1
|
Tagami T. Structural insights into starch-metabolizing enzymes and their applications. Biosci Biotechnol Biochem 2024; 88:864-871. [PMID: 38806254 DOI: 10.1093/bbb/zbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.
Collapse
Affiliation(s)
- Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Structure of the transcription open complex of distinct σ I factors. Nat Commun 2023; 14:6455. [PMID: 37833284 PMCID: PMC10575876 DOI: 10.1038/s41467-023-41796-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haonan Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongyu Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Energy Institute, 266101, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ping Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
3
|
Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR, Genevaux P. MenT nucleotidyltransferase toxins extend tRNA acceptor stems and can be inhibited by asymmetrical antitoxin binding. Nat Commun 2023; 14:4644. [PMID: 37591829 PMCID: PMC10435456 DOI: 10.1038/s41467-023-40264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
4
|
Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Molecules 2023; 28:4655. [PMID: 37375209 DOI: 10.3390/molecules28124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As part of the valorization of agricultural waste into bioactive compounds, a series of structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoindolinones) conjugates 18a-u bearing 1,2,3-triazole moieties were designed and synthesized by treating an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and its newly prepared analogues, 18a-u, were screened in vitro for their antibacterial activity against two Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bacteria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity when compared with OA-1 and other compounds in the series against tested pathogenic bacterial strains. A molecular docking study was performed to explore the binding mode of the most active derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes. Results showed the importance of both hydrogen bonding and hydrophobic interactions with the target protein and are in favor of the experimental data.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Ata Martin Lawson
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Adam Daïch
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, LR11ES39, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia
| | - Mohamed Othman
- Normandie University, URCOM, UNILEHAVRE, FR3021, UR 3221, 25 Rue Philippe Lebon, BP 540, F-76058 Le Havre, France
| |
Collapse
|
5
|
Arumapperuma T, Li J, Hornung B, Soler NM, Goddard-Borger ED, Terrapon N, Williams SJ. A subfamily classification to choreograph the diverse activities within glycoside hydrolase family 31. J Biol Chem 2023; 299:103038. [PMID: 36806678 PMCID: PMC10074150 DOI: 10.1016/j.jbc.2023.103038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The Carbohydrate-Active Enzyme classification groups enzymes that breakdown, assemble, or decorate glycans into protein families based on sequence similarity. The glycoside hydrolases (GH) are arranged into over 170 enzyme families, with some being very large and exhibiting distinct activities/specificities towards diverse substrates. Family GH31 is a large family that contains more than 20,000 sequences with a wide taxonomic diversity. Less than 1% of GH31 members are biochemically characterized and exhibit many different activities that include glycosidases, lyases, and transglycosidases. This diversity of activities limits our ability to predict the activities and roles of GH31 family members in their host organism and our ability to exploit these enzymes for practical purposes. Here, we established a subfamily classification using sequence similarity networks that was further validated by a structural analysis. While sequence similarity networks provide a sequence-based separation, we obtained good segregation between activities among the subfamilies. Our subclassification consists of 20 subfamilies with sixteen subfamilies containing at least one characterized member and eleven subfamilies that are monofunctional based on the available data. We also report the biochemical characterization of a member of the large subfamily 2 (GH31_2) that lacked any characterized members: RaGH31 from Rhodoferax aquaticus is an α-glucosidase with activity on a range of disaccharides including sucrose, trehalose, maltose, and nigerose. Our subclassification provides improved predictive power for the vast majority of uncharacterized proteins in family GH31 and highlights the remaining sequence space that remains to be functionally explored.
