1
|
Perault AI, John AS, DuMont AL, Shopsin B, Pironti A, Torres VJ. Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Proc Natl Acad Sci U S A 2025; 122:e2414315122. [PMID: 39977318 PMCID: PMC11874173 DOI: 10.1073/pnas.2414315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.
Collapse
Affiliation(s)
- Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
2
|
Yaikhan T, Singkhamanan K, Luenglusontigit P, Chukamnerd A, Nokchan N, Chintakovid N, Chusri S, Pomwised R, Wonglapsuwan M, Leetanaporn K, Sangkhathat S, Surachat K. Genomic analysis of Enterobacter cloacae complex from Southern Thailand reveals insights into multidrug resistance genotypes and genetic diversity. Sci Rep 2025; 15:4670. [PMID: 39920182 PMCID: PMC11806111 DOI: 10.1038/s41598-024-81595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025] Open
Abstract
In this study, we conducted a comprehensive investigation into the Enterobacter cloacae complex (ECC), a group of notorious pathogens responsible for various hospital-acquired infections. We aimed to gain critical insights into antimicrobial resistance profiles and genomic diversity among 17 ECC isolates, which were previously collected as part of a short-term surveillance effort for 6 months in 2019. We identified two novel sequence types (ST-1936 in E. bugandensis PSU30 and ST-1937 in E. roggenkampii PSU45) among the 14 distinct STs identified in our ECC isolates. Furthermore, our expanded investigation revealed 296 novel STs within the NCBI Reference Sequence database. We identified six isolates carrying the mcr-9 gene, highlighting a significant concern in antimicrobial resistance (AMR). These genes confer a reduced susceptibility to colistin, a critical last-resort drug for the treatment of multidrug-resistant (MDR) infection. In addition to the AMR complexity, we found that three isolates carried the blaNDM gene on IncN2 plasmids, further emphasizing the urgency of monitoring and managing ECC-related infections. Our study provided evidence of intra-hospital transmission involving E. asburiae isolates PSU37, PSU39, and PSU40, all collected from the nasopharynx of three individuals in the intensive care unit (ICU) of the same hospital. These findings highlight the need for stringent infection control measures to prevent similar outbreaks and emphasize the importance of effective surveillance and management strategies to address ECC-related challenges.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pawarisa Luenglusontigit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
3
|
Choi AJ, Bennison DJ, Kulkarni E, Azar H, Sun H, Li H, Bradshaw J, Yeap HW, Lim N, Mishra V, Crespo-Puig A, Mills EA, Davies F, Sriskandan S, Shenoy AR. Aminoglycoside heteroresistance in Enterobacter cloacae is driven by the cell envelope stress response. mBio 2024; 15:e0169924. [PMID: 39475244 PMCID: PMC11633387 DOI: 10.1128/mbio.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviors in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.IMPORTANCEEnterobacter cloacae is a bacterium that belongs to the WHO high-priority group and an increasing threat worldwide due its multi-drug resistance. E. cloacae can also display heteroresistance, which has been linked to treatment failure. We report that E. cloacae shows heteroresistance to aminoglycoside antibiotics. These are important frontline microbicidal drugs used against Gram-negative bacterial infections; therefore, understanding how resistance develops among sensitive strains is important. We show that aminoglycoside resistance is driven by the activation of the cell envelope stress response and transcriptional reprogramming via the CpxRA two-component system. Furthermore, heterologous activation of envelope stress via copper, typically a heavy metal with antimicrobial actions, also increased aminoglycoside MICs of the E. cloacae type strain and clinical strains isolated from bloodstream infections. Our study suggests aminoglycoside recalcitrance in E. cloacae could be broadly conserved and cautions against the undesirable effects of copper.
Collapse
Affiliation(s)
- Ana J. Choi
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Daniel J. Bennison
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Esha Kulkarni
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hibah Azar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haoyu Sun
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hanqi Li
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jonathan Bradshaw
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Hui Wen Yeap
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Nicholas Lim
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Vishwas Mishra
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Anna Crespo-Puig
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ewurabena A. Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Frances Davies
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - Avinash R. Shenoy
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
4
|
Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22:598-616. [PMID: 38831030 DOI: 10.1038/s41579-024-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic resistance and a dwindling antimicrobial pipeline have been recognized as emerging threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria for which effective therapies were rapidly needed. Now, entering the third decade of the twenty-first century, and despite the introduction of several new antibiotics and antibiotic adjuvants, such as novel β-lactamase inhibitors, these organisms continue to represent major therapeutic challenges. These bacteria share several key biological features, including adaptations for survival in the modern health-care setting, diverse methods for acquiring resistance determinants and the dissemination of successful high-risk clones around the world. With the advent of next-generation sequencing, novel tools to track and combat the spread of these organisms have rapidly evolved, as well as renewed interest in non-traditional antibiotic approaches. In this Review, we explore the current epidemiology and clinical impact of this important group of bacterial pathogens and discuss relevant mechanisms of resistance to recently introduced antibiotics that affect their use in clinical settings. Furthermore, we discuss emerging therapeutic strategies needed for effective patient care in the era of widespread antimicrobial resistance.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA.
