1
|
Di Stefano N, Spence C. Smelling x as y? On (the impossibility of) multistable perception in the chemical senses. Conscious Cogn 2025; 132:103875. [PMID: 40339447 DOI: 10.1016/j.concog.2025.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Multistable percepts are intriguing phenomena whereby an ambiguous sensory input can be perceived in one of several qualitatively different ways. In such cases, people can switch their attention to perceive the stimulus in either way, though they typically cannot maintain both interpretations in awareness simultaneously. The abundance of evidence demonstrating multistable perception in the visual and auditory modalities can be contrasted with the scarcity, if not absence, of studies reporting similar phenomena in the chemical senses (primarily olfaction and gustation), prompting an intriguing question about this apparent qualitative difference between the senses. This paper seeks to address this question by first briefly reviewing multistable perceptual phenomena in vision and audition to underscore their defining features. We then assess the limited body of research that has occasionally linked multistability to the chemical senses. While a few studies suggest loose analogies between olfactory perception and visual or auditory multistability, no compelling evidence exists for such phenomena in taste. We argue that this absence is unlikely to be explained by any single factor. Rather, it appears to stem from a confluence of constraints, including the lack of spatio-temporal structure and intrinsic dimensionality in chemosensory stimuli, as well as their distinct evolutionary functions and cognitive framing. Together, these factors may help to explain why multistable perceptual experiences seem not to emerge in the chemical senses.
Collapse
Affiliation(s)
- Nicola Di Stefano
- Institute of Cognitive Sciences and Technology, National Research Council of Italy (CNR), Rome, Italy.
| | - Charles Spence
- Crossmodal Research Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Arancibia F, Rojas M, Becerra D, Fuenzalida R, Cea-Del Rio C, Mpodozis J, Sanhueza M, Nunez-Parra A. Olfactory dysfunction and altered cortical excitability in the mouse model of Fragile X Syndrome. Biol Res 2025; 58:21. [PMID: 40275427 PMCID: PMC12023451 DOI: 10.1186/s40659-024-00582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/17/2024] [Indexed: 04/26/2025] Open
Abstract
Fragile X Syndrome (FXS) is the most common monogenetic cause of autism and inherited intellectual disability. A key feature of FXS symptomatology is altered sensory processing greatly affecting FXS individual's life quality. Here, we use a combination of behavioral tests and slice physiology tools to study the neurophysiological alterations underlying aberrant sensory processing in the olfactory system of the FXS mouse model (Fmr1 KO). We focused on the piriform cortex (PC), since it is in this brain region where olfactory information is integrated and ultimately decoded. Using a go-no go behavioral task we have found that Fmr1 KO learn to discriminate between a rewarded and a not rewarded odorant but cannot distinguish complex odor mixtures, akin to what is found in the environment. Moreover, Fmr1 KO long-term memory is impaired compared to control mice suggesting possibly cortical processing alterations. In addition, electrophysiological data from PC layer II neurons of Fmr1 KO mice showed a hyperexcitable phenotype manifested by differences in active membrane properties and altered network connectivity. Taken together, our data suggest a possible causal link between the observed olfactory discrimination deficiencies in the Fmr1 KO mouse and the altered physiology of PC.
Collapse
Affiliation(s)
- Felipe Arancibia
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Marcelo Rojas
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Diego Becerra
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Rocío Fuenzalida
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Christian Cea-Del Rio
- Neurophysiopathology Laboratory, Center for Biomedical and Applied Research, School of Medicine, Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Mpodozis
- Neurobiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Magdalena Sanhueza
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
4
|
Qi M, Won J, Rodriguez C, Storace DA. Glutamatergic heterogeneity in the neuropeptide projections from the lateral hypothalamus to the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638511. [PMID: 39990441 PMCID: PMC11844501 DOI: 10.1101/2025.02.16.638511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The direct pathway from the lateral hypothalamus to the mouse olfactory bulb (OB) includes neurons that express the neuropeptide orexin-A, and others that do not. The OB-projecting neurons that do not express orexin-A are present in an area of the lateral hypothalamus known to contain neurons that express the neuropeptide melanin-concentrating hormone (MCH). We used virally mediated anterograde tract tracing and immunohistochemistry for orexin-A and MCH to demonstrate that the OB is broadly innervated by axon projections from both populations of neurons. Orexin-A and MCH were expressed in each OB layer across its anterior to posterior axis. Both orexin-A and MCH neurons are genetically heterogeneous, with subsets that co-express an isoform of vesicular glutamate transporter (VGLUT). We used high-resolution confocal imaging to test whether the projections from orexin-A and MCH neurons to the OB reflect this glutamatergic heterogeneity. The majority (~57%) of putative orexin-A axon terminals overlapped with VGLUT2, with smaller proportions that co-expressed VGLUT1, or that did not overlap with either VGLUT1 or VGLUT2. In contrast, only ~26% of putative MCH axon terminals overlapped with VGLUT2, with the majority not overlapping with either VGLUT. Therefore, the projections from the lateral hypothalamus to the OB are genetically heterogeneous and include neurons that can release two different neuropeptides. The projections from both populations are themselves genetically heterogeneous with distinct ratios of glutamatergic and non-glutamatergic axon terminals.