Collapse
Affiliation(s)
- Thimali Arumapperuma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Jinling Li
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia
| | - Bastian Hornung
- AFMB, UMR 7257 CNRS Aix-Marseille Univ., USC 1408 INRAE, Marseille, France
| | - Niccolay Madiedo Soler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicolas Terrapon
- AFMB, UMR 7257 CNRS Aix-Marseille Univ., USC 1408 INRAE, Marseille, France
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Structural basis for proteolytic processing of Aspergillus sojae α-glucosidase L with strong transglucosylation activity. J Struct Biol 2022; 214:107874. [DOI: 10.1016/j.jsb.2022.107874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
|
7
|
Analysis of Xylose Operon from Paenibacillus polymyxa ATCC842 and Development of Tools for Gene Expression. Int J Mol Sci 2022; 23:ijms23095024. [PMID: 35563415 PMCID: PMC9104551 DOI: 10.3390/ijms23095024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
With numerous industrial applications, Paenibacillus polymyxa has been accepted as the candidate of the cell factory for many secondary metabolites. However, as the regulatory expression elements in P. polymyxa have not been systematically investigated, genetic modification on account of a specific metabolism pathway for the strain is limited. In this study, a xylose-inducible operon in the xylan-utilizing bacterium ATCC842 was identified, and the relative operon transcription was increased to 186-fold in the presence of xylose, while the relative enhanced green fluorescent protein (eGFP) fluorescence intensity was promoted by over four-fold. By contrast, glucose downregulated the operon to 0.5-fold that of the control. The binding site of the operon was “ACTTAGTTTAAGCAATAGACAAAGT”, and this can be degenerated to “ACTTWGTTTAWSSNATAVACAAAGT” in Paenibacillus spp., which differs from that in the Bacillus spp. xylose operon. The xylose operon binding site was transplanted to the constitutive promoter Pshuttle-09. The eGFP fluorescence intensity assay indicated that both the modified and original Pshuttle-09 had similar expression levels after induction, and the expression level of the modified promoter was decreased to 19.8% without induction. This research indicates that the operon has great potential as an ideal synthetic biology tool in Paenibacillus spp. that can dynamically regulate its gene circuit strength through xylose.
Collapse
|
8
|
Huang C, Liu X, Chen Y, Zhou J, Li W, Ding N, Huang L, Chen J, Zhang Z. A Novel Family of Winged-Helix Single-Stranded DNA-Binding Proteins from Archaea. Int J Mol Sci 2022; 23:ijms23073455. [PMID: 35408816 PMCID: PMC8998557 DOI: 10.3390/ijms23073455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The winged helix superfamily comprises a large number of structurally related nucleic acid-binding proteins. While these proteins are often shown to bind dsDNA, few are known to bind ssDNA. Here, we report the identification and characterization of Sul7s, a novel winged-helix single-stranded DNA binding protein family highly conserved in Sulfolobaceae. Sul7s from Sulfolobus islandicus binds ssDNA with an affinity approximately 15-fold higher than that for dsDNA in vitro. It prefers binding oligo(dT)30 over oligo(dC)30 or a dG-rich 30-nt oligonucleotide, and barely binds oligo(dA)30. Further, binding by Sul7s inhibits DNA strand annealing, but shows little effect on the melting temperature of DNA duplexes. The solution structure of Sul7s determined by NMR shows a winged helix-turn-helix fold, consisting of three α-helices, three β-strands, and two short wings. It interacts with ssDNA via a large positively charged binding surface, presumably resulting in ssDNA deformation. Our results shed significant light on not only non-OB fold single-stranded DNA binding proteins in Archaea, but also the divergence of the winged-helix proteins in both function and structure during evolution.
Collapse
Affiliation(s)
- Can Huang
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Xuehui Liu
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Junshi Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Wenqian Li
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Niannian Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Chen
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| |
Collapse
|
9
|
Brovarets’ OO, Muradova A, Hovorun DM. Novel horizons of the conformationally-tautomeric transformations of the G·T base pairs: quantum-mechanical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
10
|
Fujita A, Kawashima A, Noguchi Y, Hirose S, Kitagawa N, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S, Yamamoto K. Cloning of the cycloisomaltotetraose-forming enzymes using whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. Biosci Biotechnol Biochem 2021; 86:68-77. [PMID: 34661636 DOI: 10.1093/bbb/zbab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022]
Abstract
We performed whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006 that secrete enzymes to produce cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran. Full-length amino acid sequences of CI4-forming enzymes were identified by matching known N-terminal amino acid sequences with products of the draft genome. Domain searches revealed that the CI4-forming enzymes are composed of Glycoside Hydrolase family 66 (GH66) domain, Carbohydrate Binding Module family 35 (CBM35) domain, and CBM13 domain, categorizing the CI4-forming enzymes in the GH66. Furthermore, the amino acid sequences of the two CI4-forming enzymes were 71% similar to each other and up to 51% similar to cycloisomaltooligosaccharide glucanotransferases (CITases) categorized in GH66. Differences in sequence between the CI4-forming enzymes and the CITases suggest mechanisms to produce specific cycloisomaltooligosaccharides, and whole genome sequence analyses identified a gene cluster whose gene products likely work in concert with the CI4-forming enzymes.
