1
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of posterior medial thalamus in the modulation of striatal circuitry and choice behavior. eLife 2025; 13:RP98563. [PMID: 40359003 PMCID: PMC12074639 DOI: 10.7554/elife.98563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with mouse brain slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task in head-restrained mice, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sofia E Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Arlene J George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| |
Collapse
|
2
|
Raltschev C, Kasavica S, Leonardon B, Nevian T, Sachidhanandam S. Top-down modulation of sensory processing and mismatch in the mouse posterior parietal cortex. Nat Commun 2025; 16:4240. [PMID: 40335459 PMCID: PMC12059120 DOI: 10.1038/s41467-025-58002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/07/2025] [Indexed: 05/09/2025] Open
Abstract
An important function of the neocortex is to compare sensory feedback stimuli with internal predictions of the outside world and evoke mismatch responses to deviations, thus allowing expectations to be updated. The mechanisms behind sensory feedback mismatch and prediction formation however remain unclear. Here we created a learned association of an auditory-tactile stimulus sequence in awake head-fixed mice, where a sound predicted an up-coming whisker stimulus and introduced mismatches by omitting or altering the whisker stimulus intensity. We showed that layer 2/3 posterior parietal cortex (PPC) neurons could report stimulus sequence mismatches, as well as display neural correlates of expectation. Inhibition of PPC-projecting secondary motor cortex (M2) neurons suppressed these correlates, along with population mismatch responses. Hence, M2 can influence sensory processing in the PPC and potentially contribute to the prediction of sensory feedback from learned relationships within sequences of sensory stimuli.
Collapse
Affiliation(s)
| | - Sergej Kasavica
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Shankar Sachidhanandam
- Department of Physiology, University of Bern, Bern, Switzerland.
- Laboratory of Sensory processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. Nature 2025; 641:960-970. [PMID: 40108473 DOI: 10.1038/s41586-025-08730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Rapid learning confers significant advantages on animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by gradual changes to cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6,7, challenging the prevailing model of sensory cortical plasticity. Here we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex drives both rapid learning and slower performance gains but becomes dispensable once mice achieve 'expert' performance. Instead of enhanced cue representations8, two-photon calcium imaging of auditory cortical neurons throughout learning revealed two higher-order signals that were causal to learning and performance. A reward-prediction signal emerged rapidly within tens of trials, was present after action-related errors early in training, and faded in expert mice. Silencing at the time of this signal impaired rapid learning, suggesting that it serves an associative role. A distinct cell ensemble encoded and controlled licking suppression that drove slower performance improvements. These ensembles were spatially clustered but uncoupled from sensory representations, indicating higher-order functional segregation within auditory cortex. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of Bidirectional Network Cores in the Brain with Perceptual Awareness and Cognition. J Neurosci 2025; 45:e0802242025. [PMID: 40015987 PMCID: PMC12019110 DOI: 10.1523/jneurosci.0802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa 236-0027, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
5
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
6
|
Huang C, Englitz B, Reznik A, Zeldenrust F, Celikel T. Information transfer and recovery for the sense of touch. Cereb Cortex 2025; 35:bhaf073. [PMID: 40197640 PMCID: PMC11976729 DOI: 10.1093/cercor/bhaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 04/10/2025] Open
Abstract
Transformation of postsynaptic potentials into action potentials is the rate-limiting step of communication in neural networks. The efficiency of this intracellular information transfer also powerfully shapes stimulus representations in sensory cortices. Using whole-cell recordings and information-theoretic measures, we show herein that somatic postsynaptic potentials accurately represent stimulus location on a trial-by-trial basis in single neurons, even 4 synapses away from the sensory periphery in the whisker system. This information is largely lost during action potential generation but can be rapidly (<20 ms) recovered using complementary information in local populations in a cell-type-specific manner. These results show that as sensory information is transferred from one neural locus to another, the circuits reconstruct the stimulus with high fidelity so that sensory representations of single neurons faithfully represent the stimulus in the periphery, but only in their postsynaptic potentials, resulting in lossless information processing for the sense of touch in the primary somatosensory cortex.
Collapse
Affiliation(s)
- Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Laboratory of Neural Circuits and Plasticity, University of Southern California, 3616 Watt Way, Los Angeles, CA 90089, United States
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Andrey Reznik
- Laboratory of Neural Circuits and Plasticity, University of Southern California, 3616 Watt Way, Los Angeles, CA 90089, United States
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA 30332-0170, United States
| |
Collapse
|
7
|
Linares-García I, Iliakis EA, Juliani SE, Ramirez AN, Woolley J, Díaz-Hernández E, Fuccillo MV, Margolis DJ. An Open-Source Joystick Platform for Investigating Forelimb Motor Control, Auditory-Motor Integration, and Value-Based Decision-Making in Head-Fixed Mice. eNeuro 2025; 12:ENEURO.0038-25.2025. [PMID: 40295100 PMCID: PMC12037168 DOI: 10.1523/eneuro.0038-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Investigation of neural processes underlying motor control requires behavioral readouts that capture the richness of actions, including both categorical (choice-based) information and motor execution (kinematics). We present an open-source platform for behavioral training of head-fixed mice that combines a stationary or retractable forelimb-based joystick, sound-presentation system, capacitive lick sensor, and water reward dispenser. The setup allows for the creation of multiple behavioral paradigms, two of which are highlighted here: a two-alternative forced-choice auditory-motor discrimination paradigm and a two-armed bandit value-based decision-making task. In the auditory-motor paradigm, mice learn to report high- or low-frequency tones by pushing or pulling the joystick. In the value-based paradigm, mice learn to push or pull the joystick based on the history of rewarded trials. In addition to reporting categorical choices, this setup provides a rich dataset of motor parameters that reflect components of the underlying learning and decision processes in both of these tasks. These kinematic parameters (including joystick speed and displacement, Fréchet similarity of trajectories, tortuosity, angular standard deviation, and movement vigor) provide key additional insights into the motor execution of choices that are not as readily assessed in other paradigms. The system's flexibility of task design, joystick readout, and ease of construction represent an advance compared with currently available manipulandum tasks in mice. We provide detailed schematics for constructing the setup and protocols for behavioral training using both paradigms, with the hope that this open-source resource is readily adopted by neuroscientists interested in mechanisms of sensorimotor integration, motor control, and choice behavior.
Collapse
Affiliation(s)
- Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Evan A Iliakis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sofia E Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Alexandra N Ramirez
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel Woolley
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Edgar Díaz-Hernández
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
8
|
Olarinre M, Siegle JH, Kass RE. Relative timing and coupling of neural population bursts in large-scale recordings from multiple neuron populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638950. [PMID: 40027709 PMCID: PMC11870560 DOI: 10.1101/2025.02.18.638950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The onset of a sensory stimulus elicits transient bursts of activity in neural populations, which are presumed to convey information about the stimulus to downstream populations. The time at which these synchronized bursts reach their peak is highly variable across stimulus presentations, but the relative timing of bursts across interconnected brain regions may be less variable, especially for regions that are strongly functionally coupled. We developed a simple analytical framework that obtains good estimates of population burst times on a trial-by-trial basis, and of the correlations in the timing of evoked population bursts across areas. We show that this method performs well on simulated data, and is 85 to 90% faster than an alternative, recently-published method while also being much easier to apply. Using this new approach, we examined the relative timing of the first two population bursts following the onset of a drifting grating stimulus in large-scale recordings of spiking activity from six cortical visual areas and one visual thalamic nucleus in thirteen mice. The new method allowed us to identify mouse-to-mouse variation in peak times and region-to-region functional coupling. While all results were consistent with known anatomy and physiology, we found some sequences of activity across areas to be the same across all mice, while others varied with the individual. The general approach can thus produce sensitive analyses of timing relationships across neural populations. Significant Statement Careful analysis can reveal strong and precisely-timed interactions across multiple brain areas from small populations of spiking neurons. We developed a computationally efficient procedure that allowed us to examine the relative timing and coupling of 7 visual areas (6 cortical and one thalamic) and compare results in over 10 mice. The method can be used to track the flow of information across the brain in response to stimuli or during a behavioral task.