Collapse
Affiliation(s)
- Meizhu Qi
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Julia Won
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
5
|
Drnovsek E, Weitkamp K, Murthy VN, Gurbuz E, Haehner A, Hummel T. Detection of odorants in odour mixtures among healthy people and patients with olfactory dysfunction. Eur J Neurosci 2025; 61:e16633. [PMID: 39803925 PMCID: PMC11727005 DOI: 10.1111/ejn.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025]
Abstract
Target odorant detection in mixtures has been shown to become more difficult as the number of background odorants increases and falls below chance level in mixtures with 16 components. Our aim was to investigate target odorant detection in mixtures among healthy people and compare it between dysosmic patients and age- and gender-matched controls. Participants underwent extensive olfactory testing and performed two target odorant detection tasks. Eugenol ('clove') and phenylethanol (PEA, 'rose') were target odorants for all participants, whereas a third target was randomised. For each target odorant in task one (task two), there were four steps. Mixtures contained two (three) odorants in the first step and up to seven (eight) odorants in the fourth step. In each step, participants were asked to choose the sample with the target odorant from the three (two) jars presented. The study included 90 healthy people and 40 patients. As expected, probability of successful target odorant detection decreased as the number of odorants in the mixture increased. However, even when there were seven (eight) odorants in the mixture, around 50% (50%) of healthy people detected Eugenol and around 30% (40%) detected PEA. Furthermore, both distributions of successful target odorant detection differed from the expected binominal distribution of chance (p < 0.001). Patients performed worse at detecting Eugenol or PEA at each step than controls. Furthermore, there were significant positive correlations between task scores and olfactory function. In conclusion, target odorant detection is influenced by the target odorant, number of background odorants, and individual olfactory function.
Collapse
Affiliation(s)
- Eva Drnovsek
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| | - Kristina Weitkamp
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| | - Venkatesh N. Murthy
- Center for Brain ScienceHarvard UniversityCambridgeMAUSA
- Department of Molecular & Cellular BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Edanur Gurbuz
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
- Faculty of MedicineMugla Sitki Kocman UniversityMuglaTurkey
| | - Antje Haehner
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
6
|
Papes F, Nakahara TS, Camargo AP. Behavioral Assays in the Study of Olfaction. Methods Mol Biol 2025; 2915:213-314. [PMID: 40249495 DOI: 10.1007/978-1-0716-4466-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Olfaction is a fundamental sense in most animal species. In mammals, the olfactory system comprises several subpopulations of sensory neurons located throughout the nasal cavity, which detect a variety of chemical stimuli, including odorants, intraspecies, and interspecies chemical communication cues. Some of these compounds are important for regulating innate or learned behaviors and endocrine changes in response to other animals in the environment. With a particular focus on laboratory rodent species, this chapter provides a comprehensive description of the most important behavioral assays used for studying the olfactory system and is meant to be a practical guide for those who investigate olfaction-mediated behaviors or who have an interest in deciphering the molecular, cellular, or neural mechanisms through which the sense of smell controls the generation of adaptive behavioral outputs.
Collapse
Affiliation(s)
- Fabio Papes
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Thiago S Nakahara
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- UMR Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Antonio P Camargo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Conway M, Oncul M, Allen K, Zhang Z, Johnston J. Perceptual constancy for an odor is acquired through changes in primary sensory neurons. SCIENCE ADVANCES 2024; 10:eado9205. [PMID: 39661686 PMCID: PMC11633753 DOI: 10.1126/sciadv.ado9205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The ability to consistently recognize an object despite variable sensory input is termed perceptual constancy. This ability is not innate; rather, it develops with experience early in life. We show that, when mice are naïve to an odor object, perceptual constancy is absent across increasing concentrations. The perceptual change coincides with a rapid reduction in activity from a single olfactory receptor channel that is most sensitive to the odor. This drop in activity is not a property of circuit interactions within the olfactory bulb; instead, it is due to a sensitivity mismatch of olfactory receptor neurons within the nose. We show that, after forming an association of this odor with food, the sensitivity of the receptor channel is matched to the odor object, preventing transmission failure and promoting perceptual stability. These data show that plasticity of the primary sensory organ enables learning of perceptual constancy.
