1
|
Watanabe A, Nakajima A, Shiroishi M. Recovery of the histamine H 3 receptor activity lost in yeast cells through error-prone PCR and in vivo selection. Sci Rep 2023; 13:16127. [PMID: 37752220 PMCID: PMC10522717 DOI: 10.1038/s41598-023-43389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest protein family in humans and are important drug targets. Yeast, especially Saccharomyces cerevisiae, is a useful host for modifying the function and stability of GPCRs through protein engineering, which is advantageous for mammalian cells. When GPCRs are expressed in yeast, their function is often impaired. In this study, we performed random mutagenesis using error-prone PCR and then an in vivo screening to obtain mutants that recovered the activity of the human histamine H3 receptor (H3R), which loses its signaling function when expressed in yeast. Four mutations with recovered activity were identified after screening. Three of the mutations were identified near the DRY and NPxxY motifs of H3R, which are important for activation and are commonly found in class A GPCRs. The mutants responded exclusively to the yeast YB1 strain harboring Gi-chimera proteins, showing retention of G protein specificity. Analysis of one of the mutants with recovered activity, C415R, revealed that it maintained its ligand-binding characteristics. The strategy used in this study may enable the recovery of the activity of other GPCRs that do not function in S. cerevisiae and may be useful in creating GPCRs mutants stabilized in their active conformations.
Collapse
Affiliation(s)
- Ayami Watanabe
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ami Nakajima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
2
|
Li Y, Cui ZJ. Transmembrane Domain 3 Is a Transplantable Pharmacophore in the Photodynamic Activation of Cholecystokinin 1 Receptor. ACS Pharmacol Transl Sci 2022; 5:539-547. [PMID: 35983279 PMCID: PMC9379944 DOI: 10.1021/acsptsci.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated in photodynamic action by singlet oxygen, but detailed molecular mechanisms are not elucidated. To identify the pharmacophore(s) in photodynamic CCK1R activation, we examined photodynamic activation of point mutants CCK1RM121/3.32A, CCK1RM121/3.32Q, and a chimeric receptor with CCK1R transmembrane domain 3 (TM3) transplanted to muscarinic ACh receptor 3 (M3R) which is unaffected by photodynamic action. These engineered receptors were tagged at the N-terminus with genetically encoded protein photosensitizer miniSOG, and their light-driven photodynamic activation was compared to wild type CCK1R and M3R, as monitored by Fura-2 fluorescent calcium imaging. Photodynamic activations of miniSOG-CCK1RM121/3.32A and miniSOG-CCK1RM121/3.32Q were found to be 55% and 73%, respectively, when compared to miniSOG-CCK1R (100%), whereas miniSOG-M3R was not affected (0% activation). Notably, the chimeric receptor miniSOG-M3R-TM3CCK1R was effectively activated photodynamically (65%). These data suggest that TM3 is an important pharmacophore in photodynamic CCK1R activation, readily transplantable to nonsusceptible M3R for photodynamic activation.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Yoo JI, Navaratna TA, Kolence P, O’Malley MA. GPCR-FEX: A Fluoride-Based Selection System for Rapid GPCR Screening and Engineering. ACS Synth Biol 2022; 11:39-45. [PMID: 34979077 DOI: 10.1021/acssynbio.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The directed evolution of proteins comprises a search of sequence space for variants that improve a target phenotype, yet identification of desirable variants is inherently limited by library size and screening ability. Selections that couple protein phenotype to cell viability accelerate identification of promising variants by depleting libraries of undesirable variants en masse. Here, we introduce GPCR-FEX, a stringent selection platform that couples G-protein coupled receptor (GPCR) signaling to expression of a fluoride ion exporter (FEX)-GFP fusion gene and concomitant cellular fluoride tolerance in yeast. The GPCR-FEX platform works to deplete inactive GPCR variants from the library prior to high-throughput fluorescence-based cell sorting for rapid, inexpensive screening of receptor libraries that sample an expanded sequence space. Using this system, FEX1 was placed under the control of either PFUS1 or PFIG1, promoters activated upon agonist binding by the native yeast GPCRs, Ste2p or Ste3p. Addition of a C-terminal degron to FEX1p enhanced the dynamic range of cell growth between agonist-treated and untreated cells. Using deep sequencing to enumerate population members, we show rapid selection of a previously engineered Ste2p receptor mutant strain over wild-type Ste2p in a model library enrichment experiment. Overall, the GPCR-FEX platform provides a mechanism to rapidly engineer GPCRs, which are important cellular sensors for synthetic biology.
Collapse
Affiliation(s)
- Justin I. Yoo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Patrick Kolence
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain. Appl Microbiol Biotechnol 2021; 105:5895-5904. [PMID: 34272577 DOI: 10.1007/s00253-021-11440-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
The expression of functional proteins on the cell surface using glycosylphosphatidylinositol (GPI)-anchoring technology is a promising approach for constructing yeast cells with special functions. The functionality of surface-engineered yeast strains strongly depends on the amount of functional proteins displayed on their cell surface. On the other hand, since the yeast cell wall space is finite, heterologous protein carrying capacity of the cell wall is limited. Here, we report the effect of CCW12 and CCW14 knockout, which encode major nonenzymatic GPI-anchored cell wall proteins (GPI-CWPs) involved in the cell wall organization, on the heterologous protein carrying capacity of yeast cell wall. Aspergillus aculeatus β-glucosidase (BGL) was used as a reporter to evaluate the protein carrying capacity in Saccharomyces cerevisiae. No significant difference in the amount of cell wall-associated BGL and cell-surface BGL activity was observed between CCW12 and CCW14 knockout strains and their control strain. In contrast, in the CCW12 and CCW14 co-knockout strains, the amount of cell wall-associated BGL and its activity were approximately 1.4-fold higher than those of the control strain and CCW12 or CCW14 knockout strains. Electron microscopic observation revealed that the total cell wall thickness of the CCW12 and CCW14 co-knockout strains was increased compared to the parental strain, suggesting a potential increase in heterologous protein carrying capacity of the cell wall. These results indicate that the CCW12 and CCW14 co-knockout strains are a promising host for the construction of highly functional recombinant yeast strains using cell-surface display technology. KEY POINTS: • CCW12 and/or CCW14 of a BGL-displaying S. cerevisiae strain were knocked out. • CCW12 and CCW14 co-disruption improved the display efficiency of BGL. • The thickness of the yeast cell wall was increased upon CCW12 and CCW14 knockout.