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
5
|
Dos Santos Moreira LM, Marinho LS, Neves RCS, Harakava R, Bessa LA, Vitorino LC. Assessment of the Entomopathogenic Potential of Fungal and Bacterial Isolates from Fall Armyworm Cadavers Against Spodoptera frugiperda Caterpillars and the Adult Boll Weevil, Anthonomus grandis. NEOTROPICAL ENTOMOLOGY 2024; 53:889-906. [PMID: 38714593 PMCID: PMC11255027 DOI: 10.1007/s13744-024-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/13/2024] [Indexed: 05/10/2024]
Abstract
Increased attention is being focused on the biological control of agricultural pests using microorganisms, owing to their potential as a viable substitute for chemical control methods. Insect cadavers constitute a potential source of entomopathogenic microorganisms. We tested whether bacteria and fungi isolated from Spodoptera frugiperda (JE Smith) cadavers could affect its survival, development, egg-laying pattern, and hatchability, as well as induce mortality in Anthonomus grandis Boheman adults. We isolated the bacteria Enterobacter hormaechei and Serratia marcescens and the fungi Scopulariopsis sp. and Aspergillus nomiae from fall armyworm cadavers and the pest insects were subjected to an artificial diet enriched with bacteria cells or fungal spores to be tested, in the case of S. frugiperda, and only fungal spores in the case of A. grandis. Enterobacter hormaechei and A. nomiae were pathogenic to S. frugiperda, affecting the survival of adults and pupae. The fungus Scopulariopsis sp. does not affect the survival of S. frugiperda caterpillars and pupae; however, due to late action, moths and eggs may be affected. Aspergillus nomiae also increased mortality of A. grandis adults, as well as the development of S. frugiperda in the early stages of exposure to the diet, as indicated by the vertical spore transfer to offspring and low hatchability. Enterobacter hormaechei and A. nomiae are potential biocontrol agents for these pests, and warrant further investigation from a toxicological point of view and subsequently in field tests involving formulations that could improve agricultural sustainability practices.
Collapse
Affiliation(s)
- Lidiane Maria Dos Santos Moreira
- Instituto Goiano de Agricultura (IGA), Montividiu, GO, Brazil
- Lab of Agricultural Microbiology, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil
| | | | | | | | - Layara Alexandre Bessa
- Lab of Biodiversity Metabolism and Genetics, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil
- Simple Agro Corporation, Rio Verde, GO, Brazil
| | - Luciana Cristina Vitorino
- Simple Agro Corporation, Rio Verde, GO, Brazil.
- Lab of Agricultural Microbiology, Instituto Federal Goiano, Rio Verde Campus, Rio Verde, GO, Brazil.
| |
Collapse
|
6
|
Emeraud C, Girlich D, Deschamps M, Rezzoug I, Jacquemin A, Jousset AB, Lecolant S, Locher L, Birer A, Naas T, Bonnin RA, Dortet L. IMI-Type Carbapenemase-Producing Enterobacter cloacae Complex, France and Overseas Regions, 2012-2022. Emerg Infect Dis 2024; 30:1279-1282. [PMID: 38782383 PMCID: PMC11138976 DOI: 10.3201/eid3006.231525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We characterized a collection of IMI-like-producing Enterobacter spp. isolates (n = 112) in France. The main clone corresponded to IMI-1-producing sequence type 820 E. cloacae subspecies cloacae that was involved in an outbreak. Clinicians should be aware of potential antimicrobial resistance among these bacteria.
Collapse
|
7
|
Wu W, Wang J, Zhang P, Wang N, Yuan Q, Shi W, Zhang X, Li X, Qu T. Emergence of carbapenem-resistant Enterobacter hormaechei ST93 plasmids co-harbouring bla NDM-1, bla KPC-2, and mcr-9 in bloodstream infection. J Glob Antimicrob Resist 2023; 34:67-73. [PMID: 37369326 DOI: 10.1016/j.jgar.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES We isolated a strain of Enterobacter hormaechei, ECC2783, co-harbouring blaNDM-1, blaKPC-2 and mcr-9 plasmids from a bloodstream infection and investigated its biological features. METHODS The presence of carbapenemase genes and mcr-9 was confirmed by polymerase chain reaction amplification. Whole genome sequencing and genomic analysis were performed on ECC2783. Experiments assessing the conjugation and stability of plasmids carrying the carbapenemase gene were performed. We also performed a colistin resistance induction experiment and studied the fitness cost of transconjugants. RESULTS ECC2783 has an extensive drug resistance phenotype. Multilocus sequence typing analysis results showed that ECC2783 belongs to sequence type 93. Bioinformatics analysis confirmed that ECC2783 has four plasmids, of which pECC2783_a, carrying mcr-9, is the IncHI2 type, and pECC2783_c, carrying blaNDM-1, is the IncX3 type. pECC2783_d, carrying blaKPC-2, is an unclassified type. We successfully obtained two transconjugants (J53/ECC2783_1, carrying blaNDM-1, and J53/ECC2783_2, carrying blaKPC-2 and blaNDM-1). There was no statistically significant difference in the relative growth rate between J53 and J53/ECC2783_2. CONCLUSION For the first time, we isolated carbapenem-resistant E. hormaechei plasmids co-harbouring blaNDM-1, blaKPC-2, and mcr-9 from a patient with a blood stream infection. This isolate has a survival advantage in a hospital environment, and its clinical monitoring should be strengthened.
Collapse
Affiliation(s)
- Wenhao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- Respiratory Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofan Zhang
- Laboratory Medicine Centre, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xi Li
- Laboratory Medicine Centre, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
García Cardona C, Bernaus Johnson MC, Martínez Ros J, Hernández-Gonzalez N, Auñon Rubio Á, Anglès Crespo F, Arteagoitia-Colino I, Coifman-Lucena I, Esteban-Moreno J, Moral Escudero E, Gómez García L, Nóvoa Martínez R, Ortega Columbrans A, Veloso Duran M, Font-Vizcarra L. Enterobacter cloacae Infection After Surgical Treatment of Ankle Fractures, a Multicenter Observational Study. Foot Ankle Int 2023; 44:424-430. [PMID: 36923994 DOI: 10.1177/10711007231157688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Infection is one of the challenging complications after open reduction and internal fixation for ankle fractures. Previously published case series conclude that Staphylococcus aureus is the most frequent causative microorganism. An unexpected increase in Enterobacter cloacae infections after this surgery was observed in a preliminary analysis of data at the promoting center of the study. In traumatology, its incidence has been reported in chronic osteomyelitis, prosthetic infections, septic osteoarthritis, open fractures in children and adults, and fractures other than the ankle. Because of this unexpected finding, we decided to perform this study to analyze the demographic and microbiological variables of acute osteosynthesis infection after ankle fracture and determine the distinctive features of the patients with E cloacae infection. METHODS We performed a retrospective multicenter study including 4 university hospitals. All patients diagnosed with acute osteosynthesis infection after ankle fracture fixation between January 2015 and December 2018 were included. We analyzed demographic data, type of fracture, surgical technique, and microorganisms responsible for the infection. We performed a descriptive statistical analysis of the variables. Univariate and multivariate regression analysis were performed to compare patients with E cloacae infection to patients with infection caused by other microorganisms. RESULTS A total of 65 patients were included. A predominance of polymicrobial infections (24.62%), followed by infections caused by S aureus (23.07%) and E cloacae (23.07%) was observed. When E cloacae isolated in polymicrobial infections were added, the incidence of E cloacae as a causative microorganism increased to 32.3%. Patients with E cloacae infection were older (64/53, P = .008) and had a higher requirement of negative-pressure therapy after surgical debridement (71%/40%, P = .017). CONCLUSION A high incidence of E cloacae infections was observed. Patients with E cloacae infection were generally older and required a higher use of negative-pressure therapy after debridement. LEVEL OF EVIDENCE Level V, mechanism-based reasoningr.
