1
|
Huang J, Yi L, Yang X, Zheng Q, Zhong J, Ye S, Li X, Li H, Chen D, Li C. Neural stem cells transplantation combined with ethyl stearate improve PD rats motor behavior by promoting NSCs migration and differentiation. CNS Neurosci Ther 2023; 29:1571-1584. [PMID: 36924304 PMCID: PMC10173712 DOI: 10.1111/cns.14119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND In recent years, the ability of neural stem cells (NSCs) transplantation to treat Parkinson's disease (PD) has attracted attention. However, it is still a challenge to promote the migration of NSCs to the lesion site and their directional differentiation into dopaminergic neurons in PD. C-C motif chemokine ligand 5 (CCL5) and C-C motif chemokine receptor 5 (CCR5) are expressed in the brain and are important regulators of cell migration. It has been reported that ethyl stearate (PubChem CID: 8122) has a protective effect in 6-OHDA-induced PD rats. METHODS Parkinson's disease rats were injected with 6-hydroxydopamine (6-OHDA) into the right substantia nigra, and striatum followed by 8 μL of an NSC cell suspension containing 100 μM ethyl stearate and 8 × 105 cells in the right striatum. The effect of transplantation NSCs combined with ethyl stearate was assessed by evaluating apomorphine (APO)-induced turning behavior and performance in the pole test. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence staining were also performed. RESULTS NSCs transplantation combined with ethyl stearate ameliorated the behavioral deficits of PD rats. PD rats that received transplantation NSCs combined with ethyl stearate exhibited increased expression of tyrosine hydroxylase (TH) and an increased number of green fluorescent protein (GFP)-positive cells. Furthermore, GFP-positive cells migrated into the substantia nigra and differentiated into dopaminergic neurons. The expression of CCL5 and CCR5 was significantly increased after transplantation NSCs combined with ethyl stearate. CONCLUSIONS These findings suggest that NSCs transplantation combined with ethyl stearate can improve the motor behavioral performance of PD rats by promoting NSCs migration from the striatum to the substantia nigra via CCL5/CCR5 and promoting the differentiation of NSCs into dopaminergic neurons.
Collapse
Affiliation(s)
- Jiapei Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxiao Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qi Zheng
- School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, Guangdong, China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Research Center of Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Berg LJ, Brüstle O. Stem cell programming - prospects for perinatal medicine. J Perinat Med 2023:jpm-2022-0575. [PMID: 36809086 DOI: 10.1515/jpm-2022-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023]
Abstract
Recreating human cell and organ systems in vitro has tremendous potential for disease modeling, drug discovery and regenerative medicine. The aim of this short overview is to recapitulate the impressive progress that has been made in the fast-developing field of cell programming during the past years, to illuminate the advantages and limitations of the various cell programming technologies for addressing nervous system disorders and to gauge their impact for perinatal medicine.
Collapse
Affiliation(s)
- Lea J Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Darooneh AH, Kohandel M. Network Analysis Identifies Phase Transitions for Tumor With Interacting Cells. Front Physiol 2022; 13:865561. [PMID: 35845999 PMCID: PMC9283708 DOI: 10.3389/fphys.2022.865561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is the process by which cancer cells acquire the capability to leave the primary tumor and travel to distant sites. Recent experiments have suggested that the epithelial–mesenchymal transition can regulate invasion and metastasis. Another possible scenario is the collective motion of cells. Recent studies have also proposed a jamming–unjamming transition for epithelial cells based on physical forces. Here, we assume that there exists a short-range chemical attraction between cancer cells and employ the Brownian dynamics to simulate tumor growth. Applying the network analysis, we suggest three possible phases for a given tumor and study the transition between these phases by adjusting the attraction strength.