Collapse
|
5
|
Lengger B, Jensen MK. Engineering G protein-coupled receptor signalling in yeast for biotechnological and medical purposes. FEMS Yeast Res 2021; 20:5673487. [PMID: 31825496 PMCID: PMC6977407 DOI: 10.1093/femsyr/foz087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest class of membrane proteins in the human genome, with a common denominator of seven-transmembrane domains largely conserved among eukaryotes. Yeast is naturally armoured with three different GPCRs for pheromone and sugar sensing, with the pheromone pathway being extensively hijacked for characterising heterologous GPCR signalling in a model eukaryote. This review focusses on functional GPCR studies performed in yeast and on the elucidated hotspots for engineering, and discusses both endogenous and heterologous GPCR signalling. Key emphasis will be devoted to studies describing important engineering parameters to consider for successful coupling of GPCRs to the yeast mating pathway. We also review the various means of applying yeast for studying GPCRs, including the use of yeast armed with heterologous GPCRs as a platform for (i) deorphanisation of orphan receptors, (ii) metabolic engineering of yeast for production of bioactive products and (iii) medical applications related to pathogen detection and drug discovery. Finally, this review summarises the current challenges related to expression of functional membrane-bound GPCRs in yeast and discusses the opportunities to continue capitalising on yeast as a model chassis for functional GPCR signalling studies.
Collapse
Affiliation(s)
- Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, Kgs. Lyngby, 2800, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
6
|
Wang X, van Westen GJP, Heitman LH, IJzerman AP. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem Pharmacol 2020; 187:114370. [PMID: 33338473 DOI: 10.1016/j.bcp.2020.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins with around 800 members in the human genome/proteome. Extracellular signals such as hormones and neurotransmitters regulate various biological processes via GPCRs, with GPCRs being the bodily target of 30-40% of current drugs on the market. Complete identification and understanding of GPCR functionality will provide opportunities for novel drug discovery. Yeast expresses three different endogenous GPCRs regulating pheromone and sugar sensing, with the pheromone pathway offering perspectives for the characterization of heterologous GPCR signaling. Moreover, yeast offers a ''null" background for studies on mammalian GPCRs, including GPCR activation and signaling, ligand identification, and characterization of disease-related mutations. This review focuses on modifications of the yeast pheromone signaling pathway for functional GPCR studies, and on opportunities and usage of the yeast system as a platform for human GPCR studies. Finally, this review discusses in some further detail studies of adenosine receptors heterologously expressed in yeast, and what Geoff Burnstock thought of this approach.
Collapse
Affiliation(s)
- Xuesong Wang
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laura H Heitman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands; Oncode Institute, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
7
|
Inokuma K, Kurono H, den Haan R, van Zyl WH, Hasunuma T, Kondo A. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains. Metab Eng 2019; 57:110-117. [PMID: 31715252 DOI: 10.1016/j.ymben.2019.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain-heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Hiroki Kurono
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, 7530, South Africa
| | - Willem Heber van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
8
|
Sakkal LA, Rajkowski KZ, Armen RS. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors. J Comput Chem 2017; 38:1209-1228. [PMID: 28130813 PMCID: PMC5403616 DOI: 10.1002/jcc.24728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A1 R, A2A R, A3 R) and muscarinic acetylcholine (M1 R, M5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M1 R PAMs were predicted to bind in the analogous M2 R PAM LY2119620 binding site. The M5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leon A. Sakkal
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| | - Kyle Z. Rajkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918. Philadelphia, PA 19170
| |
Collapse
|
9
|
Domains for activation and inactivation in G protein-coupled receptors – A mutational analysis of constitutive activity of the adenosine A2B receptor. Biochem Pharmacol 2014; 92:348-57. [DOI: 10.1016/j.bcp.2014.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
|
10
|
Kan W, Adjobo-Hermans M, Burroughs M, Faibis G, Malik S, Tall GG, Smrcka AV. M3 muscarinic receptor interaction with phospholipase C β3 determines its signaling efficiency. J Biol Chem 2014; 289:11206-11218. [PMID: 24596086 DOI: 10.1074/jbc.m113.538546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phospholipase Cβ (PLCβ) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Gαβγ heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and PLCβ3. Both expressed and endogenous M3R interacted with PLCβ in coimmunoprecipitation experiments. Stimulation of M3R with carbachol significantly increased this association. Expression of M3R in CHO cells promoted plasma membrane localization of YFP-PLCβ3. Deletion of the PLCβ3 C terminus or deletion of the PLCβ3 PDZ ligand inhibited coimmunoprecipitation with M3R and M3R-dependent PLCβ3 plasma membrane localization. Purified PLCβ3 bound directly to glutathione S-transferase (GST)-fused M3R intracellular loops 2 and 3 (M3Ri2 and M3Ri3) as well as M3R C terminus (M3R/H8-CT). PLCβ3 binding to M3Ri3 was inhibited when the PDZ ligand was removed. In assays using reconstituted purified components in vitro, M3Ri2, M3Ri3, and M3R/H8-CT potentiated Gαq-dependent but not Gβγ-dependent PLCβ3 activation. Disruption of key residues in M3Ri3N and of the PDZ ligand in PLCβ3 inhibited M3Ri3-mediated potentiation. We propose that the M3 muscarinic receptor maximizes the efficiency of PLCβ3 signaling beyond its canonical role as a guanine nucleotide exchange factor for Gα.
