthesis simultaneously by multiple mRNA variants. However, its potential is not confined to this area. In the presented review, a comparative analysis of the Flow-seq method and other alternative approaches used for translation efficiency evaluation of mRNA was carried out; the features of its application and the results obtained by Flow-seq were also considered.
Collapse
Affiliation(s)
- E. S. Komarova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119234 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437 Russia
| | - D. V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - M. R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - P. V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119234 Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119234 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
18
|
De Wannemaeker L, Bervoets I, De Mey M. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. Biotechnol Adv 2022; 60:108028. [PMID: 36031082 DOI: 10.1016/j.biotechadv.2022.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Synthetic biology can play a major role in the development of sustainable industrial biotechnology processes. However, the development of economically viable production processes is currently hampered by the limited availability of host organisms that can be engineered for a specific production process. To date, standard hosts such as Escherichia coli and Saccharomyces cerevisiae are often used as starting points for process development since parts and tools allowing their engineering are readily available. However, their suboptimal metabolic background or impaired performance at industrial scale for a desired production process, can result in increased costs associated with process development and/or disappointing production titres. Building a universal and portable gene expression system allowing genetic engineering of hosts across the bacterial domain would unlock the bacterial domain for industrial biotechnology applications in a highly standardized manner and doing so, render industrial biotechnology processes more competitive compared to the current polluting chemical processes. This review gives an overview of a selection of bacterial hosts highly interesting for industrial biotechnology based on both their metabolic and process optimization properties. Moreover, the requirements and progress made so far to enable universal, standardized, and portable gene expression across the bacterial domain is discussed.
Collapse
Affiliation(s)
- Lien De Wannemaeker
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Indra Bervoets
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Santos SP, Garcés LFS, Silva FS, Santiago LF, Pinheiro CS, Alcantara-Neves NM, Pacheco LG. Engineering an optimized expression operating unit for improved recombinant protein production in Escherichia coli. Protein Expr Purif 2022; 199:106150. [DOI: 10.1016/j.pep.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
|
20
|
Esquirol L, McNeale D, Douglas T, Vickers CE, Sainsbury F. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors. ACS Synth Biol 2022; 11:2709-2718. [PMID: 35880829 DOI: 10.1021/acssynbio.2c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia E Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000 Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| |
Collapse
|
21
|
Duan Y, Zhang X, Zhai W, Zhang J, Zhang X, Xu G, Li H, Deng Z, Shi J, Xu Z. Deciphering the Rules of Ribosome Binding Site Differentiation in Context Dependence. ACS Synth Biol 2022; 11:2726-2740. [PMID: 35877551 DOI: 10.1021/acssynbio.2c00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosome binding site (RBS) is a crucial element regulating translation. However, the activity of RBS is poorly predictable, because it is strongly affected by the local possible secondary structure, that is, context dependence. By the Flowseq technique, over 20 000 RBS variants were sorted and sequenced, and the translation of multiple genes under the same RBS was quantitatively characterized to evaluate the context dependence of each RBS variant in E. coli. Two regions, (-7 to -2) and (-17 to -12), of RBS were predicted with a higher possibility to pair with each other to slow down the translation initiation. Associations between phenotypes and the intrinsic factors suspected to affect translation efficiency and context dependence of the RBS, including nucleotide bias at each position, free energy, and conservation, were disentangled. The results showed that translation efficiency was influenced more significantly by conservation of the SD region (-16 to -8), while an AC-rich spacer region (-7 to -1) was associated with low context dependence. We confirmed these characteristics using a series of synthesized RBSs. The average correlation between multiple reporters was significantly higher for RBSs with an AC-rich spacer (0.714) compared with a GU-rich spacer (0.286). Overall, we proposed general design criteria to improve programmability and minimize context dependence of RBS. The characteristics unraveled here can be adapted to other bacteria for fine-tuning target-gene expression.