Collapse
Affiliation(s)
- Motolani Olarinre
- Machine Learning Department, Carnegie Mellon University, Pittsburgh
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
| | | | - Robert E. Kass
- Machine Learning Department, Carnegie Mellon University, Pittsburgh
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
9
|
Gonzales DL, Khan HF, Keri HVS, Yadav S, Steward C, Muller LE, Pluta SR, Jayant K. Touch-evoked traveling waves establish a translaminar spacetime code. SCIENCE ADVANCES 2025; 11:eadr4038. [PMID: 39889002 PMCID: PMC11784861 DOI: 10.1126/sciadv.adr4038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025]
Abstract
Linking sensory-evoked traveling waves to underlying circuit patterns is critical to understanding the neural basis of sensory perception. To form this link, we performed simultaneous electrophysiology and two-photon calcium imaging through transparent NeuroGrids and mapped touch-evoked traveling waves and underlying microcircuit dynamics. In awake mice, both passive and active whisker touch elicited traveling waves within and across barrels, with a fast early component followed by a late wave that lasted hundreds of milliseconds poststimulus. Notably, late waves were modulated by perceived value and predicted behavioral choice in a two-whisker discrimination task. We found that the late wave feature was (i) modulated by motor feedback, (ii) differentially engaged a sparse ensemble reactivation pattern across layer 2/3, which a balanced-state network model reconciled via feedback-induced inhibitory stabilization, and (iii) aligned to regenerative layer 5 apical dendritic Ca2+ events. Our results reveal that translaminar spacetime patterns organized by cortical feedback support sparse touch-evoked traveling waves.
Collapse
Affiliation(s)
- Daniel L. Gonzales
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hammad F. Khan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hayagreev V. S. Keri
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Saumitra Yadav
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lyle E. Muller
- Department of Applied Mathematics, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Scott R. Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Linares-García I, Iliakis EA, Juliani SE, Ramirez AN, Woolley J, Díaz-Hernández E, Fuccillo MV, Margolis DJ. An Open-Source Joystick Platform for Investigating Forelimb Motor Control, Auditory-Motor Integration, and Value-Based Decision-Making in Head-Fixed Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634598. [PMID: 39896607 PMCID: PMC11785236 DOI: 10.1101/2025.01.23.634598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Investigation of neural processes underlying motor control requires behavioral readouts that capture the richness of actions, including both categorical (choice-based) information and motor execution (kinematics). We present an open-source platform for behavioral training of head-fixed mice that combines a stationary or retractable forelimb-based joystick, sound-presentation system, capacitive lick sensor, and water reward dispenser. The setup allows for the creation of multiple behavioral paradigms, two of which are highlighted here: a two-alternative forced-choice auditory-motor discrimination paradigm, and a two-armed bandit value-based decision-making task. In the auditory-motor paradigm, mice learn to report high or low frequency tones by pushing or pulling the joystick. In the value-based paradigm, mice learn to push or pull the joystick based on the history of rewarded trials. In addition to reporting categorical choices, this setup provides a rich dataset of motor parameters that reflect components of the underlying learning and decision processes in both of these tasks. These kinematic parameters (including joystick speed and displacement, Fréchet similarity of trajectories, tortuosity, angular standard deviation, and movement vigor) provide key additional insights into the motor execution of choices that are not as readily assessed in other paradigms. The system's flexibility of task design, joystick readout, and ease of construction represent an advance compared to currently available manipulandum tasks in mice. We provide detailed schematics for constructing the setup and protocols for behavioral training using both paradigms, with the hope that this open-source resource is readily adopted by neuroscientists interested in mechanisms of sensorimotor integration, motor control, and choice behavior. Significance Statement Behavioral paradigms for experiments in head-restrained mice are important for investigating the relationship between neural activity and behavior. However, behavioral setups are often constrained by high cost, design complexity, and implementation challenges. Here, we present an open-source platform for behavioral training of head-fixed mice using a joystick manipulandum. The setup allows for the creation of multiple behavioral paradigms, including an auditory-motor discrimination paradigm, and a value-based decision-making task. We include detailed instructions for construction and implementation of the entire open-source behavioral platform.
Collapse
Affiliation(s)
- Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Evan A. Iliakis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Alexandra N. Ramirez
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Joel Woolley
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Edgar Díaz-Hernández
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
11
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system1-3. This is largely due to changes in arousal that alter internal brain state4-10. Much is known about how these internal factors influence visual processing7-11, but comparatively less is known about the role of external environmental contexts12. Environmental contexts can promote or prevent certain actions13, and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube, or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes, so that we could control for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity, and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Liu Y, Bech P, Tamura K, Délez LT, Crochet S, Petersen CCH. Cell class-specific long-range axonal projections of neurons in mouse whisker-related somatosensory cortices. eLife 2024; 13:RP97602. [PMID: 39392390 PMCID: PMC11469677 DOI: 10.7554/elife.97602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Collapse
Affiliation(s)
- Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Lucas T Délez
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
14
|
Huang J, Crochet S, Sandi C, Petersen CC. Dopamine dynamics in nucleus accumbens across reward-based learning of goal-directed whisker-to-lick sensorimotor transformations in mice. Heliyon 2024; 10:e37831. [PMID: 39323852 PMCID: PMC11422591 DOI: 10.1016/j.heliyon.2024.e37831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The synaptic and neuronal circuit mechanisms underlying reward-based learning remain to be fully determined. In the mammalian brain, dopamine release in nucleus accumbens is thought to contribute importantly to reward signals for learning and promoting synaptic plasticity. Here, through longitudinal fiber photometry of a genetically-encoded fluorescent sensor, we investigated dopamine signals in the nucleus accumbens of thirsty head-restrained mice as they learned to lick a liquid reward spout in response to single deflections of the C2 whisker across varying reward contingencies. Reward delivery triggered by well-timed licking drove fast transient dopamine increases in nucleus accumbens. On the other hand, unrewarded licking was overall associated with reduced dopamine sensor fluorescence, especially in trials where reward was unexpectedly omitted. The dopamine reward signal upon liquid delivery decreased within individual sessions as mice became sated. As mice learned to lick the reward spout in response to whisker deflection, a fast transient sensory-evoked dopamine signal developed, correlating with the learning of the whisker detection task across consecutive training days, as well as within single learning sessions. The well-defined behavioral paradigm involving a unitary stimulus of a single whisker as a reward-predicting cue along with precisely quantified licking allows untangling of sensory, motor and reward-related dopamine signals and how they evolve across the learning of whisker-dependent goal-directed sensorimotor transformations. Our longitudinal measurements of dopamine dynamics across reward-based learning are overall consistent with the hypothesis that dopamine could play an important role as a reward signal for reinforcement learning.