Collapse
Affiliation(s)
- Wei Kan
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Merel Adjobo-Hermans
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Burroughs
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Guy Faibis
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sundeep Malik
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Gregory G Tall
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Alan V Smrcka
- Departments of Pharmacology and Physiology and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Biochemistry and Biophysics and University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Aab Institute of Cardiovascular Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 and.
| |
Collapse
|
11
|
Nakamura Y, Ishii J, Kondo A. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells. PLoS One 2013; 8:e82237. [PMID: 24340008 PMCID: PMC3855394 DOI: 10.1371/journal.pone.0082237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N) ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively) were chosen as human GPCR(s). The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s).
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Jun Ishii
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
12
|
Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013; 504:101-6. [PMID: 24256733 PMCID: PMC4020789 DOI: 10.1038/nature12735] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 12/18/2022]
Abstract
Despite recent advances in crystallography of G protein-coupled receptors (GPCRs), little is known about the mechanism of their activation process, as only the β2 adrenergic receptor (β2AR) and rhodopsin have been crystallized in fully active conformations. Here, we report the structure of an agonist-bound, active state of the human M2 muscarinic acetylcholine receptor stabilized by a G-protein mimetic camelid antibody fragment isolated by conformational selection using yeast surface display. In addition to the expected changes in the intracellular surface, the structure reveals larger conformational changes in the extracellular region and orthosteric binding site than observed in the active states of the β2AR and rhodopsin. We also report the structure of the M2 receptor simultaneously binding the orthosteric agonist iperoxo and the positive allosteric modulator LY2119620. This structure reveals that LY2119620 recognizes a largely pre-formed binding site in the extracellular vestibule of the iperoxo-bound receptor, inducing a slight contraction of this outer binding pocket. These structures offer important insights into activation mechanism and allosteric modulation of muscarinic receptors.
Collapse
|
13
|
Li JH, Jain S, McMillin SM, Cui Y, Gautam D, Sakamoto W, Lu H, Jou W, McGuinness OP, Gavrilova O, Wess J. A novel experimental strategy to assess the metabolic effects of selective activation of a G(q)-coupled receptor in hepatocytes in vivo. Endocrinology 2013; 154:3539-51. [PMID: 23861369 PMCID: PMC3776870 DOI: 10.1210/en.2012-2127] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased hepatic glucose production is a key pathophysiological feature of type 2 diabetes. Like all other cell types, hepatocytes express many G protein-coupled receptors (GPCRs) that are linked to different functional classes of heterotrimeric G proteins. The important physiological functions mediated by G(s)-coupled hepatic glucagon receptors are well-documented. In contrast, little is known about the in vivo physiological roles of hepatocyte GPCRs that are linked to G proteins of the G(q) family. To address this issue, we established a transgenic mouse line (Hep-Rq mice) that expressed a G(q)-linked designer receptor (Rq) in a hepatocyte-selective fashion. Importantly, Rq could no longer bind endogenous ligands but could be selectively activated by a synthetic drug, clozapine-N-oxide. Clozapine-N-oxide treatment of Hep-Rq mice enabled us to determine the metabolic consequences caused by selective activation of a G(q)-coupled GPCR in hepatocytes in vivo. We found that acute Rq activation in vivo led to pronounced increases in blood glucose levels, resulting from increased rates of glycogen breakdown and gluconeogenesis. We also demonstrated that the expression of the V(1b) vasopressin receptor, a G(q)-coupled receptor expressed by hepatocytes, was drastically increased in livers of ob/ob mice, a mouse model of diabetes. Strikingly, treatment of ob/ob mice with a selective V(1b) receptor antagonist led to reduced glucose excursions in a pyruvate challenge test. Taken together, these findings underscore the importance of G(q)-coupled receptors in regulating hepatic glucose fluxes and suggest novel receptor targets for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Cells, Cultured
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Enzyme Activators/adverse effects
- Enzyme Activators/pharmacology
- Female
- G-Protein-Coupled Receptor Kinases/chemistry
- G-Protein-Coupled Receptor Kinases/genetics
- G-Protein-Coupled Receptor Kinases/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gluconeogenesis/drug effects
- Glycogenolysis/drug effects
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Hypoglycemic Agents/therapeutic use
- Male
- Mice
- Mice, Obese
- Mice, Transgenic
- Protein Engineering
- Protein Interaction Domains and Motifs
- Receptor, Muscarinic M3/agonists
- Receptor, Muscarinic M3/chemistry
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Receptors, Vasopressin/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Jian Hua Li
- PhD, Chief, Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8A, Room B1A-05, 8 Center Drive MSC 0810, Bethesda, Maryland 20892-0810. ; or Jianhua Li, PhD, Center for Molecular Medicine, National Institutes of Health, National Heart, Lung, and Blood Institute, Building 10-CRC, Room 5-3216, 10 Center Drive MSC 1454, Bethesda, Maryland 20892-1454. E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kruse AC, Weiss DR, Rossi M, Hu J, Hu K, Eitel K, Gmeiner P, Wess J, Kobilka BK, Shoichet BK. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol Pharmacol 2013; 84:528-40. [PMID: 23887926 PMCID: PMC3781386 DOI: 10.1124/mol.113.087551] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/19/2013] [Indexed: 01/24/2023] Open
Abstract
G protein-coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype-selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.