Collapse
Affiliation(s)
- Yanting Duan
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaojuan Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Weiji Zhai
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinpeng Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guoqiang Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Song H, Yang Y, Li H, Du J, Hu Z, Chen Y, Yang N, Mei M, Xiong Z, Tang K, Yi L, Zhang Y, Yang S. Determination of Nucleotide Sequences within Promoter Regions Affecting Promoter Compatibility between Zymomonas mobilis and Escherichia coli. ACS Synth Biol 2022; 11:2811-2819. [PMID: 35771099 DOI: 10.1021/acssynbio.2c00187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A promoter plays a crucial role in controlling the expression of the target gene in cells, thus being one of the key biological parts for synthetic biology practices. Although significant efforts have been made to identify and characterize promoters with different strengths in various microorganisms, the compatibility of promoters within different hosts still lacks investigation. In this study, we chose the native Pgap promoter of Zymomonas mobilis to investigate nucleotide sequences within promoter regions affecting promoter compatibility between Escherichia coli and Z. mobilis. Pgap is one of the strongest promotors in Z. mobilis that has many excellent characteristics to be developed as microbial cell factories. Using EGFP as a reporter, a Z. mobilis-derived Pgap mutant library was constructed and sorted in E. coli, with candidate promoters exhibiting high fluorescence intensity collected. A total of 53 variants were finally selected and sequenced by Sanger sequencing. The sequencing results grouped these variants into 12 different Pgap variant types, among which seven types presented higher promoter strength than native Pgap in E. coli. The next-generation sequencing technique was then employed to identify key mutations within the Pgap promoter region that affect the promoter compatibility. Finally, six important sites were identified and confirmed to help increase Pgap strength in E. coli while keeping similar strength of native Pgap in Z. mobilis. Compared to native Pgap, synthetic promoters combining these sites had enhanced strength; especially, Pgap-6M combining all six sites exhibited 20-fold greater strength than native Pgap in E. coli. This study thus not only determined six important sites affecting promoter compatibility but also confirmed a series of Pgap promoter variants with strong promoter activity in both E. coli and Z. mobilis. In addition, a strategy was established in this study to investigate and determine nucleotide sequences in promoter regions affecting promoter compatibility, which can be applied in other microorganisms to help reveal universal factors affecting promoter compatibility and design promoters with desired strengths among different microbial cell factories.
Collapse
Affiliation(s)
- Haoyue Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Han Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jun Du
- Beijing Tsingke Biotechnology Co., Ltd., Beijing 101111, China
| | - Zhousheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiqiang Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ke Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Tarnowski MJ, Gorochowski TE. Massively parallel characterization of engineered transcript isoforms using direct RNA sequencing. Nat Commun 2022; 13:434. [PMID: 35064117 PMCID: PMC8783025 DOI: 10.1038/s41467-022-28074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.
Collapse
Affiliation(s)
- Matthew J Tarnowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
- BrisSynBio, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
24
|
Jakočiūnas T, Jensen MK, Keasling JD. CasPER: A CRISPR/Cas9-Based Method for Directed Evolution in Genomic Loci in Saccharomyces cerevisiae. Methods Mol Biol 2022; 2513:23-37. [PMID: 35781198 DOI: 10.1007/978-1-0716-2399-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, in this chapter, we describe a detailed protocol for the method named Cas9-mediated protein evolution reaction or short CasPER. CasPER is based on the generation of large 300-600-bp mutagenized linear DNA fragments by error-prone PCR which are used as a donor for repair of double-strand break mediated by Cas9 and subsequently integrated to the genome. This method can be efficiently used for directed evolution of desired essential or nonessential genes in the genome and most importantly can be multiplexed. Altogether, the described method allows for heterogeneous DNA integration with successful transformation efficiencies of 98-100% for both single and multiplex targeting.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| |
Collapse
|
25
|
Schladt T, Engelmann N, Kubaczka E, Hochberger C, Koeppl H. Automated Design of Robust Genetic Circuits: Structural Variants and Parameter Uncertainty. ACS Synth Biol 2021; 10:3316-3329. [PMID: 34807573 PMCID: PMC8689692 DOI: 10.1021/acssynbio.1c00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Genetic design automation
methods for combinational circuits often
rely on standard algorithms from electronic design automation in their
circuit synthesis and technology mapping. However, those algorithms
are domain-specific and are hence often not directly suitable for
the biological context. In this work we identify aspects of those
algorithms that require domain-adaptation. We first demonstrate that
enumerating structural variants for a given Boolean specification
allows us to find better performing circuits and that stochastic gate
assignment methods need to be properly adjusted in order to find the
best assignment. Second, we present a general circuit scoring scheme
that accounts for the limited accuracy of biological device models
including the variability across cells and show that circuits selected
according to this score exhibit higher robustness with respect to
parametric variations. If gate characteristics in a library are just
given in terms of intervals, we provide means to efficiently propagate
signals through such a circuit and compute corresponding scores. We
demonstrate the novel design approach using the Cello gate library
and 33 logic functions that were synthesized and implemented in vivo
recently (Nielsen, A., et al., Science, 2016, 352 (6281), DOI: 10.1126/science.aac7341). Across this set of functions, 32 of them can be improved by simply
considering structural variants yielding performance gains of up to
7.9-fold, whereas 22 of them can be improved with gains up to 26-fold
when selecting circuits according to the novel robustness score. We
furthermore report on the synergistic combination of the two proposed
improvements.
