1
|
Vaz RF, Brown LS, Ladizhansky V. Membrane protein structure determination from Paramagnetic Relaxation Enhancement and internuclear distance restraints. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00467-w. [PMID: 40156665 DOI: 10.1007/s10858-025-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the determination of protein structure. The key structural information is obtained in the form of spectral cross peaks between spatially close nuclear spins, but assigning these cross peaks unambiguously to unique spin pairs is often a tedious task because of spectral overlap. Here, we use a seven-helical membrane protein Anabaena Sensory Rhodopsin (ASR) as a model system to demonstrate that transverse Paramagnetic Relaxation Enhancements (PRE) extracted from 2D MAS NMR spectra could be used to obtain a protein structural model. Starting with near complete assignments (93%) of ASR residues, TALOS + predicted backbone dihedral angles and secondary structure restraints in the form of backbone hydrogen bonds are combined with PRE-based restraints and used to generate a coarse model. This model is subsequently utilized as a template reference to facilitate automated assignments of highly ambiguous internuclear correlations. The template is used in an iterative cross peak assignment process and is progressively improved through the inclusion of disambiguated restraints, thereby converging to a low root-mean-square-deviation structural model. In addition to improving structure calculation conversion, the inclusion of PREs also improves packing between helices within an alpha-helical bundle.
Collapse
Affiliation(s)
- Raoul F Vaz
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Vlad Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Kobayashi N, Ishii Y. Analysis of solid-state NMR data facilitated by MagRO_NMRViewJ with Graph_Robot: Application for membrane protein and amyloid. Biophys Chem 2025; 318:107356. [PMID: 39637606 DOI: 10.1016/j.bpc.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Solid-state NMR (ssNMR) methods have continued to be developed in recent years for the efficient assignment of signals and 3D structure modeling of biomacromolecules. Consequently, we are approaching an era in which vigorous applications of these methods are more widespread in research, including functional elucidation of biomacromolecules and drug discovery. However, multidimensional ssNMR methods are not as advanced as solution NMR methods, especially for automated data analysis. This article describes how a newly developed Graph_Robot module, implemented in MagRO-NMRViewJ, evolved from integrated tools for NMR data analysis named Kujira (developed by Kobayashi et al. [1]). These packaged tools systematically utilize flexible, sophisticated, yet simple libraries that facilitate only for solution-NMR data analysis, offering an intuitive interface accessible even to novice users. In this study, semi-automated assignments of backbone and side chain signals of ssNMR datasets for uniformly 13C/15N labeled aquaporin Z and 42-residue amyloid-β fibril were examined as examples to demonstrate how Graph_Robot can expedite the visual inspection and handling of multidimensional ssNMR spectral data. In addition, the functionality of the Graph_Robot system enables a computer to interpret the behavior of magnetization transfer based on a finite automaton model.
Collapse
Affiliation(s)
- Naohiro Kobayashi
- RIKEN, RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama 230-0045, Japan.
| | - Yoshitaka Ishii
- RIKEN, RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama 230-0045, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
3
|
Xiao H, Wang J, Tan H, Gan Y, Liu W, Zhang Y, Zhang Z, Yang J. Robust Heteronuclear Correlations for Sub-milligram Protein in Ultrafast Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2025; 147:6384-6389. [PMID: 39953646 DOI: 10.1021/jacs.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Proton-detected solid-state nuclear magnetic resonance (ssNMR) under ultrafast magic-angle spinning (MAS) has become a powerful tool for elucidating the structures of proteins with sub-milligram quantities, where establishing 13C-15N correlations is essential. However, traditional 13C-15N cross-polarization (CP), effective at lower MAS frequencies, suffers diminished efficiency under ultrafast MAS conditions. To overcome this limitation, we developed a robust method for selective polarization between insensitive nuclei (SPINE). This approach significantly enhances the heteronuclear 13C-15N correlation efficiency over CP, with gain factors of 1.75 for 13CA-15N and 1.9 and 13CO-15N transfers. SPINE's efficacy was validated on four diverse proteins: the microcrystalline β1 immunoglobulin binding domain of protein G (GB1), the large-conductance mechanosensitive ion channel from Methanosarcina acetivorans (MaMscL), fibrillar septum-forming protein (SepF), and the vertex protein of the β-carboxysome shell (CcmL). This enhancement can reduce the duration of current multidimensional experiments to about one-third of that using a single 13C-15N CP and to about one-tenth with dual 13C-15N transfers. Our findings underscore the practical utility and versatility of SPINE in ssNMR spectroscopy, making it a valuable approach for advancing structural biology studies of sub-milligram protein.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yuefang Gan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
4
|
Zhang X, Tamaki H, Kikukawa T, Fujiwara T, Matsuki Y. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Biophys Chem 2024; 315:107329. [PMID: 39369577 DOI: 10.1016/j.bpc.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Protein Research, Osaka University, Japan
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Japan
| | | | | | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| |
Collapse
|
5
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Xiao H, Zhao W, Zhang Y, Kang H, Zhang Z, Yang J. Selective correlations between aliphatic 13C nuclei in protein solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107730. [PMID: 38981307 DOI: 10.1016/j.jmr.2024.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cβ correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cβ correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline β1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cβ correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huimin Kang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Saad A, Bechinger B. Solid-state NMR spectroscopy for structural studies of polypeptides and lipids in extended physiological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184162. [PMID: 37949788 DOI: 10.1016/j.bbamem.2023.184162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 11/12/2023]
Abstract
Solid-state NMR is a quickly developing technique that allows one to obtain structural information at atomic resolution in extended lipid bilayers in a rather unique manner. Two approaches have been developed for membrane proteins and peptides namely magic angle sample spinning and the use of uniaxially oriented membrane samples. The state-of-the-art of both approaches will be introduced and the perspectives of solid-state NMR spectroscopy in the context of other structural biology techniques, pressing biomedical questions and membrane biophysics will be discussed.
Collapse
Affiliation(s)
- Ahmad Saad
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France; Institut Universitaire de France, 75005 Paris, France.
| |
Collapse
|
8
|
Kiani YS, Jabeen I. Challenges of Protein-Protein Docking of the Membrane Proteins. Methods Mol Biol 2024; 2780:203-255. [PMID: 38987471 DOI: 10.1007/978-1-0716-3985-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the recent advances in the determination of high-resolution membrane protein (MP) structures, the structural and functional characterization of MPs remains extremely challenging, mainly due to the hydrophobic nature, low abundance, poor expression, purification, and crystallization difficulties associated with MPs. Whereby the major challenges/hurdles for MP structure determination are associated with the expression, purification, and crystallization procedures. Although there have been significant advances in the experimental determination of MP structures, only a limited number of MP structures (approximately less than 1% of all) are available in the Protein Data Bank (PDB). Therefore, the structures of a large number of MPs still remain unresolved, which leads to the availability of widely unplumbed structural and functional information related to MPs. As a result, recent developments in the drug discovery realm and the significant biological contemplation have led to the development of several novel, low-cost, and time-efficient computational methods that overcome the limitations of experimental approaches, supplement experiments, and provide alternatives for the characterization of MPs. Whereby the fine tuning and optimizations of these computational approaches remains an ongoing endeavor.Computational methods offer a potential way for the elucidation of structural features and the augmentation of currently available MP information. However, the use of computational modeling can be extremely challenging for MPs mainly due to insufficient knowledge of (or gaps in) atomic structures of MPs. Despite the availability of numerous in silico methods for 3D structure determination the applicability of these methods to MPs remains relatively low since all methods are not well-suited or adequate for MPs. However, sophisticated methods for MP structure predictions are constantly being developed and updated to integrate the modifications required for MPs. Currently, different computational methods for (1) MP structure prediction, (2) stability analysis of MPs through molecular dynamics simulations, (3) modeling of MP complexes through docking, (4) prediction of interactions between MPs, and (5) MP interactions with its soluble partner are extensively used. Towards this end, MP docking is widely used. It is notable that the MP docking methods yet few in number might show greater potential in terms of filling the knowledge gap. In this chapter, MP docking methods and associated challenges have been reviewed to improve the applicability, accuracy, and the ability to model macromolecular complexes.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
9
|
Cárdenas G, Ledentu V, Huix-Rotllant M, Olivucci M, Ferré N. Automatic Rhodopsin Modeling with Multiple Protonation Microstates. J Phys Chem A 2023; 127:9365-9380. [PMID: 37877699 DOI: 10.1021/acs.jpca.3c05413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Automatic Rhodopsin Modeling (ARM) is a simulation protocol providing QM/MM models of rhodopsins capable of reproducing experimental electronic absorption and emission trends. Currently, ARM is restricted to a single protonation microstate for each rhodopsin model. Herein, we incorporate an extension of the minimal electrostatic model (MEM) into the ARM protocol to account for all relevant protonation microstates at a given pH. The new ARM+MEM protocol determines the most important microstates contributing to the description of the absorption spectrum. As a test case, we have applied this methodology to simulate the pH-dependent absorption spectrum of a toy model, showing that the single-microstate picture breaks down at certain pH values. Subsequently, we applied ARM+MEM toAnabaenasensory rhodopsin, confirming an improved description of its absorption spectrum when the titration of several key residues is considered.
