1
|
Shao J, Liewald JF, Steuer Costa W, Ruse C, Gruber J, Djamshedzad MS, Gebhardt W, Gottschalk A. Loss of neuropeptidergic regulation of cholinergic transmission induces homeostatic compensation in muscle cells to preserve synaptic strength. PLoS Biol 2025; 23:e3003171. [PMID: 40338987 PMCID: PMC12088594 DOI: 10.1371/journal.pbio.3003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 05/19/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
Chemical synaptic transmission at the neuromuscular junction (NMJ) is regulated by electrical activity of the motor circuit, but may also be affected by neuromodulation. Here, we assessed the role of neuropeptide signaling in the plasticity of NMJ function in Caenorhabditis elegans. We show that the CAPS (Ca2+-dependent activator protein for secretion) ortholog UNC-31, which regulates exocytosis of dense core vesicles, affects both pre- and post-synaptic functional properties, as well as NMJ-mediated locomotion. Despite reduced evoked acetylcholine (ACh) transmission, the loss of unc-31 results in a more vigorous response to presynaptic stimulation, i.e., enhanced muscle contraction and Ca2+ transients. Based on expression profiles, we identified neuropeptides involved in both cholinergic (FLP-6, FLP-15, NLP-9, NLP-15, NLP-21, and NLP-38) and GABAergic motor neurons (FLP-15, NLP-15), that mediate normal transmission at the NMJ. In the absence of these peptides, neurons fail to upregulate their ACh output in response to increased cAMP signaling; for flp-15; nlp-15 double mutants, we observed overall increased postsynaptic currents, indicating that these neuropeptides may be inhibitory. We also identified proprotein convertases encoded by aex-5/kpc-3 and egl-3/kpc-2 that act synergistically to generate these neuropeptides. We propose that postsynaptic homeostatic scaling, mediated by increased muscle activation, likely through excitability, might compensate for the reduced cholinergic transmission in mutants affected for neuropeptide signaling, thus maintaining net synaptic strength. We show that in the absence of UNC-31 muscle excitability is modulated by upregulating the expression of the muscular L-type voltage-gated Ca2+ channel EGL-19. Our results unveil a role for neuropeptidergic regulation in synaptic plasticity, linking changes in presynaptic transmission to compensatory changes in muscle excitability.
Collapse
Affiliation(s)
- Jiajie Shao
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Jana F. Liewald
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Wagner Steuer Costa
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Christiane Ruse
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Jens Gruber
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Mohammad S. Djamshedzad
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Wulf Gebhardt
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Alexander Gottschalk
- Faculty of Molecular Sciences, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Chen YC, Zang KE, Ahamed H, Ringstad N. Food sensing controls C. elegans reproductive behavior by neuromodulatory disinhibition. SCIENCE ADVANCES 2025; 11:eadu5829. [PMID: 40238881 PMCID: PMC12002139 DOI: 10.1126/sciadv.adu5829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Like many organisms, the roundworm Caenorhabditis elegans incorporates an assessment of environmental quality into its reproductive strategy. C. elegans hermaphrodites release fertilized eggs into food-rich environments but retain them in the absence of food. Here, we report the discovery of a neural circuit required for the modulation of reproductive behavior by food sensing. A mutation that electrically silences the AVK interneurons uncouples egg laying from detection of environmental food cues. We find that AVK activity inhibits egg laying, and AVKs themselves are inhibited by dopamine released from food-sensing neurons. AVKs express a large number of structurally and functionally diverse neuropeptides. Coordination of food-sensing and reproductive behavior requires a subset of AVK neuropeptides that converge on a small ensemble of premotor neurons that coexpress their cognate receptors. Modulation of C. elegans reproductive behavior, therefore, requires a cascade of neuromodulatory signals that uses disinhibition and combinatorial neuropeptide signals to activate reproductive behavior when food is sensed.
Collapse
Affiliation(s)
| | - Kara E. Zang
- Department of Cell Biology and Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology and Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology and Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Medrano E, Jendrick K, McQuirter J, Moxham C, Rajic D, Rosendorf L, Stilman L, Wilright D, Collins KM. Osmolarity regulates C. elegans egg-laying behavior via parallel chemosensory and biophysical mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630790. [PMID: 39803577 PMCID: PMC11722301 DOI: 10.1101/2024.12.30.630790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm C. elegans initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited. We analyzed egg-laying behavior after acute and chronic shifts to and from hyperosmotic media. Animals on 400 mM sorbitol stop laying eggs immediately but then resume ~3 hours later, after accumulating additional eggs in the uterus. Surprisingly, the hyperosmotic cessation of egg laying did not require known osmotic avoidance signaling pathways. Acute hyperosmotic shifts in hyperosmotic-resistant mutants overproducing glycerol also blocked egg laying, but these animals resumed egg laying more quickly than similarly treated wild-type animals. These results suggest that hyperosmotic conditions disrupt a 'high-inside' hydrostatic pressure gradient required for egg laying. Consistent with this hypothesis, animals adapted to hyperosmotic conditions laid more eggs after acute shifts back to normosmic conditions. Optogenetic stimulation of the HSN egg-laying command neurons in hyper-osmotic treated animals led to fewer and slower egg-laying events, an effect not seen following direct optogenetic stimulation of the postsynaptic vulval muscles. Hyperosmotic conditions also affected egg-laying circuit activity with the vulval muscles showing reduced Ca2+ transient amplitudes and frequency even after egg-laying resumes. Together, these results indicate that hyperosmotic conditions regulate egg-laying via two parallel mechanisms: a sensory pathway that acts to reduce HSN excitability and neurotransmitter release, and a biophysical mechanism where a hydrostatic pressure gradient reports egg accumulation in the uterus.
Collapse
Affiliation(s)
- Emmanuel Medrano
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
| | - Karen Jendrick
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Julian McQuirter
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Claire Moxham
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Dominique Rajic
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Lila Rosendorf
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Liraz Stilman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Dontrel Wilright
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Kevin M Collins
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
| |
Collapse
|
5
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
6
|
Lo JY, Adam KM, Garrison JL. Neuropeptide inactivation regulates egg-laying behavior to influence reproductive health in Caenorhabditis elegans. Curr Biol 2024; 34:4715-4728.e4. [PMID: 39395417 PMCID: PMC12009563 DOI: 10.1016/j.cub.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
Neural communication requires both fast-acting neurotransmitters and neuromodulators that function on slower timescales to communicate. Endogenous bioactive peptides, often called "neuropeptides," comprise the largest and most diverse class of neuromodulators that mediate crosstalk between the brain and peripheral tissues to regulate physiology and behaviors conserved across the animal kingdom. Neuropeptide signaling can be terminated through receptor binding and internalization or degradation by extracellular enzymes called neuropeptidases. Inactivation by neuropeptidases can shape the dynamics of signaling in vivo by specifying both the duration of signaling and the anatomic path neuropeptides can travel before they are degraded. For most neuropeptides, the identity of the relevant inactivating peptidase(s) is unknown. Here, we established a screening platform in C. elegans utilizing mass spectrometry-based peptidomics to discover neuropeptidases and simultaneously profile the in vivo specificity of these enzymes against each of more than 250 endogenous peptides. We identified NEP-2, a worm ortholog of the mammalian peptidase neprilysin-2, and demonstrated that it regulates specific neuropeptides, including those in the egg-laying circuit. We found that NEP-2 is required in muscle cells to regulate signals from neurons to modulate both behavior and health in the reproductive system. Taken together, our results demonstrate that peptidases, which are an important node of regulation in neuropeptide signaling, affect the dynamics of signaling to impact behavior, physiology, and aging.