Collapse
Affiliation(s)
- Tobias Schladt
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany
| | - Nicolai Engelmann
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany
| | - Erik Kubaczka
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany
| | - Christian Hochberger
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany
| | - Heinz Koeppl
- Department of Electrical Engineering and Information Technology, TU Darmstadt, Darmstadt 64283, Germany
- Centre for Synthetic Biology, TU Darmstadt, Darmstadt 64283, Germany
| |
Collapse
|
26
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
27
|
Stella RG, Baumann P, Lorke S, Münstermann F, Wirtz A, Wiechert J, Marienhagen J, Frunzke J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metab Eng Commun 2021; 13:e00187. [PMID: 34824977 PMCID: PMC8605253 DOI: 10.1016/j.mec.2021.e00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 12/28/2022] Open
Abstract
The marine bacterium Vibrio natriegens has recently been demonstrated to be a promising new host for molecular biology and next generation bioprocesses. V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium, with a high nutrient versatility and a reported doubling time of under 10 min. However, V. natriegens is not an established model organism yet, and further research is required to promote its transformation into a microbial workhorse. In this work, the potential of V. natriegens as an amino acid producer was investigated. First, the transcription factor-based biosensor LysG, from Corynebacterium glutamicum, was adapted for expression in V. natriegens to facilitate the detection of positively charged amino acids. A set of different biosensor variants were constructed and characterized, using the expression of a fluorescent protein as sensor output. After random mutagenesis, one of the LysG-based sensors was used to screen for amino acid producer strains. Here, fluorescence-activated cell sorting enabled the selective sorting of highly fluorescent cells, i.e. potential producer cells. Using this approach, individual L-lysine, L-arginine and L-histidine producers could be obtained producing up to 1 mM of the effector amino acid, extracellularly. Genome sequencing of the producer strains provided insight into the amino acid production metabolism of V. natriegens. This work demonstrates the successful expression and application of transcription factor-based biosensors in V. natriegens and provides insight into the underlying physiology, forming a solid basis for further development of this promising microbe.
Collapse
Affiliation(s)
- Roberto Giuseppe Stella
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Baumann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sophia Lorke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Felix Münstermann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
28
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
29
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
30
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
31
|
Ye C, Chen X, Yang M, Zeng X, Qiao S. CRISPR/Cas9 mediated T7 RNA polymerase gene knock-in in E. coli BW25113 makes T7 expression system work efficiently. J Biol Eng 2021; 15:22. [PMID: 34384456 PMCID: PMC8359068 DOI: 10.1186/s13036-021-00270-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
T7 Expression System is a common method of ensuring tight control and high-level induced expression. However, this system can only work in some bacterial strains in which the T7 RNA Polymerase gene resides in the chromosome. In this study, we successfully introduced a chromosomal copy of the T7 RNA Polymerase gene under control of the lacUV5 promoter into Escherichia coli BW25113. The T7 Expression System worked efficiently in this mutant strain named BW25113-T7. We demonstrated that this mutant strain could satisfactorily produce 5-Aminolevulinic Acid via C5 pathway. A final study was designed to enhance the controllability of T7 Expression System in this mutant strain by constructing a T7 Promoter Variants Library. These efforts advanced E. coli BW25113-T7 to be a practical host for future metabolic engineering efforts.