Collapse
Affiliation(s)
- Carlos García Cardona
- Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Martí Carles Bernaus Johnson
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Javier Martínez Ros
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Nerea Hernández-Gonzalez
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Álvaro Auñon Rubio
- Department of Orthopedics and Traumatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Francesc Anglès Crespo
- Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Iraia Arteagoitia-Colino
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Ismael Coifman-Lucena
- Department of Orthopedics and Traumatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Jaime Esteban-Moreno
- Department of Microbiology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Encarnación Moral Escudero
- Osteoarticular Infection Unit, Department of Infectious Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Lucía Gómez García
- Osteoarticular Infection Unit, Department of Infectious Diseases, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Ricardo Nóvoa Martínez
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Ana Ortega Columbrans
- Department of Orthopedics and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Margarita Veloso Duran
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Lluís Font-Vizcarra
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| |
Collapse
|
9
|
Doijad SP, Gisch N, Frantz R, Kumbhar BV, Falgenhauer J, Imirzalioglu C, Falgenhauer L, Mischnik A, Rupp J, Behnke M, Buhl M, Eisenbeis S, Gastmeier P, Gölz H, Häcker GA, Käding N, Kern WV, Kola A, Kramme E, Peter S, Rohde AM, Seifert H, Tacconelli E, Vehreschild MJGT, Walker SV, Zweigner J, Schwudke D, Chakraborty T, Thoma N, Weber A, Vavra M, Schuster S, Peyerl-Hoffmann G, Hamprecht A, Proske S, Stelzer Y, Wille J, Lenke D, Bader B, Dinkelacker A, Hölzl F, Kunstle L, Chakraborty T. Resolving colistin resistance and heteroresistance in Enterobacter species. Nat Commun 2023; 14:140. [PMID: 36627272 PMCID: PMC9832134 DOI: 10.1038/s41467-022-35717-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
Collapse
Affiliation(s)
- Swapnil Prakash Doijad
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Renate Frantz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle, Mumbai, India
| | - Jane Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Linda Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University, Gießen, Germany
| | - Alexander Mischnik
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Michael Behnke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Michael Buhl
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nürnberg, Germany
| | - Simone Eisenbeis
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Petra Gastmeier
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Hanna Gölz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Georg Alexander Häcker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Nadja Käding
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Winfried V Kern
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine and University Hospital and Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Axel Kola
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Silke Peter
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany
| | - Anna M Rohde
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evelina Tacconelli
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah V Walker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Zweigner
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Site: Research Center Borstel, Borstel, Germany
| | | | - Trinad Chakraborty
- German Center for Infection Research (DZIF), Braunschweig, Germany. .,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Prendergast DM, Slowey R, Burgess CM, Murphy D, Johnston D, Morris D, O’ Doherty Á, Moriarty J, Gutierrez M. Characterization of cephalosporin and fluoroquinolone resistant Enterobacterales from Irish farm waste by whole genome sequencing. Front Microbiol 2023; 14:1118264. [PMID: 37032887 PMCID: PMC10073600 DOI: 10.3389/fmicb.2023.1118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Background The Enterobacterales are a group of Gram-negative bacteria frequently exhibiting extended antimicrobial resistance (AMR) and involved in the transmission of resistance genes to other bacterial species present in the same environment. Due to their impact on human health and the paucity of new antibiotics, the World Health Organization (WHO) categorized carbapenem resistant and ESBL-producing as critical. Enterobacterales are ubiquitous and the role of the environment in the transmission of AMR organisms or antimicrobial resistance genes (ARGs) must be examined in tackling AMR in both humans and animals under the one health approach. Animal manure is recognized as an important source of AMR bacteria entering the environment, in which resistant genes can accumulate. Methods To gain a better understanding of the dissemination of third generation cephalosporin and fluoroquinolone resistance genes between isolates in the environment, we applied whole genome sequencing (WGS) to Enterobacterales (79 E. coli, 1 Enterobacter cloacae, 1 Klebsiella pneumoniae, and 1 Citrobacter gillenii) isolated from farm effluents in Ireland before (n = 72) and after (n = 10) treatment by integrated constructed wetlands (ICWs). DNA was extracted using the MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) followed by WGS on a MiSeq platform (Illumina, Eindhoven, Netherlands) using v3 chemistry as 300-cycle paired-end runs. AMR genes and point mutations were identified and compared to the phenotypic results for better understanding of the mechanisms of resistance and resistance transmission. Results A wide variety of cephalosporin and fluoroquinolone resistance genes (mobile genetic elements (MGEs) and chromosomal mutations) were identified among isolates that mostly explained the phenotypic AMR patterns. A total of 31 plasmid replicon types were identified among the 82 isolates, with a subset of them (n = 24), identified in E. coli isolates. Five plasmid replicons were confined to the Enterobacter cloacae isolate and two were confined to the Klebsiella pneumoniae isolate. Virulence genes associated with functions including stress, survival, regulation, iron uptake secretion systems, invasion, adherence and toxin production were identified. Conclusion Our study showed that antimicrobial resistant organisms (AROs) can persist even following wastewater treatment and could transmit AMR of clinical relevance to the environment and ultimately pose a risk to human or animal health.