Collapse
Affiliation(s)
- Jacqueline Y Lo
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Katelyn M Adam
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Center for Healthy Aging in Women, 8001 Redwood Boulevard, Novato, CA 94945, USA; Productive Health Global Consortium, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
7
|
Chen L, Su P, Wang Y, Liu Y, Chen LM, Gao S. CKR-1 orchestrates two motor states from a single motoneuron in C. elegans. iScience 2024; 27:109390. [PMID: 38510145 PMCID: PMC10952047 DOI: 10.1016/j.isci.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Neuromodulation is pivotal in modifying neuronal properties and motor states. CKR-1, a homolog of the cholecystokinin receptor, modulates robust escape steering and undulation body bending in C. elegans. Nevertheless, the mechanisms through which CKR-1 governs these motor states remain elusive. We elucidate the head motoneuron SMD as the orchestrator of both motor states. This regulation involves two neuropeptides: NLP-12 from DVA enhances undulation body curvature, while NLP-18 from ASI amplifies Ω-turn head curvature. Moreover, synthetic NLP-12 and NLP-18 peptides elicit CKR-1-dependent currents in Xenopus oocytes and Ca2+ transients in SMD neurons. Notably, CKR-1 shows higher sensitivity to NLP-18 compared to NLP-12. In situ patch-clamp recordings reveal CKR-1, NLP-12, and NLP-18 are not essential for neurotransmission at C. elegans neuromuscular junction, suggesting that SMD independently regulates head and body bending. Our studies illustrate that a single motoneuron SMD utilizes a cholecystokinin receptor CKR-1 to integrate two motor states.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Mignerot L, Gimond C, Bolelli L, Bouleau C, Sandjak A, Boulin T, Braendle C. Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off. eLife 2024; 12:RP88253. [PMID: 38564369 PMCID: PMC10987095 DOI: 10.7554/elife.88253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Asma Sandjak
- Université Côte d’Azur, CNRS, Inserm, IBVNiceFrance
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de LyonLyonFrance
| | | |
Collapse
|
9
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J 2024; 43:956-992. [PMID: 38360995 PMCID: PMC10943081 DOI: 10.1038/s44318-024-00049-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jessica Jiang
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Alexion Pharmaceuticals, Boston, MA, 02135, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Bollen DP, Reddy KC, Lascarez-Lagunas LI, Kim DH, Colaiácovo MP. Germline mitotic quiescence and cell death are induced in Caenorhabditis elegans by exposure to pathogenic Pseudomonas aeruginosa. Genetics 2024; 226:iyad197. [PMID: 37956057 PMCID: PMC10763535 DOI: 10.1093/genetics/iyad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of exposure to microbial pathogens on animal reproductive capacity and germline physiology is not well understood. The nematode Caenorhabditis elegans is a bacterivore that encounters pathogenic microbes in its natural environment. How pathogenic bacteria affect host reproductive capacity of C. elegans is not well understood. Here, we show that exposure of C. elegans hermaphrodites to the Gram-negative pathogen Pseudomonas aeruginosa causes a marked reduction in brood size with concomitant reduction in the number of nuclei in the germline and gonad size. We define 2 processes that are induced that contribute to the decrease in the number of germ cell nuclei. First, we observe that infection with P. aeruginosa leads to the induction of germ cell apoptosis. Second, we observe that this exposure induces mitotic quiescence in the proliferative zone of the C. elegans gonad. Importantly, these processes appear to be reversible; when animals are removed from the presence of P. aeruginosa, germ cell apoptosis is abated, germ cell nuclei numbers increase, and brood sizes recover. The reversible germline dynamics during exposure to P. aeruginosa may represent an adaptive response to improve survival of progeny and may serve to facilitate resource allocation that promotes survival during pathogen infection.
Collapse
Affiliation(s)
- Daniel P Bollen
- Division of Infectious Diseases and Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirthi C Reddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Dennis H Kim
- Division of Infectious Diseases and Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Kwon S, Park KS, Yoon KH. Dissecting the Neuronal Contributions of the Lipid Regulator NHR-49 Function in Lifespan and Behavior in C. elegans. Life (Basel) 2023; 13:2346. [PMID: 38137948 PMCID: PMC10744624 DOI: 10.3390/life13122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Although the importance of lipid homeostasis in neuronal function is undisputed, how they are regulated within neurons to support their unique function is an area of active study. NHR-49 is a nuclear hormone receptor functionally similar to PPARα, and a major lipid regulator in C. elegans. Although expressed in most tissues, little is known about its roles outside the intestine, the main metabolic organ of C. elegans. Here, using tissue- and neuron-type-specific transgenic strains, we examined the contribution of neuronal NHR-49 to cell-autonomous and non-autonomous nhr-49 mutant phenotypes. We examined lifespan, brood size, early egg-laying, and reduced locomotion on food. We found that lifespan and brood size could be rescued by neuronal NHR-49, and that NHR-49 in cholinergic and serotonergic neurons is sufficient to restore lifespan. For behavioral phenotypes, NHR-49 in serotonergic neurons was sufficient to control egg-laying, whereas no single tissue or neuron type was able to rescue the enhanced on-food slowing behavior. Our study shows that NHR-49 can function in single neuron types to regulate C. elegans physiology and behavior, and provides a platform to further investigate how lipid metabolism in neurons impact neuronal function and overall health of the organism.