Collapse
Affiliation(s)
- Mark Conway
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Merve Oncul
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kate Allen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Zongqian Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Scheier ZA, Sturm KL, Colavecchio JA, Pradhan A, Otazu GH. Role of Odor Novelty on Olfactory Issues in Autism Spectrum Disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70008. [PMID: 39723617 DOI: 10.1111/gbb.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Sensory processing abnormalities are a hallmark of autism spectrum disorder (ASD) and are included in its diagnostic criteria. Among these challenges, food neophobia has garnered attention due to its prevalence and potential impact on nutritional intake and health outcomes. This review describes the correlation between novel odor perception and feeding difficulties within the context of ASD. Moreover, this review underscores the role of odor processing in shaping feeding behaviors within the ASD population. It examines the psychophysics of odor perception in individuals with ASD and evaluates the behavioral and neurophysiological assessments conducted using novel odor stimuli in mouse models relevant to autism and wild-type mice. Additionally, we explore the mechanism on how odor novelty affects neuronal circuitry, shedding light on potential underlying mechanisms for the effect of odor novelty on ASD.
Collapse
Affiliation(s)
- Zoe A Scheier
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Kassandra L Sturm
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - John A Colavecchio
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Apekchha Pradhan
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Gonzalo H Otazu
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
9
|
Dennler N, Drix D, Warner TPA, Rastogi S, Casa CD, Ackels T, Schaefer AT, van Schaik A, Schmuker M. High-speed odor sensing using miniaturized electronic nose. SCIENCE ADVANCES 2024; 10:eadp1764. [PMID: 39504378 PMCID: PMC11540037 DOI: 10.1126/sciadv.adp1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Animals have evolved to rapidly detect and recognize brief and intermittent encounters with odor packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction has faced challenges in achieving comparable results-existing solutions are either slow; or bulky, expensive, and power-intensive-limiting applicability in real-world scenarios for mobile robotics. Here, we introduce a miniaturized high-speed electronic nose, characterized by high-bandwidth sensor readouts, tightly controlled sensing parameters, and powerful algorithms. The system is evaluated on a high-fidelity odor delivery benchmark. We showcase successful classification of tens-of-millisecond odor pulses and demonstrate temporal pattern encoding of stimuli switching with up to 60 hertz. Those timescales are unprecedented in miniaturized low-power settings and demonstrably exceed the performance observed in mice. It is now possible to match the temporal resolution of animal olfaction in robotic systems. This will allow for addressing challenges in environmental and industrial monitoring, security, neuroscience, and beyond.
Collapse
Affiliation(s)
- Nik Dennler
- Biocomputation Group, University of Hertfordshire, Hatfield AL10 9AB, UK
- International Centre for Neuromorphic Systems, Western Sydney University, Kingswood, 2747 NSW, Australia
| | - Damien Drix
- Biocomputation Group, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Tom P. A. Warner
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Shavika Rastogi
- Biocomputation Group, University of Hertfordshire, Hatfield AL10 9AB, UK
- International Centre for Neuromorphic Systems, Western Sydney University, Kingswood, 2747 NSW, Australia
| | - Cecilia Della Casa
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn Medical Center, 53127 Bonn, Germany
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - André van Schaik
- International Centre for Neuromorphic Systems, Western Sydney University, Kingswood, 2747 NSW, Australia
| | - Michael Schmuker
- Biocomputation Group, University of Hertfordshire, Hatfield AL10 9AB, UK
- BioML Research Services, Berlin, Germany
| |
Collapse
|
10
|
Caldicott L, Pike TW, Zulch HE, Mills DS, Williams FJ, Elliker KR, Hutchings B, Wilkinson A. Odour generalisation and detection dog training. Anim Cogn 2024; 27:73. [PMID: 39485633 PMCID: PMC11530475 DOI: 10.1007/s10071-024-01907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024]
Abstract
Detection dogs are required to search for and alert to specific odours of interest, such as drugs, cadavers, disease markers and explosives. However, the odour released from different samples of the same target substance will vary for a number of reasons, including the production method, evaporation, degradation, or by being mixed with extraneous odours. Generalisation, the tendency to respond in the same manner to stimuli which are different - but similar to - a conditioned stimulus, is therefore a crucial requirement for working detection dogs. Odour is a complex modality which poses unique challenges in terms of reliably predicting generalisation, when compared with auditory or visual stimuli. The primary aim of this review is to explore recent advances in our understanding of generalisation and the factors that influence it, and to consider these in light of detection dog training methods currently used in the field. We identify potential risks associated with certain training practices, and highlight areas where research is lacking and which warrant further investigation.