Collapse
Affiliation(s)
- Deirdre M. Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
- *Correspondence: Deirdre M. Prendergast,
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Declan Murphy
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dayle Johnston
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, University of Galway, Galway, Ireland
| | - Áine O’ Doherty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | - John Moriarty
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | |
Collapse
|
11
|
Pot M, Reynaud Y, Couvin D, Dereeper A, Ferdinand S, Bastian S, Foucan T, Pommier JD, Valette M, Talarmin A, Guyomard-Rabenirina S, Breurec S. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics (Basel) 2022; 11:1443. [PMID: 36290101 PMCID: PMC9598596 DOI: 10.3390/antibiotics11101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-β-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
Collapse
Affiliation(s)
- Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Yann Reynaud
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Alexis Dereeper
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Sylvaine Bastian
- Laboratory of Clinical Microbiology, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Tania Foucan
- Operational Hygiene Team, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Jean-David Pommier
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Marc Valette
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | | | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97157 Pointe-à-Pitre, France
- INSERM, Center for Clinical Investigation 1424, 97139 Les Abymes, France
| |
Collapse
|
12
|
Stokes W, Peirano G, Matsumara Y, Nobrega D, Pitout JDD. Population-based surveillance of Enterobacter cloacae complex causing blood stream infections in a centralized Canadian region. Eur J Clin Microbiol Infect Dis 2021; 41:119-125. [PMID: 34258687 DOI: 10.1007/s10096-021-04309-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Active population-based surveillance determined clinical factors, susceptibility patterns, incidence rates (IR), and genomics among Enterobacter cloacae complex (n = 154) causing blood stream infections in a centralized Canadian region (2015-2017). The annual population IR was 1.2/100,000 (95% CI 0.9-16) in 2015, 1.4/100,000 (95% CI 1.1-1.9) in 2016, and 1.5/100,000 (95% CI 1.2-2.0) in 2017, affecting mainly elderly males with underlying comorbid conditions in the hospital setting. E. cloacae complex was dominated by polyclonal subspecies (i.e., E. hormaechei subsp. steigerwaltii, subsp. hoffmanni and subsp. xiangfangesis). Antimicrobial resistant determinants were rare. This study provided novel information about Enterobacter genomics in a well-defined human population.
Collapse
Affiliation(s)
- William Stokes
- Alberta Precision Laboratories, Calgary, Alberta, Canada.,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada.,Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gisele Peirano
- Alberta Precision Laboratories, Calgary, Alberta, Canada.,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada
| | | | | | - Johann D D Pitout
- Alberta Precision Laboratories, Calgary, Alberta, Canada. .,Cummings School of Medicine, University of Calgary, #9, 3535 Research Road NW, Calgary, Alberta, T2L 2K8, Canada. .,University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
13
|
Ji Y, Wang P, Xu T, Zhou Y, Chen R, Zhu H, Zhou K. Development of a One-Step Multiplex PCR Assay for Differential Detection of Four species ( Enterobacter cloacae, Enterobacter hormaechei, Enterobacter roggenkampii, and Enterobacter kobei) Belonging to Enterobacter cloacae Complex With Clinical Significance. Front Cell Infect Microbiol 2021; 11:677089. [PMID: 34095000 PMCID: PMC8169972 DOI: 10.3389/fcimb.2021.677089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Enterobacter cloacae complex (ECC) is composed of multiple species and the taxonomic status is consecutively updated. In last decades ECC is frequently associated with multidrug resistance and become an important nosocomial pathogen. Currently, rapid and accurate identification of ECC to the species level remains a technical challenge, thus impedes our understanding of the population at the species level. Here, we aimed to develop a simple, reliable, and economical method to distinguish four epidemiologically prevalent species of ECC with clinical significance, i.e., E. cloacae, E. hormaechei, E. roggenkampii, and E. kobei. A total of 977 ECC genomes were retrieved from the GenBank, and unique gene for each species was obtained by core-genome comparisons. Four pairs of species-specific primers were designed based on the unique genes. A total of 231 ECC clinical strains were typed both by hsp60 typing and by species-specific PCRs. The specificity and sensitivity of the four species-specific PCRs ranged between 96.56% and 100% and between 76.47% and 100%, respectively. The PCR for E. cloacae showed the highest specificity and sensitivity. A one-step multiplex PCR was subsequently established by combining the species-specific primers. Additional 53 hsp60-typed ECC and 20 non-ECC isolates belonging to six species obtained from samples of patients, sewage water and feces of feeding animals were tested by the multiplex PCR. The identification results of both techniques were concordant. The multiplex PCR established in this study provides an accurate, expeditious, and cost-effective way for routine diagnosis and molecular surveillance of ECC strains at species level.