Collapse
Affiliation(s)
- Saebom Kwon
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University of Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University of Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea
| | - Kyoung-hye Yoon
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
12
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and UNC-30/Pitx2 control the development of C. elegans mesodermal glia that regulate motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563501. [PMID: 37961181 PMCID: PMC10634723 DOI: 10.1101/2023.10.23.563501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While most CNS glia arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which ensheath the brain neuropil and separate it from the circulatory-system cavity. Transcriptome analysis suggests GLR glia merge astrocytic and endothelial characteristics relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naïve cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and induces salt hypersensitivity, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neurons, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
|
13
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Meng B, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. Curr Biol 2023; 33:4430-4445.e6. [PMID: 37769660 PMCID: PMC10860333 DOI: 10.1016/j.cub.2023.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bohan Meng
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra B Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
15
|
Bollen DP, Reddy KC, Kim DH, Colaiácovo MP. Germline mitotic quiescence and programmed cell death are induced in C. elegans by exposure to pathogenic P. aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552522. [PMID: 37609207 PMCID: PMC10441368 DOI: 10.1101/2023.08.08.552522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The impact of exposure to microbial pathogens on animal reproductive capacity and germline physiology is not well understood. The nematode Caenorhabditis elegans is a bacterivore that encounters pathogenic microbes in its natural environment. How pathogenic bacteria affect host reproductive capacity of C. elegans is not well understood. Here, we show that exposure of C. elegans hermaphrodites to the Gram-negative pathogen Pseudomonas aeruginosa causes a marked reduction in brood size with concomitant reduction in the number of nuclei in the germline and gonad size. We define two processes that are induced that contribute to the decrease in the number of germ cell nuclei. First, we observe that infection with P. aeruginosa leads to the induction of programmed germ cell death. Second, we observe that this exposure induces mitotic quiescence in the proliferative zone of the C. elegans gonad. Importantly, these processes appear to be reversible; when animals are removed from the presence of P. aeruginosa, germ cell death is abated, germ cell nuclei numbers increase, and brood sizes recover. The reversible germline dynamics during exposure to P. aeruginosa may represent an adaptive response to improve survival of progeny and may serve to facilitate resource allocation that promotes survival during pathogen infection.
Collapse
Affiliation(s)
- Daniel P. Bollen
- Division of Infectious Diseases and Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirthi C. Reddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dennis H. Kim
- Division of Infectious Diseases and Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Le E, McCarthy T, Honer M, Curtin CE, Fingerut J, Nelson MD. The neuropeptide receptor npr-38 regulates avoidance and stress-induced sleep in Caenorhabditis elegans. Curr Biol 2023; 33:3155-3168.e9. [PMID: 37419114 DOI: 10.1016/j.cub.2023.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Although essential and conserved, sleep is not without its challenges that must be overcome; most notably, it renders animals vulnerable to threats in the environment. Infection and injury increase sleep demand, which dampens sensory responsiveness to stimuli, including those responsible for the initial insult. Stress-induced sleep in Caenorhabditis elegans occurs in response to cellular damage following noxious exposures the animals attempted to avoid. Here, we describe a G-protein-coupled receptor (GPCR) encoded by npr-38, which is required for stress-related responses including avoidance, sleep, and arousal. Overexpression of npr-38 shortens the avoidance phase and causes animals to initiate movement quiescence and arouse early. npr-38 functions in the ADL sensory neurons, which express neuropeptides encoded by nlp-50, also required for movement quiescence. npr-38 regulates arousal by acting on the DVA and RIS interneurons. Our work demonstrates that this single GPCR regulates multiple aspects of the stress response by functioning in sensory and sleep interneurons.
Collapse
Affiliation(s)
- Emily Le
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Teagan McCarthy
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Caroline E Curtin
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jonathan Fingerut
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA.
| |
Collapse
|
17
|
Medrano E, Collins KM. Muscle-directed mechanosensory feedback activates egg-laying circuit activity and behavior in Caenorhabditis elegans. Curr Biol 2023; 33:2330-2339.e8. [PMID: 37236183 PMCID: PMC10280788 DOI: 10.1016/j.cub.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Mechanosensory feedback of the internal reproductive state drives decisions about when and where to reproduce.1 For instance, stretch in the Drosophila reproductive tract produced by artificial distention or from accumulated eggs regulates the attraction to acetic acid to ensure optimal oviposition.2 How such mechanosensory feedback modulates neural circuits to coordinate reproductive behaviors is incompletely understood. We previously identified a stretch-dependent homeostat that regulates egg laying in Caenorhabditis elegans. Sterilized animals lacking eggs show reduced Ca2+ transient activity in the presynaptic HSN command motoneurons that drive egg-laying behavior, while animals forced to accumulate extra eggs show dramatically increased circuit activity that restores egg laying.3 Interestingly, genetic ablation or electrical silencing of the HSNs delays, but does not abolish, the onset of egg laying,3,4,5 with animals recovering vulval muscle Ca2+ transient activity upon egg accumulation.6 Using an acute gonad microinjection technique to mimic changes in pressure and stretch resulting from germline activity and egg accumulation, we find that injection rapidly stimulates Ca2+ activity in both neurons and muscles of the egg-laying circuit. Injection-induced vulval muscle Ca2+ activity requires L-type Ca2+ channels but is independent of presynaptic input. Conversely, injection-induced neural activity is disrupted in mutants lacking the vulval muscles, suggesting "bottom-up" feedback from muscles to neurons. Direct mechanical prodding activates the vulval muscles, suggesting that they are the proximal targets of the stretch-dependent stimulus. Our results show that egg-laying behavior in C. elegans is regulated by a stretch-dependent homeostat that scales postsynaptic muscle responses with egg accumulation in the uterus.
Collapse
Affiliation(s)
- Emmanuel Medrano
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Kevin M Collins
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| |
Collapse
|
18
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
19
|
Olson AC, Butt AM, Christie NTM, Shelar A, Koelle MR. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα q and Gα s Activate the Caenorhabditis elegans Egg-Laying Muscles. J Neurosci 2023; 43:3789-3806. [PMID: 37055179 PMCID: PMC10219013 DOI: 10.1523/jneurosci.2301-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in the Caenorhabditis elegans egg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαq or SER-7/Gαs alone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαq and Gαs in the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαq and Gαs signaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENT How can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system of C. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.