Collapse
Affiliation(s)
- Andrew C Kruse
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakamura Y, Ishii J, Kondo A. Rapid, Facile Detection of Heterodimer Partners for Target Human G-Protein-Coupled Receptors Using a Modified Split-Ubiquitin Membrane Yeast Two-Hybrid System. PLoS One 2013; 8:e66793. [PMID: 23805278 PMCID: PMC3689660 DOI: 10.1371/journal.pone.0066793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/11/2013] [Indexed: 12/03/2022] Open
Abstract
Potentially immeasurable heterodimer combinations of human G-protein-coupled receptors (GPCRs) result in a great deal of physiological diversity and provide a new opportunity for drug discovery. However, due to the existence of numerous combinations, the sets of GPCR dimers are almost entirely unknown and thus their dominant roles are still poorly understood. Thus, the identification of GPCR dimer pairs has been a major challenge. Here, we established a specialized method to screen potential heterodimer partners of human GPCRs based on the split-ubiquitin membrane yeast two-hybrid system. We demonstrate that the mitogen-activated protein kinase (MAPK) signal-independent method can detect ligand-induced conformational changes and rapidly identify heterodimer partners for target GPCRs. Our data present the abilities to apply for the intermolecular mapping of interactions among GPCRs and to uncover potential GPCR targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Jun Ishii
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
16
|
Schmidt P, Ritscher L, Dong EN, Hermsdorf T, Cöster M, Wittkopf D, Meiler J, Schöneberg T. Identification of determinants required for agonistic and inverse agonistic ligand properties at the ADP receptor P2Y12. Mol Pharmacol 2013; 83:256-66. [PMID: 23093496 PMCID: PMC3533468 DOI: 10.1124/mol.112.082198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022] Open
Abstract
The ADP receptor P2Y(12) belongs to the superfamily of G protein-coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y(12) displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y(12) have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y(12) and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y(12). The potency at P2Y(12) was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y(12,) with Y(105), E(188), R(256), Y(259), and K(280) playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3'-OH of the 2'-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y(12) and half of the constitutive active P2Y(12) mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y(12) but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands.
Collapse
Affiliation(s)
- Philipp Schmidt
- Institute of Biochemistry, Molecular Biochemistry, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hara K, Shigemori T, Kuroda K, Ueda M. Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae. AMB Express 2012. [PMID: 23193953 PMCID: PMC3558460 DOI: 10.1186/2191-0855-2-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) superfamily, which includes somatostatin receptors (SSTRs), is one of the most important drug targets in the pharmaceutical industry. The yeast Saccharomyces cerevisiae is an attractive host for the ligand screening of human GPCRs. Here, we demonstrate the utility of the technology that was developed for displaying peptide ligands on yeast plasma membrane, termed "PepDisplay", which triggers signal transduction upon GPCR activation. A yeast strain that heterologously produced human somatostatin receptor subtype-2 (SSTR2) and chimeric Gα protein was constructed along with membrane-displayed somatostatin; somatostatin was displayed on the yeast plasma membrane by linking it to the anchoring domain of the glycosylphosphatidylinositol anchored plasma membrane protein Yps1p. We demonstrate that the somatostatin displayed on the plasma membrane successfully activated human SSTR2 in S. cerevisiae. The methodology presented here provides a new platform for identifying novel peptide ligands for both liganded and orphan mammalian GPCRs.
Collapse
|
18
|
Nakajima KI, Wess J. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 2012; 82:575-82. [PMID: 22821234 PMCID: PMC3463219 DOI: 10.1124/mol.112.080358] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/20/2012] [Indexed: 11/22/2022] Open
Abstract
Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.
Collapse
Affiliation(s)
- Ken-ichiro Nakajima
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
19
|
Hoffmann C, Nuber S, Zabel U, Ziegler N, Winkler C, Hein P, Berlot CH, Bünemann M, Lohse MJ. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells. Mol Pharmacol 2012; 82:236-45. [PMID: 22564786 PMCID: PMC11037427 DOI: 10.1124/mol.112.077578] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2012] [Indexed: 12/26/2022] Open
Abstract
Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3)-AChR by decreasing the rate of receptor deactivation, while having minimal effect on receptor activation.
Collapse
Affiliation(s)
- Carsten Hoffmann
- Department of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ishii J, Moriguchi M, Hara KY, Shibasaki S, Fukuda H, Kondo A. Improved identification of agonist-mediated Gαi-specific human G-protein-coupled receptor signaling in yeast cells by flow cytometry. Anal Biochem 2012; 426:129-33. [DOI: 10.1016/j.ab.2012.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
|
21
|
Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc Natl Acad Sci U S A 2012; 109:9810-5. [PMID: 22665811 DOI: 10.1073/pnas.1202107109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural features determining efficient biosynthesis, stability in the membrane and, after solubilization, in detergents are not well understood for integral membrane proteins such as G protein-coupled receptors (GPCRs). Starting from the rat neurotensin receptor 1, a class A GPCR, we generated a separate library comprising all 64 codons for each amino acid position. By combining a previously developed FACS-based selection system for functional expression [Sarkar C, et al. (2009) Proc Natl Acad Sci USA 105:14808-14813] with ultradeep 454 sequencing, we determined the amino acid preference in every position and identified several positions in the natural sequence that restrict functional expression. A strong accumulation of shifts, i.e., a residue preference different from wild type, is detected for helix 1, suggesting a key role in receptor biosynthesis. Furthermore, under selective pressure we observe a shift of the most conserved residues of the N-terminal helices. This unique data set allows us to compare the in vitro evolution of a GPCR to the natural evolution of the GPCR family and to observe how selective pressure shapes the sequence space covered by functional molecules. Under the applied selective pressure, several positions shift away from the wild-type sequence, and these improve the biophysical properties. We discuss possible structural reasons for conserved and shifted residues.