Collapse
Affiliation(s)
| | | | | | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France
| |
Collapse
|
10
|
Xie H, Zhao Y, Zhao W, Chen Y, Liu M, Yang J. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. SCIENCE ADVANCES 2023; 9:eadh4168. [PMID: 37910616 PMCID: PMC10619923 DOI: 10.1126/sciadv.adh4168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Structure determination of membrane proteins in native cellular membranes is critical to precisely reveal their structures in physiological conditions. However, it remains challenging for solid-state nuclear magnetic resonance (ssNMR) due to the low sensitivity and high complexity of ssNMR spectra of cellular membranes. Here, we present the structure determination of aquaporin Z (AqpZ) by ssNMR in Escherichia coli inner membranes. To enhance the signal sensitivity of AqpZ, we optimized protein overexpression and removed outer membrane components. To suppress the interference of background proteins, we used a "dual-media" expression approach and antibiotic treatment. Using 1017 distance restraints obtained from two-dimensional 13C-13C spectra based on the complete chemical shift assignments, the 1.7-Å ssNMR structure of AqpZ is determined in E. coli inner membranes. This cellular ssNMR structure determination paves the way for analyzing the atomic structural details for membrane proteins in native cellular membranes.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
11
|
Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X. Automated Fragmentation Quantum Mechanical Calculation of 15N and 13C Chemical Shifts in a Membrane Protein. J Chem Theory Comput 2023; 19:7405-7422. [PMID: 37788419 DOI: 10.1021/acs.jctc.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, we developed an accurate and cost-effective automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method to calculate the chemical shifts of 15N and 13C of membrane proteins. The convergence of the AF-QM/MM method was tested using Krokinobacter eikastus rhodopsin 2 as a test case. When the distance threshold of the QM region is equal to or larger than 4.0 Å, the results of the AF-QM/MM calculations are close to convergence. In addition, the effects of selected density functionals, basis sets, and local chemical environment of target atoms on the chemical shift calculations were systematically investigated. Our results demonstrate that the predicted chemical shifts are more accurate when important environmental factors including cross-protomer interactions, lipid molecules, and solvent molecules are taken into consideration, especially for the 15N chemical shift prediction. Furthermore, with the presence of sodium ions in the environment, the chemical shift of residues, retinal, and retinal Schiff base are affected, which is consistent with the results of the solid-state nuclear magnetic resonance (NMR) experiment. Upon comparing the performance of various density functionals (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB95, and OPBE), the results show that mPW1PW91 is a suitable functional for the 15N and 13C chemical shift prediction of the membrane proteins. Meanwhile, we find that the improved accuracy of the 13Cβ chemical shift calculations can be achieved by the employment of the triple-ζ basis set. However, the employment of the triple-ζ basis set does not improve the accuracy of the 15N and 13Cα chemical shift calculations nor does the addition of a diffuse function improve the overall prediction accuracy of the chemical shifts. Our study also underscores that the AF-QM/MM method has significant advantages in predicting the chemical shifts of key ligands and nonstandard residues in membrane proteins than most widely used empirical models; therefore, it could be an accurate computational tool for chemical shift calculations on various types of biological systems.
Collapse
Affiliation(s)
- Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clara Nassrin Kriebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
12
|
Tatman BP, Franks WT, Brown SP, Lewandowski JR. Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR. J Chem Phys 2023; 158:2890210. [PMID: 37171196 DOI: 10.1063/5.0142201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with fast MAS, we have developed a low-order correlation in Liouville space model based on the work of Dumez et al. (J. Chem. Phys. 33, 224501, 2010). Specifically, we introduce a new method for basis set selection, which accounts for the resonance-offset dependence at fast MAS. Furthermore, we consider the necessity of including chemical shift, both isotropic and anisotropic, in the modeling of spin diffusion. Using this model, we explore how different experimental factors change the nature of spin diffusion. Then, we show case studies to exemplify the issues that arise in using spin diffusion techniques at fast spinning. We show that the efficiency of polarization transfer via spin diffusion occurring within a deuterated and 100% back-exchanged protein sample at 60 kHz MAS is almost entirely dependent on resonance offset. We additionally identify temperature-dependent magnetization transfer in beta-aspartyl L-alanine, which could be explained by the influence of an incoherent relaxation-based nuclear Overhauser effect.