Collapse
Affiliation(s)
- Amir Hossein Darooneh
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Department of Physics, University of Zanjan, Zanjan, Iran
- *Correspondence: Amir Hossein Darooneh ,
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
Karvelas N, Bennett S, Politis G, Kouris NI, Kole C. Advances in stem cell therapy in Alzheimer's disease: a comprehensive clinical trial review. Stem Cell Investig 2022; 9:2. [PMID: 35280344 PMCID: PMC8898169 DOI: 10.21037/sci-2021-063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia responsible for more than 121,499 deaths from AD in 2019 making AD the sixth-leading cause in the United States. AD is a progressive neurodegenerative disorder characterized by decline of memory, behavioral impairments that affects a person's ability to function independently ultimately leading to death. The current pressing need for a treatment for (AD) and advances in the field of cell therapy, has rendered stem cell therapeutics a promising field of research. Despite advancements in stem cell technology, confirmed by encouraging pre-clinical utilization of stem cells in AD animal models, the number of clinical trials evaluating the efficacy of stem cell therapy is limited, with the results of many ongoing clinical trials on cell therapy for AD still pending. Mesenchymal stem cells (MSCs) have been the main focus in these studies, reporting encouraging results concerning safety profile, however their efficacy remains unproven. In the current article we review the latest advances regarding different sources of stem cell therapy and present a comprehensive list of every available clinical trial in national and international registries. Finally, we discuss drawbacks arising from AD pathology and technical limitations that hinder the transition of stem cell technology from bench to bedside. Our findings emphasize the need to increase clinical trials towards uncovering the mode of action and the underlying therapeutic mechanisms of transplanted cells as well as the molecular mechanisms controlling regeneration and neuronal microenvironment.
Collapse
Affiliation(s)
- Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Georgios Politis
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Christo Kole
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| |
Collapse
|
5
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
6
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
7
|
Chemical mutagenesis of a GPCR ligand: Detoxifying "inflammo-attraction" to direct therapeutic stem cell migration. Proc Natl Acad Sci U S A 2020; 117:31177-31188. [PMID: 33219123 PMCID: PMC7733796 DOI: 10.1073/pnas.1911444117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While inflammatory chemokines, constitutively produced by pathologic regions, are pivotal for attracting reparative stem cells, one would certainly not want to further “inflame” a diseased brain by instilling such molecules. Exploiting the fact that receptors for such cytokines (G protein-coupled receptors [GPCR]) possess two “pockets”—one for binding, the other for signaling—we created a synthetic GPCR-agonist that maximizes interaction with the former and narrows that with the latter. Homing is robust with no inflammation. The peptide successfully directed the integration of human induced pluripotent stem cell derivatives (known to have muted migration) in a model of a prototypical neurodegenerative condition, ameliorating symptomatology. A transplanted stem cell’s engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell’s “pathotropism.” Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12–CXCR4 coupling. Alternatively, we chemically “mutated” CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a “designer” cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., “inflammo-attraction”).
Collapse
|
8
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
De Gioia R, Biella F, Citterio G, Rizzo F, Abati E, Nizzardo M, Bresolin N, Comi GP, Corti S. Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E3103. [PMID: 32354178 PMCID: PMC7247151 DOI: 10.3390/ijms21093103] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases are disabling and fatal neurological disorders that currently lack effective treatment. Neural stem cell (NSC) transplantation has been studied as a potential therapeutic approach and appears to exert a beneficial effect against neurodegeneration via different mechanisms, such as the production of neurotrophic factors, decreased neuroinflammation, enhanced neuronal plasticity and cell replacement. Thus, NSC transplantation may represent an effective therapeutic strategy. To exploit NSCs' potential, some of their essential biological characteristics must be thoroughly investigated, including the specific markers for NSC subpopulations, to allow profiling and selection. Another key feature is their secretome, which is responsible for the regulation of intercellular communication, neuroprotection, and immunomodulation. In addition, NSCs must properly migrate into the central nervous system (CNS) and integrate into host neuronal circuits, enhancing neuroplasticity. Understanding and modulating these aspects can allow us to further exploit the therapeutic potential of NSCs. Recent progress in gene editing and cellular engineering techniques has opened up the possibility of modifying NSCs to express select candidate molecules to further enhance their therapeutic effects. This review summarizes current knowledge regarding these aspects, promoting the development of stem cell therapies that could be applied safely and effectively in clinical settings.