Collapse
Affiliation(s)
- Yang Ji
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College, Jinan University (Shenzhen People's Hospital); The First Affiliated Hospital, Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Peihong Wang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College, Jinan University (Shenzhen People's Hospital); The First Affiliated Hospital, Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College, Jinan University (Shenzhen People's Hospital); The First Affiliated Hospital, Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, Peking University, Beijing, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College, Jinan University (Shenzhen People's Hospital); The First Affiliated Hospital, Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
14
|
Shapiro JT, Leboucher G, Myard-Dury AF, Girardo P, Luzzati A, Mary M, Sauzon JF, Lafay B, Dauwalder O, Laurent F, Lina G, Chidiac C, Couray-Targe S, Vandenesch F, Flandrois JP, Rasigade JP. Metapopulation ecology links antibiotic resistance, consumption, and patient transfers in a network of hospital wards. eLife 2020; 9:54795. [PMID: 33106223 PMCID: PMC7690951 DOI: 10.7554/elife.54795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat. A better understanding of how antibiotic use and between-ward patient transfers (or connectivity) impact population-level AMR in hospital networks can help optimize antibiotic stewardship and infection control strategies. Here, we used a metapopulation framework to explain variations in the incidence of infections caused by seven major bacterial species and their drug-resistant variants in a network of 357 hospital wards. We found that ward-level antibiotic consumption volume had a stronger influence on the incidence of the more resistant pathogens, while connectivity had the most influence on hospital-endemic species and carbapenem-resistant pathogens. Piperacillin-tazobactam consumption was the strongest predictor of the cumulative incidence of infections resistant to empirical sepsis therapy. Our data provide evidence that both antibiotic use and connectivity measurably influence hospital AMR. Finally, we provide a ranking of key antibiotics by their estimated population-level impact on AMR that might help inform antimicrobial stewardship strategies.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Anne-Florence Myard-Dury
- Pôle de Santé Publique, Département d'Information Médicale, Hospices Civils de Lyon, Lyon, France
| | - Pascale Girardo
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anatole Luzzati
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Mélissa Mary
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | | | - Bénédicte Lafay
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, Lyon, France
| | - Olivier Dauwalder
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Gerard Lina
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Christian Chidiac
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Sandrine Couray-Targe
- Pôle de Santé Publique, Département d'Information Médicale, Hospices Civils de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, University of Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Chen Z, Cai Z, Zhu C, Song X, Qin Y, Zhu M, Zhang T, Cui W, Tang H, Zheng H. Injectable and Self-Healing Hydrogel with Anti-Bacterial and Anti-Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment. Adv Healthc Mater 2020; 9:e2001032. [PMID: 32902190 DOI: 10.1002/adhm.202001032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Systemic antibiotic therapy is the main treatment for acute bacterial rhinosinusitis (ABRS). However, this treatment often causes side effects of dizziness, diarrhea, and drug resistance. In this study, a new polyethylene glycol hydrogel (PEG-H) treatment model is developed to achieve sustained release of drugs at the locality while avoiding those adverse effects. The PEG-H is composed of 4-arm-PEG-SH and silver ions through a high affinity and dynamic reversible coordination bond between the thiol and silver ion. In the initial test, PEG-H is loaded with Clarithromycin (CAM-Lips@Hydrogel) or Clarithromycin and Budesonide liposomes (CAM+BUD-Lips@Hydrogel). The results show that PEG-H maintains the characteristics of self-healing, biodegradability, moderate swelling rate, injectibility and sustained drug release. In in vivo studies, the hydrogel is injected into the maxillary sinus of ABRS rabbit models. In both a single or combined load, the hydrogel not only plays an effective role as an anti-bacterial, but also inhibits inflammatory response of local sinus mucosa. In addition, no other side effects are observed in the ABRS rabbit model through behavioral observation and drug sensitivity tests. Therefore, the injectable self-healing hydrogel with anti-bacterial and anti-inflammatory properties provides a new micro invasive therapeutic method for the clinical treatment of ABRS.
Collapse
Affiliation(s)
- Zhengming Chen
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chengjing Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Xianmin Song
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Yanghua Qin
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Minhui Zhu
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Tao Zhang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Haihong Tang
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| | - Hongliang Zheng
- Department of Otorhinolaryngology & Head and Neck Surgery of Changhai Hospital Naval Military Medical University (The Second Military Medical University) 168 Changhai Road Shanghai 200433 P. R. China
| |
Collapse
|
16
|
Kizny Gordon A, Phan HTT, Lipworth SI, Cheong E, Gottlieb T, George S, Peto TEA, Mathers AJ, Walker AS, Crook DW, Stoesser N. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother 2020; 75:873-882. [PMID: 31960024 PMCID: PMC7069471 DOI: 10.1093/jac/dkz526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hospital outbreaks of carbapenemase-producing organisms, such as blaIMP-4-containing organisms, are an increasing threat to patient safety. OBJECTIVES To investigate the genomic dynamics of a 10 year (2006-15) outbreak of blaIMP-4-containing organisms in a burns unit in a hospital in Sydney, Australia. METHODS All carbapenem-non-susceptible or MDR clinical isolates (2006-15) and a random selection of equivalent or ESBL-producing environmental isolates (2012-15) were sequenced [short-read (Illumina), long-read (Oxford Nanopore Technology)]. Sequence data were used to assess genetic relatedness of isolates (Mash; mapping and recombination-adjusted phylogenies), perform in silico typing (MLST, resistance genes and plasmid replicons) and reconstruct a subset of blaIMP plasmids for comparative plasmid genomics. RESULTS A total of 46/58 clinical and 67/96 environmental isolates contained blaIMP-4. All blaIMP-4-positive organisms contained five or more other resistance genes. Enterobacter cloacae was the predominant organism, with 12 other species mainly found in either the environment or patients, some persisting despite several cleaning methods. On phylogenetic analysis there were three genetic clusters of E. cloacae containing both clinical and environmental isolates, and an additional four clusters restricted to either reservoir. blaIMP-4 was mostly found as part of a cassette array (blaIMP-4-qacG2-aacA4-catB3) in a class 1 integron within a previously described IncM2 plasmid (pEl1573), with almost complete conservation of this cassette across the species over the 10 years. Several other plasmids were also implicated, including an IncF plasmid backbone not previously widely described in association with blaIMP-4. CONCLUSIONS Genetic backgrounds disseminating blaIMP-4 can persist, diversify and evolve amongst both human and environmental reservoirs during a prolonged outbreak despite intensive prevention efforts.