Collapse
Affiliation(s)
- Ben P Tatman
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
13
|
Arunachalam V, Sharma K, Mote KR, Madhu PK. Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 124:101858. [PMID: 36796278 DOI: 10.1016/j.ssnmr.2023.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cβ, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.
Collapse
Affiliation(s)
- Vaishali Arunachalam
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad, 500046, India.
| | - Kshama Sharma
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad, 500046, India.
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad, 500046, India.
| | - P K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
14
|
Suzuki S, Kumagai S, Nagashima T, Yamazaki T, Okitsu T, Wada A, Naito A, Katayama K, Inoue K, Kandori H, Kawamura I. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Biophys Chem 2023; 296:106991. [PMID: 36905840 DOI: 10.1016/j.bpc.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Heliorhodopsin (HeR) is a seven-helical transmembrane protein with a retinal chromophore that corresponds to a new rhodopsin family. HeR from the archaebacterium Thermoplasmatales archaeon (TaHeR) exhibits unique features, such as the inverted protein orientation in the membrane compared to other rhodopsins and a long photocycle. Here, we used solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the 13C and 15N NMR signals of the retinal chromophore and protonated Schiff base (RPSB) in TaHeR embedded in POPE/POPG membrane. Although the 14- and 20-13C retinal signals indicated 13-trans/15-anti (all-trans) configurations, the 20-13C chemical shift value was different from that of other microbial rhodopsins, indicating weakly steric hinderance between Phe203 and the C20 methyl group. 15N RPSB/λmax plot deviated from the linear correlation based on retinylidene-halide model compounds. Furthermore, 15N chemical shift anisotropy (CSA) suggested that Ser112 and Ser234 polar residues distinguish the electronic environment tendencies of RPSB from those of other microbial rhodopsins. Our NMR results revealed that the retinal chromophore and the RPSB in TaHeR exhibit unique electronic environments.
Collapse
Affiliation(s)
- Shibuki Suzuki
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Sari Kumagai
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
15
|
Shamir Y, Goldbourt A. Atomic-Resolution Structure of the Protein Encoded by Gene V of fd Bacteriophage in Complex with Viral ssDNA Determined by Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2022; 145:300-310. [PMID: 36542094 PMCID: PMC9837838 DOI: 10.1021/jacs.2c09957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.
Collapse
|
16
|
Gao C, Chen PH, Däpp A, Urban MA, Gunzenhauser R, Alaniva N, Barnes AB. Improving the sensitivity of MAS spheres using a 9.5 mm spherical shell with 219 μL sample volume spinning in a spherical solenoid coil. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107305. [PMID: 36191440 DOI: 10.1016/j.jmr.2022.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Spherical rotors in magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments have potential advantages relative to cylindrical rotors in terms of ease of fabrication, low risk of rotor crash, easy sample exchange, and better microwave access. However, one major disadvantage so far of spherical rotors is poor NMR filling factor due to the small sample volume and large cylindrical radiofrequency (RF) coil. Here we present a novel NMR coil geometry in the form of a spherical coil. The spherical coil best fits the spherical sample to maximize sensitivity, while also providing excellent RF homogeneity. We further improve NMR sensitivity by employing a spherical shell as the rotor, thereby maximizing sample volume (219 μL in this case of 9.5 mm outer diameter spheres). The spinning gas is supplied by a 3D-printed ring stator external to the coil, thereby introducing a simplified form of MAS stators. In this apparatus, the RF field generated along the coil axis is perpendicular to the external magnetic field, regardless of rotor orientation. We observe a linear increase in sensitivity with increasing sample volume. We also simulate the RF performance of spherical and cylindrical solenoid coils with constant or variable pitch for spherical and cylindrical rotors, respectively. The simulation results show that spherical solenoid coils generate comparable B1 field intensities but have better homogeneity than cylindrical solenoid coils do.