Collapse
Affiliation(s)
- Akihiro Fujita
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Akira Kawashima
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Yuji Noguchi
- Nagase R&D center, NAGASE & CO. LTD., Murotani, Hyogo, Japan
| | - Shuichi Hirose
- Nagase R&D center, NAGASE & CO. LTD., Murotani, Hyogo, Japan
| | - Noriaki Kitagawa
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Hikaru Watanabe
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Tetsuya Mori
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | | | - Hajime Aga
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Shimpei Ushio
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Koryu Yamamoto
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| |
Collapse
|
11
|
Miyazaki T, Ikegaya M, Alonso-Gil S. Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase. Biochimie 2021; 195:90-99. [PMID: 34826537 DOI: 10.1016/j.biochi.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Glycoside hydrolase family 31 (GH31) is a diversified family of anomer-retaining α-glycoside hydrolases, such as α-glucosidase and α-xylosidase, among others. Recently, GH31 α-N-acetylgalactosaminidases (Nag31s) have been identified to hydrolyze the core of mucin-type O-glycans and the crystal structure of a gut bacterium Enterococcus faecalis Nag31 has been reported. However, the mechanisms of substrate specificity and hydrolysis of Nag31s are not well investigated. Herein, we show that E. faecalis Nag31 has the ability to release N-acetylgalactosamine (GalNAc) from O-glycoproteins, such as fetuin and mucin, but has low activity against Tn antigen. Mutational analysis and crystal structures of the Michaelis complexes reveal that residues of the active site work in concert with their conformational changes to act on only α-N-acetylgalactosaminides. Docking simulations using GalNAc-attached peptides suggest that the enzyme mainly recognizes GalNAc and side chains of Ser/Thr, but not strictly other peptide residues. Moreover, quantum mechanics calculations indicate that the enzyme preferred p-nitrophenyl α-N-acetylgalactosaminide to Tn antigen and that the hydrolysis progresses through a conformational itinerary, 4C1 → 1S3 → 4C1, in GalNAc of substrates. Our results provide novel insights into the diversification of the sugar recognition and hydrolytic mechanisms of GH31 enzymes.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
De la Torre LI, Vergara Meza JG, Cabarca S, Costa-Martins AG, Balan A. Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis. BMC Genomics 2021; 22:841. [PMID: 34798821 PMCID: PMC8603345 DOI: 10.1186/s12864-021-07972-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis, the etiological agent of tuberculosis, has at least four ATP-Binding Cassette (ABC) transporters dedicated to carbohydrate uptake: LpqY/SugABC, UspABC, Rv2038c-41c, and UgpAEBC. LpqY/SugABC transporter is essential for M. tuberculosis survival in vivo and potentially involved in the recycling of cell wall components. The three-dimensional structures of substrate-binding proteins (SBPs) LpqY, UspC, and UgpB were described, however, questions about how these proteins interact with the cognate transporter are still being explored. Components of these transporters, such as SBPs, show high immunogenicity and could be used for the development of diagnostic and therapeutic tools. In this work, we used a phylogenetic and structural bioinformatics approach to compare the four systems, in an attempt to predict functionally important regions. RESULTS Through the analysis of the putative orthologs of the carbohydrate ABC importers in species of Mycobacterium genus it was shown that Rv2038c-41c and UgpAEBC systems are restricted to pathogenic species. We showed that the components of the four ABC importers are phylogenetically separated into four groups defined by structural differences in regions that modulate the functional activity or the interaction with domain partners. The regulatory region in nucleotide-binding domains, the periplasmic interface in transmembrane domains and the ligand-binding pocket of the substrate-binding proteins define their substrates and segregation in different branches. The interface between transmembrane domains and nucleotide-binding domains show conservation of residues and charge. CONCLUSIONS The presence of four ABC transporters in M. tuberculosis dedicated to uptake and transport of different carbohydrate sources, and the exclusivity of at least two of them being present only in pathogenic species of Mycobacterium genus, highlights their relevance in virulence and pathogenesis. The significant differences in the SBPs, not present in eukaryotes, and in the regulatory region of NBDs can be explored for the development of inhibitory drugs targeting the bacillus. The possible promiscuity of NBDs also contributes to a less specific and more comprehensive control approach.
Collapse
Affiliation(s)
- Lilia I De la Torre
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - José G Vergara Meza
- Biomedical Research Group, University of Sucre, Sucre, Colombia
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Sindy Cabarca
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - André G Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil.