Collapse
Affiliation(s)
- Roberta De Gioia
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Gaia Citterio
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Federica Rizzo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Andreoli E, Petrenko V, Constanthin PE, Contestabile A, Bocchi R, Egervari K, Quairiaux C, Salmon P, Kiss JZ. Transplanted Embryonic Neurons Improve Functional Recovery by Increasing Activity in Injured Cortical Circuits. Cereb Cortex 2020; 30:4708-4725. [PMID: 32266929 DOI: 10.1093/cercor/bhaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Transplantation of appropriate neuronal precursors after injury is a promising strategy to reconstruct cortical circuits, but the efficiency of these approaches remains limited. Here, we applied targeted apoptosis to selectively ablate layer II/III pyramidal neurons in the rat juvenile cerebral cortex and attempted to replace lost neurons with their appropriate embryonic precursors by transplantation. We demonstrate that grafted precursors do not migrate to replace lost neurons but form vascularized clusters establishing reciprocal synaptic contacts with host networks and show functional integration. These heterotopic neuronal clusters significantly enhance the activity of the host circuits without causing epileptic seizures and attenuate the apoptotic injury-induced functional deficits in electrophysiological and behavioral tests. Chemogenetic activation of grafted neurons further improved functional recovery, and the persistence of the graft was necessary for maintaining restored functions in adult animals. Thus, implanting neuronal precursors capable to form synaptically integrated neuronal clusters combined with activation-based approaches represents a useful strategy for helping long-term functional recovery following brain injury.
Collapse
Affiliation(s)
- Evgenia Andreoli
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Paul Eugène Constanthin
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Kristof Egervari
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Patrick Salmon
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation. Front Neurosci 2019; 13:1194. [PMID: 31802998 PMCID: PMC6877657 DOI: 10.3389/fnins.2019.01194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.
Collapse
Affiliation(s)
- Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
13
|
Dell'Anno MT, Wang X, Onorati M, Li M, Talpo F, Sekine Y, Ma S, Liu F, Cafferty WBJ, Sestan N, Strittmatter SM. Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit. Nat Commun 2018; 9:3419. [PMID: 30143638 PMCID: PMC6109094 DOI: 10.1038/s41467-018-05844-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/23/2018] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery. The optimal type or regional origin of stem cells for regenerative applications in the nervous system has not yet been established. Here the authors show that human neuroepithelial stem cells from the developing spinal cord, but not those from the developing cortex, show good host-graft interaction when transplanted to rodent models of spinal cord injury.
Collapse
Affiliation(s)
- Maria Teresa Dell'Anno
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Francesca Talpo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Nenad Sestan
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA.,Department of Genetics, of Psychiatry and of Comparative Medicine, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair (CNNR) Program, Yale School of Medicine, New Haven, CT, 06536, USA. .,Department of Neurology, Yale School of Medicine, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell 2018; 174:622-635.e13. [PMID: 29909983 PMCID: PMC6082168 DOI: 10.1016/j.cell.2018.05.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022]
Abstract
Transcription factors regulate the molecular, morphological, and physiological characteristics of neurons and generate their impressive cell-type diversity. To gain insight into the general principles that govern how transcription factors regulate cell-type diversity, we used large-scale single-cell RNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single cells and assigned them to 52 clusters. We validated and annotated many clusters using RNA sequencing of FACS-sorted single-cell types and cluster-specific genes. To identify transcription factors responsible for inducing specific terminal differentiation features, we generated a "random forest" model, and we showed that the transcription factors Apterous and Traffic-jam are required in many but not all cholinergic and glutamatergic neurons, respectively. In fact, the same terminal characters often can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.