Collapse
Affiliation(s)
- Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, 100193, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, 100193, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, 100193, Beijing, China
| | - Mengjie Yang
- National Feed Engineering Technology Research Centre, 100193, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, 100193, Beijing, China.,Beijing Key Laboratory of Bio-feed Additives, 100193, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, 100193, Beijing, China. .,Beijing Key Laboratory of Bio-feed Additives, 100193, Beijing, China.
| |
Collapse
|
32
|
Abstract
Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear to be directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor the maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses whereby capsids preferentially package the genome from which they were expressed. IMPORTANCE Densoviruses could be used as biological control agents to manage insect pests. Such applications require an in-depth biological understanding and associated molecular tools. However, the genomes of these viruses remain difficult to manipulate due to poorly tractable secondary structures at their extremities. We devised a construction strategy that enables precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.
Collapse
|
33
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
35
|
Taylor GM, Heap JT. Design and Implementation of Multi-protein Expression Constructs and Combinatorial Libraries using Start-Stop Assembly. Methods Mol Biol 2021; 2205:219-237. [PMID: 32809202 DOI: 10.1007/978-1-0716-0908-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Start-Stop Assembly is a multi-part, modular, Golden Gate-based DNA assembly system with two key features which distinguish it from previous DNA assembly methods. Firstly, coding sequences are assembled with upstream and downstream sequences via overhangs corresponding to start and stop codons, avoiding unwanted 'scars' in assembled constructs at coding sequence boundaries. Scars at these crucial, sensitive locations can affect mRNA structure, activity of the ribosome binding site, and potentially other functional RNA features. Start-Stop Assembly is therefore both functionally scarless (an advantage usually only achieved using bespoke, overlap-based assembly methods) and suitable for efficient, unbiased and combinatorial assembly (a general advantage of Golden Gate-based methods). Secondly, Start-Stop Assembly has a new, streamlined assembly hierarchy, meaning that typically only one new vector is required in order to assemble constructs for any new destination context, such as a new organism or genomic location. This should facilitate more rapid and convenient development of engineered metabolic pathways for diverse nonmodel organisms in order to exploit their applied potential. This chapter explains both design considerations and practical procedures to implement multi-part, hierarchical assembly of multi-protein expression constructs, either individually or as combinatorial libraries, using Start-Stop Assembly.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom. .,School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
36
|
Duan Y, Zhai W, Liu W, Zhang X, Shi JS, Zhang X, Xu Z. Fine-Tuning Multi-Gene Clusters via Well-Characterized Gene Expression Regulatory Elements: Case Study of the Arginine Synthesis Pathway in C. glutamicum. ACS Synth Biol 2021; 10:38-48. [PMID: 33382575 DOI: 10.1021/acssynbio.0c00405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promoters and ribosome binding sites (RBSs) are routinely applied in gene expression regulation, but their orthogonality and combinatorial effects have not yet been systematically studied in Corynebacterium glutamicum. Here, 17 core promoters and 29 RBSs in C. glutamicum were characterized, which exhibited 470-fold and 430-fold in transcriptional and translational activity, respectively. By comparing the expression of two reporter genes regulated by multiple RBSs, the RBS efficacy showed significant dependence on the gene context, besides the RBSs' strength, reflecting the poor orthogonality of RBSs. Bicistron-modified RBS (referred as bc-RBS) was adapted to C. glutamicum, which improved RBS reliability. By coupling a series of promoters with RBSs/bc-RBSs, a much broader regulation range that spanned 4 orders of magnitude was observed compared with that of a sole element, and the contribution to gene expression of RBS was more than that of promoter. Finally, promoters and RBSs were applied as built-in elements to fine-tune the gene cluster in the arginine synthesis pathway in C. glutamicum. Compared with the original strain, more arginine (1.61-fold) or citrulline (2.35-fold) was accumulated in a 7 L bioreactor by strains with the gene expression regulation system rationally engineered. We demonstrated that, via combination of well-characterized gene elements, and overall consideration for both transcription and translation, the biosynthesis pathway can be effectively balanced, and the yield of a target metabolite can be further improved.