- Laboratory of Applied Structural Biology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374; Cidade Universitária, São Paulo, Brazil.
| |
Collapse
|
13
|
Li S, Cai C, Gong J, Liu X, Li H. A fast protein binding site comparison algorithm for proteome-wide protein function prediction and drug repurposing. Proteins 2021; 89:1541-1556. [PMID: 34245187 DOI: 10.1002/prot.26176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
The expansion of three-dimensional protein structures and enhanced computing power have significantly facilitated our understanding of protein sequence/structure/function relationships. A challenge in structural genomics is to predict the function of uncharacterized proteins. Protein function deconvolution based on global sequence or structural homology is impracticable when a protein relates to no other proteins with known function, and in such cases, functional relationships can be established by detecting their local ligand binding site similarity. Here, we introduce a sequence order-independent comparison algorithm, PocketShape, for structural proteome-wide exploration of protein functional site by fully considering the geometry of the backbones, orientation of the sidechains, and physiochemical properties of the pocket-lining residues. PocketShape is efficient in distinguishing similar from dissimilar ligand binding site pairs by retrieving 99.3% of the similar pairs while rejecting 100% of the dissimilar pairs on a dataset containing 1538 binding site pairs. This method successfully classifies 83 enzyme structures with diverse functions into 12 clusters, which is highly in accordance with the actual structural classification of proteins classification. PocketShape also achieves superior performances than other methods in protein profiling based on experimental data. Potential new applications for representative SARS-CoV-2 drugs Remdesivir and 11a are predicted. The high accuracy and time-efficient characteristics of PocketShape will undoubtedly make it a promising complementary tool for proteome-wide protein function inference and drug repurposing study.
Collapse
Affiliation(s)
- Shiliang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chaoqian Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Gong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Honglin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China.,Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
14
|
Fujita A, Kawashima A, Mitsukawa Y, Kitagawa N, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S. Purification and characterization of cycloisomaltotetraose-forming glucanotransferases from Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. Biosci Biotechnol Biochem 2021; 85:600-610. [PMID: 33624786 DOI: 10.1093/bbb/zbaa093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Glucanotransferases that can synthesize cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran were purified to homogeneity from the culture supernatant of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. The molecular mass of both enzymes was estimated to be 86 kDa by SDS-PAGE. The glucanotransferase, named CI4-forming enzyme, from Agreia sp. exhibited the highest activity at pH 6.0 and 40 °C. The enzyme was stable on the pH range of 4.6-9.9 and up to 40 °C. On the other hand, the enzyme from M. trichothecenolyticum exhibited the highest activity at pH 5.7 and 40 °C. The enzyme was stable on the pH range of 5.0-6.9 and up to 35 °C. Both enzymes catalyzed 4 reactions, namely, intramolecular α-1,6-transglycosylation (cyclization), intermolecular α-1,6-transglycosylation, hydrolysis of CI4, and coupling reaction. Furthermore, the CI4-forming enzyme produced CI4 from α-1,6-linked glucan synthesized from starch by 6-α-glucosyltransferase. These findings will enable the production of CI4 from starch.
Collapse
Affiliation(s)
| | | | | | | | | | - Tetsuya Mori
- R&D Division, HAYASHIBARA CO., Ltd., Okayama, Japan
| | | | - Hajime Aga
- R&D Division, HAYASHIBARA CO., Ltd., Okayama, Japan
| | | |
Collapse
|
15
|
Matsuyama K, Kishine N, Fujimoto Z, Sunagawa N, Kotake T, Tsumuraya Y, Samejima M, Igarashi K, Kaneko S. Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium. J Biol Chem 2020; 295:18539-18552. [PMID: 33093171 PMCID: PMC7939473 DOI: 10.1074/jbc.ra120.016149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.
Collapse
Affiliation(s)
- Kaori Matsuyama
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Toshihisa Kotake
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | - Yoichi Tsumuraya
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan; VTT Technical Research Centre of Finland, Espoo, Finland.
| | - Satoshi Kaneko
- Department of Subtropical Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
16
|
Kohno M, Arakawa T, Sunagawa N, Mori T, Igarashi K, Nishimoto T, Fushinobu S. Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway. PLoS One 2020; 15:e0241912. [PMID: 33211750 PMCID: PMC7676653 DOI: 10.1371/journal.pone.0241912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
Cyclic α-maltosyl-(1→6)-maltose (CMM) is a cyclic glucotetrasaccharide with alternating α-1,4 and α-1,6 linkages. Here, we report functional and structural analyses on CMM-binding protein (CMMBP), which is a substrate-binding protein (SBP) of an ABC importer system of the bacteria Arthrobacter globiformis. Isothermal titration calorimetry analysis revealed that CMMBP specifically bound to CMM with a Kd value of 9.6 nM. The crystal structure of CMMBP was determined at a resolution of 1.47 Å, and a panose molecule was bound in a cleft between two domains. To delineate its structural features, the crystal structure of CMMBP was compared with other SBPs specific for carbohydrates, such as cyclic α-nigerosyl-(1→6)-nigerose and cyclodextrins. These results indicate that A. globiformis has a unique metabolic pathway specialized for CMM.