Collapse
Affiliation(s)
- Jun Huang
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Damilou A, Cai L, Argunşah AÖ, Han S, Kanatouris G, Karatsoli M, Hanley O, Gesuita L, Kollmorgen S, Helmchen F, Karayannis T. Developmental Cajal-Retzius cell death contributes to the maturation of layer 1 cortical inhibition and somatosensory processing. Nat Commun 2024; 15:6501. [PMID: 39090081 PMCID: PMC11294614 DOI: 10.1038/s41467-024-50658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The role of developmental cell death in the formation of brain circuits is not well understood. Cajal-Retzius cells constitute a major transient neuronal population in the mammalian neocortex, which largely disappears at the time of postnatal somatosensory maturation. In this study, we used mouse genetics, anatomical, functional, and behavioral approaches to explore the impact of the early postnatal death of Cajal-Retzius cells in the maturation of the cortical circuit. We find that before their death, Cajal-Retzius cells mainly receive inputs from layer 1 neurons, which can only develop their mature connectivity onto layer 2/3 pyramidal cells after Cajal-Retzius cells disappear. This developmental connectivity progression from layer 1 GABAergic to layer 2/3 pyramidal cells regulates sensory-driven inhibition within, and more so, across cortical columns. Here we show that Cajal-Retzius cell death prevention leads to layer 2/3 hyper-excitability, delayed learning and reduced performance in a multi-whisker-dependent texture discrimination task.
Collapse
Affiliation(s)
- Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Shuting Han
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - George Kanatouris
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Maria Karatsoli
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Olivia Hanley
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Lorenzo Gesuita
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sepp Kollmorgen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
| | - Fritjof Helmchen
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich, 8057, Switzerland.
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
16
|
Marrero K, Aruljothi K, Delgadillo C, Kabbara S, Swatch L, Zagha E. Goal-directed learning is multidimensional and accompanied by diverse and widespread changes in neocortical signaling. Cereb Cortex 2024; 34:bhae328. [PMID: 39110412 PMCID: PMC11304966 DOI: 10.1093/cercor/bhae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
New tasks are often learned in stages with each stage reflecting a different learning challenge. Accordingly, each learning stage is likely mediated by distinct neuronal processes. And yet, most rodent studies of the neuronal correlates of goal-directed learning focus on individual outcome measures and individual brain regions. Here, we longitudinally studied mice from naïve to expert performance in a head-fixed, operant conditioning whisker discrimination task. In addition to tracking the primary behavioral outcome of stimulus discrimination, we tracked and compared an array of object-based and temporal-based behavioral measures. These behavioral analyses identify multiple, partially overlapping learning stages in this task, consistent with initial response implementation, early stimulus-response generalization, and late response inhibition. To begin to understand the neuronal foundations of these learning processes, we performed widefield Ca2+ imaging of dorsal neocortex throughout learning and correlated behavioral measures with neuronal activity. We found distinct and widespread correlations between neocortical activation patterns and various behavioral measures. For example, improvements in sensory discrimination correlated with target stimulus evoked activations of response-related cortices along with distractor stimulus evoked global cortical suppression. Our study reveals multidimensional learning for a simple goal-directed learning task and generates hypotheses for the neuronal modulations underlying these various learning processes.
Collapse
Affiliation(s)
- Krista Marrero
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Krithiga Aruljothi
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Christian Delgadillo
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Sarah Kabbara
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lovleen Swatch
- College of Natural & Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Deister CA, Moore AI, Voigts J, Bechek S, Lichtin R, Brown TC, Moore CI. Neocortical inhibitory imbalance predicts successful sensory detection. Cell Rep 2024; 43:114233. [PMID: 38905102 DOI: 10.1016/j.celrep.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/17/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Perceptual success depends on fast-spiking, parvalbumin-positive interneurons (FS/PVs). However, competing theories of optimal rate and correlation in pyramidal (PYR) firing make opposing predictions regarding the underlying FS/PV dynamics. We addressed this with population calcium imaging of FS/PVs and putative PYR neurons during threshold detection. In primary somatosensory and visual neocortex, a distinct PYR subset shows increased rate and spike-count correlations on detected trials ("hits"), while most show no rate change and decreased correlations. A larger fraction of FS/PVs predicts hits with either rate increases or decreases. Using computational modeling, we found that inhibitory imbalance, created by excitatory "feedback" and interactions between FS/PV pools, can account for the data. Rate-decreasing FS/PVs increase rate and correlation in a PYR subset, while rate-increasing FS/PVs reduce correlations and offset enhanced excitation in PYR neurons. These findings indicate that selection of informative PYR ensembles, through transient inhibitory imbalance, is a common motif of optimal neocortical processing.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Alexander I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sophia Bechek
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Rebecca Lichtin
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Gauld OM, Packer AM, Russell LE, Dalgleish HWP, Iuga M, Sacadura F, Roth A, Clark BA, Häusser M. A latent pool of neurons silenced by sensory-evoked inhibition can be recruited to enhance perception. Neuron 2024; 112:2386-2403.e6. [PMID: 38729150 PMCID: PMC7616379 DOI: 10.1016/j.neuron.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.
Collapse
Affiliation(s)
- Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK.
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Maya Iuga
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Francisco Sacadura
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Beverley A Clark
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. eLife 2024; 12:RP92620. [PMID: 38842277 PMCID: PMC11156468 DOI: 10.7554/elife.92620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes and uses rule information to guide behavior. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task where they switched between two rules: licking in response to tactile stimuli while rejecting visual stimuli, or vice versa. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, single-neuron activity distinguished between the two rules both prior to and in response to the tactile stimulus. We hypothesized that neural populations in these areas would show rule-dependent preparatory states, which would shape the subsequent sensory processing and behavior. This hypothesis was supported for the motor cortical areas (MM and ALM) by findings that (1) the current task rule could be decoded from pre-stimulus population activity; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states impaired task performance. Our findings indicate that flexible action selection in response to sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
20
|
Gardères PM, Le Gal S, Rousseau C, Mamane A, Ganea DA, Haiss F. Coexistence of state, choice, and sensory integration coding in barrel cortex LII/III. Nat Commun 2024; 15:4782. [PMID: 38839747 PMCID: PMC11153558 DOI: 10.1038/s41467-024-49129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
During perceptually guided decisions, correlates of choice are found as upstream as in the primary sensory areas. However, how well these choice signals align with early sensory representations, a prerequisite for their interpretation as feedforward substrates of perception, remains an open question. We designed a two alternative forced choice task (2AFC) in which male mice compared stimulation frequencies applied to two adjacent vibrissae. The optogenetic silencing of individual columns in the primary somatosensory cortex (wS1) resulted in predicted shifts of psychometric functions, demonstrating that perception depends on focal, early sensory representations. Functional imaging of layer II/III single neurons revealed mixed coding of stimuli, choices and engagement in the task. Neurons with multi-whisker suppression display improved sensory discrimination and had their activity increased during engagement in the task, enhancing selectively representation of the signals relevant to solving the task. From trial to trial, representation of stimuli and choice varied substantially, but mostly orthogonally to each other, suggesting that perceptual variability does not originate from wS1 fluctuations but rather from downstream areas. Together, our results highlight the role of primary sensory areas in forming a reliable sensory substrate that could be used for flexible downstream decision processes.