Collapse
Affiliation(s)
- Yanting Duan
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiji Zhai
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weijia Liu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
37
|
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27608-27619. [PMID: 33087560 PMCID: PMC7959565 DOI: 10.1073/pnas.1920015117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for enormous global morbidity and mortality. Despite this, the pneumococcus makes up part of the commensal nasopharyngeal flora. How the pneumococcus switches from this commensal to pathogenic state and causes disease is unclear and very likely involves variability in expression of its virulence factors. Here, we used synthetic biology approaches to generate complex gene-regulatory networks such as logic gates and toggle switches. We show that these networks are functional in vivo to control capsule production in an influenza-superinfection model. This opens the field of systematically testing the role of phenotypic variation in pneumococcal virulence. The approaches used here may serve as an example for synthetic biology projects in unrelated organisms. Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.
Collapse
|
38
|
Liu X, Zhao Z, Dong G, Li Y, Peng F, Liu C, Zhang F, Linhardt RJ, Yang Y, Bai Z. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum. Enzyme Microb Technol 2020; 141:109651. [PMID: 33051010 DOI: 10.1016/j.enzmictec.2020.109651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Corynebacterium glutamicum is an important industrial organism for the production of a variety of biological commodities. We discovered a promoter encoded by the gene NCgl2319 in C. glutamicum, which could be induced by benzyl alcohol, could be used as an efficient tunable expression system. In initial attempts, this promoter failed to function in a recombinant expression system. This was remedied by extending the original genetic context of the promoter, generating a new version Pcat-B. The Pcat-B transcription initiation site, its critical active regions, and its effect of inducers were fully characterized resulting in tunable expression. This approach proved to be very efficient in producing a pharmaceutical protein, N-terminal pro-brain natriuretic peptide (NT-proBNP). Production of approximately 440.43 mg/L NT-proBNP was achieved with the Pcat-B expression system demonstrating its application for controllable pharmaceutical protein production in C. glutamicum.
Collapse
Affiliation(s)
- Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zihao Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guibin Dong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Feng Peng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
McCarthy DM, Medford JI. Quantitative and Predictive Genetic Parts for Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2020; 11:512526. [PMID: 33123175 PMCID: PMC7573182 DOI: 10.3389/fpls.2020.512526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Plant synthetic biology aims to harness the natural abilities of plants and to turn them to new purposes. A primary goal of plant synthetic biology is to produce predictable and programmable genetic circuits from simple regulatory elements and well-characterized genetic components. The number of available DNA parts for plants is increasing, and the methods for rapid quantitative characterization are being developed, but the field of plant synthetic biology is still in its early stages. We here describe methods used to describe the quantitative properties of genetic components needed for plant synthetic biology. Once the quantitative properties and transfer function of a variety of genetic parts are known, computers can select the optimal components to assemble into functional devices, such as toggle switches and positive feedback circuits. However, while the variety of circuits and traits that can be put into plants are limitless, doing synthetic biology in plants poses unique challenges. Plants are composed of differentiated cells and tissues, each representing potentially unique regulatory or developmental contexts to introduced synthetic genetic circuits. Further, plants have evolved to be highly sensitive to environmental influences, such as light or temperature, any of which can affect the quantitative function of individual parts or whole circuits. Measuring the function of plant components within the context of a plant cell and, ideally, in a living plant, will be essential to using these components in gene circuits with predictable function. Mathematical modeling will be needed to account for the variety of contexts a genetic part will experience in different plant tissues or environments. With such understanding in hand, it may be possible to redesign plant traits to serve human and environmental needs.