Collapse
Affiliation(s)
- Lyn Caldicott
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Thomas W Pike
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Helen E Zulch
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Daniel S Mills
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Fiona J Williams
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Kevin R Elliker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Bethany Hutchings
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Anna Wilkinson
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK.
| |
Collapse
|
11
|
Rokni D, Ben-Shaul Y. Object-oriented olfaction: challenges for chemosensation and for chemosensory research. Trends Neurosci 2024; 47:834-848. [PMID: 39245626 DOI: 10.1016/j.tins.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.
Collapse
Affiliation(s)
- Dan Rokni
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
12
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
13
|
Zak JD, Reddy G, Konanur V, Murthy VN. Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex. Nat Commun 2024; 15:3268. [PMID: 38627390 PMCID: PMC11021479 DOI: 10.1038/s41467-024-47366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Psychology, University of Illinois Chicago, Chicago, IL, 60607, USA.
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, 94085, USA
- Department of Physics, Princeton University, Princeton, NJ, 08540, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Vaibhav Konanur
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, 02134, USA
| |
Collapse
|
14
|
Yang Z, Kubant R, Kranenburg E, Cho CE, Anderson GH. The Effect of Micronutrients on Obese Phenotype of Adult Mice Is Dependent on the Experimental Environment. Nutrients 2024; 16:696. [PMID: 38474824 DOI: 10.3390/nu16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The environment of the test laboratory affects the reproducibility of treatment effects on physiological phenotypes of rodents and may be attributed to the plasticity of the epigenome due to nutrient-gene-environment interactions. Here, we explored the reproducibility of adding a multi-vitamin-mineral (MVM) mix to a nutrient-balanced high-fat (HF) diet on obesity, insulin resistance (IR), and gene expression in the tissues of adult male mice. Experiments of the same design were conducted in three independent animal facilities. Adult C57BL/6J male mice were fed an HF diet for 6 weeks (diet induced-obesity model) and then continued for 9-12 weeks on the HF diet with or without 5-fold additions of vitamins A, B1, B6, B12, Zn, and 2-fold Se. The addition of the MVM affected body weight, fat mass, gene expression, and markers of IR in all three locations (p < 0.05). However, the direction of the main effects was influenced by the interaction with the experimental location and its associated environmental conditions known to affect the epigenome. In conclusion, MVM supplementation influenced phenotypes and expression of genes related to adipose function in obese adult male mice, but the experimental location and its associated conditions were significant interacting factors. Preclinical studies investigating the relationship between diet and metabolic outcomes should acknowledge the plasticity of the epigenome and implement measures to reproduce studies in different locations.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eva Kranenburg
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Tong WL, Iyer A, Murthy VN, Reddy G. Adaptive algorithms for shaping behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569774. [PMID: 38106232 PMCID: PMC10723287 DOI: 10.1101/2023.12.03.569774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dogs and laboratory mice are commonly trained to perform complex tasks by guiding them through a curriculum of simpler tasks ('shaping'). What are the principles behind effective shaping strategies? Here, we propose a machine learning framework for shaping animal behavior, where an autonomous teacher agent decides its student's task based on the student's transcript of successes and failures on previously assigned tasks. Using autonomous teachers that plan a curriculum in a common sequence learning task, we show that near-optimal shaping algorithms adaptively alternate between simpler and harder tasks to carefully balance reinforcement and extinction. Based on this intuition, we derive an adaptive shaping heuristic with minimal parameters, which we show is near-optimal on the sequence learning task and robustly trains deep reinforcement learning agents on navigation tasks that involve sparse, delayed rewards. Extensions to continuous curricula are explored. Our work provides a starting point towards a general computational framework for shaping animal behavior.