Collapse
Affiliation(s)
- A Kizny Gordon
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H T T Phan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - S I Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Cheong
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - T Gottlieb
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - S George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - T E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A J Mathers
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - A S Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - D W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - N Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, Field N, Lawley TD. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019; 574:117-121. [PMID: 31534227 PMCID: PMC6894937 DOI: 10.1038/s41586-019-1560-1] [Citation(s) in RCA: 628] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
Immediately after birth, newborn babies experience rapid colonization by microorganisms from their mothers and the surrounding environment1. Diseases in childhood and later in life are potentially mediated by the perturbation of the colonization of the infant gut microbiota2. However, the effects of delivery via caesarean section on the earliest stages of the acquisition and development of the gut microbiota, during the neonatal period (≤1 month), remain controversial3,4. Here we report the disrupted transmission of maternal Bacteroides strains, and high-level colonization by opportunistic pathogens associated with the hospital environment (including Enterococcus, Enterobacter and Klebsiella species), in babies delivered by caesarean section. These effects were also seen, to a lesser extent, in vaginally delivered babies whose mothers underwent antibiotic prophylaxis and in babies who were not breastfed during the neonatal period. We applied longitudinal sampling and whole-genome shotgun metagenomic analysis to 1,679 gut microbiota samples (taken at several time points during the neonatal period, and in infancy) from 596 full-term babies born in UK hospitals; for a subset of these babies, we collected additional matched samples from mothers (175 mothers paired with 178 babies). This analysis demonstrates that the mode of delivery is a significant factor that affects the composition of the gut microbiota throughout the neonatal period, and into infancy. Matched large-scale culturing and whole-genome sequencing of over 800 bacterial strains from these babies identified virulence factors and clinically relevant antimicrobial resistance in opportunistic pathogens that may predispose individuals to opportunistic infections. Our findings highlight the critical role of the local environment in establishing the gut microbiota in very early life, and identify colonization with antimicrobial-resistance-containing opportunistic pathogens as a previously underappreciated risk factor in hospital births.
Collapse
Affiliation(s)
- Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Evdokia Tsaliki
- Institute for Global Health, University College London, London, UK
| | - Kevin Vervier
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Angela Strang
- Institute for Global Health, University College London, London, UK
| | - Nandi Simpson
- Institute for Global Health, University College London, London, UK
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK.
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
18
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
19
|
Ellington MJ, Heinz E, Wailan AM, Dorman MJ, de Goffau M, Cain AK, Henson SP, Gleadall N, Boinett CJ, Dougan G, Brown NM, Woodford N, Parkhill J, Török ME, Peacock SJ, Thomson NR. Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7 years in a single center. Genome Biol 2019; 20:184. [PMID: 31477167 PMCID: PMC6717969 DOI: 10.1186/s13059-019-1785-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Two of the most important pathogens contributing to the global rise in antimicrobial resistance (AMR) are Klebsiella pneumoniae and Enterobacter cloacae. Despite this, most of our knowledge about the changing patterns of disease caused by these two pathogens is based on studies with limited timeframes that provide few insights into their population dynamics or the dynamics in AMR elements that they can carry. RESULTS We investigate the population dynamics of two priority AMR pathogens over 7 years between 2007 and 2012 in a major UK hospital, spanning changes made to UK national antimicrobial prescribing policy in 2007. Between 2006 and 2012, K. pneumoniae showed epidemiological cycles of multi-drug-resistant (MDR) lineages being replaced approximately every 2 years. This contrasted E. cloacae where there was no temporally changing pattern, but a continuous presence of the mixed population. CONCLUSIONS The differing patterns of clonal replacement and acquisition of mobile elements shows that the flux in the K. pneumoniae population was linked to the introduction of globally recognized MDR clones carrying drug resistance markers on mobile elements. However, E. cloacae carries a chromosomally encoded ampC conferring resistance to front-line treatments and shows that MDR plasmid acquisition in E. cloacae was not indicative of success in the hospital. This led to markedly different dynamics in the AMR populations of these two pathogens and shows that the mechanism of the resistance and its location in the genome or mobile elements is crucial to predict population dynamics of opportunistic pathogens in clinical settings.
Collapse
Affiliation(s)
- Matthew J Ellington
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
- Present address: National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alexander M Wailan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marcus de Goffau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Amy K Cain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Sonal P Henson
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
| | - Nicholas Gleadall
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Nicholas M Brown
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - M Estée Török
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sharon J Peacock
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
20
|
Matteoli FP, Passarelli-Araujo H, Pedrosa-Silva F, Olivares FL, Venancio TM. Population structure and pangenome analysis of Enterobacter bugandensis uncover the presence of bla CTX-M-55, bla NDM-5 and bla IMI-1, along with sophisticated iron acquisition strategies. Genomics 2019; 112:1182-1191. [PMID: 31279858 DOI: 10.1016/j.ygeno.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
Abstract
Enterobacter bugandensis is a recently described species that has been largely associated with nosocomial infections. We report the genome of a non-clinical E. bugandensis strain, which was integrated with publicly available genomes to study the pangenome and general population structure of E. bugandensis. Core- and whole-genome multilocus sequence typing allowed the detection of five E. bugandensis phylogroups (PG-A to E), which contain important antimicrobial resistance and virulence determinants. We uncovered several extended-spectrum β-lactamases, including blaCTX-M-55 and blaNDM-5, present in an IncX replicon type plasmid, described here for the first time in E. bugandensis. Genetic context analysis of blaNDM-5 revealed the resemblance of this plasmid with other IncX plasmids from other bacteria from the same country. Three distinctive siderophore producing operons were found in E. bugandensis: enterobactin (ent), aerobactin (iuc/iut), and salmochelin (iro). Our findings provide novel insights on the lifestyle, physiology, antimicrobial, and virulence profiles of E. bugandensis.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil.