Collapse
|
40
|
Deloupy A, Sauveplane V, Robert J, Aymerich S, Jules M, Robert L. Extrinsic noise prevents the independent tuning of gene expression noise and protein mean abundance in bacteria. SCIENCE ADVANCES 2020; 6:eabc3478. [PMID: 33028528 PMCID: PMC7541070 DOI: 10.1126/sciadv.abc3478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 05/03/2023]
Abstract
It is generally accepted that prokaryotes can tune gene expression noise independently of protein mean abundance by varying the relative levels of transcription and translation. Here, we address this question quantitatively, using a custom-made library of 40 Bacillus subtilis strains expressing a fluorescent protein under the control of different transcription and translation control elements. We quantify noise and mean protein abundance by fluorescence microscopy and show that for most of the natural transcription range of B. subtilis, expression noise is equally sensitive to variations in the transcription or translation rate because of the prevalence of extrinsic noise. In agreement, analysis of whole-genome transcriptomic and proteomic datasets suggests that noise optimization through transcription and translation tuning during evolution may only occur in a regime of weak transcription. Therefore, independent control of mean abundance and noise can rarely be achieved, which has strong implications for both genome evolution and biological engineering.
Collapse
Affiliation(s)
- A Deloupy
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France
| | - V Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - J Robert
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France
| | - S Aymerich
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - M Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - L Robert
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
41
|
Bali AP, Lennox-Hvenekilde D, Myling-Petersen N, Buerger J, Salomonsen B, Gronenberg LS, Sommer MO, Genee HJ. Improved biotin, thiamine, and lipoic acid biosynthesis by engineering the global regulator IscR. Metab Eng 2020; 60:97-109. [DOI: 10.1016/j.ymben.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
|
42
|
Dhillon N, Shelansky R, Townshend B, Jain M, Boeger H, Endy D, Kamakaka R. Permutational analysis of Saccharomyces cerevisiae regulatory elements. Synth Biol (Oxf) 2020; 5:ysaa007. [PMID: 32775697 PMCID: PMC7402160 DOI: 10.1093/synbio/ysaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
Gene expression in Saccharomyces cerevisiae is regulated at multiple levels. Genomic and epigenomic mapping of transcription factors and chromatin factors has led to the delineation of various modular regulatory elements—enhancers (upstream activating sequences), core promoters, 5′ untranslated regions (5′ UTRs) and transcription terminators/3′ untranslated regions (3′ UTRs). However, only a few of these elements have been tested in combinations with other elements and the functional interactions between the different modular regulatory elements remain under explored. We describe a simple and rapid approach to build a combinatorial library of regulatory elements and have used this library to study 26 different enhancers, core promoters, 5′ UTRs and transcription terminators/3′ UTRs to estimate the contribution of individual regulatory parts in gene expression. Our combinatorial analysis shows that while enhancers initiate gene expression, core promoters modulate the levels of enhancer-mediated expression and can positively or negatively affect expression from even the strongest enhancers. Principal component analysis (PCA) indicates that enhancer and promoter function can be explained by a single principal component while UTR function involves multiple functional components. The PCA also highlights outliers and suggest differences in mechanisms of regulation by individual elements. Our data also identify numerous regulatory cassettes composed of different individual regulatory elements that exhibit equivalent gene expression levels. These data thus provide a catalog of elements that could in future be used in the design of synthetic regulatory circuits.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| | - Robert Shelansky
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| | - Brent Townshend
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Miten Jain
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Hinrich Boeger
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| | - Drew Endy
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rohinton Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
43
|
Fang Y, Wang J, Ma W, Yang J, Zhang H, Zhao L, Chen S, Zhang S, Hu X, Li Y, Wang X. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system. Metab Eng 2020; 61:33-46. [PMID: 32371091 DOI: 10.1016/j.ymben.2020.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
In metabolic engineering, unbalanced microbial carbon distribution has long blocked the further improvement in yield and productivity of high-volume natural metabolites. Current studies mostly focus on regulating desired biosynthetic pathways, whereas few strategies are available to maximize L-threonine efficiently. Here, we present a strategy to guarantee the supply of reduced cofactors and actualize L-threonine maximization by regulating cellular carbon distribution in central metabolic pathways. A thermal switch system was designed and applied to divide the whole fermentation process into two stages: growth and production. This system could rebalance carbon substrates between pyruvate and oxaloacetate by controlling the heterogenous expression of pyruvate carboxylase and oxaloacetate decarboxylation that responds to temperature. The system was tested in an L-threonine producer Escherichia coli TWF001, and the resulting strain TWF106/pFT24rp overproduced L-threonine from glucose with 111.78% molar yield. The thermal switch system was then employed to switch off the L-alanine synthesis pathway, resulting in the highest L-threonine yield of 124.03%, which exceeds the best reported yield (87.88%) and the maximum available theoretical value of L-threonine production (122.47%). This inducer-free genetic circuit design can be also developed for other biosynthetic pathways to increase product conversion rates and shorten production cycles.