Collapse
|
22
|
Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface. PLoS One 2012; 7:e37136. [PMID: 22623985 PMCID: PMC3356411 DOI: 10.1371/journal.pone.0037136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/13/2012] [Indexed: 12/01/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP) strategy). In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.
Collapse
|
23
|
Cöster M, Wittkopf D, Kreuchwig A, Kleinau G, Thor D, Krause G, Schöneberg T. Using ortholog sequence data to predict the functional relevance of mutations in G‐protein‐coupled receptors. FASEB J 2012; 26:3273-81. [DOI: 10.1096/fj.12-203737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maxi Cöster
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Doreen Wittkopf
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | | | - Gunnar Kleinau
- Institute of Experimental Pediatric EndocrinologyCharité Universitätsmedizin Berlin Berlin Germany
| | - Doreen Thor
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Gerd Krause
- Leibniz Institute for Molecular Pharmacology Berlin Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical FacultyUniversity of Leipzig Leipzig Germany
| |
Collapse
|
24
|
Hara K, Ono T, Kuroda K, Ueda M. Membrane-displayed peptide ligand activates the pheromone response pathway in Saccharomyces cerevisiae. J Biochem 2012; 151:551-7. [PMID: 22406406 DOI: 10.1093/jb/mvs027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The budding yeast, Saccharomyces cerevisiae, is an attractive host for studying G protein-coupled receptors (GPCRs). We developed a system in which a peptide ligand specific for GPCR is displayed on yeast plasma membrane. The model system described here is based on yeast plasma membrane display of an analogue of α-factor, which is a peptide ligand for Ste2p, the GPCR that activates the yeast pheromone response pathway. α-Factor analogues, containing linkers of varying lengths and produced in yeast cells, became attached to the cell plasma membrane by linking to the glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein Yps1p. We were able to demonstrate that an optimized α-factor analogue activated the pheromone response pathway in S. cerevisiae, as assessed by a fluorescent reporter assay. Furthermore, it was shown that linker length strongly influenced signalling pathway activation. To our knowledge, this is the first report documenting functional signalling by a plasma membrane-displayed ligand in S. cerevisiae.
Collapse
Affiliation(s)
- Keisuke Hara
- Research Fellow of the Japan Society for the Promotion of Science, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
25
|
Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012; 482:552-6. [PMID: 22358844 PMCID: PMC3529910 DOI: 10.1038/nature10867] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
Abstract
Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
Collapse
|
26
|
Abstract
There has been great interest in the structure-function relationships of the muscarinic acetylcholine receptors (mAChRs) because these prototypical Family A/class 1 G protein-coupled receptors (GPCRs) are attractive therapeutic targets for both peripheral and central nervous system disorders. A multitude of drugs that act at the mAChRs have been identified over the years, but many of these show minimal selectivity for any one of the five mAChR subtypes over the others, which has hampered their development into therapeutics due to adverse side effects. The lack of drug specificity is primarily due to high sequence similarity in this family of receptor, especially in the orthosteric binding pocket. Thus, there remains an ongoing need for a molecular understanding of how mAChRs bind their ligands, and how selectivity in binding and activation can be achieved. Unfortunately, there remains a paucity of solved high-resolution structures of GPCRs, including the mAChRs, and thus most of our knowledge of structure-function mechanisms related to this receptor family to date has been obtained indirectly through approaches such as mutagenesis. Nonetheless, such studies have revealed a wealth of information that has led to novel insights and may be used to guide future rational drug design campaigns.
Collapse
|
27
|
Abstract
With the emerging new crystal structures of G-protein coupled receptors (GPCRs), the number of reported in silico receptor models vastly increases every year. The use of these models in lead optimization (LO) is investigated here. Although there are many studies where GPCR models are used to identify new chemotypes by virtual screening, the classical application in LO is rarely reported. The reason for this may be that the quality of a model, which is appropriate for atomistic modeling, must be very high, and the biology of GPCR ligand-dependent signaling is still not fully understood. However, the few reported studies show that GPCR models can be used efficiently in LO for various problems, such as affinity optimization or tuning of physicochemical parameters.
Collapse
|
28
|
McMillin SM, Heusel M, Liu T, Costanzi S, Wess J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J Biol Chem 2011; 286:28584-98. [PMID: 21685385 PMCID: PMC3151100 DOI: 10.1074/jbc.m111.259788] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 01/03/2023] Open
Abstract
Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the "outer" (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1-7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1-5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance.