| |
Collapse
|
21
|
Brust FR, Boff L, da Silva Trentin D, Pedrotti Rozales F, Barth AL, Macedo AJ. Macrocolony of NDM-1 Producing Enterobacter hormaechei subsp. oharae Generates Subpopulations with Different Features Regarding the Response of Antimicrobial Agents and Biofilm Formation. Pathogens 2019; 8:pathogens8020049. [PMID: 31014001 PMCID: PMC6631906 DOI: 10.3390/pathogens8020049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
Enterobacter cloacae complex has been increasingly recognized as a nosocomial pathogen representing the third major Enterobacteriaceae species involved with infections. This study aims to evaluate virulence and antimicrobial susceptibility of subpopulations generated from macrocolonies of NDM-1 producing Enterobacter hormaechei clinical isolates. Biofilm was quantified using crystal violet method and fimbrial genes were investigated by PCR. Susceptibility of antimicrobials, alone and combined, was determined by minimum inhibitory concentration and checkerboard assays, respectively. Virulence and efficacy of antimicrobials were evaluated in Galleria mellonella larvae. Importantly, we verified that some subpopulations that originate from the same macrocolony present different biofilm production ability and distinct susceptibility to meropenem due to the loss of blaNDM-1 encoding plasmid. A more in-depth study was performed with the 798 macrocolony subpopulations. Type 3 fimbriae were straightly related with biofilm production; however, virulence in larvae was not statistically different among subpopulations. Triple combination with meropenem-rifampicin-polymyxin B showed in vitro synergistic effect against all subpopulations; while in vivo this treatment showed different efficacy rates for 798-1S and 798-4S subpopulations. The ability of multidrug resistant E. hormaechei isolates in generating bacterial subpopulations presenting different susceptible and virulence mechanisms are worrisome and may explain why these infections are hardly overcome.
Collapse
Affiliation(s)
- Flávia Roberta Brust
- Faculty of Pharmacy and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul CE 90610-000, Brazil.
| | - Luana Boff
- Faculty of Pharmacy and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul CE 90610-000, Brazil.
| | - Danielle da Silva Trentin
- Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul CE 90050-170, Brazil.
| | - Franciele Pedrotti Rozales
- Laboratory of Research in Bacterial Resistance, Center for Experimental Research, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul CE 90035-007, Brazil.
| | - Afonso Luís Barth
- Laboratory of Research in Bacterial Resistance, Center for Experimental Research, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul CE 90035-007, Brazil.
| | - Alexandre José Macedo
- Faculty of Pharmacy and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul CE 90610-000, Brazil.
| |
Collapse
|
22
|
Hawken SE, Snitkin ES. Genomic epidemiology of multidrug-resistant Gram-negative organisms. Ann N Y Acad Sci 2019; 1435:39-56. [PMID: 29604079 PMCID: PMC6167210 DOI: 10.1111/nyas.13672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
The emergence and spread of antibiotic-resistant Gram-negative bacteria (rGNB) across global healthcare networks presents a significant threat to public health. As the number of effective antibiotics available to treat these resistant organisms dwindles, it is essential that we devise more effective strategies for controlling their proliferation. Recently, whole-genome sequencing has emerged as a disruptive technology that has transformed our understanding of the evolution and epidemiology of diverse rGNB species, and it has the potential to guide strategies for controlling the evolution and spread of resistance. Here, we review specific areas in which genomics has already made a significant impact, including outbreak investigations, regional epidemiology, clinical diagnostics, resistance evolution, and the study of epidemic lineages. While highlighting early successes, we also point to the next steps needed to translate this technology into strategies to improve public health and clinical medicine.
Collapse
Affiliation(s)
- Shawn E Hawken
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Michigan, USA
- Division of Infectious Diseases/Department of Medicine, University of Michigan Medical School, Michigan, USA
| |
Collapse
|
23
|
Almeida MVAD, Brito ILP, Carvalho ALSD, Costa RA. In vitro resistance of Enterobacter cloacae isolated from fresh seafood to colistin. Rev Soc Bras Med Trop 2018; 51:674-675. [PMID: 30304276 DOI: 10.1590/0037-8682-0287-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Enterobacter cloacae is a clinically important bacterium from the Enterobacteriaceae family. This study evaluated resistance of E. cloacae strains from fish (n=14) and shrimp (n=9) to colistin. METHODS Biochemical identification and antimicrobial susceptibility tests were carried out in an automated Vitek®2 instrument. RESULTS Colistin resistance was observed in 21.4% and 66.7% of the strains from fish and shrimp, respectively. We observed minimum inhibitory concentrations of ≥16 mg/L and ≤5 mg/L in 8 and 15 of all strains, respectively. CONCLUSIONS Fish and shrimp can carry drug-resistant enterobacteria, which can be of clinical interest.
Collapse
|
24
|
Zhou K, Yu W, Cao X, Shen P, Lu H, Luo Q, Rossen JWA, Xiao Y. Characterization of the population structure, drug resistance mechanisms and plasmids of the community-associated Enterobacter cloacae complex in China. J Antimicrob Chemother 2018; 73:66-76. [PMID: 29088362 DOI: 10.1093/jac/dkx361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
Objectives To investigate the population structure, drug resistance mechanisms and plasmids of community-associated Enterobacter cloacae complex (CA-ECC) isolates in China. Methods Sixty-two CA-ECC isolates collected from 31 hospitals across China were typed by hsp60 typing and MLST. ESBL and AmpC-overexpression phenotype was determined by double-disc synergy test. Replicon typing and conjugation were performed for plasmid analysis. All ESBL-positive isolates and representative conjugants were subjected to detailed characterization by WGS. Results Enterobacter hormaechei and Enterobacter kobei were predominant in our collections. MLST distinguished 46 STs with a polyclonal structure. ST591 was the most prevalent clone detected in northern China. Twenty-two isolates (35.5%) were ESBL positive and half of them were E. kobei. ESBL positivity was related to ESBL production (15/22) and to AmpC overexpression (18/22). Core-genome phylogenetic analysis identified intra- and inter-regional dissemination of ESBL-producing E. kobei clones. ESBL producers were exclusively classified as E. hormaechei and E. kobei, and blaCTX-M-3 was the most prevalent ESBL genotype (10/15) detected in four different environments. In the ESBL-positive population, the ESBL producers encoded more drug resistance genes (8-24 genes) by carrying more plasmids (1-3 plasmids) than the non-ESBL-producing isolates, resulting in an inter-group difference in drug susceptibilities. IncHI-type plasmids were prevalent in the ESBL producers (12/15). All IncHI2-type plasmids (n = 11) carried ESBL genes and shared a similar backbone to p09-036813-1A_261 recovered from Salmonella enterica in Canada. Conclusions The species-specific distribution, species-dependent ESBL mechanism and endemic plasmids identified in our study highlight the necessity for tailored surveillance of CA-ECC in the future.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Hong YK, Lee JY, Ko KS. Colistin resistance in Enterobacter spp. isolates in Korea. J Microbiol 2018; 56:435-440. [DOI: 10.1007/s12275-018-7449-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