Collapse
Affiliation(s)
- Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Allison M Butt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Nakeirah T M Christie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Ashish Shelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
20
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.532814. [PMID: 37034579 PMCID: PMC10081309 DOI: 10.1101/2023.04.02.532814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Casey M. Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A. Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra B. Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Godini R, Pocock R. Characterization of the Doublesex/MAB-3 transcription factor DMD-9 in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkac305. [PMID: 36454093 PMCID: PMC9911054 DOI: 10.1093/g3journal/jkac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
DMD-9 is a Caenorhabditis elegans Doublesex/MAB-3 Domain transcription factor (TF) of unknown function. Single-cell transcriptomics has revealed that dmd-9 is highly expressed in specific head sensory neurons, with lower levels detected in non-neuronal tissues (uterine cells and sperm). Here, we characterized endogenous dmd-9 expression and function in hermaphrodites and males to identify potential sexually dimorphic roles. In addition, we dissected the trans- and cis-regulatory mechanisms that control DMD-9 expression in neurons. Our results show that of the 22 neuronal cell fate reporters we assessed in DMD-9-expressing neurons, only the neuropeptide-encoding flp-19 gene is cell-autonomously regulated by DMD-9. Further, we did not identify defects in behaviors mediated by DMD-9 expressing neurons in dmd-9 mutants. We found that dmd-9 expression in neurons is regulated by 4 neuronal fate regulatory TFs: ETS-5, EGL-13, CHE-1, and TTX-1. In conclusion, our study characterized the DMD-9 expression pattern and regulatory logic for its control. The lack of detectable phenotypes in dmd-9 mutant animals suggests that other proteins compensate for its loss.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
22
|
Handley A, Wu Q, Sherry T, Cornell R, Pocock R. Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism. PLoS Biol 2022; 20:e3001655. [PMID: 35594303 PMCID: PMC9162364 DOI: 10.1371/journal.pbio.3001655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/02/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. A key part of this network is insulin-like signaling, which is fundamental for surviving glucose stress. Here, we show that Caenorhabditis elegans fed excess dietary glucose reduce insulin-1 (INS-1) expression specifically in the BAG glutamatergic sensory neurons. We demonstrate that INS-1 expression in the BAG neurons is directly controlled by the transcription factor ETS-5, which is also down-regulated by glucose. We further find that INS-1 acts exclusively from the BAG neurons, and not other INS-1-expressing neurons, to systemically inhibit fat storage via the insulin-like receptor DAF-2. Together, these findings reveal an intertissue regulatory pathway where regulation of insulin expression in a specific neuron controls systemic metabolism in response to excess dietary glucose. Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. This study shows that Caenorhabditis elegans nematodes fed excess dietary glucose reduce the expression of insulin-1 specifically in the BAG glutamatergic sensory neurons, and that insulin-1 produced by these neurons systemically inhibits fat storage via the insulin-like receptor DAF-2.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| | - Qiuli Wu
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| |
Collapse
|
23
|
Marques F, Falquet L, Vandewyer E, Beets I, Glauser DA. Signaling via the FLP-14/FRPR-19 neuropeptide pathway sustains nociceptive response to repeated noxious stimuli in C. elegans. PLoS Genet 2021; 17:e1009880. [PMID: 34748554 PMCID: PMC8601619 DOI: 10.1371/journal.pgen.1009880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
In order to thrive in constantly changing environments, animals must adaptively respond to threatening events. Noxious stimuli are not only processed according to their absolute intensity, but also to their context. Adaptation processes can cause animals to habituate at different rates and degrees in response to permanent or repeated stimuli. Here, we used a forward genetic approach in Caenorhabditis elegans to identify a neuropeptidergic pathway, essential to prevent fast habituation and maintain robust withdrawal responses to repeated noxious stimuli. This pathway involves the FRPR-19A and FRPR-19B G-protein coupled receptor isoforms produced from the frpr-19 gene by alternative splicing. Loss or overexpression of each or both isoforms can impair withdrawal responses caused by the optogenetic activation of the polymodal FLP nociceptor neuron. Furthermore, we identified FLP-8 and FLP-14 as FRPR-19 ligands in vitro. flp-14, but not flp-8, was essential to promote withdrawal response and is part of the same genetic pathway as frpr-19 in vivo. Expression and cell-specific rescue analyses suggest that FRPR-19 acts both in the FLP nociceptive neurons and downstream interneurons, whereas FLP-14 acts from interneurons. Importantly, genetic impairment of the FLP-14/FRPR-19 pathway accelerated the habituation to repeated FLP-specific optogenetic activation, as well as to repeated noxious heat and harsh touch stimuli. Collectively, our data suggest that well-adjusted neuromodulation via the FLP-14/FRPR-19 pathway contributes to promote nociceptive signals in C. elegans and counteracts habituation processes that otherwise tend to rapidly reduce aversive responses to repeated noxious stimuli.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elke Vandewyer
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
25
|
Saberski E, Bock AK, Goodridge R, Agarwal V, Lorimer T, Rifkin SA, Sugihara G. Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans. PLoS Comput Biol 2021; 17:e1009329. [PMID: 34506477 PMCID: PMC8494368 DOI: 10.1371/journal.pcbi.1009329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/06/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called "eigenworms"). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create "interaction profiles" to represent an individual's behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.
Collapse
Affiliation(s)
- Erik Saberski
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Antonia K. Bock
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Rachel Goodridge
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vitul Agarwal
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Tom Lorimer
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Scott A. Rifkin
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - George Sugihara
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
27
|
Ravi B, Zhao J, Chaudhry I, Signorelli R, Bartole M, Kopchock RJ, Guijarro C, Kaplan JM, Kang L, Collins KM. Presynaptic Gαo (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in Caenorhabditis elegans. Genetics 2021; 218:6284136. [PMID: 34037773 DOI: 10.1093/genetics/iyab080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintains a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | - Jian Zhao
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | - Mattingly Bartole
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | | | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - Lijun Kang
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kevin M Collins
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| |
Collapse
|
28
|
Özbey NP, Imanikia S, Krueger C, Hardege I, Morud J, Sheng M, Schafer WR, Casanueva MO, Taylor RC. Tyramine Acts Downstream of Neuronal XBP-1s to Coordinate Inter-tissue UPR ER Activation and Behavior in C. elegans. Dev Cell 2020; 55:754-770.e6. [PMID: 33232669 PMCID: PMC7758879 DOI: 10.1016/j.devcel.2020.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
In C. elegans, expression of the UPRER transcription factor xbp-1s in neurons cell non-autonomously activates the UPRER in the intestine, leading to enhanced proteostasis and lifespan. To better understand this signaling pathway, we isolated neurons from animals expressing neuronal xbp-1s for transcriptomic analysis, revealing a striking remodeling of transcripts involved in neuronal signaling. We then identified signaling molecules required for cell non-autonomous intestinal UPRER activation, including the biogenic amine tyramine. Expression of xbp-1s in just two pairs of neurons that synthesize tyramine, the RIM and RIC interneurons, induced intestinal UPRER activation and extended longevity, and exposure to stress led to splicing and activation of xbp-1 in these neurons. In addition, we found that neuronal xbp-1s modulates feeding behavior and reproduction, dependent upon tyramine synthesis. XBP-1s therefore remodels neuronal signaling to coordinately modulate intestinal physiology and stress-responsive behavior, functioning as a global regulator of organismal responses to stress.