Collapse
Affiliation(s)
- Pierre-Marie Gardères
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Sébastien Le Gal
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Charly Rousseau
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Alexandre Mamane
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France
| | - Dan Alin Ganea
- IZKF Aachen, Medical School, RWTH Aachen University, 52074, Aachen, Germany
- University of Basel, Department of Biomedicine, 4001, Basel, Switzerland
| | - Florent Haiss
- Institut Pasteur, Université Paris Cité, Unit of Neural Circuits Dynamics and Decision Making, F-75015, Paris, France.
| |
Collapse
|
21
|
Jordan J, Sacramento J, Wybo WAM, Petrovici MA, Senn W. Conductance-based dendrites perform Bayes-optimal cue integration. PLoS Comput Biol 2024; 20:e1012047. [PMID: 38865345 PMCID: PMC11168673 DOI: 10.1371/journal.pcbi.1012047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2024] [Indexed: 06/14/2024] Open
Abstract
A fundamental function of cortical circuits is the integration of information from different sources to form a reliable basis for behavior. While animals behave as if they optimally integrate information according to Bayesian probability theory, the implementation of the required computations in the biological substrate remains unclear. We propose a novel, Bayesian view on the dynamics of conductance-based neurons and synapses which suggests that they are naturally equipped to optimally perform information integration. In our approach apical dendrites represent prior expectations over somatic potentials, while basal dendrites represent likelihoods of somatic potentials. These are parametrized by local quantities, the effective reversal potentials and membrane conductances. We formally demonstrate that under these assumptions the somatic compartment naturally computes the corresponding posterior. We derive a gradient-based plasticity rule, allowing neurons to learn desired target distributions and weight synaptic inputs by their relative reliabilities. Our theory explains various experimental findings on the system and single-cell level related to multi-sensory integration, which we illustrate with simulations. Furthermore, we make experimentally testable predictions on Bayesian dendritic integration and synaptic plasticity.
Collapse
Affiliation(s)
- Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
- Electrical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - João Sacramento
- Department of Physiology, University of Bern, Bern, Switzerland
- Institute of Neuroinformatics, UZH / ETH Zurich, Zurich, Switzerland
| | - Willem A. M. Wybo
- Department of Physiology, University of Bern, Bern, Switzerland
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | | | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Steinfeld R, Tacão-Monteiro A, Renart A. Differential representation of sensory information and behavioral choice across layers of the mouse auditory cortex. Curr Biol 2024; 34:2200-2211.e6. [PMID: 38733991 DOI: 10.1016/j.cub.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.
Collapse
Affiliation(s)
- Raphael Steinfeld
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| | - André Tacão-Monteiro
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
23
|
Montagni E, Resta F, Tort-Colet N, Scaglione A, Mazzamuto G, Destexhe A, Pavone FS, Allegra Mascaro AL. Mapping brain state-dependent sensory responses across the mouse cortex. iScience 2024; 27:109692. [PMID: 38689637 PMCID: PMC11059133 DOI: 10.1016/j.isci.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Sensory information must be integrated across a distributed brain network for stimulus processing and perception. Recent studies have revealed specific spatiotemporal patterns of cortical activation for the early and late components of sensory-evoked responses, which are associated with stimulus features and perception, respectively. Here, we investigated how the brain state influences the sensory-evoked activation across the mouse cortex. We utilized isoflurane to modulate the brain state and conducted wide-field calcium imaging of Thy1-GCaMP6f mice to monitor distributed activation evoked by multi-whisker stimulation. Our findings reveal that the level of anesthesia strongly shapes the spatiotemporal features and the functional connectivity of the sensory-activated network. As anesthesia levels decrease, we observe increasingly complex responses, accompanied by the emergence of the late component within the sensory-evoked response. The persistence of the late component under anesthesia raises new questions regarding the potential existence of perception during unconscious states.
Collapse
Affiliation(s)
- Elena Montagni
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Núria Tort-Colet
- Paris-Saclay University, CNRS, Institut des Neurosciences (NeuroPSI), Saclay, France
- Barcelonaβ Brain Research Center, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Alessandro Scaglione
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Institut des Neurosciences (NeuroPSI), Saclay, France
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Brünner H, Kim H, Ährlund-Richter S, van Lunteren JA, Crestani AP, Meletis K, Carlén M. Cell-type-specific representation of spatial context in the rat prefrontal cortex. iScience 2024; 27:109743. [PMID: 38711459 PMCID: PMC11070673 DOI: 10.1016/j.isci.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
The ability to represent one's own position in relation to cues, goals, or threats is crucial to successful goal-directed behavior. Using optotagging in knock-in rats expressing Cre recombinase in parvalbumin (PV) neurons (PV-Cre rats), we demonstrate cell-type-specific encoding of spatial and movement variables in the medial prefrontal cortex (mPFC) during goal-directed reward seeking. Single neurons encoded the conjunction of the animal's spatial position and the run direction, referred to as the spatial context. The spatial context was most prominently represented by the inhibitory PV interneurons. Movement toward the reward was signified by increased local field potential (LFP) oscillations in the gamma band but this LFP signature was not related to the spatial information in the neuronal firing. The results highlight how spatial information is incorporated into cognitive operations in the mPFC. The presented PV-Cre line opens the door for expanded research approaches in rats.
Collapse
Affiliation(s)
- Hans Brünner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Ana Paula Crestani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Gonzales DL, Khan HF, Keri HVS, Yadav S, Steward C, Muller LE, Pluta SR, Jayant K. A Translaminar Spacetime Code Supports Touch-Evoked Traveling Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593381. [PMID: 38766232 PMCID: PMC11100787 DOI: 10.1101/2024.05.09.593381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Linking sensory-evoked traveling waves to underlying circuit patterns is critical to understanding the neural basis of sensory perception. To form this link, we performed simultaneous electrophysiology and two-photon calcium imaging through transparent NeuroGrids and mapped touch-evoked cortical traveling waves and their underlying microcircuit dynamics. In awake mice, both passive and active whisker touch elicited traveling waves within and across barrels, with a fast early component followed by a variable late wave that lasted hundreds of milliseconds post-stimulus. Strikingly, late-wave dynamics were modulated by stimulus value and correlated with task performance. Mechanistically, the late wave component was i) modulated by motor feedback, ii) complemented by a sparse ensemble pattern across layer 2/3, which a balanced-state network model reconciled via inhibitory stabilization, and iii) aligned to regenerative Layer-5 apical dendritic Ca 2+ events. Our results reveal a translaminar spacetime pattern organized by cortical feedback in the sensory cortex that supports touch-evoked traveling waves. GRAPHICAL ABSTRACT AND HIGHLIGHTS Whisker touch evokes both early- and late-traveling waves in the barrel cortex over 100's of millisecondsReward reinforcement modulates wave dynamics Late wave emergence coincides with network sparsity in L23 and time-locked L5 dendritic Ca 2+ spikes Experimental and computational results link motor feedback to distinct translaminar spacetime patterns.
Collapse
|
26
|
Finkel EA, Chang YT, Dasgupta R, Lubin EE, Xu D, Minamisawa G, Chang AJ, Cohen JY, O'Connor DH. Tactile processing in mouse cortex depends on action context. Cell Rep 2024; 43:113991. [PMID: 38573855 PMCID: PMC11097894 DOI: 10.1016/j.celrep.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.