Collapse
Affiliation(s)
| | | | - Tong Liu
- From the Laboratory of Bioorganic Chemistry and
| | - Stefano Costanzi
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Jürgen Wess
- From the Laboratory of Bioorganic Chemistry and
| |
Collapse
|
29
|
Dodevski I, Plückthun A. Evolution of three human GPCRs for higher expression and stability. J Mol Biol 2011; 408:599-615. [PMID: 21376730 DOI: 10.1016/j.jmb.2011.02.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
We recently developed a display method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli for higher expression and stability. For the neurotensin receptor 1, a G-protein-coupled receptor (GPCR), we had evolved a mutant with a 10-fold increase in functional expression that largely retains wild-type binding and signaling properties and shows higher stability in detergent-solubilized form. We have now evolved three additional human GPCRs. Unmodified wild-type receptor cDNA was subjected to successive cycles of mutagenesis and fluorescence-activated cell sorting, and functional expression could be increased for all three GPCR targets. We also present a new stability screening method in a 96-well assay format to quickly identify evolved receptors showing increased thermal stability in detergent-solubilized form and rapidly evaluate them quantitatively. Combining the two methods turned out to be very powerful; even for the most challenging GPCR target--the tachykinin receptor NK(1), which is hardly expressed in E. coli and cannot be functionally solubilized--receptor mutants that are functionally expressed at 1 mg/l levels in E. coli and are stable in detergent solution could be quickly evolved. The improvements result from cumulative small changes in the receptor sequence. This combinatorial approach does not require preconceived notions for designing mutations. Our results suggest that this method is generally applicable to GPCRs. Existing roadblocks in structural and biophysical studies can now be removed by providing sufficient quantities of correctly folded and stable receptor protein.
Collapse
Affiliation(s)
- Igor Dodevski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
30
|
Conner AC, Barwell J, Poyner DR, Wheatley M. The use of site-directed mutagenesis to study GPCRs. Methods Mol Biol 2011; 746:85-98. [PMID: 21607853 DOI: 10.1007/978-1-61779-126-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
G protein coupled receptors (GPCRs) are highly flexible and dynamic proteins, which are able to interact with diverse ligands, effectors, and regulatory proteins. Site-directed mutagenesis (SDM) is a powerful tool for providing insight into how these proteins actually work, both in its own right and when used in conjunction with information provided by other techniques such as crystallography or molecular modelling. Mutagenesis has been used to identify and characterise a myriad of functionally important residues, motifs and domains within the GPCR architecture, and to identify aspects of similarity and differences between the major families of GPCRs. This chapter presents the necessary information for undertaking informative SDM of these proteins. Whilst this is relevant to protein structure/function studies in -general, specific pitfalls and protocols suited to investigating GPCRs in particular will be highlighted.
Collapse
Affiliation(s)
- Alex C Conner
- Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
31
|
Ishii J, Fukuda N, Tanaka T, Ogino C, Kondo A. Protein-protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling. FEBS J 2010; 277:1982-95. [DOI: 10.1111/j.1742-4658.2010.07625.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Chang CL, Park JI, Hsu SYT. Activation of calcitonin receptor and calcitonin receptor-like receptor by membrane-anchored ligands. J Biol Chem 2009; 285:1075-80. [PMID: 19903822 DOI: 10.1074/jbc.m109.020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the most important pharmaceutical targets, and more than 40% of drugs in use today modulate GPCR signaling. A major hurdle in the development of therapies targeting GPCRs is the drug candidate's nonselective actions in multiple tissues. The ability to spatially control GPCR signaling would provide a venue for developing therapies that require targeted GPCR signaling. Here, we show that the fusion of a RAMP1 co-receptor with the calcitonin gene-related peptide (CGRP), or calcitonin, transforms the RAMP1 from a co-receptor to bona fide membrane-anchored ligands (CGRP-RAMP1 and CAL-RAMP1). The CAL-RAMP1 selectively activates the calcitonin receptor (CR), whereas, the CGRP-RAMP1 activates both the calcitonin receptor-like receptor (CLR) and CR. Unlike a free peptide, which moves freely in the extracellular space and differentiates targets based on molecular affinity, the anchored CGRP-RAMP1 and CAL-RAMP1 ligands confine their activities to individual cells. In addition, our study showed that a CGRP8-37-RAMP1 chimera, but not RAMP1, functions as an antagonist for CGRP-RAMP1-mediated signaling, suggesting that the activation of CLR by CGRP-RAMP1 shares similar molecular mechanisms with the CGRP-mediated activation of CLR/RAMP1 receptor complexes. Taken together, our finding thus provides a novel class of ligands that activate CR and CLR exclusively in an autocrine manner and a proof-of-concept demonstration for future development of targeted therapies aimed at these receptors in specific cell populations.
Collapse
Affiliation(s)
- Chia Lin Chang
- Reproductive Biology and Stem Cell Research Program, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | |
Collapse
|
33
|
Panetta R, Greenwood MT. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov Today 2008; 13:1059-66. [DOI: 10.1016/j.drudis.2008.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/21/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022]
|
34
|
Control of feeding behavior in C. elegans by human G protein-coupled receptors permits screening for agonist-expressing bacteria. Proc Natl Acad Sci U S A 2008; 105:14826-31. [PMID: 18815363 DOI: 10.1073/pnas.0803290105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have a key role in many biological processes and are important drug targets for many human diseases. Therefore, understanding the molecular interactions between GPCRs and their ligands would improve drug design. Here, we describe an approach that allows the rapid identification of functional agonists expressed in bacteria. Transgenic Caenorhabditis elegans expressing the human chemokine receptor 5 (CCR5) in nociceptive neurons show avoidance behavior on encounter with the ligand MIP-1alpha and avoid feeding on Escherichia coli expressing MIP-1alpha compared with control bacteria. This system allows a simple activity screen, based on the distribution of transgenic worms in a binary food-choice assay, without a requirement for protein purification or tagging. By using this approach, a library of 68 MIP-1alpha variants was screened, and 13 critical agonist residues involved in CCR5 activation were identified, four of which (T8, A9, N22, and A25) have not been described previously, to our knowledge. Identified residues were subsequently validated in receptor binding assays and by calcium flux assays in mammalian cells. This approach serves not only for structure/function studies as demonstrated, but may be used to facilitate the discovery of agonists within bacterial libraries.