Collapse
Affiliation(s)
- Neşem P Özbey
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Babraham CB22 3AT, UK
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julia Morud
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ming Sheng
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Rebecca C Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
29
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
30
|
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. J Neurosci 2020; 40:7475-7488. [PMID: 32847964 DOI: 10.1523/jneurosci.1357-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Maps of the synapses made and neurotransmitters released by all neurons in model systems, such as Caenorhabditis elegans have left still unresolved how neural circuits integrate and respond to neurotransmitter signals. Using the egg-laying circuit of C. elegans as a model, we mapped which cells express each of the 26 neurotransmitter GPCRs of this organism and also genetically analyzed the functions of all 26 GPCRs. We found that individual neurons express many distinct receptors, epithelial cells often express neurotransmitter receptors, and receptors are often positioned to receive extrasynaptic signals. Receptor knockouts reveal few egg-laying defects under standard laboratory conditions, suggesting that the receptors function redundantly or regulate egg-laying only in specific conditions; however, increasing receptor signaling through overexpression more efficiently reveals receptor functions. This map of neurotransmitter GPCR expression and function in the egg-laying circuit provides a model for understanding GPCR signaling in other neural circuits.SIGNIFICANCE STATEMENT Neurotransmitters signal through GPCRs to modulate activity of neurons, and changes in such signaling can underlie conditions such as depression and Parkinson's disease. To determine how neurotransmitter GPCRs together help regulate function of a neural circuit, we analyzed the simple egg-laying circuit in the model organism C. elegans We identified all the cells that express every neurotransmitter GPCR and genetically analyzed how each GPCR affects the behavior the circuit produces. We found that many neurotransmitter GPCRs are expressed in each neuron, that neurons also appear to use these receptors to communicate with other cell types, and that GPCRs appear to often act redundantly or only under specific conditions to regulate circuit function.
Collapse
|
31
|
Ahearn YP, Saredy JJ, Bowers DF. The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses 2020; 12:E848. [PMID: 32759668 PMCID: PMC7472040 DOI: 10.3390/v12080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Transit of the arthropod-borne-virus (arbovirus) Sindbis (SINV) throughout adult female mosquitoes initiates with its attachment to the gut lumen, entry and amplification in midgut cells, followed by dissemination into the hemolymph. Free-mated adult females, aged day 5-7, were proffered a viremic blood suspension via sausage casings containing SINV-TaV-Green Fluorescent Protein (GFP) at a final titer of 106 PFU/mL. Midguts (MGs) from fully engorged mosquitoes were resected on days 5 and 7 post-bloodmeal, and immunolabeled using FMRFamide antibody against enteroendocrine cells (ECs) with a TX-Red secondary antibody. Following immunolabeling, the organs were investigated via laser confocal microscopy to identify the distribution of GFP and TX-Red. Infection using this reporter virus was observed as multiple GFP expression foci along the posterior midgut (PMG) epithelium and ECs were observed as TX-Red labeled cells scattered along the entire length of the MG. Our results demonstrated that SINVGFP did infect ECs, as indicated by the overlapping GFP and TX-Red channels shown as yellow in merged images. We propose that ECs may be involved in the SINV infection pathway in the mosquito MG. Due to the unique role that ECs have in the exocytosis of secretory granules from the MG and the apical-basolateral position of ECs in the PMG monolayer, we speculate that these cells may assist as a mechanism for arboviruses to cross the gut barriers. These findings suggest that MG ECs are involved in arbovirus infection of the invertebrate host.
Collapse
Affiliation(s)
- Yani P. Ahearn
- Department of Health, TB Lab, 1217 N Pearl St., Jacksonville, FL 32202, USA;
| | - Jason J. Saredy
- Department of Biology, Temple University, 1900 N 12th St., Philadelphia, PA 19122-6078, USA;
| | - Doria F. Bowers
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
32
|
Abstract
This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in Caenorhabditis elegans. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing C. elegans as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
33
|
McCulloch KA, Zhou K, Jin Y. Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans. PLoS One 2020; 15:e0233991. [PMID: 32497060 PMCID: PMC7272019 DOI: 10.1371/journal.pone.0233991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/16/2020] [Indexed: 01/06/2023] Open
Abstract
Neuropeptides are secreted molecules that have conserved roles modulating many processes, including mood, reproduction, and feeding. Dysregulation of neuropeptide signaling is also implicated in neurological disorders such as epilepsy. However, much is unknown about the mechanisms regulating specific neuropeptides to mediate behavior. Here, we report that the expression levels of dozens of neuropeptides are up-regulated in response to circuit activity imbalance in C. elegans. acr-2 encodes a homolog of human nicotinic receptors, and functions in the cholinergic motoneurons. A hyperactive mutation, acr-2(gf), causes an activity imbalance in the motor circuit. We performed cell-type specific transcriptomic analysis and identified genes differentially expressed in acr-2(gf), compared to wild type. The most over-represented class of genes are neuropeptides, with insulin-like-peptides (ILPs) the most affected. Moreover, up-regulation of neuropeptides occurs in motoneurons, as well as sensory neurons. In particular, the induced expression of the ILP ins-29 occurs in the BAG neurons, which were previously shown to function in gas-sensing. We also show that this up-regulation of ins-29 in acr-2(gf) animals is activity-dependent. Our genetic and molecular analyses support cooperative effects for ILPs and other neuropeptides in promoting motor circuit activity in the acr-2(gf) background. Together, this data reveals that a major transcriptional response to motor circuit dysregulation is in up-regulation of multiple neuropeptides, and suggests that BAG sensory neurons can respond to intrinsic activity states to feedback on the motor circuit.
Collapse
Affiliation(s)
- Katherine A. McCulloch
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Kingston Zhou
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Lyu S, Doroodchi A, Xing H, Sheng Y, DeAndrade MP, Yang Y, Johnson TL, Clemens S, Yokoi F, Miller MA, Xiao R, Li Y. BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Struct Funct 2020; 225:1743-1760. [PMID: 32468214 DOI: 10.1007/s00429-020-02090-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/13/2020] [Indexed: 01/17/2023]
Abstract
Restless legs syndrome (RLS) is characterized by an urge to move legs, usually accompanied by uncomfortable sensations. RLS symptoms generally happen at night and can be relieved by movements. Genetic studies have linked polymorphisms in BTBD9 to a higher risk of RLS. Knockout of BTBD9 homolog in mice (Btbd9) and fly results in RLS-like phenotypes. A dysfunctional dopaminergic system is associated with RLS. However, the function of BTBD9 in the dopaminergic system and RLS is not clear. Here, we made use of the simple Caenorhabditis elegans nervous system. Loss of hpo-9, the worm homolog of BTBD9, resulted in hyperactive egg-laying behavior. Analysis of genetic interactions between hpo-9 and genes for dopamine receptors (dop-1, dop-3) indicated that hpo-9 and dop-1 worked similarly. Reporter assays of dop-1 and dop-3 revealed that hpo-9 knockout led to a significant increase of DOP-3 expression. This appears to be evolutionarily conserved in mice with an increased D2 receptor (D2R) mRNA in the striatum of the Btbd9 knockout mice. Furthermore, the striatal D2R protein was significantly decreased and Dynamin I was increased. Overall, activities of DA neurons in the substantia nigra were not altered, but the peripheral D1R pathway was potentiated in the Btbd9 knockout mice. Finally, we generated and characterized the dopamine neuron-specific Btbd9 knockout mice and detected an active-phase sleepiness, suggesting that dopamine neuron-specific loss of Btbd9 is sufficient to disturb the sleep. Our results suggest that increased activities in the D1R pathway, decreased activities in the D2R pathway, or both may contribute to RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Atbin Doroodchi