Collapse
Affiliation(s)
- Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajan Dasgupta
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily E Lubin
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genki Minamisawa
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anna J Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Nivinsky Margalit S, Slovin H. Encoding luminance surfaces in the visual cortex of mice and monkeys: difference in responses to edge and center. Cereb Cortex 2024; 34:bhae165. [PMID: 38652553 DOI: 10.1093/cercor/bhae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
28
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
29
|
Chang YT, Finkel EA, Xu D, O'Connor DH. Rule-based modulation of a sensorimotor transformation across cortical areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.21.554194. [PMID: 37662301 PMCID: PMC10473613 DOI: 10.1101/2023.08.21.554194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes rule information and uses this information to guide behavioral responses to sensory stimuli. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task in which they switched between two rules in different blocks of trials: licking in response to tactile stimuli applied to a whisker while rejecting visual stimuli, or licking to visual stimuli while rejecting the tactile stimuli. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, the single-trial activity of individual neurons distinguished between the two rules both prior to and in response to the tactile stimulus. Variable rule-dependent responses to identical stimuli could in principle occur via appropriate configuration of pre-stimulus preparatory states of a neural population, which would shape the subsequent response. We hypothesized that neural populations in S1, S2, MM and ALM would show preparatory activity states that were set in a rule-dependent manner to cause processing of sensory information according to the current rule. This hypothesis was supported for the motor cortical areas by findings that (1) the current task rule could be decoded from pre-stimulus population activity in ALM and MM; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states within ALM and MM impaired task performance. Our findings indicate that flexible selection of an appropriate action in response to a sensory input can occur via configuration of preparatory states in the motor cortex.
Collapse
|
30
|
Oryshchuk A, Sourmpis C, Weverbergh J, Asri R, Esmaeili V, Modirshanechi A, Gerstner W, Petersen CCH, Crochet S. Distributed and specific encoding of sensory, motor, and decision information in the mouse neocortex during goal-directed behavior. Cell Rep 2024; 43:113618. [PMID: 38150365 DOI: 10.1016/j.celrep.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Goal-directed behaviors involve coordinated activity in many cortical areas, but whether the encoding of task variables is distributed across areas or is more specifically represented in distinct areas remains unclear. Here, we compared representations of sensory, motor, and decision information in the whisker primary somatosensory cortex, medial prefrontal cortex, and tongue-jaw primary motor cortex in mice trained to lick in response to a whisker stimulus with mice that were not taught this association. Irrespective of learning, properties of the sensory stimulus were best encoded in the sensory cortex, whereas fine movement kinematics were best represented in the motor cortex. However, movement initiation and the decision to lick in response to the whisker stimulus were represented in all three areas, with decision neurons in the medial prefrontal cortex being more selective, showing minimal sensory responses in miss trials and motor responses during spontaneous licks. Our results reconcile previous studies indicating highly specific vs. highly distributed sensorimotor processing.
Collapse
Affiliation(s)
- Anastasiia Oryshchuk
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christos Sourmpis
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julie Weverbergh
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Reza Asri
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alireza Modirshanechi
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Life Sciences and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institut National de la Santé et de la Recherche Médicale (INSERM), 6900 Lyon, France.
| |
Collapse
|
31
|
Kawatani M, Yamashita T. In Vivo Whole-Cell Recording from the Mouse Brain. Methods Mol Biol 2024; 2794:245-257. [PMID: 38630234 DOI: 10.1007/978-1-0716-3810-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Measuring the membrane potential dynamics of neurons offers a comprehensive understanding of the molecular and cellular mechanisms that form their spiking activity, thus playing a crucial role in unraveling the mechanistic processes governing brain function. Techniques for intracellular recordings of membrane potentials pioneered in the 1940s have witnessed significant advancements since their inception. Among these, whole-cell patch-clamp recording has emerged as a leading method for measuring neuronal membrane potentials due to its high stability and broad applicability ranging from cultured cells to brain slices and even behaving animals. This chapter provides a detailed protocol to acquire stable whole-cell recordings from neurons in the cerebral cortex of awake, head-restrained mice. Significant enhancements to our protocol include implanting a metal head-post using adhesive resin cement and preparing a recording pipette with a long shank for targeting deeper brain regions. This protocol, once implemented, enables whole-cell recordings up to 2.5 mM beneath the cortical surface.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
32
|
Stachniak TJ, Argunsah AÖ, Yang JW, Cai L, Karayannis T. Presynaptic Kainate Receptors onto Somatostatin Interneurons Are Recruited by Activity throughout Development and Contribute to Cortical Sensory Adaptation. J Neurosci 2023; 43:7101-7118. [PMID: 37709538 PMCID: PMC10601374 DOI: 10.1523/jneurosci.1461-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Somatostatin (SST) interneurons produce delayed inhibition because of the short-term facilitation of their excitatory inputs created by the expression of metabotropic glutamate receptor 7 (mGluR7) and presynaptic GluK2-containing kainate receptors (GluK2-KARs). Using mice of both sexes, we find that as synaptic facilitation at layer (L)2/3 SST cell inputs increases during the first few postnatal weeks, so does GluK2-KAR expression. Removal of sensory input by whisker trimming does not affect mGluR7 but prevents the emergence of presynaptic GluK2-KARs, which can be restored by allowing whisker regrowth or by acute calmodulin activation. Conversely, late trimming or acute inhibition of Ca2+/calmodulin-dependent protein kinase II is sufficient to reduce GluK2-KAR activity. This developmental and activity-dependent regulation also produces a specific reduction of L4 GluK2-KARs that advances in parallel with the maturation of sensory processing in L2/3. Finally, we find that removal of both GluK2-KARs and mGluR7 from the synapse eliminates short-term facilitation and reduces sensory adaptation to repetitive stimuli, first in L4 of somatosensory cortex, then later in development in L2/3. The dynamic regulation of presynaptic GluK2-KARs potentially allows for flexible scaling of late inhibition and sensory adaptation.SIGNIFICANCE STATEMENT Excitatory synapses onto somatostatin (SST) interneurons express presynaptic, calcium-permeable kainate receptors containing the GluK2 subunit (GluK2-KARs), activated by high-frequency activity. In this study we find that their presence on L2/3 SST synapses in the barrel cortex is not based on a hardwired genetic program but instead is regulated by sensory activity, in contrast to that of mGluR7. Thus, in addition to standard synaptic potentiation and depression mechanisms, excitatory synapses onto SST neurons undergo an activity-dependent presynaptic modulation that uses GluK2-KARs. Further, we present evidence that loss of the frequency-dependent synaptic components (both GluK2-KARs and mGluR7 via Elfn1 deletion) contributes to a decrease in the sensory adaptation commonly seen on repetitive stimulus presentation.
Collapse
Affiliation(s)
- Tevye J Stachniak
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ali Ö Argunsah
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jenq-Wei Yang
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
33
|
Bech P, Crochet S, Dard R, Ghaderi P, Liu Y, Malekzadeh M, Petersen CCH, Pulin M, Renard A, Sourmpis C. Striatal Dopamine Signals and Reward Learning. FUNCTION 2023; 4:zqad056. [PMID: 37841525 PMCID: PMC10572094 DOI: 10.1093/function/zqad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
We are constantly bombarded by sensory information and constantly making decisions on how to act. In order to optimally adapt behavior, we must judge which sequences of sensory inputs and actions lead to successful outcomes in specific circumstances. Neuronal circuits of the basal ganglia have been strongly implicated in action selection, as well as the learning and execution of goal-directed behaviors, with accumulating evidence supporting the hypothesis that midbrain dopamine neurons might encode a reward signal useful for learning. Here, we review evidence suggesting that midbrain dopaminergic neurons signal reward prediction error, driving synaptic plasticity in the striatum underlying learning. We focus on phasic increases in action potential firing of midbrain dopamine neurons in response to unexpected rewards. These dopamine neurons prominently innervate the dorsal and ventral striatum. In the striatum, the released dopamine binds to dopamine receptors, where it regulates the plasticity of glutamatergic synapses. The increase of striatal dopamine accompanying an unexpected reward activates dopamine type 1 receptors (D1Rs) initiating a signaling cascade that promotes long-term potentiation of recently active glutamatergic input onto striatonigral neurons. Sensorimotor-evoked glutamatergic input, which is active immediately before reward delivery will thus be strengthened onto neurons in the striatum expressing D1Rs. In turn, these neurons cause disinhibition of brainstem motor centers and disinhibition of the motor thalamus, thus promoting motor output to reinforce rewarded stimulus-action outcomes. Although many details of the hypothesis need further investigation, altogether, it seems likely that dopamine signals in the striatum might underlie important aspects of goal-directed reward-based learning.