Collapse
Affiliation(s)
| | - Katarina Kapuralin
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Chaimaa Fadil
- Department of Biology, New York University, New York, NY 10003, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Luendreo Barboza
- Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA; New York Genome Center, New York, NY 10013, USA
| | - Rahul Satija
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Iwasa SN, Popovic MR, Morshead CM. Skin-derived precursor cells undergo substrate-dependent galvanotaxis that can be modified by neighbouring cells. Stem Cell Res 2018; 31:95-101. [PMID: 30059907 DOI: 10.1016/j.scr.2018.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022] Open
Abstract
Many cell types respond to electric fields (EFs) through cell migration, a process termed galvanotaxis. The galvanotactic response is critical for development and wound healing. Here we investigate whether skin-derived precursor cells (SKPs), which have the potential to differentiate into mesodermal and peripheral neural cell types, undergo directed migration in the presence of an EF. We found that EF application promotes SKP migration towards the anode. The migratory response is substrate-dependent as SKPs undergo directed migration on laminin and Matrigel, but not collagen. The majority of SKPs express the undifferentiated cell markers nestin, fibronectin and Sox2, after both EF application and in sister cultures with no EF application, suggesting that EFs do not promote cell differentiation. Co-cultures of SKPs and brain-derived neural precursor cells (NPCs), a population of cells that undergo rapid, cathode-directed migration, reveal that in the presence of NPCs an increased percentage of SKPs undergo galvanotaxis, providing evidence that cells can provide cues to modify the galvanotactic response. We propose that a better understanding of SKP migration in the presence of EFs may provide insight into improved strategies for wound repair.
Collapse
Affiliation(s)
- Stephanie N Iwasa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario M4G 3V9, Canada.
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario M4G 3V9, Canada.
| | - Cindi M Morshead
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario M4G 3V9, Canada; Department of Surgery, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
16
|
New approaches for brain repair—from rescue to reprogramming. Nature 2018; 557:329-334. [DOI: 10.1038/s41586-018-0087-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
|
17
|
Turunen PM, Louhivuori LM, Louhivuori V, Kukkonen JP, Åkerman KE. Endocannabinoid Signaling in Embryonic Neuronal Motility and Cell–Cell Contact – Role of mGluR5 and TRPC3 Channels. Neuroscience 2018; 375:135-148. [DOI: 10.1016/j.neuroscience.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
18
|
Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci 2018; 21:517-529. [PMID: 29507412 PMCID: PMC5876138 DOI: 10.1038/s41593-018-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
Repair of complex CNS circuitry requires newly incorporated neurons to become appropriately, functionally integrated. One approach is to direct differentiation of endogenous progenitors in situ, or ex vivo followed by transplantation. Prior studies find that newly incorporated neurons can establish long-distance axon projections, form synapses and functionally integrate in evolutionarily old hypothalamic energy-balance circuitry. We now demonstrate that postnatal neocortical connectivity can be reconstituted with point-to-point precision, including cellular integration of specific, molecularly identified projection neuron subtypes into correct positions, combined with development of appropriate long-distance projections and synapses. Using optogenetics-based electrophysiology, experiments demonstrate functional afferent and efferent integration of transplanted neurons into transcallosal projection neuron circuitry. Results further indicate that 'primed' early postmitotic neurons, including already fate-restricted deep-layer projection neurons and/or plastic postmitotic neuroblasts with partially fate-restricted potential, account for the predominant population of neurons capable of achieving this optimal level of integration.
Collapse
Affiliation(s)
- Thomas V Wuttke
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Departments of Neurosurgery and of Neurology and Epileptology, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Foivos Markopoulos
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Hari Padmanabhan
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aaron P Wheeler
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Venkatesh N Murthy
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med 2017; 49:e361. [PMID: 28751784 PMCID: PMC5565952 DOI: 10.1038/emm.2017.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/27/2023] Open
Abstract
Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.