Collapse
Affiliation(s)
- Masaki Kohno
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- R&D Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Mori
- R&D Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, The University of Tokyo, Tokyo, Japan
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Fujita A, Kawashima A, Ota H, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S. A cyclic tetrasaccharide, cycloisomaltotetraose, was enzymatically produced from dextran and its crystal structure was determined. Carbohydr Res 2020; 496:108104. [PMID: 32795710 DOI: 10.1016/j.carres.2020.108104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Two bacterial strains isolated from soil, namely Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006, were found to produce a novel oligosaccharide. The oligosaccharide was enzymatically produced from dextran using the culture supernatant of Agreia sp. D1110 or M. trichothecenolyticum D2006. LC-MS and NMR analysis identified the novel oligosaccharide as cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→}, which was named cycloisomaltotetraose, and abbreviated as CI4. CI4 was subsequently crystalized and its X-ray crystallographic structure was determined. CI4 crystals were shown to be pentahydrate, with the CI4 molecules in the crystal structure displaying a unique 3D structure, in which two glucosyl residues in the molecule were facing each other. This unique 3D structure was quite different from the 3D structure of known cyclic tetrasaccharides. This is the first report of CI4 molecules and their unique crystal structure.
Collapse
Affiliation(s)
- Akihiro Fujita
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan.
| | - Akira Kawashima
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hiromi Ota
- Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hikaru Watanabe
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tetsuya Mori
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tomoyuki Nishimoto
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hajime Aga
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shimpei Ushio
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| |
Collapse
|
18
|
Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases. J Biol Chem 2020; 295:8784-8797. [PMID: 32381508 PMCID: PMC7324511 DOI: 10.1074/jbc.ra120.013595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
The domestic silkworm Bombyx mori expresses two sucrose-hydrolyzing enzymes, BmSUH and BmSUC1, belonging to glycoside hydrolase family 13 subfamily 17 (GH13_17) and GH32, respectively. BmSUH has little activity on maltooligosaccharides, whereas other insect GH13_17 α-glucosidases are active on sucrose and maltooligosaccharides. Little is currently known about the structural mechanisms and substrate specificity of GH13_17 enzymes. In this study, we examined the crystal structures of BmSUH without ligands; in complexes with substrates, products, and inhibitors; and complexed with its covalent intermediate at 1.60-1.85 Å resolutions. These structures revealed that the conformations of amino acid residues around subsite -1 are notably different at each step of the hydrolytic reaction. Such changes have not been previously reported among GH13 enzymes, including exo- and endo-acting hydrolases, such as α-glucosidases and α-amylases. Amino acid residues at subsite +1 are not conserved in BmSUH and other GH13_17 α-glucosidases, but subsite -1 residues are absolutely conserved. Substitutions in three subsite +1 residues, Gln191, Tyr251, and Glu440, decreased sucrose hydrolysis and increased maltase activity of BmSUH, indicating that these residues are key for determining its substrate specificity. These results provide detailed insights into structure-function relationships in GH13 enzymes and into the molecular evolution of insect GH13_17 α-glucosidases.
Collapse
|
19
|
Duan R, Qiu L, Xu X, Ma Z, Merideth BR, Shyu CR, Zou X. Performance of human and server prediction in CAPRI rounds 38-45. Proteins 2020; 88:1110-1120. [PMID: 32483825 DOI: 10.1002/prot.25956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 11/11/2022]
Abstract
CAPRI challenges offer a variety of blind tests for protein-protein interaction prediction. In CAPRI Rounds 38-45, we generated a set of putative binding modes for each target with an FFT-based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU-based docking server, MDockPP, for protein-protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38-45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high-accuracy interface, six medium-accuracy binding modes, and six acceptable-accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high-accuracy, three medium-accuracy, and five acceptable-accuracy binding modes.