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hong Xing
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Yi Sheng
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark P DeAndrade
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Youfeng Yang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tracy L Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Fumiaki Yokoi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
35
|
Horowitz LB, Brandt JP, Ringstad N. Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in C. elegans. Development 2019; 146:dev.182873. [PMID: 31628111 DOI: 10.1242/dev.182873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Nervous system development is instructed by genetic programs and refined by distinct mechanisms that couple neural activity to gene expression. How these processes are integrated remains poorly understood. Here, we report that the regulated release of insulin-like peptides (ILPs) during development of the Caenorhabditis elegans nervous system accomplishes such an integration. We find that the p38 MAP kinase PMK-3, which is required for the differentiation of chemosensory BAG neurons, limits an ILP signal that represses expression of a BAG neuron fate. ILPs are released from BAGs themselves in an activity-dependent manner during development, indicating that ILPs constitute an autocrine signal that regulates the differentiation of BAG neurons. Expression of a specialized neuronal fate is, therefore, coordinately regulated by a genetic program that sets levels of ILP expression during development, and by neural activity, which regulates ILP release. Autocrine signals of this kind might have general and conserved functions as integrators of deterministic genetic programs with activity-dependent mechanisms during neurodevelopment.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
36
|
Doshi S, Price E, Landis J, Barot U, Sabatella M, Lans H, Kalb RG. Neuropeptide signaling regulates the susceptibility of developing C. elegans to anoxia. Free Radic Biol Med 2019; 131:197-208. [PMID: 30529384 DOI: 10.1016/j.freeradbiomed.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/04/2023]
Abstract
Inadequate delivery of oxygen to organisms during development can lead to cell dysfunction/death and life-long disabilities. Although the susceptibility of developing cells to low oxygen conditions changes with maturation, the cellular and molecular pathways that govern responses to low oxygen are incompletely understood. Here we show that developing Caenorhabditis elegans are substantially more sensitive to anoxia than adult animals and that this sensitivity is controlled by nervous system generated hormones (e.g., neuropeptides). A screen of neuropeptide genes identified and validated nlp-40 and its receptor aex-2 as a key regulator of anoxic survival in developing worms. The survival-promoting action of impaired neuropeptide signaling does not rely on five known stress resistance pathways and is specific to anoxic insult. Together, these data highlight a novel cell non-autonomous pathway that regulates the susceptibility of developing organisms to anoxia.
Collapse
Affiliation(s)
- Shachee Doshi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Emma Price
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Landis
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Urva Barot
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariangela Sabatella
- Department of Molecular Genetics, Erasmus Medical Centre, Oncode Institute, Cancer Genomics Netherlands, Rotterdam 3015 CN, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus Medical Centre, Oncode Institute, Cancer Genomics Netherlands, Rotterdam 3015 CN, the Netherlands
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Brewer JC, Olson AC, Collins KM, Koelle MR. Serotonin and neuropeptides are both released by the HSN command neuron to initiate Caenorhabditis elegans egg laying. PLoS Genet 2019; 15:e1007896. [PMID: 30677018 PMCID: PMC6363226 DOI: 10.1371/journal.pgen.1007896] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/05/2019] [Accepted: 12/13/2018] [Indexed: 01/03/2023] Open
Abstract
Neurons typically release both a small-molecule neurotransmitter and one or more neuropeptides, but how these two types of signal from the same neuron might act together remains largely obscure. For example, serotonergic neurons in mammalian brain express the neuropeptide Substance P, but it is unclear how this co-released neuropeptide might modulate serotonin signaling. We studied this issue in C. elegans, in which all serotonergic neurons express the neuropeptide NLP-3. The serotonergic Hermaphrodite Specific Neurons (HSNs) are command motor neurons within the egg-laying circuit which have been shown to release serotonin to initiate egg-laying behavior. We found that egg-laying defects in animals lacking serotonin were far milder than in animals lacking HSNs, suggesting that HSNs must release other signal(s) in addition to serotonin to stimulate egg laying. While null mutants for nlp-3 had only mild egg-laying defects, animals lacking both serotonin and NLP-3 had severe defects, similar to those of animals lacking HSNs. Optogenetic activation of HSNs induced egg laying in wild-type animals, and in mutant animals lacking either serotonin or NLP-3, but failed to induce egg laying in animals lacking both. We recorded calcium activity in the egg-laying muscles of animals lacking either serotonin, NLP-3, or both. The single mutants, and to a greater extent the double mutant, showed muscle activity that was uncoordinated and unable to expel eggs. Specifically, the vm2 muscles cells, which are direct postsynaptic targets of the HSN, failed to contract simultaneously with other egg-laying muscle cells. Our results show that the HSN neurons use serotonin and the neuropeptide NLP-3 as partially redundant co-transmitters that together stimulate and coordinate activity of the target cells onto which they are released. Activity of the brain results from neurons communicating with each other using chemical signals. A typical neuron releases two kinds of chemical signals: a small molecule neurotransmitter, such as serotonin, and one or more small proteins, called neuropeptides. For example, neurons in the human brain that release serotonin, a neurotransmitter thought to be involved in depression, also release the neuropeptide Substance P. Neuroscientists have typically studied the effects of neurotransmitters and neuropeptides separately, without considering how these two types of signals from the same neuron might be integrated. Here we analyzed how specific neurons in the model organism C. elegans use both serotonin and a neuropeptide together. The Hermaphrodite Specific Neurons (HSNs) activate a small group of neurons and muscles to generate egg-laying behavior. Killing the HSNs resulted in animals unable to lay eggs, but we found that eliminating either serotonin or the neuropeptide resulted in HSNs that still remained able to activate egg laying. However, eliminating both serotonin and the neuropeptide resulted in HSNs unable to activate coordinated contractions of the egg-laying muscles. Our results show that in a living animal, serotonin acts in concert with a co-released neuropeptide to carry out its functions.