Collapse
Affiliation(s)
- Chukun Gao
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Pin-Hui Chen
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alexander Däpp
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Michael A Urban
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Ronny Gunzenhauser
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Nicholas Alaniva
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alexander B Barnes
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
17
|
Advanced Research on Structure–Function Relationships of Membrane Proteins. MEMBRANES 2022; 12:membranes12070672. [PMID: 35877875 PMCID: PMC9320922 DOI: 10.3390/membranes12070672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
|
18
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
19
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
20
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
21
|
Najbauer EE, Tekwani Movellan K, Giller K, Benz R, Becker S, Griesinger C, Andreas LB. Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer. J Am Chem Soc 2022; 144:2953-2967. [PMID: 35164499 PMCID: PMC8874904 DOI: 10.1021/jacs.1c09848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The voltage-dependent
anion channel (VDAC), the most abundant protein
in the outer mitochondrial membrane, is responsible for the transport
of all ions and metabolites into and out of mitochondria. Larger than
any of the β-barrel structures determined to date by magic-angle
spinning (MAS) NMR, but smaller than the size limit of cryo-electron
microscopy (cryo-EM), VDAC1’s 31 kDa size has long been a bottleneck
in determining its structure in a near-native lipid bilayer environment.
Using a single two-dimensional (2D) crystalline sample of human VDAC1
in lipids, we applied proton-detected fast magic-angle spinning NMR
spectroscopy to determine the arrangement of β strands. Combining
these data with long-range restraints from a spin-labeled sample,
chemical shift-based secondary structure prediction, and previous
MAS NMR and atomic force microscopy (AFM) data, we determined the
channel’s structure at a 2.2 Å root-mean-square deviation
(RMSD). The structure, a 19-stranded β-barrel, with an N-terminal
α-helix in the pore is in agreement with previous data in detergent,
which was questioned due to the potential for the detergent to perturb
the protein’s functional structure. Using a quintuple mutant
implementing the channel’s closed state, we found that dynamics
are a key element in the protein’s gating behavior, as channel
closure leads to the destabilization of not only the C-terminal barrel
residues but also the α2 helix. We showed that cholesterol,
previously shown to reduce the frequency of channel closure, stabilizes
the barrel relative to the N-terminal helix. Furthermore, we observed
channel closure through steric blockage by a drug shown to selectively
bind to the channel, the Bcl2-antisense oligonucleotide G3139.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Life Sciences and Chemistry, Jacobs University of Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
23
|
Tan H, Zhao Y, Zhao W, Xie H, Chen Y, Tong Q, Yang J. Dynamics properties of membrane proteins in native cell membranes revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183791. [PMID: 34624277 DOI: 10.1016/j.bbamem.2021.183791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.
Collapse
Affiliation(s)
- Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
24
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
25
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Xue K, Movellan KT, Zhang XC, Najbauer EE, Forster MC, Becker S, Andreas LB. Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR. Chem Sci 2021; 12:14332-14342. [PMID: 34880983 PMCID: PMC8580007 DOI: 10.1039/d1sc02813h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28 T magnets (1.2 GHz proton frequency) and ultrafast MAS spinning (<100 kHz) promise to accelerate acquisition, while reducing sample requirement, both of which are critical to membrane protein studies. Here, we review recent advances in ssNMR methodology used for structure determination of membrane proteins in native and mimetic environments, as well as the study of protein functions such as protein dynamics, and interactions with ligands, lipids and cholesterol.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Kumar Tekwani Movellan
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Xizhou Cecily Zhang
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Eszter E Najbauer
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Marcel C Forster
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| |
Collapse
|
27
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
29
|
Abstract
"Retinoid" is the general term for vitamin A derivatives and chemical compounds that act like vitamin A. Vitamin A are composed of four isoprene units and are named according to their terminal functional group, such as retinol (OH, 1), retinal (CHO, 2), and retinoic acid (CO2H, 3). Vitamin A usually refers to retinol. In the past few decades, major advances in research on vitamin A have improved our understanding of its fundamental roles and physiological significance in living cells. In this review, three types of chemical biology studies using vitamin A analogs are described: (1) conformational studies of the chromophore in retinal proteins (rhodopsin, phoborhodopsin, and retinochrome), especially the conformation around the cyclohexene ring; (2) structure-activity relationship studies of retinoic acid analogs to create new signaling molecules for activating nuclear receptors; and (3) development of a new channelrhodopsin with an absorption maximum at longer wavelength to overcome the various demerits of channelrhodopsins used in optogenetics, as well as the stereoselective synthesis of retinoid isomers and their analogs using a diene-tricarbonyliron complex or a palladium-catalyzed cross-coupling reaction between vinyl triflates and stannyl olefins.