Collapse
Affiliation(s)
- Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robin Dard
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Parviz Ghaderi
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Meriam Malekzadeh
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mauro Pulin
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Anthony Renard
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Christos Sourmpis
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
34
|
Li WR, Nakano T, Mizutani K, Matsubara T, Kawatani M, Mukai Y, Danjo T, Ito H, Aizawa H, Yamanaka A, Petersen CCH, Yoshimoto J, Yamashita T. Neural mechanisms underlying uninstructed orofacial movements during reward-based learning behaviors. Curr Biol 2023; 33:3436-3451.e7. [PMID: 37536343 DOI: 10.1016/j.cub.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
During reward-based learning tasks, animals make orofacial movements that globally influence brain activity at the timings of reward expectation and acquisition. These orofacial movements are not explicitly instructed and typically appear along with goal-directed behaviors. Here, we show that reinforcing optogenetic stimulation of dopamine neurons in the ventral tegmental area (oDAS) in mice is sufficient to induce orofacial movements in the whiskers and nose without accompanying goal-directed behaviors. Pavlovian conditioning with a sensory cue and oDAS elicited cue-locked and oDAS-aligned orofacial movements, which were distinguishable by a machine-learning model. Inhibition or knockout of dopamine D1 receptors in the nucleus accumbens inhibited oDAS-induced motion but spared cue-locked motion, suggesting differential regulation of these two types of orofacial motions. In contrast, inactivation of the whisker primary motor cortex (wM1) abolished both types of orofacial movements. We found specific neuronal populations in wM1 representing either oDAS-aligned or cue-locked whisker movements. Notably, optogenetic stimulation of wM1 neurons successfully replicated these two types of movements. Our results thus suggest that accumbal D1-receptor-dependent and -independent neuronal signals converge in the wM1 for facilitating distinct uninstructed orofacial movements during a reward-based learning task.
Collapse
Affiliation(s)
- Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Nakano
- Department of Computational Biology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kohta Mizutani
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruko Danjo
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hikaru Ito
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Research Facility Center for Science and Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Junichiro Yoshimoto
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| |
Collapse
|
35
|
Shu Y, Hasenstaub A, McCormick DA. The h-current controls cortical recurrent network activity through modulation of dendrosomatic communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548753. [PMID: 37502942 PMCID: PMC10370005 DOI: 10.1101/2023.07.12.548753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A fundamental feature of the cerebral cortex is the ability to rapidly turn on and off maintained activity within ensembles of neurons through recurrent excitation balanced by inhibition. Here we demonstrate that reduction of the h-current, which is especially prominent in pyramidal cell dendrites, strongly increases the ability of local cortical networks to generate maintained recurrent activity. Reduction of the h-current resulted in hyperpolarization and increase in input resistance of both the somata and apical dendrites of layer 5 pyramidal cells, while strongly increasing the dendrosomatic transfer of low (<20 Hz) frequencies, causing an increased responsiveness to dynamic clamp-induced recurrent network-like activity injected into the dendrites and substantially increasing the duration of spontaneous Up states. We propose that modulation of the h-current may strongly control the ability of cortical networks to generate recurrent persistent activity and the formation and dissolution of neuronal ensembles.
Collapse
Affiliation(s)
- Yousheng Shu
- The Fudan University Fenglin Campus, 131 Dong’an Road, Xuhui District, Shanghai
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery (OHNS), University of California, San Francisco, 675 Nelson Rising Lane, #514B, San Francisco CA 94158
| | - David A. McCormick
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510; Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| |
Collapse
|
36
|
Claar LD, Rembado I, Kuyat JR, Russo S, Marks LC, Olsen SR, Koch C. Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. eLife 2023; 12:RP84630. [PMID: 37358562 DOI: 10.7554/elife.84630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Perturbational complexity analysis predicts the presence of consciousness in volunteers and patients by stimulating the brain with brief pulses, recording EEG responses, and computing their spatiotemporal complexity. We examined the underlying neural circuits in mice by directly stimulating cortex while recording with EEG and Neuropixels probes during wakefulness and isoflurane anesthesia. When mice are awake, stimulation of deep cortical layers reliably evokes locally a brief pulse of excitation, followed by a biphasic sequence of 120 ms profound off period and a rebound excitation. A similar pattern, partially attributed to burst spiking, is seen in thalamic nuclei and is associated with a pronounced late component in the evoked EEG. We infer that cortico-thalamo-cortical interactions drive the long-lasting evoked EEG signals elicited by deep cortical stimulation during the awake state. The cortical and thalamic off period and rebound excitation, and the late component in the EEG, are reduced during running and absent during anesthesia.
Collapse
Affiliation(s)
- Leslie D Claar
- MindScope Program, Allen Institute, Seattle, United States
| | - Irene Rembado
- MindScope Program, Allen Institute, Seattle, United States
| | | | - Simone Russo
- MindScope Program, Allen Institute, Seattle, United States
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Lydia C Marks
- MindScope Program, Allen Institute, Seattle, United States
| | - Shawn R Olsen
- MindScope Program, Allen Institute, Seattle, United States
| | - Christof Koch
- MindScope Program, Allen Institute, Seattle, United States
| |
Collapse
|
37
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
38
|
Muller M, Pennartz CMA, Bosman CA, Olcese U. A novel task to investigate vibrotactile detection in mice. PLoS One 2023; 18:e0284735. [PMID: 37079581 PMCID: PMC10118142 DOI: 10.1371/journal.pone.0284735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Throughout the last decades, understanding the neural mechanisms of sensory processing has been a key objective for neuroscientists. Many studies focused on uncovering the microcircuit-level architecture of somatosensation using the rodent whisker system as a model. Although these studies have significantly advanced our understanding of tactile processing, the question remains to what extent the whisker system can provide results translatable to the human somatosensory system. To address this, we developed a restrained vibrotactile detection task involving the limb system in mice. A vibrotactile stimulus was delivered to the hindlimb of head-fixed mice, who were trained to perform a Go/No-go detection task. Mice were able to learn this task with satisfactory performance and with reasonably short training times. In addition, the task we developed is versatile, as it can be combined with diverse neuroscience methods. Thus, this study introduces a novel task to study the neuron-level mechanisms of tactile processing in a system other than the more commonly studied whisker system.