Collapse
Affiliation(s)
- Jacob C. Brewer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Andrew C. Olson
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Kevin M. Collins
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| | - Michael R. Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wei S, Chen H, Dzakah EE, Yu B, Wang X, Fu T, Li J, Liu L, Fang S, Liu W, Shan G. Systematic evaluation of C. elegans lincRNAs with CRISPR knockout mutants. Genome Biol 2019; 20:7. [PMID: 30621757 PMCID: PMC6325887 DOI: 10.1186/s13059-018-1619-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 12/04/2022] Open
Abstract
Background Long intergenic RNAs (lincRNAs) play critical roles in eukaryotic cells, but systematic analyses of the lincRNAs of an animal for phenotypes are lacking. We generate CRISPR knockout strains for Caenorhabditis elegans lincRNAs and evaluate their phenotypes. Results C. elegans lincRNAs demonstrate global features such as shorter length and fewer exons than mRNAs. For the systematic evaluation of C. elegans lincRNAs, we produce CRISPR knockout strains for 155 of the total 170 C. elegans lincRNAs. Mutants of 23 lincRNAs show phenotypes in 6 analyzed traits. We investigate these lincRNAs by phenotype for their gene expression patterns and potential functional mechanisms. Some C. elegans lincRNAs play cis roles to modulate the expression of their neighboring genes, and several lincRNAs play trans roles as ceRNAs against microRNAs. We also examine the regulation of lincRNA expression by transcription factors, and we dissect the pathway by which two transcription factors, UNC-30 and UNC-55, together control the expression of linc-73. Furthermore, linc-73 possesses a cis function to modulate the expression of its neighboring kinesin gene unc-104 and thus plays roles in C. elegans locomotion. Conclusions By using CRISPR/cas9 technology, we generate knockout strains of 155 C. elegans lincRNAs as valuable resources for studies in noncoding RNAs, and we provide biological insights for 23 lincRNAs with the phenotypes identified in this study. Electronic supplementary material The online version of this article (10.1186/s13059-018-1619-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - He Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Emmanuel Enoch Dzakah
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bin Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Xiaolin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shucheng Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Present address: Hanwang Technology Co., Ltd., Haidian District, Beijing, 100193, China
| | - Ge Shan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, 200031, China.
| |
Collapse
|
39
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
40
|
Wang S, Chu Z, Zhang K, Miao G. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 213:11-18. [PMID: 30205271 DOI: 10.1016/j.chemosphere.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/19/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cadmium is a ubiquitous environmental toxicant. The use of Caenorhabditis elegans as a model for monitoring cadmium exposure has revealed several conserved signaling pathways. However, little is known about the killing process during lethality assay. In the present study, we investigated the effects serotonergic neuronal and reproductive damages on cadmium exposure in C. elegans. We found that sterile hermaphrodites, males and worms that passed reproduction span presented high cadmium resistance compared to those of young adults. The results demonstrated that reproduction process other than reproduction capacity conferred cadmium sensitivity. Cadmium exposure resulted in high ratio bagging phenotype, which was a severe reproductive deficit with embryos hatched internally that could cause worms to die early. The mechanism of bagging formation was ascribed to cadmium-induced egg laying deficiency that led embryos to retain and hatch in uterus. The addition of serotonin and imipramine promoted egg laying and thereby increased cadmium resistance. The results demonstrated that vulval muscles responsible for egg laying were still functional, while the serotonergic hermaphrodite specific neurons might be dysfunctional under cadmium exposure. Cadmium exposure resulted in shrinkage of serotonergic neuronal body and reduced expressions of tryptophan hydroxylase, the key enzyme for serotonin synthesis. The protection of serotonergic neuron through transient thermal preconditioning improved survival rate. In conclusion, our study demonstrated that damages of serotonergic neurons and reproduction conferred to cadmium-induced lethality.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China.
| | - Zhaoxia Chu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Guopeng Miao
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
41
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
42
|
Chew YL, Grundy LJ, Brown AEX, Beets I, Schafer WR. Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170368. [PMID: 30201834 PMCID: PMC6158228 DOI: 10.1098/rstb.2017.0368] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
Neuropeptide signalling has been implicated in a wide variety of biological processes in diverse organisms, from invertebrates to humans. The Caenorhabditis elegans genome has at least 154 neuropeptide precursor genes, encoding over 300 bioactive peptides. These neuromodulators are thought to largely signal beyond 'wired' chemical/electrical synapse connections, therefore creating a 'wireless' network for neuronal communication. Here, we investigated how behavioural states are affected by neuropeptide signalling through the G protein-coupled receptor SEB-3, which belongs to a bilaterian family of orphan secretin receptors. Using reverse pharmacology, we identified the neuropeptide NLP-49 as a ligand of this evolutionarily conserved neuropeptide receptor. Our findings demonstrate novel roles for NLP-49 and SEB-3 in locomotion, arousal and egg-laying. Specifically, high-content analysis of locomotor behaviour indicates that seb-3 and nlp-49 deletion mutants cause remarkably similar abnormalities in movement dynamics, which are reversed by overexpression of wild-type transgenes. Overexpression of NLP-49 in AVK interneurons leads to heightened locomotor arousal, an effect that is dependent on seb-3. Finally, seb-3 and nlp-49 mutants also show constitutive egg-laying in liquid medium and alter the temporal pattern of egg-laying in similar ways. Together, these results provide in vivo evidence that NLP-49 peptides act through SEB-3 to modulate behaviour, and highlight the importance of neuropeptide signalling in the control of behavioural states.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
43
|
Pender CL, Horvitz HR. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. eLife 2018; 7:e36828. [PMID: 30010540 PMCID: PMC6078495 DOI: 10.7554/elife.36828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
The HIF (hypoxia-inducible factor) transcription factor is the master regulator of the metazoan response to chronic hypoxia. In addition to promoting adaptations to low oxygen, HIF drives cytoprotective mechanisms in response to stresses and modulates neural circuit function. How most HIF targets act in the control of the diverse aspects of HIF-regulated biology remains unknown. We discovered that a HIF target, the C. elegans gene cyp-36A1, is required for numerous HIF-dependent processes, including modulation of gene expression, stress resistance, and behavior. cyp-36A1 encodes a cytochrome P450 enzyme that we show controls expression of more than a third of HIF-induced genes. CYP-36A1 acts cell non-autonomously by regulating the activity of the nuclear hormone receptor NHR-46, suggesting that CYP-36A1 functions as a biosynthetic enzyme for a hormone ligand of this receptor. We propose that regulation of HIF effectors through activation of cytochrome P450 enzyme/nuclear receptor signaling pathways could similarly occur in humans.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Biology, Howard Hughes Medical InstituteMassachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - H Robert Horvitz
- Department of Biology, Howard Hughes Medical InstituteMassachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
44
|
Homeostatic Feedback Modulates the Development of Two-State Patterned Activity in a Model Serotonin Motor Circuit in Caenorhabditis elegans. J Neurosci 2018; 38:6283-6298. [PMID: 29891728 DOI: 10.1523/jneurosci.3658-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Neuron activity accompanies synapse formation and maintenance, but how early circuit activity contributes to behavior development is not well understood. Here, we use the Caenorhabditis elegans egg-laying motor circuit as a model to understand how coordinated cell and circuit activity develops and drives a robust two-state behavior in adults. Using calcium imaging in behaving animals, we find the serotonergic hermaphrodite-specific neurons (HSNs) and vulval muscles show rhythmic calcium transients in L4 larvae before eggs are produced. HSN activity in L4 is tonic and lacks the alternating burst-firing/quiescent pattern seen in egg-laying adults. Vulval muscle activity in L4 is initially uncoordinated but becomes synchronous as the anterior and posterior muscle arms meet at HSN synaptic release sites. However, coordinated muscle activity does not require presynaptic HSN input. Using reversible silencing experiments, we show that neuronal and vulval muscle activity in L4 is not required for the onset of adult behavior. Instead, the accumulation of eggs in the adult uterus renders the muscles sensitive to HSN input. Sterilization or acute electrical silencing of the vulval muscles inhibits presynaptic HSN activity and reversal of muscle silencing triggers a homeostatic increase in HSN activity and egg release that maintains ∼12-15 eggs in the uterus. Feedback of egg accumulation depends upon the vulval muscle postsynaptic terminus, suggesting that a retrograde signal sustains HSN synaptic activity and egg release. Our results show that egg-laying behavior in C. elegans is driven by a homeostat that scales serotonin motor neuron activity in response to postsynaptic muscle feedback.SIGNIFICANCE STATEMENT The functional importance of early, spontaneous neuron activity in synapse and circuit development is not well understood. Here, we show in the nematode Caenorhabditis elegans that the serotonergic hermaphrodite-specific neurons (HSNs) and postsynaptic vulval muscles show activity during circuit development, well before the onset of adult behavior. Surprisingly, early activity is not required for circuit development or the onset of adult behavior and the circuit remains unable to drive egg laying until fertilized embryos are deposited into the uterus. Egg accumulation potentiates vulval muscle excitability, but ultimately acts to promote burst firing in the presynaptic HSNs which results in egg laying. Our results suggest that mechanosensory feedback acts at three distinct steps to initiate, sustain, and terminate C. elegans egg-laying circuit activity and behavior.