Collapse
|
30
|
Tong Q, Tan H, Li J, Xie H, Zhao Y, Chen Y, Yang J. Extensively sparse 13C labeling to simplify solid-state NMR 13C spectra of membrane proteins. JOURNAL OF BIOMOLECULAR NMR 2021; 75:245-254. [PMID: 34148188 DOI: 10.1007/s10858-021-00372-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Solid-state Nuclear Magnetic Resonance (ssNMR) is an emerging technique to investigate the structures and dynamics of membrane proteins in an artificial or native membrane environment. However, the structural studies of proteins by ssNMR are usually prolonged or impeded by signal assignments, especially the assignments of signals for collection of distance restraints, because of serious overlapping of signals in 2D 13C-13C spectra. Sparse labeling of 13C spins is an effective approach to simplify the 13C spectra and facilitate the extractions of distance restraints. Here, we propose a new reverse labeling combination of six types of amino acid residues (Ile, Leu, Phe, Trp, Tyr and Lys), and show a clean reverse labeling effect on a model membrane protein E. coli aquaporin Z (AqpZ). We further combine this reverse labeling combination and alternate 13C-12C labeling, and demonstrate an enhanced dilution effect in 13C-13C spectra. In addition, the influences of reverse labeling on the labeling of the other types of residues are quantitatively analyzed in the two strategies (1, reverse labeling and 2, reverse labeling combining alternate 13C-12C labeling). The signal intensities of some other types of residues in 2D 13C-13C spectra are observed to be 20-50% weaker because of the unwanted reverse labeling. The extensively sparse 13C labeling proposed in this study is expected to be useful in the collection of distance restraints using 2D 13C-13C spectra of membrane proteins.
Collapse
Affiliation(s)
- Qiong Tong
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianping Li
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
31
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
32
|
Structure of membrane diacylglycerol kinase in lipid bilayers. Commun Biol 2021; 4:282. [PMID: 33674677 PMCID: PMC7935881 DOI: 10.1038/s42003-021-01802-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
Diacylglycerol kinase (DgkA) is a small integral membrane protein, responsible for the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid. Its structures reported in previous studies, determined in detergent micelles by solution NMR and in monoolein cubic phase by X-ray crystallography, differ significantly. These differences point to the need to validate these detergent-based structures in phospholipid bilayers. Here, we present a well-defined homo-trimeric structure of DgkA in phospholipid bilayers determined by magic angle spinning solid-state NMR (ssNMR) spectroscopy, using an approach combining intra-, inter-molecular paramagnetic relaxation enhancement (PRE)-derived distance restraints and CS-Rosetta calculations. The DgkA structure determined in lipid bilayers is different from the solution NMR structure. In addition, although ssNMR structure of DgkA shows a global folding similar to that determined by X-ray, these two structures differ in monomeric symmetry and dynamics. A comparative analysis of DgkA structures determined in three different detergent/lipid environments provides a meaningful demonstration of the influence of membrane mimetic environments on the structure and dynamics of membrane proteins. Jianping Li et al. present the homo-trimeric structure of the small integral membrane protein diacylglycerol kinase (DgkA) in phospholipid bilayers determined by magic angle spinning solid-state NMR spectroscopy. They compare the structure with structures solved by solution NMR and X-ray crystallography and provide insights into the influence of membrane mimetic environments on membrane proteins.
Collapse
|
33
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
34
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
35
|
de Vlugt JE, Xiao P, Munro R, Charchoglyan A, Brewer D, Al-Abdul-Wahid MS, Brown LS, Ladizhansky V. Identifying lipids tightly bound to an integral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183345. [DOI: 10.1016/j.bbamem.2020.183345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
|
36
|
Zhang Z, Oss A, Org ML, Samoson A, Li M, Tan H, Su Y, Yang J. Selectively Enhanced 1H- 1H Correlations in Proton-Detected Solid-State NMR under Ultrafast MAS Conditions. J Phys Chem Lett 2020; 11:8077-8083. [PMID: 32880459 DOI: 10.1021/acs.jpclett.0c02412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proton-detected solid-state NMR has emerged as a powerful analytical technique in structural elucidation via 1H-1H correlations, which are mostly established by broadband methods. We propose a new class of frequency-selective homonuclear recoupling methods to selectively enhance 1H-1H correlations of interest under ultrafast magic-angle spinning (MAS). These methods, dubbed as selective phase-optimized recoupling (SPR), can provide a sensitivity enhancement by a factor of ∼3 over the widely used radio-frequency-driven recoupling (RFDR) to observe 1HN-1HN contacts in a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF) under 150 kHz MAS and are successfully utilized to probe a long-range 1H-1H contact in a pharmaceutical molecule, the hydrochloride form of pioglitazone (PIO-HCl). SPR is not only highly efficient in frequency-selective recoupling but also easy to implement, imparting to it great potential to probe 1H-1H contacts for the structural elucidation of organic solids such as proteins and pharmaceuticals under ultrafast MAS conditions.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Andres Oss