Collapse
Affiliation(s)
- Mariel Muller
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Conrado A. Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Diamond ME, Toso A. Tactile cognition in rodents. Neurosci Biobehav Rev 2023; 149:105161. [PMID: 37028580 DOI: 10.1016/j.neubiorev.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal circuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
| | - Alessandro Toso
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
40
|
Bermudez-Contreras E, Schjetnan AGP, Luczak A, Mohajerani MH. Sensory experience selectively reorganizes the late component of evoked responses. Cereb Cortex 2023; 33:2626-2640. [PMID: 35704850 PMCID: PMC10016043 DOI: 10.1093/cercor/bhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
In response to sensory stimulation, the cortex exhibits an early transient response followed by late and slower activation. Recent studies suggest that the early component represents features of the stimulus while the late component is associated with stimulus perception. Although very informative, these studies only focus on the amplitude of the evoked responses to study its relationship with sensory perception. In this work, we expand upon the study of how patterns of evoked and spontaneous activity are modified by experience at the mesoscale level using voltage and extracellular glutamate transient recordings over widespread regions of mouse dorsal neocortex. We find that repeated tactile or auditory stimulation selectively modifies the spatiotemporal patterns of cortical activity, mainly of the late evoked response in anesthetized mice injected with amphetamine and also in awake mice. This modification lasted up to 60 min and results in an increase in the amplitude of the late response after repeated stimulation and in an increase in the similarity between the spatiotemporal patterns of the late early evoked response. This similarity increase occurs only for the evoked responses of the sensory modality that received the repeated stimulation. Thus, this selective long-lasting spatiotemporal modification of the cortical activity patterns might provide evidence that evoked responses are a cortex-wide phenomenon. This work opens new questions about how perception-related cortical activity changes with sensory experience across the cortex.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Majid H Mohajerani
- Corresponding author: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
41
|
Vandevelde JR, Yang JW, Albrecht S, Lam H, Kaufmann P, Luhmann HJ, Stüttgen MC. Layer- and cell-type-specific differences in neural activity in mouse barrel cortex during a whisker detection task. Cereb Cortex 2023; 33:1361-1382. [PMID: 35417918 DOI: 10.1093/cercor/bhac141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
To address the question which neocortical layers and cell types are important for the perception of a sensory stimulus, we performed multielectrode recordings in the barrel cortex of head-fixed mice performing a single-whisker go/no-go detection task with vibrotactile stimuli of differing intensities. We found that behavioral detection probability decreased gradually over the course of each session, which was well explained by a signal detection theory-based model that posits stable psychometric sensitivity and a variable decision criterion updated after each reinforcement, reflecting decreasing motivation. Analysis of multiunit activity demonstrated highest neurometric sensitivity in layer 4, which was achieved within only 30 ms after stimulus onset. At the level of single neurons, we observed substantial heterogeneity of neurometric sensitivity within and across layers, ranging from nonresponsiveness to approaching or even exceeding psychometric sensitivity. In all cortical layers, putative inhibitory interneurons on average proffered higher neurometric sensitivity than putative excitatory neurons. In infragranular layers, neurons increasing firing rate in response to stimulation featured higher sensitivities than neurons decreasing firing rate. Offline machine-learning-based analysis of videos of behavioral sessions showed that mice performed better when not moving, which at the neuronal level, was reflected by increased stimulus-evoked firing rates.
Collapse
Affiliation(s)
- Jens R Vandevelde
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.,Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Steffen Albrecht
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Henry Lam
- Computational Intelligence, Faculty of Law, Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, 55128 Mainz, Germany
| | - Paul Kaufmann
- Computational Intelligence, Faculty of Law, Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
42
|
Cichon J, Wasilczuk AZ, Looger LL, Contreras D, Kelz MB, Proekt A. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat Neurosci 2023; 26:39-52. [PMID: 36424433 PMCID: PMC10823523 DOI: 10.1038/s41593-022-01203-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
The brain can become transiently disconnected from the environment while maintaining vivid, internally generated experiences. This so-called 'dissociated state' can occur in pathological conditions and under the influence of psychedelics or the anesthetic ketamine (KET). The cellular and circuit mechanisms producing the dissociative state remain poorly understood. We show in mice that KET causes spontaneously active neurons to become suppressed while previously silent neurons become spontaneously activated. This switch occurs in all cortical layers and different cortical regions, is induced by both systemic and cortical application of KET and is mediated by suppression of parvalbumin and somatostatin interneuron activity and inhibition of NMDA receptors and HCN channels. Combined, our results reveal two largely non-overlapping cortical neuronal populations-one engaged in wakefulness, the other contributing to the KET-induced brain state-and may lay the foundation for understanding how the brain might become disconnected from the surrounding environment while maintaining internal subjective experiences.
Collapse
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Goueytes D, Lassagne H, Shulz DE, Ego-Stengel V, Estebanez L. Learning in a closed-loop brain-machine interface with distributed optogenetic cortical feedback. J Neural Eng 2022; 19. [PMID: 36579369 DOI: 10.1088/1741-2552/acab87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.Distributed microstimulations at the cortical surface can efficiently deliver feedback to a subject during the manipulation of a prosthesis through a brain-machine interface (BMI). Such feedback can convey vast amounts of information to the prosthesis user and may be key to obtain an accurate control and embodiment of the prosthesis. However, so far little is known of the physiological constraints on the decoding of such patterns. Here, we aimed to test a rotary optogenetic feedback that was designed to encode efficiently the 360° movements of the robotic actuators used in prosthetics. We sought to assess its use by mice that controlled a prosthesis joint through a closed-loop BMI.Approach.We tested the ability of mice to optimize the trajectory of a virtual prosthesis joint in order to solve a rewarded reaching task. They could control the speed of the joint by modulating the activity of individual neurons in the primary motor cortex. During the task, the patterned optogenetic stimulation projected on the primary somatosensory cortex continuously delivered information to the mouse about the position of the joint.Main results.We showed that mice are able to exploit the continuous, rotating cortical feedback in the active behaving context of the task. Mice achieved better control than in the absence of feedback by detecting reward opportunities more often, and also by moving the joint faster towards the reward angular zone, and by maintaining it longer in the reward zone. Mice controlling acceleration rather than speed of the joint failed to improve motor control.Significance.These findings suggest that in the context of a closed-loop BMI, distributed cortical feedback with optimized shapes and topology can be exploited to control movement. Our study has direct applications on the closed-loop control of rotary joints that are frequently encountered in robotic prostheses.
Collapse
Affiliation(s)
- Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Henri Lassagne
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Valérie Ego-Stengel
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Luc Estebanez
- Université Paris-Saclay, CNRS, Institut de Neurosciences Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
45
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Somatosensory ECoG-based brain-machine interface with electrical stimulation on medial forebrain bundle. Biomed Eng Lett 2022; 13:85-95. [PMID: 36711163 PMCID: PMC9873859 DOI: 10.1007/s13534-022-00256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Brain-machine interface (BMI) provides an alternative route for controlling an external device with one's intention. For individuals with motor-related disability, the BMI technologies can be used to replace or restore motor functions. Therefore, BMIs for movement restoration generally decode the neural activity from the motor-related brain regions. In this study, however, we designed a BMI system that uses sensory-related neural signals for BMI combined with electrical stimulation for reward. Four-channel electrocorticographic (ECoG) signals were recorded from the whisker-related somatosensory cortex of rats and converted to extract the BMI signals to control the one-dimensional movement of a dot on the screen. At the same time, we used operant conditioning with electrical stimulation on medial forebrain bundle (MFB), which provides a virtual reward to motivate the rat to move the dot towards the desired center region. The BMI task training was performed for 7 days with ECoG recording and MFB stimulation. Animals successfully learned to move the dot location to the desired position using S1BF neural activity. This study successfully demonstrated that it is feasible to utilize the neural signals from the whisker somatosensory cortex for BMI system. In addition, the MFB electrical stimulation is effective for rats to learn the behavioral task for BMI.