Collapse
|
20
|
Feng JF, Liu J, Zhang L, Jiang JY, Russell M, Lyeth BG, Nolta JA, Zhao M. Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports 2017; 9:177-189. [PMID: 28669601 PMCID: PMC5511115 DOI: 10.1016/j.stemcr.2017.05.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies. Developed a technology and device delivering electric current to the brain in vivo Achieved stable delivery of currents to brain with monitoring and safety concerns Exhibited effective guidance of migration of transplanted human NSCs in live brain Demonstrated enhanced motility, survival, and differentiation of the guided hNSCs
Collapse
Affiliation(s)
- Jun-Feng Feng
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA; Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Jing Liu
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Lei Zhang
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | | | - Bruce G Lyeth
- Department of Neurological Surgery, University of California Davis, Davis, CA 95616, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA.
| |
Collapse
|
21
|
de la Rosa-Prieto C, Laterza C, Gonzalez-Ramos A, Wattananit S, Ge R, Lindvall O, Tornero D, Kokaia Z. Stroke alters behavior of human skin-derived neural progenitors after transplantation adjacent to neurogenic area in rat brain. Stem Cell Res Ther 2017; 8:59. [PMID: 28279192 PMCID: PMC5345149 DOI: 10.1186/s13287-017-0513-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 01/19/2023] Open
Abstract
Background Intracerebral transplantation of human induced pluripotent stem cells (iPSCs) can ameliorate behavioral deficits in animal models of stroke. How the ischemic lesion affects the survival of the transplanted cells, their proliferation, migration, differentiation, and function is only partly understood. Methods Here we have assessed the influence of the stroke-induced injury on grafts of human skin iPSCs-derived long-term neuroepithelial-like stem cells using transplantation into the rostral migratory stream (RMS), adjacent to the neurogenic subventricular zone, in adult rats as a model system. Results We show that the occurrence of an ischemic lesion, induced by middle cerebral artery occlusion, in the striatum close to the transplant does not alter the survival, proliferation, or generation of neuroblasts or mature neurons or astrocytes from the grafted progenitors. In contrast, the migration and axonal projection patterns of the transplanted cells are markedly influenced. In the intact brain, the grafted cells send many fibers to the main olfactory bulb through the RMS and a few of them migrate in the same direction, reaching the first one third of this pathway. In the stroke-injured brain, on the other hand, the grafted cells only migrate toward the ischemic lesion and virtually no axonal outgrowth is observed in the RMS. Conclusions Our findings indicate that signals released from the stroke-injured area regulate the migration of and fiber outgrowth from grafted human skin-derived neural progenitors and overcome the influence on these cellular properties exerted by the neurogenic area/RMS in the intact brain.
Collapse
Affiliation(s)
- Carlos de la Rosa-Prieto
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden.,Present address: Laboratory of Human Neuroanatomy, Department of Health Sciences, Faculty of Medicine, CRIB, University of Castilla-La Mancha, 02008, Albacete, Spain
| | - Cecilia Laterza
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| | - Ana Gonzalez-Ramos
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| | - Somsak Wattananit
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| | - Ruimin Ge
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| | - Daniel Tornero
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden.
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, 221 84, Lund, Sweden
| |
Collapse
|
22
|
Doerr J, Schwarz MK, Wiedermann D, Leinhaas A, Jakobs A, Schloen F, Schwarz I, Diedenhofen M, Braun NC, Koch P, Peterson DA, Kubitscheck U, Hoehn M, Brüstle O. Whole-brain 3D mapping of human neural transplant innervation. Nat Commun 2017; 8:14162. [PMID: 28102196 PMCID: PMC5253698 DOI: 10.1038/ncomms14162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
While transplantation represents a key tool for assessing in vivo functionality of neural stem cells and their suitability for neural repair, little is known about the integration of grafted neurons into the host brain circuitry. Rabies virus-based retrograde tracing has developed into a powerful approach for visualizing synaptically connected neurons. Here, we combine this technique with light sheet fluorescence microscopy (LSFM) to visualize transplanted cells and connected host neurons in whole-mouse brain preparations. Combined with co-registration of high-precision three-dimensional magnetic resonance imaging (3D MRI) reference data sets, this approach enables precise anatomical allocation of the host input neurons. Our data show that the same neural donor cell population grafted into different brain regions receives highly orthotopic input. These findings indicate that transplant connectivity is largely dictated by the circuitry of the target region and depict rabies-based transsynaptic tracing and LSFM as efficient tools for comprehensive assessment of host–donor cell innervation. Transplantation of cells into the central nervous system has developed into a major avenue for replacing neurons lost to neurodegenerative disease. Here the authors develop an approach combining viral-based transynaptic tracing labeling and whole brain imaging to trace synaptic innervation of human neurons transplanted into a mouse background.