Collapse
Affiliation(s)
- Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Benjamin Ryan Merideth
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA.,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
Miyazaki T, Park EY. Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett 2020; 594:2282-2293. [PMID: 32367553 DOI: 10.1002/1873-3468.13804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glycoside hydrolases catalyze the hydrolysis of glycosidic linkages in carbohydrates. The glycoside hydrolase family 31 (GH31) contains α-glucosidase, α-xylosidase, α-galactosidase, and α-transglycosylase. Recent work has expanded the diversity of substrate specificity of GH31 enzymes, and α-N-acetylgalactosaminidases (αGalNAcases) belonging to GH31 have been identified in human gut bacteria. Here, we determined the first crystal structure of a truncated form of GH31 αGalNAcase from the human gut bacterium Enterococcus faecalis. The enzyme has a similar fold to other reported GH31 enzymes and an additional fibronectin type 3-like domain. Additionally, the structure in complex with N-acetylgalactosamine reveals that conformations of the active site residues, including its catalytic nucleophile, change to recognize the ligand. Our structural analysis provides insight into the substrate recognition and catalytic mechanism of GH31 αGalNAcases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
21
|
Miyake M, Terada T, Shimokawa M, Sugimoto N, Arakawa T, Shimizu K, Igarashi K, Fujita K, Fushinobu S. Structural analysis of β-L-arabinobiose-binding protein in the metabolic pathway of hydroxyproline-rich glycoproteins in Bifidobacterium longum. FEBS J 2020; 287:5114-5129. [PMID: 32246585 DOI: 10.1111/febs.15315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Bifidobacterium longum is a symbiotic human gut bacterium that has a degradation system for β-arabinooligosaccharides, which are present in the hydroxyproline-rich glycoproteins of edible plants. Whereas microbial degradation systems for α-linked arabinofuranosyl carbohydrates have been extensively studied, little is understood about the degradation systems targeting β-linked arabinofuranosyl carbohydrates. We functionally and structurally analyzed a substrate-binding protein (SBP) of a putative ABC transporter (BLLJ_0208) in the β-arabinooligosaccharide degradation system. Thermal shift assays and isothermal titration calorimetry revealed that the SBP specifically bound Araf-β1,2-Araf (β-Ara2 ) with a Kd of 0.150 μm, but did not bind L-arabinose or methyl-β-Ara2 . Therefore, the SBP was termed β-arabinobiose-binding protein (BABP). Crystal structures of BABP complexed with β-Ara2 were determined at resolutions of up to 1.78 Å. The findings showed that β-Ara2 was bound to BABP within a short tunnel between two lobes as an α-anomeric form at its reducing end. BABP forms extensive interactions with β-Ara2 , and its binding mode was unique among SBPs. A molecular dynamics simulation revealed that the closed conformation of substrate-bound BABP is stable, whereas substrate-free form can adopt a fully open and two distinct semi-open states. The importer system specific for β-Ara2 may contribute to microbial survival in biological niches with limited amounts of digestible carbohydrates. DATABASE: Atomic coordinates and structure factors (codes 6LCE and 6LCF) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Collapse
Affiliation(s)
| | - Tohru Terada
- The Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | - Naohisa Sugimoto
- Department of Biomaterial Sciences, The University of Tokyo, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, The University of Tokyo, Japan.,VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| |
Collapse
|
22
|
Kong R, Liu R, Xu X, Zhang D, Xu X, Shi H, Chang S. Template‐based modeling and ab‐initio docking using
CoDock
in
CAPRI. Proteins 2020; 88:1100-1109. [DOI: 10.1002/prot.25892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/21/2019] [Accepted: 03/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
| | - Ran‐Ran Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
| | - Xi‐Ming Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Da‐Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
| | - Xiao‐Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou China
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
23
|
Cao H, Walton JD, Brumm P, Phillips GN. Crystal Structure of α-Xylosidase from Aspergillus niger in Complex with a Hydrolyzed Xyloglucan Product and New Insights in Accurately Predicting Substrate Specificities of GH31 Family Glycosidases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:2540-2547. [PMID: 32161692 PMCID: PMC7059301 DOI: 10.1021/acssuschemeng.9b07073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Glycoside hydrolase family 31 (GH31) enzymes show both highly conserved folds and catalytic residues. Yet different members of GH31 show very different substrate specificities, and it is not obvious how these specificities arise from the protein sequences. The fungal α-xylosidase, AxlA, was originally isolated from a commercial enzyme mixture secreted by Aspergillus niger and was reported to have potential as a catalytic component in biomass deconstruction in the biofuel industry. We report here the crystal structure of AxlA in complex with its catalytic product, a hydrolyzed xyloglucan oligosaccharide. On the basis of our new structure, we provide the structural basis for AxlA's role in xyloglucan utilization and, more importantly, a new procedure to predict and differentiate C5 vs C6 sugar specific activities based on protein sequences of the functionally diverse GH31 family enzymes.