Collapse
Affiliation(s)
- Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 264005, China
| | - Lei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuyan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
44
|
Abstract
Synthetic biology is a field of scientific research that applies engineering principles to living organisms and living systems. It is a field that is increasing in scope with respect to organisms engineered, practical outcomes, and systems integration. There is a commercial dimension as well, where living organisms are engineered as green technologies that could offer alternatives to industrial standards in the pharmaceutical and petroleum-based chemical industries. This review attempts to provide an introduction to this field as well as a consideration of important contributions that exemplify how synthetic biology may be commensurate or even disproportionate with the complexity of living systems. The engineerability of living systems remains a difficult task, yet advancements are reported at an ever-increasing pace.
Collapse
Affiliation(s)
- Martin M Hanczyc
- University of Trento, Department of Cellular, Computational, and Integrative Biology (CIBIO)
- University of New Mexico, Chemical and Biological Engineering.
| |
Collapse
|
45
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
46
|
Hou Y, Chen S, Wang J, Liu G, Wu S, Tao Y. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnol 2019; 19:76. [PMID: 31718625 PMCID: PMC6849255 DOI: 10.1186/s12896-019-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. RESULTS In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.4 times. CONCLUSIONS This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.
Collapse
Affiliation(s)
- Yingshuo Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Siyu Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Guizhen Liu
- Kaiping Genuine Biochemical Pharmaceutical Co. Ltd, Kaiping, People's Republic of China
| | - Sheng Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
47
|
A Comparison of Constitutive and Inducible Non-Endogenous Keto-Carotenoids Biosynthesis in Synechocystis sp. PCC 6803. Microorganisms 2019; 7:microorganisms7110501. [PMID: 31661899 PMCID: PMC6920976 DOI: 10.3390/microorganisms7110501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 12/05/2022] Open
Abstract
The model cyanobacterium Synechocystis sp. PCC 6803 has gained significant attention as an alternative and sustainable source for biomass, biofuels and added-value compounds. The latter category includes keto-carotenoids, which are molecules largely employed in a wide spectrum of industrial applications in the food, feed, nutraceutical, cosmetic and pharmaceutical sectors. Keto-carotenoids are not naturally synthesized by Synechocystis, at least in any significant amounts, but their accumulation can be induced by metabolic engineering of the endogenous carotenoid biosynthetic pathway. In this study, the accumulation of the keto-carotenoids astaxanthin and canthaxanthin, resulting from the constitutive or temperature-inducible expression of the CrtW and CrtZ genes from Brevundimonas, is compared. The benefits and drawbacks of the two engineering approaches are discussed.