Collapse
Affiliation(s)
- Jonas Doerr
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Life&Brain GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Martin Karl Schwarz
- Life&Brain GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Epileptology, Functional Neuroconnectomics Group, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Dirk Wiedermann
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Anke Leinhaas
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Alina Jakobs
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Florian Schloen
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, 53115 Bonn, Germany
| | - Inna Schwarz
- Department of Epileptology, Functional Neuroconnectomics Group, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Michael Diedenhofen
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Daniel A Peterson
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, 60064 North Chicago, Illinois, USA
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, 53115 Bonn, Germany
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Life&Brain GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| |
Collapse
|
23
|
Wu W, Manz A. Biocompatibility assay of cellular behavior inside a leaf-inspired biomimetic microdevice at the single-cell level. RSC Adv 2017. [DOI: 10.1039/c7ra00290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inspired by recent studies, we created a biomimetic method to replicate the veinal microvasculature from a natural leaf into a lab-on-a-chip system, which could be further utilized as a biomimetic animal vessel as well as in vessel-derived downstream applications.
Collapse
Affiliation(s)
- Wenming Wu
- The State Key Laboratory of Applied Optics
- Changchun Institute of Optics
- Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun
| | - Andreas Manz
- University of Saarland
- Germany
- Korea Institute of Science and Technology Europe
- Germany
| |
Collapse
|
24
|
Winter CC, Katiyar KS, Hernandez NS, Song YJ, Struzyna LA, Harris JP, Cullen DK. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta Biomater 2016; 38:44-58. [PMID: 27090594 DOI: 10.1016/j.actbio.2016.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Neurotrauma, stroke, and neurodegenerative disease may result in widespread loss of neural cells as well as the complex interconnectivity necessary for proper central nervous system function, generally resulting in permanent functional deficits. Potential regenerative strategies involve the recruitment of endogenous neural stem cells and/or directed axonal regeneration through the use of tissue engineered "living scaffolds" built to mimic features of three-dimensional (3-D) in vivo migratory or guidance pathways. Accordingly, we devised a novel biomaterial encasement scheme using tubular hydrogel-collagen micro-columns that facilitated the self-assembly of seeded astrocytes into 3-D living scaffolds consisting of long, cable-like aligned astrocytic networks. Here, robust astrocyte alignment was achieved within a micro-column inner diameter (ID) of 180μm or 300-350μm but not 1.0mm, suggesting that radius of curvature dictated the extent of alignment. Moreover, within small ID micro-columns, >70% of the astrocytes assumed a bi-polar morphology, versus ∼10% in larger micro-columns or planar surfaces. Cell-cell interactions also influenced the aligned architecture, as extensive astrocyte-collagen contraction was achieved at high (9-12×10(5)cells/mL) but not lower (2-6×10(5)cells/mL) seeding densities. This high density micro-column seeding led to the formation of ultra-dense 3-D "bundles" of aligned bi-polar astrocytes within collagen measuring up to 150μm in diameter yet extending to a remarkable length of over 2.5cm. Importantly, co-seeded neurons extended neurites directly along the aligned astrocytic bundles, demonstrating permissive cues for neurite extension. These transplantable cable-like astrocytic networks structurally mimic the glial tube that guides neuronal progenitor migration in vivo along the rostral migratory stream, and therefore may be useful to guide progenitor cells to repopulate sites of widespread neurodegeneration. STATEMENT OF SIGNIFICANCE This manuscript details our development of novel micro-tissue engineering techniques to generate robust networks of longitudinally aligned astrocytes within transplantable micro-column hydrogels. We report a novel biomaterial encasement scheme that facilitated the self-assembly of seeded astrocytes into long, aligned regenerative pathways. These miniature "living scaffold" constructs physically emulate the glial tube - a pathway in the brain consisting of aligned astrocytes that guide the migration of neuronal progenitor cells - and therefore may facilitate directed neuronal migration for central nervous system repair. The small size and self-contained design of these aligned astrocyte constructs will permit minimally invasive transplantation in models of central nervous system injury in future studies.