Collapse
Affiliation(s)
- Hongnan Cao
- BioSciences
at Rice and Department of Chemistry, Rice
University, Houston, Texas 77251, United States
- Great
Lakes Bioenergy Research Center and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jonathan D. Walton
- Great
Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Phillip Brumm
- C5−6
Technologies Corp., Middleton, Wisconsin 53562, United States
| | - George N. Phillips
- BioSciences
at Rice and Department of Chemistry, Rice
University, Houston, Texas 77251, United States
- Great
Lakes Bioenergy Research Center and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Wei Z, Chen C, Liu YJ, Dong S, Li J, Qi K, Liu S, Ding X, Ortiz de Ora L, Muñoz-Gutiérrez I, Li Y, Yao H, Lamed R, Bayer EA, Cui Q, Feng Y. Alternative σI/anti-σI factors represent a unique form of bacterial σ/anti-σ complex. Nucleic Acids Res 2019; 47:5988-5997. [PMID: 31106374 PMCID: PMC6582324 DOI: 10.1093/nar/gkz355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
The σ70 family alternative σI factors and their cognate anti-σI factors are widespread in Clostridia and Bacilli and play a role in heat stress response, virulence, and polysaccharide sensing. Multiple σI/anti-σI factors exist in some lignocellulolytic clostridial species, specifically for regulation of components of a multienzyme complex, termed the cellulosome. The σI and anti-σI factors are unique, because the C-terminal domain of σI (SigIC) and the N-terminal inhibitory domain of anti-σI (RsgIN) lack homology to known proteins. Here, we report structure and interaction studies of a pair of σI and anti-σI factors, SigI1 and RsgI1, from the cellulosome-producing bacterium, Clostridium thermocellum. In contrast to other known anti-σ factors that have N-terminal helical structures, RsgIN has a β-barrel structure. Unlike other anti-σ factors that bind both σ2 and σ4 domains of the σ factors, RsgIN binds SigIC specifically. Structural analysis showed that SigIC contains a positively charged surface region that recognizes the promoter -35 region, and the synergistic interactions among multiple interfacial residues result in the specificity displayed by different σI/anti-σI pairs. We suggest that the σI/anti-σI factors represent a distinctive mode of σ/anti-σ complex formation, which provides the structural basis for understanding the molecular mechanism of the intricate σI/anti-σI system.
Collapse
Affiliation(s)
- Zhen Wei
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Qi
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyue Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoke Ding
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lizett Ortiz de Ora
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Iván Muñoz-Gutiérrez
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yifei Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongwei Yao
- High-Field Nuclear Magnetic Resonance Center, Xiamen University, 422 South Siming Road, Xiamen 361005, China
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- To whom correspondence should be addressed. Tel: +86 532 80662706; Fax: +86 532 80662707;
| |
Collapse
|
25
|
Chandravanshi M, Gogoi P, Kanaujia SP. Structural and thermodynamic correlation illuminates the selective transport mechanism of disaccharide α‐glycosides through ABC transporter. FEBS J 2019; 287:1576-1597. [DOI: 10.1111/febs.15093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati India
| | - Prerana Gogoi
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati India
| | | |
Collapse
|
26
|
Tsutsumi K, Gozu Y, Nishikawa A, Tonozuka T. Structural insights into polysaccharide recognition by
Flavobacterium johnsoniae
dextranase, a member of glycoside hydrolase family 31. FEBS J 2019; 287:1195-1207. [DOI: 10.1111/febs.15074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Kenta Tsutsumi
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Yoshifumi Gozu
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| |
Collapse
|
27
|
A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides. Appl Microbiol Biotechnol 2019; 103:6581-6592. [DOI: 10.1007/s00253-019-09965-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
28
|
Fernandez M, Plumbridge J. Complex synergistic amino acid-nucleotide interactions contribute to the specificity of NagC operator recognition and induction. MICROBIOLOGY-SGM 2019; 165:792-803. [PMID: 31107208 DOI: 10.1099/mic.0.000814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NagC is a transcription factor that represses genes involved in N-acetylglucosamine catabolism in Escherichia coli. Repression by NagC is relieved by interaction with GlcNAc6P, the product of transport of GlcNAc into the cell. The DNA-binding domain of NagC contains a classic helix-turn-helix (HTH) motif, but specific operator recognition requires, in addition, an adjacent linker sequence, which is thought to form an extended wing. Sequences in the linker region are required to distinguish NagC-binding sites from those of its paralogue, Mlc. In investigating the contribution of the HTH to operator recognition, we have identified mutations in the first two positions of the recognition helix of the DNA-binding motif of NagC, which change NagC from being a repressor, which binds in the absence of the inducing signal (GlcNAc6P), to one whose binding is enhanced by GlcNAc6P. In this case GlcNAc6P behaves as a co-repressor rather than an inducer for NagC. The NagC mutants exhibiting this paradoxical behaviour have basic amino acids, arginine or lysine, at two critical positions of the recognition helix. Introducing a third amino acid change converts NagC back to a protein, which represses in the absence of GlcNAc6P. The triple mutant also effectively represses a modified NagC operator that is not repressed by wild-type NagC, showing that this form of NagC is a more promiscuous DNA binder. Specific recognition of the NagC operator thus involves a modulation of basic amino acid-DNA interactions, which affects the ability to discriminate against other permissive sites.