Collapse
|
47
|
Chen Y, Douglas H, Medina BJ, Olarinre M, Siegle JH, Kass RE. Population burst propagation across interacting areas of the brain. J Neurophysiol 2022; 128:1578-1592. [PMID: 36321709 PMCID: PMC9744659 DOI: 10.1152/jn.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 12/12/2022] Open
Abstract
For many perceptual and behavioral tasks, a prominent feature of neural spike trains involves high firing rates across relatively short intervals of time. We call these events "population bursts." Because during a population burst information is, presumably, transmitted from one part of the brain to another, burst timing should reveal activity related to the flow of information across neural circuits. We developed a statistical method (based on a point process model) of determining, accurately, the time of the maximum (peak) population firing rate on a trial-by-trial basis and used it to characterize burst propagation across areas. We then examined the tendency of peak firing rates in distinct brain areas to shift earlier or later in time, together, across repeated trials, and found this trial-to-trial coupling of peak times to be a sensitive indicator of interaction across populations. In the data we examined, from the Allen Brain Observatory, we found many very strong correlations (95% confidence intervals above 0.75) in cases where standard methods were unable to demonstrate cross-area correlation. The statistical model introduced cross-area covariation only through population-level trial-dependent time shifts and gain constants (values of which were learned from the data), yet it provided very good fits to data histograms, including histograms of spike count correlations within and across visual areas. Our results demonstrate the utility of carefully assessing timing and propagation, across brain regions, of transient bursts in neural population activity, based on multiple spike train recordings.NEW & NOTEWORTHY We developed a novel statistical method for identifying coordinated propagation of activity across populations of spiking neurons, with high temporal accuracy. Using simultaneous recordings from three visual areas we document precise timing relationships on a trial-by-trial basis, and we show how previously existing techniques can fail to discover coordinated activity in cases where the new approach finds very strong cross-area correlation.
Collapse
Affiliation(s)
- Yu Chen
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Hannah Douglas
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Bryan J Medina
- Department of Computer Science, University of Central Florida, Orlando, Florida
| | - Motolani Olarinre
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | - Robert E Kass
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Yeganeh F, Knauer B, Guimarães Backhaus R, Yang JW, Stroh A, Luhmann HJ, Stüttgen MC. Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex. Sci Rep 2022; 12:19419. [PMID: 36371511 PMCID: PMC9653449 DOI: 10.1038/s41598-022-24156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory interneurons play central roles in the modulation of spontaneous network activity and in processing of neuronal information. In sensory neocortical areas, parvalbumin-positive (PV+) GABAergic interneurons control the representation and processing of peripheral sensory inputs. We studied the functional role of PV+ interneurons in the barrel cortex of anesthetized adult PVCre mice by combining extracellular multi-electrode recordings with optogenetic silencing of a small fraction of PV+ interneurons. In all cortical layers, optogenetic inhibition caused an increase in spontaneous network activity from theta to gamma frequencies. The spatio-temporal representation of sensory inputs was studied by stimulating one or two whiskers at different intervals and analyzing the resulting local field potential (LFP) and single unit (SU) response. Silencing PV+ interneurons caused an increase in LFP response to sensory stimulation and a decrease in temporal discrimination of consecutive whisker deflections. The combined effect of whisker deflection and optogenetic inhibition was highly similar to the linear sum of the individual effects of these two manipulations. SU recordings revealed that optogenetic silencing reduced stimulus detectability by increasing stimulus-evoked firing rate by a constant offset, suggesting that PV+ interneurons improve signal-to-noise ratio by reducing ongoing spiking activity, thereby sharpening the spatio-temporal representation of sensory stimuli.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beate Knauer
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | - Jenq-Wei Yang
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Albrecht Stroh
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.509458.50000 0004 8087 0005Leibniz Institute for Resilience Research, Mainz, Germany
| | - Heiko J. Luhmann
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Maik C. Stüttgen
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
49
|
Mazor M, Brown S, Ciaunica A, Demertzi A, Fahrenfort J, Faivre N, Francken JC, Lamy D, Lenggenhager B, Moutoussis M, Nizzi MC, Salomon R, Soto D, Stein T, Lubianiker N. The Scientific Study of Consciousness Cannot and Should Not Be Morally Neutral. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:535-543. [PMID: 36170496 DOI: 10.1177/17456916221110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one's own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them. We show that because consciousness largely determines moral status, the use of nonhuman animals in the scientific study of consciousness introduces a direct conflict between scientific relevance and ethics-the more scientifically valuable an animal model is for studying consciousness, the more difficult it becomes to ethically justify compromises to its well-being for consciousness research. Finally, in light of these considerations, we call for a discussion of the immediate ethical corollaries of the body of knowledge that has accumulated and for a more explicit consideration of the role of ideology and ethics in the scientific study of consciousness.
Collapse
Affiliation(s)
- Matan Mazor
- Department of Psychological Sciences, Birkbeck, University of London.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London
| | - Simon Brown
- Department of Philosophy, Johns Hopkins University
| | - Anna Ciaunica
- Centre for Philosophy of Science, University of Lisbon
| | - Athena Demertzi
- Physiology of Cognition, GIGA Consciousness Research Unit, Université de Liège.,Fund for Scientific Research, Bruxelles, Belgium
| | - Johannes Fahrenfort
- Department of Psychology, University of Amsterdam.,Department of Experimental and Applied Psychology, Vrije Universiteit
| | - Nathan Faivre
- Centre for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC
| | - Jolien C Francken
- Faculty of Philosophy, Theology and Religious Studies, Radboud University
| | - Dominique Lamy
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel.,School of Psychological Sciences, Tel Aviv University
| | | | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London.,Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, University College London
| | - Marie-Christine Nizzi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles.,Cognitive Science Program, Dartmouth College.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University
| | - Roy Salomon
- Gonda Multidisciplinary Brain Research Centre, Bar-Ilan University
| | - David Soto
- Basque Centre on Cognition, Brain and Language, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Timo Stein
- Department of Psychology, University of Amsterdam
| | - Nitzan Lubianiker
- School of Psychological Sciences, Tel Aviv University.,Sagol Brain Institute, Tel-Aviv Medical Centre, Tel Aviv, Israel
| |
Collapse
|
50
|
Buetfering C, Zhang Z, Pitsiani M, Smallridge J, Boven E, McElligott S, Häusser M. Behaviorally relevant decision coding in primary somatosensory cortex neurons. Nat Neurosci 2022; 25:1225-1236. [PMID: 36042310 PMCID: PMC7613627 DOI: 10.1038/s41593-022-01151-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Primary sensory cortex is thought to process incoming sensory information, while decision variables important for driving behavior are assumed to arise downstream in the processing hierarchy. Here, we used population two-photon calcium imaging and targeted two-photon optogenetic stimulation of neurons in layer 2/3 of mouse primary somatosensory cortex (S1) during a texture discrimination task to test for the presence of decision signals and probe their behavioral relevance. Small but distinct populations of neurons carried information about the stimulus irrespective of the behavioral outcome (stimulus neurons), or about the choice irrespective of the presented stimulus (decision neurons). Decision neurons show categorical coding that develops during learning, and lack a conclusive decision signal in Miss trials. All-optical photostimulation of decision neurons during behavior improves behavioral performance, establishing a causal role in driving behavior. The fact that stimulus and decision neurons are intermingled challenges the idea of S1 as a purely sensory area, and causal perturbation suggests a direct involvement of S1 decision neurons in the decision-making process.
Collapse
Affiliation(s)
- Christina Buetfering
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Zihui Zhang
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Margarita Pitsiani
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - John Smallridge
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Neurophenomenology of Consciousness Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ellen Boven
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sacha McElligott
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|