Collapse
|
25
|
Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci U S A 2015; 112:9484-9. [PMID: 26170290 DOI: 10.1073/pnas.1508545112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial "whole-mount" dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system.
Collapse
|
26
|
Abstract
Stem cell-based therapies hold considerable promise for many currently devastating neurological disorders. Substantial progress has been made in the derivation of disease-relevant human donor cell populations. Behavioral data in relevant animal models of disease have demonstrated therapeutic efficacy for several cell-based approaches. Consequently, cGMP grade cell products are currently being developed for first in human clinical trials in select disorders. Despite the therapeutic promise, the presumed mechanism of action of donor cell populations often remains insufficiently validated. It depends greatly on the properties of the transplanted cell type and the underlying host pathology. Several new technologies have become available to probe mechanisms of action in real time and to manipulate in vivo cell function and integration to enhance therapeutic efficacy. Results from such studies generate crucial insight into the nature of brain repair that can be achieved today and push the boundaries of what may be possible in the future.
Collapse
|
27
|
Batalov I, Feinberg AW. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomark Insights 2015; 10:71-6. [PMID: 26052225 PMCID: PMC4447149 DOI: 10.4137/bmi.s20050] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (PSCs) are a promising cell source for cardiac tissue engineering and cell-based therapies for heart repair because they can be expanded in vitro and differentiated into most cardiovascular cell types, including cardiomyocytes. During embryonic heart development, this differentiation occurs under the influence of internal and external stimuli that guide cells to go down the cardiac lineage. In order to differentiate PSCs in vitro, these or similar stimuli need to be provided in a controlled manner. However, because it is not possible to completely recapitulate the embryonic environment, the factors essential for cardiac differentiation of PSCs in vitro need to be experimentally determined and validated. Since PSCs were first developed, significant progress has been made in optimizing techniques for their differentiation toward cardiomyocytes. In this review, we will summarize recent advances in these techniques, with particular focus on monolayer-based methods that have improved the efficiency and scalability of cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. ; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Li D, Fu L, Zhang Y, Yu Q, Ma F, Wang Z, Luo Z, Zhou Z, Cooper PR, He W. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro. J Dent 2014; 42:1327-34. [DOI: 10.1016/j.jdent.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023] Open
|
29
|
Czepiel M, Leicher L, Becker K, Boddeke E, Copray S. Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors. Stem Cells Transl Med 2014; 3:1100-9. [PMID: 25069776 DOI: 10.5966/sctm.2014-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible source for transplantable autologous oligodendrocyte precursors (OPCs). The first transplantation studies in animal models for demyelination with iPSC-derived OPCs demonstrated their survival and remyelinating capacity, but also revealed their limited migration capacity. In the present study, we induced overexpression of the polysialylating enzyme sialyltransferase X (STX) in iPSC-derived OPCs to stimulate the production of polysialic acid-neuronal cell adhesion molecules (PSA-NCAMs), known to promote and facilitate the migration of OPCs. The STX-overexpressing iPSC-derived OPCs showed a normal differentiation and maturation pattern and were able to downregulate PSA-NCAMs when they became myelin-forming oligodendrocytes. After implantation in the demyelinated corpus callosum of cuprizone-fed mice, STX-expressing iPSC-derived OPCs demonstrated a significant increase in migration along the axons. Our findings suggest that the reach and efficacy of iPSC-derived OPC transplantation can be improved by stimulating the OPC migration potential via specific gene modulation.
Collapse
Affiliation(s)
- Marcin Czepiel
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Lasse Leicher
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Katja Becker
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjef Copray
- Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Laws of attraction. Nat Rev Neurosci 2013. [DOI: 10.1038/nrn3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|