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mai-Liis Org
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Ago Samoson
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Gelenter MD, Dregni AJ, Hong M. Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining Long-Range 13C- 13C and 15N- 13C Distance Restraints. J Phys Chem B 2020; 124:7138-7151. [PMID: 32700540 PMCID: PMC8324326 DOI: 10.1021/acs.jpcb.0c04574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a class of pulsed third-spin-assisted recoupling (P-TSAR) magic-angle-spinning solid-state NMR techniques that achieve efficient polarization transfer over long distances to provide important restraints for structure determination. These experiments utilize second-order cross terms between strong 1H-13C and 1H-15N dipolar couplings to achieve 13C-13C and 15N-13C polarization transfer, similar to the principle of continuous-wave (CW) TSAR experiments. However, in contrast to the CW-TSAR experiments, these P-TSAR experiments require much less radiofrequency (rf) energy and allow a much simpler routine for optimizing the rf field strength. We call the technique PULSAR (pulsed proton-assisted recoupling) for homonuclear spin pairs. For heteronuclear spin pairs, we improve the recently introduced PERSPIRATIONCP (proton-enhanced rotor-echo short pulse irradiation cross-polarization) experiment by shifting the pulse positions and removing the z-filters, which significantly broaden the bandwidth and increase the efficiency of polarization transfer. We demonstrate the PULSAR and PERSPIRATIONCP techniques on the model protein GB1 and found cross peaks for distances as long as 10 and 8 Å for 13C-13C and 15N-13C spin pairs, respectively. We then apply these methods to the amyloid fibrils formed by the peptide hormone glucagon and show that long-range correlation peaks are readily observed to constrain intermolecular packing in this cross-β fibril. We provide an analytical model for the PULSAR and PERSPIRATIONCP experiments to explain the measured and simulated chemical shift dependence and pulse flip angle dependence of polarization transfer. These two techniques are useful for measuring long-range distance restraints to determine the three-dimensional structures of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Martin D. Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
38
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Krishnarjuna B, Ravula T, Ramamoorthy A. Detergent-free extraction, reconstitution and characterization of membrane-anchored cytochrome-b5 in native lipids. Chem Commun (Camb) 2020; 56:6511-6514. [PMID: 32462144 PMCID: PMC7337974 DOI: 10.1039/d0cc01737j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite their denaturing properties, detergents are used to purify and study membrane proteins. Herein, we demonstrated a polymer-based detergent-free extraction of the membrane protein cytochrome-b5 along with E. coli lipids. Nuclear magnetic resonance experiments revealed the suitability of using nanodiscs for high-resolution studies and revealed the types of native lipids associated with the protein.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
40
|
Highly stable magic angle spinning spherical rotors. MAGNETIC RESONANCE 2020; 1:97-103. [PMCID: PMC10500705 DOI: 10.5194/mr-1-97-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 11/01/2023]
Abstract
The use of spherical rotors for magic angle spinning offers a number of advantages, including improved sample exchange, efficient microwave coupling for dynamic nuclear polarization nuclear magnetic resonance (NMR) experiments, and, most significantly, high frequency and stable spinning with minimal risk of rotor crash. Here we demonstrate the simple retrofitting of a commercial NMR probe with MAS spheres for solid-state NMR. We analyze a series of turbine groove geometries to investigate the importance of the rotor surface for spinning performance. Of note, rotors lacking any surface modification spin rapidly and stably even without feedback control. The high stability of a spherical rotor about the magic angle is shown to be dependent on its inertia tensor rather than the presence of turbine grooves.
Collapse
|
41
|
Jirasko V, Lakomek N, Penzel S, Fogeron M, Bartenschlager R, Meier BH, Böckmann A. Proton-Detected Solid-State NMR of the Cell-Free Synthesized α-Helical Transmembrane Protein NS4B from Hepatitis C Virus. Chembiochem 2020; 21:1453-1460. [PMID: 31850615 PMCID: PMC7318649 DOI: 10.1002/cbic.201900765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 01/01/2023]
Abstract
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1 H-detected 1 H,15 N and 3D 1 H,13 C,15 N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.