Collapse
|
45
|
Clark T, Hapiak V, Oakes M, Mills H, Komuniecki R. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair. PLoS One 2018; 13:e0196954. [PMID: 29723289 PMCID: PMC5933757 DOI: 10.1371/journal.pone.0196954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.
Collapse
Affiliation(s)
- Tobias Clark
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Mitchell Oakes
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Holly Mills
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hussey R, Littlejohn NK, Witham E, Vanstrum E, Mesgarzadeh J, Ratanpal H, Srinivasan S. Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007305. [PMID: 29579048 PMCID: PMC5886693 DOI: 10.1371/journal.pgen.1007305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/05/2018] [Accepted: 03/11/2018] [Indexed: 01/14/2023] Open
Abstract
The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. C. elegans oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for C. elegans. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.
Collapse
Affiliation(s)
- Rosalind Hussey
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Nicole K. Littlejohn
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Emily Witham
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Erik Vanstrum
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Jaleh Mesgarzadeh
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
- Department of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Harkaranveer Ratanpal
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Supriya Srinivasan
- Department of Molecular Medicine and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, United States of America
| |
Collapse
|
47
|
Van Bael S, Watteyne J, Boonen K, De Haes W, Menschaert G, Ringstad N, Horvitz HR, Schoofs L, Husson SJ, Temmerman L. Mass spectrometric evidence for neuropeptide-amidating enzymes in Caenorhabditis elegans. J Biol Chem 2018; 293:6052-6063. [PMID: 29487130 DOI: 10.1074/jbc.ra117.000731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022] Open
Abstract
Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.
Collapse
Affiliation(s)
- Sven Van Bael
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium,
| | - Jan Watteyne
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Kurt Boonen
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Wouter De Haes
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Gerben Menschaert
- the Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium
| | - Niels Ringstad
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016
| | - H Robert Horvitz
- the Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Liliane Schoofs
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium
| | - Steven J Husson
- SPHERE-Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Liesbet Temmerman
- From the Department of Biology, KU Leuven (University of Leuven), Naamsestraat 59, B-3000 Leuven, Belgium,
| |
Collapse
|
48
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
49
|
Yue X, Zhao J, Li X, Fan Y, Duan D, Zhang X, Zou W, Sheng Y, Zhang T, Yang Q, Luo J, Duan S, Xiao R, Kang L. TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron 2018; 97:571-585.e5. [PMID: 29395910 PMCID: PMC7038793 DOI: 10.1016/j.neuron.2017.12.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Membrane excitability is a fundamentally important feature for all excitable cells including both neurons and muscle cells. However, the background depolarizing conductances in excitable cells, especially in muscle cells, are not well characterized. Although mutations in transmembrane channel-like (TMC) proteins TMC1 and TMC2 cause deafness and vestibular defects in mammals, their precise action modes are elusive. Here, we discover that both TMC-1 and TMC-2 are required for normal egg laying in C. elegans. Mutations in these TMC proteins cause membrane hyperpolarization and disrupt the rhythmic calcium activities in both neurons and muscles involved in egg laying. Mechanistically, TMC proteins enhance membrane depolarization through background leak currents and ectopic expression of both C. elegans and mammalian TMC proteins results in membrane depolarization. Therefore, we have identified an unexpected role of TMC proteins in modulating membrane excitability. Our results may provide mechanistic insights into the functions of TMC proteins in hearing loss and other diseases.
Collapse
Affiliation(s)
- Xiaomin Yue
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhao
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Li
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuedan Fan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Duo Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Zou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Ting Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Luo
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| | - Lijun Kang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
Ravi B, Nassar LM, Kopchock RJ, Dhakal P, Scheetz M, Collins KM. Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis Elegans. J Vis Exp 2018. [PMID: 29443112 PMCID: PMC5912386 DOI: 10.3791/56911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has become increasingly clear that neural circuit activity in behaving animals differs substantially from that seen in anesthetized or immobilized animals. Highly sensitive, genetically encoded fluorescent reporters of Ca2+ have revolutionized the recording of cell and synaptic activity using non-invasive optical approaches in behaving animals. When combined with genetic and optogenetic techniques, the molecular mechanisms that modulate cell and circuit activity during different behavior states can be identified. Here we describe methods for ratiometric Ca2+ imaging of single neurons in freely behaving Caenorhabditis elegans worms. We demonstrate a simple mounting technique that gently overlays worms growing on a standard Nematode Growth Media (NGM) agar block with a glass coverslip, permitting animals to be recorded at high-resolution during unrestricted movement and behavior. With this technique, we use the sensitive Ca2+ reporter GCaMP5 to record changes in intracellular Ca2+ in the serotonergic Hermaphrodite Specific Neurons (HSNs) as they drive egg-laying behavior. By co-expressing mCherry, a Ca2+-insensitive fluorescent protein, we can track the position of the HSN within ~ 1 µm and correct for fluctuations in fluorescence caused by changes in focus or movement. Simultaneous, infrared brightfield imaging allows for behavior recording and animal tracking using a motorized stage. By integrating these microscopic techniques and data streams, we can record Ca2+ activity in the C. elegans egg-laying circuit as it progresses between inactive and active behavior states over tens of minutes.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami School of Medicine
| | - Layla M Nassar
- Neuroscience Program, University of Miami School of Medicine; Department of Biology, University of Miami
| | | | | | | | - Kevin M Collins
- Neuroscience Program, University of Miami School of Medicine; Department of Biology, University of Miami;
| |
Collapse
|