|
26
|
Gomez-Simmonds A, Annavajhala MK, Wang Z, Macesic N, Hu Y, Giddins MJ, O'Malley A, Toussaint NC, Whittier S, Torres VJ, Uhlemann AC. Genomic and Geographic Context for the Evolution of High-Risk Carbapenem-Resistant Enterobacter cloacae Complex Clones ST171 and ST78. mBio 2018; 9:e00542-18. [PMID: 29844109 PMCID: PMC5974468 DOI: 10.1128/mbio.00542-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 01/25/2023] Open
Abstract
Recent reports have established the escalating threat of carbapenem-resistant Enterobacter cloacae complex (CREC). Here, we demonstrate that CREC has evolved as a highly antibiotic-resistant rather than highly virulent nosocomial pathogen. Applying genomics and Bayesian phylogenetic analyses to a 7-year collection of CREC isolates from a northern Manhattan hospital system and to a large set of publicly available, geographically diverse genomes, we demonstrate clonal spread of a single clone, ST171. We estimate that two major clades of epidemic ST171 diverged prior to 1962, subsequently spreading in parallel from the Northeastern to the Mid-Atlantic and Midwestern United States and demonstrating links to international sites. Acquisition of carbapenem and fluoroquinolone resistance determinants by both clades preceded widespread use of these drugs in the mid-1980s, suggesting that antibiotic pressure contributed substantially to its spread. Despite a unique mobile repertoire, ST171 isolates showed decreased virulence in vitro While a second clone, ST78, substantially contributed to the emergence of CREC, it encompasses diverse carbapenemase-harboring plasmids, including a potentially hypertransmissible IncN plasmid, also present in other sequence types. Rather than heightened virulence, CREC demonstrates lineage-specific, multifactorial adaptations to nosocomial environments coupled with a unique potential to acquire and disseminate carbapenem resistance genes. These findings indicate a need for robust surveillance efforts that are attentive to the potential for local and international spread of high-risk CREC clones.IMPORTANCE Carbapenem-resistant Enterobacter cloacae complex (CREC) has emerged as a formidable nosocomial pathogen. While sporadic acquisition of plasmid-encoded carbapenemases has been implicated as a major driver of CREC, ST171 and ST78 clones demonstrate epidemic potential. However, a lack of reliable genomic references and rigorous statistical analyses has left many gaps in knowledge regarding the phylogenetic context and evolutionary pathways of successful CREC. Our reconstruction of recent ST171 and ST78 evolution represents a significant addition to current understanding of CREC and the directionality of its spread from the Eastern United States to the northern Midwestern United States with links to international collections. Our results indicate that the remarkable ability of E. cloacae to acquire and disseminate cross-class antibiotic resistance rather than virulence determinants, coupled with its ability to adapt under conditions of antibiotic pressure, likely led to the wide dissemination of CREC.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Medini K Annavajhala
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Medicine Microbiome & Pathogen Genomics Core, Columbia University Medical Center, New York City, New York, USA
| | - Zheng Wang
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Nenad Macesic
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Yue Hu
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Marla J Giddins
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Medicine Microbiome & Pathogen Genomics Core, Columbia University Medical Center, New York City, New York, USA
| | - Aidan O'Malley
- Department of Microbiology, New York University, New York, New York, USA
| | | | - Susan Whittier
- Department of Pathology and Cell Biology, Clinical Microbiology Laboratory, Columbia University Medical Center, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
- Department of Medicine Microbiome & Pathogen Genomics Core, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
27
|
Moradigaravand D, Gouliouris T, Blane B, Naydenova P, Ludden C, Crawley C, Brown NM, Török ME, Parkhill J, Peacock SJ. Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients. Genome Med 2017; 9:119. [PMID: 29282103 PMCID: PMC5744393 DOI: 10.1186/s13073-017-0507-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/07/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Enterococcus faecium is a leading cause of hospital-acquired infection, particularly in the immunocompromised. Here, we use whole genome sequencing of E. faecium to study within-host evolution and the transition from gut carriage to invasive disease. METHODS We isolated and sequenced 180 E. faecium from four immunocompromised patients who developed bloodstream infection during longitudinal surveillance of E. faecium in stool and their immediate environment. RESULTS A phylogenetic tree based on single nucleotide polymorphisms (SNPs) in the core genome of the 180 isolates demonstrated several distinct clones. This was highly concordant with the population structure inferred by Bayesian methods, which contained four main BAPS (Bayesian Analysis of Population Structure) groups. The majority of isolates from each patient resided in a single group, but all four patients also carried minority populations in stool from multiple phylogenetic groups. Bloodstream isolates from each case belonged to a single BAPS group, which differed in all four patients. Analysis of 87 isolates (56 from blood) belonging to a single BAPS group that were cultured from the same patient over 54 days identified 30 SNPs in the core genome (nine intergenic, 13 non-synonymous, eight synonymous), and 250 accessory genes that were variably present. Comparison of these genetic variants in blood isolates versus those from stool or environment did not identify any variants associated with bloodstream infection. The substitution rate for these isolates was estimated to be 128 (95% confidence interval 79.82 181.77) mutations per genome per year, more than ten times higher than previous estimates for E. faecium. Within-patient variation in vancomycin resistance associated with vanA was common and could be explained by plasmid loss, or less often by transposon loss. CONCLUSIONS These findings demonstrate the diversity of E. faecium carriage by individual patients and significant within-host diversity of E. faecium, but do not provide evidence for adaptive genetic variation associated with invasion.
Collapse
Affiliation(s)
- Danesh Moradigaravand
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Plamena Naydenova
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Catherine Ludden
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Charles Crawley
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nicholas M Brown
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - M Estée Török
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Public Health England, Clinical Microbiology and Public Health Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sharon J Peacock
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|