Collapse
Affiliation(s)
- Vlastimil Jirasko
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | | | - Susanne Penzel
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Marie‐Laure Fogeron
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityIm Neuenheimer Feld 34569120HeidelbergGermany
- Division of Virus-Associated Carcinogenesis (Germany)Cancer Research Center (DKFZ)Im Neuenheimer Feld 24269120HeidelbergGermany
| | - Beat H. Meier
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| |
Collapse
|
42
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
43
|
Stanek J, Schubeis T, Paluch P, Güntert P, Andreas LB, Pintacuda G. Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition. J Am Chem Soc 2020; 142:5793-5799. [DOI: 10.1021/jacs.0c00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Peter Güntert
- Physical Chemistry, Eidgenössische Technische Hochschule Zurich, Hochschule Zürich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37077, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| |
Collapse
|
44
|
Awosanya EO, Lapin J, Nevzorov AA. NMR "Crystallography" for Uniformly ( 13 C, 15 N)-Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020; 59:3554-3557. [PMID: 31887238 DOI: 10.1002/anie.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Indexed: 01/01/2023]
Abstract
In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1 H-15 N dipolar couplings and 15 N chemical shifts have been routinely assessed in oriented 15 N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15 N, 13 C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1 Hα -13 Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.
Collapse
Affiliation(s)
- Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| |
Collapse
|
45
|
Awosanya EO, Lapin J, Nevzorov AA. NMR “Crystallography” for Uniformly (
13
C,
15
N)‐Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emmanuel O. Awosanya
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Joel Lapin
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Alexander A. Nevzorov
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| |
Collapse
|
46
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 PMCID: PMC11688153 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
47
|
Tang M, Lam D. Paramagnetic solid-state NMR of proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 103:9-16. [PMID: 31585788 DOI: 10.1016/j.ssnmr.2019.101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The paramagnetic properties of metal ions and stable radicals can affect NMR spectra, which can lead to changes in peak intensities, relaxation times and chemical shifts. The changes from paramagnetic effects provide intriguing opportunities for solid-state NMR studies of proteins. In this review, we summarized the trends and progress of paramagnetic solid-state NMR of proteins in the past decade, and showed that paramagnetic effects have great potential applications for sensitivity enhancement, structure determination and topological analysis for microcrystalline proteins, protein complexes, protein aggregates and membrane proteins.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Dennis Lam
- Department of Chemistry, College of Staten Island - Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
48
|
Siemers M, Lazaratos M, Karathanou K, Guerra F, Brown LS, Bondar AN. Bridge: A Graph-Based Algorithm to Analyze Dynamic H-Bond Networks in Membrane Proteins. J Chem Theory Comput 2019; 15:6781-6798. [DOI: 10.1021/acs.jctc.9b00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Federico Guerra
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| |
Collapse
|
49
|
Bhusal RP, Foster SR, Stone MJ. Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 2019; 29:420-432. [PMID: 31605402 DOI: 10.1002/pro.3744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
In response to infection or injury, the body mounts an inflammatory immune response in order to neutralize pathogens and promote tissue repair. The key effector cells for these responses are the leukocytes (white blood cells), which are specifically recruited to the site of injury. However, dysregulation of the inflammatory response, characterized by the excessive migration of leukocytes to the affected tissues, can also lead to chronic inflammatory diseases. Leukocyte recruitment is regulated by inflammatory mediators, including an important family of small secreted chemokines and their corresponding G protein-coupled receptors expressed in leukocytes. Unsurprisingly, due to their central role in the leukocyte inflammatory response, chemokines and their receptors have been intensely investigated and represent attractive drug targets. Nonetheless, the full therapeutic potential of chemokine receptors has not been realized, largely due to the complexities in the chemokine system. The determination of chemokine-receptor structures in recent years has dramatically shaped our understanding of the molecular mechanisms that underpin chemokine signaling. In this review, we summarize the contemporary structural view of chemokine-receptor recognition, and describe the various binding modes of peptide and small-molecule ligands to chemokine receptors. We also provide some perspectives on the implications of these data for future research and therapeutic development. IMPORTANCE STATEMENT: Given their central role in the leukocyte inflammatory response, chemokines and their receptors are considered as important regulators of physiology and viable therapeutic targets. In this review, we provide a summary of the current understanding of chemokine: chemokine-receptor interactions that have been gained from structural studies, as well as their implications for future drug discovery efforts.
Collapse
Affiliation(s)
- Ram Prasad Bhusal
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Simon R Foster
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Shi C, Öster C, Bohg C, Li L, Lange S, Chevelkov V, Lange A. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR. J Am Chem Soc 2019; 141:17314-17321. [DOI: 10.1021/jacs.9b08952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, People’s Republic of China
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Claudia Bohg
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Longmei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, People’s Republic of China
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, Berlin 13125, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany
| |
Collapse
|