Collapse
|
48
|
Taylor GM, Mordaka PM, Heap JT. Start-Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res 2019; 47:e17. [PMID: 30462270 PMCID: PMC6379671 DOI: 10.1093/nar/gky1182] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
DNA assembly allows individual DNA constructs or libraries to be assembled quickly and reliably. Most methods are either: (i) Modular, easily scalable and suitable for combinatorial assembly, but leave undesirable 'scar' sequences; or (ii) bespoke (non-modular), scarless but less suitable for construction of combinatorial libraries. Both have limitations for metabolic engineering. To overcome this trade-off we devised Start-Stop Assembly, a multi-part, modular DNA assembly method which is both functionally scarless and suitable for combinatorial assembly. Crucially, 3 bp overhangs corresponding to start and stop codons are used to assemble coding sequences into expression units, avoiding scars at sensitive coding sequence boundaries. Building on this concept, a complete DNA assembly framework was designed and implemented, allowing assembly of up to 15 genes from up to 60 parts (or mixtures); monocistronic, operon-based or hybrid configurations; and a new streamlined assembly hierarchy minimizing the number of vectors. Only one destination vector is required per organism, reflecting our optimization of the system for metabolic engineering in diverse organisms. Metabolic engineering using Start-Stop Assembly was demonstrated by combinatorial assembly of carotenoid pathways in Escherichia coli resulting in a wide range of carotenoid production and colony size phenotypes indicating the intended exploration of design space.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paweł M Mordaka
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
49
|
Jervis AJ, Carbonell P, Taylor S, Sung R, Dunstan MS, Robinson CJ, Breitling R, Takano E, Scrutton NS. SelProm: A Queryable and Predictive Expression Vector Selection Tool for Escherichia coli. ACS Synth Biol 2019; 8:1478-1483. [PMID: 30870592 DOI: 10.1021/acssynbio.8b00399] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid prototyping and optimization of plasmid-based recombinant gene expression is one of the key steps in the development of bioengineered bacterial systems. Often, multiple genes or gene modules need to be coexpressed, and for this purpose compatible, inducible plasmid systems have been developed. However, inducible expression systems are not favored in industrial processes, due to their prohibitive cost, and consequently the conversion to constitutive expression systems is often desired. Here we present a set of constitutive-expression plasmids for this purpose, which were benchmarked using fluorescent reporter genes. To further facilitate the conversion between inducible and constitutive expression systems, we developed SelProm, a design tool that serves as a parts repository of plasmid expression strength and predicts portability rules between constitutive and inducible plasmids through model comparison and machine learning. The SelProm tool is freely available at http://selprom.synbiochem.co.uk .
Collapse
Affiliation(s)
- Adrian J. Jervis
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Pablo Carbonell
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Sandra Taylor
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Rehana Sung
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Mark S. Dunstan
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Christopher J. Robinson
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
50
|
Gilman J, Singleton C, Tennant RK, James P, Howard TP, Lux T, Parker DA, Love J. Rapid, Heuristic Discovery and Design of Promoter Collections in Non-Model Microbes for Industrial Applications. ACS Synth Biol 2019; 8:1175-1186. [PMID: 30995831 DOI: 10.1021/acssynbio.9b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Well-characterized promoter collections for synthetic biology applications are not always available in industrially relevant hosts. We developed a broadly applicable method for promoter identification in atypical microbial hosts that requires no a priori understanding of cis-regulatory element structure. This novel approach combines bioinformatic filtering with rapid empirical characterization to expand the promoter toolkit and uses machine learning to improve the understanding of the relationship between DNA sequence and function. Here, we apply the method in Geobacillus thermoglucosidasius, a thermophilic organism with high potential as a synthetic biology chassis for industrial applications. Bioinformatic screening of G. kaustophilus, G. stearothermophilus, G. thermodenitrificans, and G. thermoglucosidasius resulted in the identification of 636 100 bp putative promoters, encompassing the genome-wide design space and lacking known transcription factor binding sites. Eighty of these sequences were characterized in vivo, and activities covered a 2-log range of predictable expression levels. Seven sequences were shown to function consistently regardless of the downstream coding sequence. Partition modeling identified sequence positions upstream of the canonical -35 and -10 consensus motifs that were predicted to strongly influence regulatory activity in Geobacillus, and artificial neural network and partial least squares regression models were derived to assess if there were a simple, forward, quantitative method for in silico prediction of promoter function. However, the models were insufficiently general to predict pre hoc promoter activity in vivo, most probably as a result of the relatively small size of the training data set compared to the size of the modeled design space.
Collapse
Affiliation(s)
- James Gilman
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Chloe Singleton
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Richard K. Tennant
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Paul James
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle-upon-Tyne NE1 7RU, U.K
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich 85764, Germany
| | - David A. Parker
- Biodomain, Shell Technology Center Houston, 3333 Highway 6 South, Houston, Texas 77082-3101, United States
| | - John Love
- The BioEconomy Centre, Biosciences, College of Life and Environmental Sciences, Stocker Road, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|