Collapse
Affiliation(s)
- Marion Fernandez
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| | - Jacqueline Plumbridge
- UMR8261,CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
29
|
Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis. J Biol Chem 2018; 293:16874-16888. [PMID: 30181215 PMCID: PMC6204909 DOI: 10.1074/jbc.ra118.004472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cyclic α-maltosyl-(1→6)-maltose (CMM, cyclo-{→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→})is a cyclic glucotetrasaccharide with alternating α-1,4 and α-1,6 linkages. CMM is composed of two maltose units and is one of the smallest cyclic glucooligosaccharides. Although CMM is resistant to usual amylases, it is efficiently hydrolyzed by CMM hydrolase (CMMase), belonging to subfamily 20 of glycoside hydrolase family 13 (GH13_20). Here, we determined the ligand-free crystal structure of CMMase from the soil-associated bacterium Arthrobacter globiformis and its structures in complex with maltose, panose, and CMM to elucidate the structural basis of substrate recognition by CMMase. The structures disclosed that although the monomer structure consists of three domains commonly adopted by GH13 and other α-amylase-related enzymes, CMMase forms a unique wing-like dimer structure. The complex structure with CMM revealed four specific subsites, namely -3', -2, -1, and +1'. We also observed that the bound CMM molecule adopts a low-energy conformer compared with the X-ray structure of a single CMM crystal, also determined here. Comparison of the CMMase active site with those in other enzymes of the GH13_20 family revealed that three regions forming the wall of the cleft, denoted PYF (Pro-203/Tyr-204/Phe-205), CS (Cys-163/Ser-164), and Y (Tyr-168), are present only in CMMase and are involved in CMM recognition. Combinations of multiple substitutions in these regions markedly decreased the activity toward CMM, indicating that the specificity for this cyclic tetrasaccharide is supported by the entire shape of the pocket. In summary, our work uncovers the mechanistic basis for the highly specific interactions of CMMase with its substrate CMM.
Collapse
|
30
|
Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018; 562:140-144. [PMID: 30209391 PMCID: PMC6221200 DOI: 10.1038/s41586-018-0498-z] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022]
Abstract
Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell1. Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms2-4 but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.
Collapse
Affiliation(s)
- Samuel H Light
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lin Su
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jose A Cornejo
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Caroline M Ajo-Franklin
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
31
|
Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity. Structure 2017; 25:295-304. [PMID: 28089449 DOI: 10.1016/j.str.2016.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022]
Abstract
Active in the aqueous cellular environment where a massive excess of water is perpetually present, enzymes that catalyze the transfer of an electrophile to a non-water nucleophile (transferases) require specific strategies to inhibit mechanistically related hydrolysis reactions. To identify principles that confer transferase versus hydrolase reaction specificity, we exploited two enzymes that use highly similar catalytic apparatuses to catalyze the transglycosylation (a transferase reaction) or hydrolysis of α-1,3-glucan linkages in the cyclic tetrasaccharide cycloalternan (CA). We show that substrate binding to non-catalytic domains and a conformationally stable active site promote CA transglycosylation, whereas a distinct pattern of active site conformational change is associated with CA hydrolysis. These findings defy the classic view of induced-fit conformational change and illustrate a mechanism by which a stable hydrophobic binding site can favor transferase activity and disfavor hydrolysis. Application of these principles could facilitate the rational reengineering of transferases with desired catalytic properties.
Collapse
|