Collapse
|
35
|
Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 2008; 105:14808-13. [PMID: 18812512 DOI: 10.1073/pnas.0803103105] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We outline a powerful method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli. For a mammalian G protein-coupled receptor, we arrived at a sequence with an order-of-magnitude increase in functional expression that still retains the biochemical properties of wild type. This mutant also shows enhanced heterologous expression in eukaryotes (12-fold in Pichia pastoris and 3-fold in HEK293T cells) and greater stability when solubilized and purified, indicating that the biophysical properties of the protein had been under the pressure of selection. These improvements arise from multiple small contributions, which would be difficult to assemble by rational design. In a second screen, we rapidly pinpointed a single amino acid substitution in wild type that abolishes antagonist binding while retaining agonist-binding affinity. These approaches may alleviate existing bottlenecks in structural studies of these targets by providing sufficient quantities of stable variants in defined conformational states.
Collapse
|
36
|
Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S, Forsayeth JR, Guettier JM, Chang WC, Pei Y, McCarthy KD, Nissenson RA, Wess J, Bockaert J, Roth BL. Engineering GPCR signaling pathways with RASSLs. Nat Methods 2008; 5:673-8. [PMID: 18668035 DOI: 10.1038/nmeth.1232] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are creating families of designer G protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (G(s), G(i) and G(q)). We review these advances here to facilitate the use of these powerful and diverse tools.
Collapse
Affiliation(s)
- Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Generation of an agonistic binding site for blockers of the M(3) muscarinic acetylcholine receptor. Biochem J 2008; 412:103-12. [PMID: 18237275 DOI: 10.1042/bj20071366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GPCRs (G-protein-coupled receptors) exist in a spontaneous equilibrium between active and inactive conformations that are stabilized by agonists and inverse agonists respectively. Because ligand binding of agonists and inverse agonists often occurs in a competitive manner, one can assume an overlap between both binding sites. Only a few studies report mutations in GPCRs that convert receptor blockers into agonists by unknown mechanisms. Taking advantage of a genetically modified yeast strain, we screened libraries of mutant M(3)Rs {M(3) mAChRs [muscarinic ACh (acetylcholine) receptors)]} and identified 13 mutants which could be activated by atropine (EC50 0.3-10 microM), an inverse agonist on wild-type M(3)R. Many of the mutations sensitizing M(3)R to atropine activation were located at the junction of intracellular loop 3 and helix 6, a region known to be involved in G-protein coupling. In addition to atropine, the pharmacological switch was found for other M(3)R blockers such as scopolamine, pirenzepine and oxybutynine. However, atropine functions as an agonist on the mutant M(3)R only when expressed in yeast, but not in mammalian COS-7 cells, although high-affinity ligand binding was comparable in both expression systems. Interestingly, we found that atropine still blocks carbachol-induced activation of the M(3)R mutants in the yeast expression system by binding at the high-affinity-binding site (Ki approximately 10 nM). Our results indicate that blocker-to-agonist converting mutations enable atropine to function as both agonist and antagonist by interaction with two functionally distinct binding sites.
Collapse
|
38
|
Lindner D, van Dieck J, Merten N, Mörl K, Günther R, Hofmann HJ, Beck-Sickinger AG. GPC receptors and not ligands decide the binding mode in neuropeptide Y multireceptor/multiligand system. Biochemistry 2008; 47:5905-14. [PMID: 18457425 DOI: 10.1021/bi800181k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many G protein-coupled receptors belong to families of different receptor subtypes, which are recognized by a variety of distinct ligands. To study such a multireceptor/multiligand system, we investigated the Y-receptor family. This family consists of four G protein-coupled Y receptors in humans (hY 1R, hY 2R, hY 4R, and hY 5R) and is activated by the so-called NPY hormone family, which itself consists of three native peptide ligands named neuropeptide Y (NPY), pancreatic polypeptide (PP), and peptide YY (PYY). The hY 5R shows high affinity for all ligands, although for PP binding, the affinity is slightly decreased. As a rational explanation, we suggest that Tyr (27) is lost as a contact point between PP and the hY 5R in contrast to NPY or PYY. Furthermore, several important residues for ligand binding were identified by the first extensive mutagenesis study of the hY 5R. Using a complementary mutagenesis approach, we were able to discover a novel interaction point between hY 5R and NPY. The interaction between NPY(Arg (25)) and hY 5R(Asp (2.68)) as well as between NPY(Arg (33)) and hY 5R(Asp (6.59)) is maintained in the binding of PYY and PP to hY 5R but different to the PP-hY 4R and NPY-hY 1R contact points. Therefore, we provide evidence that the receptor subtype and not the pre-orientated conformation of the ligand at the membrane decides the binding mode. Furthermore, the first hY 5R model was set up on the basis of the crystal structure of bovine rhodopsin. We can show that most of the residues identified to be critical for ligand binding are located within the now postulated binding pocket.
Collapse
Affiliation(s)
- Diana Lindner
- Leipzig University, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Thomas BE, Woznica I, Mierke DF, Wittelsberger A, Rosenblatt M. Conformational changes in the parathyroid hormone receptor associated with activation by agonist. Mol Endocrinol 2008; 22:1154-62. [PMID: 18258686 DOI: 10.1210/me.2007-0520] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Binding of hormones to their cognate G protein-coupled receptors (GPCRs) induces conformational shifts within the receptor based on evidence from a few hormone-receptor systems. Employing an engineered disulfide bond formation strategy and guided by a previously established model of the PTH-PTH receptor (PTHR)1 bimolecular complex, we set out to document and characterize the nature of agonist-induced changes in this family B GPCR. A mutant PTHR1 was generated which incorporates a Factor Xa cleavage site in the third intracellular loop. Treatment with Factor Xa fragments the receptor. However, if a new disulfide bond was formed before exposure to the enzyme, the fragments remain held together. A set of double cysteine-containing mutants were designed to probe the internal relative movements of transmembrane (TM) helices 2 and TM7. PTH enhanced formation of disulfide bonds in the K240C/F447C and A242C/F447C mutants. For the F238C/F447C mutant, a disulfide bond is formed in the basal state, but is disrupted by interaction with PTH. For the D241C/F447C PTHR1 construct, no disulfide bond formation was observed in either the basal or hormone-bound state. These findings demonstrate that the conformation of PTHR1 is altered from the basal state when PTH is bound. Novel information regarding spatial proximities between TM2 and TM7 of PTHR1 and the nature of relative movements between the two transmembrane regions was revealed. The data confirm and extend the experimentally derived model of the PTH-PTHR1 complex and provide insights at a new level of detail into the early events in PTHR1 activation by PTH.
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
40
|
Goodwin JA, Hulme EC, Langmead CJ, Tehan BG. Roof and floor of the muscarinic binding pocket: variations in the binding modes of orthosteric ligands. Mol Pharmacol 2007; 72:1484-96. [PMID: 17848601 DOI: 10.1124/mol.107.038265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alanine substitution mutagenesis has been used to investigate residues that make up the roof and floor of the muscarinic binding pocket and regulate ligand access. We mutated the amino acids in the second extracellular loop of the M1 muscarinic acetylcholine receptor that are homologous to the cis-retinal contact residues in rhodopsin, the disulfide-bonded Cys178 and Cys98 that anchor the loop to transmembrane helix 3, the adjoining acidic residue Asp99, and the conserved aromatic residues Phe197 and Trp378 in the transmembrane domain. The effects on ligand binding, kinetics, and receptor function suggest that the second extracellular loop does not provide primary contacts for orthosteric ligands, including acetylcholine, but that it does contribute to microdomains that are important for the conformational changes that accompany receptor activation. Kinetic studies suggest that the disulfide bond between Cys98 and Cys178 may contribute to structures that regulate the access of positively charged ligands such as N-methyl scopolamine to the binding pocket. Asp99 may act as a gatekeeper residue to this channel. In contrast, the bulkier lipophilic ligand 3-quinuclidinyl benzilate may require breathing motions of the receptor to access the binding site. Trp378 is a key residue for receptor activation as well as binding, whereas Phe197 represents the floor of the N-methyl scopolamine binding pocket but does not interact with acetylcholine or 3-quinuclidinyl benzilate. Differences between the binding modes of N-methyl scopolamine, 3-quinuclidinyl benzilate, and acetylcholine have been modeled. Although the head groups of these ligands occupy overlapping volumes within the binding site, their side chains may follow significantly different directions.
Collapse
Affiliation(s)
- J Alex Goodwin
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA
| | | | | | | |
Collapse
|
41
|
Bee MS, Hulme EC. Functional analysis of transmembrane domain 2 of the M1 muscarinic acetylcholine receptor. J Biol Chem 2007; 282:32471-9. [PMID: 17823120 DOI: 10.1074/jbc.m703909200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ala substitution scanning mutagenesis has been used to probe the functional role of amino acids in transmembrane (TM) domain 2 of the M1 muscarinic acetylcholine receptor, and of the highly conserved Asn43 in TM1. The mutation of Asn43, Asn61, and Leu64 caused an enhanced ACh affinity phenotype. Interpreted using a rhodopsin-based homology model, these results suggest the presence of a network of specific contacts between this group of residues and Pro415 and Tyr418 in the highly conserved NPXXY motif in TM7 that exhibit a similar mutagenic phenotype. These contacts may be rearranged or broken when ACh binds. D71A, like N414A, was devoid of signaling activity. We suggest that formation of a direct hydrogen bond between the highly conserved side chains of Asp71 and Asn414 may be a critical feature stabilizing the activated state of the M1 receptor. Mutation of Leu67, Ala70, and Ile74 also reduced the signaling efficacy of the ACh-receptor complex. The side chains of these residues are modeled as an extended surface that may help to orient and insulate the proposed hydrogen bond between Asp71 and Asn414. Mutation of Leu72, Gly75, and Met79 in the outer half of TM2 primarily reduced the expression of functional receptor binding sites. These residues may mediate contacts with TM1 and TM7 that are preserved throughout the receptor activation cycle. Thermal inactivation measurements confirmed that a reduction in structural stability followed the mutation of Met79 as well as Asp71.
Collapse
Affiliation(s)
- Mark S Bee
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | |
Collapse
|
42
|
Scarselli M, Li B, Kim SK, Wess J. Multiple residues in the second extracellular loop are critical for M3 muscarinic acetylcholine receptor activation. J Biol Chem 2007; 282:7385-96. [PMID: 17213190 DOI: 10.1074/jbc.m610394200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys(220) residue, Gln(207), Gly(211), Arg(213), Gly(218), Ile(222), Phe(224), Leu(225), and Pro(228) were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance.
Collapse
Affiliation(s)
- Marco Scarselli
- Molecular Signaling , Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|