Collapse
Affiliation(s)
- William L. Tong
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Licht T, Yunerman M, Maor I, Lawabny N, Oz Rokach R, Shiff I, Mizrahi A, Rokni D. Adaptive olfactory circuitry restores function despite severe olfactory bulb degeneration. Curr Biol 2023; 33:4857-4868.e6. [PMID: 37858342 PMCID: PMC10681124 DOI: 10.1016/j.cub.2023.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
The olfactory bulb (OB) is a critical component of mammalian olfactory neuroanatomy. Beyond being the first and sole relay station for olfactory information to the rest of the brain, it also contains elaborate stereotypical circuitry that is considered essential for olfaction. Indeed, substantial lesions of the OB in rodents lead to anosmia. Here, we examined the circuitry that underlies olfaction in a mouse model with severe developmental degeneration of the OB. These mice could perform odor-guided tasks and even responded normally to innate olfactory cues. Despite the near total loss of the OB, piriform cortices in these mice responded to odors, and its neural activity sufficed to decode odor identity. We found that sensory neurons express the full repertoire of olfactory receptors, and their axons project primarily to the rudiments of the OB but also, ectopically, to olfactory cortical regions. Within the OB, the number of principal neurons was greatly reduced, and the morphology of their dendrites was abnormal, extending over large regions within the OB. Glomerular organization was totally lost in the severe cases of OB degeneration and altered in the more conserved OBs. This study shows that olfactory functionality can be preserved despite reduced and aberrant circuitry that is missing many of the elements believed to be essential for olfaction, and it may explain reported retention of olfaction in humans with degenerated OBs.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| | - Michael Yunerman
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ido Maor
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Naheel Lawabny
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Renana Oz Rokach
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Idit Shiff
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| |
Collapse
|
17
|
Ryndych D, Sebold A, Strassburg A, Li Y, Ramos RL, Otazu GH. Haploinsufficiency of Shank3 in Mice Selectively Impairs Target Odor Recognition in Novel Background Odors. J Neurosci 2023; 43:7799-7811. [PMID: 37739796 PMCID: PMC10648539 DOI: 10.1523/jneurosci.0255-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Individuals with mutations in a single copy of the SHANK3 gene present with social interaction deficits. Although social behavior in mice depends on olfaction, mice with mutations in a single copy of the Shank3 gene do not have olfactory deficits in simple odor identification tasks (Drapeau et al., 2018). Here, we tested olfaction in mice with mutations in a single copy of the Shank3 gene (Peça et al., 2011) using a complex odor task and imaging in awake mice. Average glomerular responses in the olfactory bulb of Shank3B +/- were correlated with WT mice. However, there was increased trial-to-trial variability in the odor responses for Shank3B +/- mice. Simulations demonstrated that this increased variability could affect odor detection in novel environments. To test whether performance was affected by the increased variability, we tested target odor recognition in the presence of novel background odors using a recently developed task (Li et al., 2023). Head-fixed mice were trained to detect target odors in the presence of known background odors. Performance was tested using catch trials where the known background odors were replaced by novel background odors. We compared the performance of eight Shank3B +/- mice (five males, three females) on this task with six WT mice (three males, three females). Performance for known background odors and learning rates were similar between Shank3B +/- and WT mice. However, when tested with novel background odors, the performance of Shank3B +/- mice dropped to almost chance levels. Thus, haploinsufficiency of the Shank3 gene causes a specific deficit in odor detection in novel environments. Our results are discussed in the context of other Shank3 mouse models and have implications for understanding olfactory function in neurodevelopmental disorders.SIGNIFICANCE STATEMENT People and mice with mutations in a single copy in the synaptic gene Shank3 show features seen in autism spectrum disorders, including social interaction deficits. Although mice social behavior uses olfaction, mice with mutations in a single copy of Shank3 have so far not shown olfactory deficits when tested using simple tasks. Here, we used a recently developed task to show that these mice could identify odors in the presence of known background odors as well as wild-type mice. However, their performance fell below that of wild-type mice when challenged with novel background odors. This deficit was also previously reported in the Cntnap2 mouse model of autism, suggesting that odor detection in novel backgrounds is a general deficit across mouse models of autism.
Collapse
Affiliation(s)
- Darya Ryndych
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Alison Sebold
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Alyssa Strassburg
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Yan Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Gonzalo H Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| |
Collapse
|
18
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545947. [PMID: 37961548 PMCID: PMC10634677 DOI: 10.1101/2023.06.21.545947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Physics, Harvard University Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
19
|
Berners-Lee A, Shtrahman E, Grimaud J, Murthy VN. Experience-dependent evolution of odor mixture representations in piriform cortex. PLoS Biol 2023; 21:e3002086. [PMID: 37098044 PMCID: PMC10129003 DOI: 10.1371/journal.pbio.3002086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
Rodents can learn from exposure to rewarding odors to make better and quicker decisions. The piriform cortex is thought to be important for learning complex odor associations; however, it is not understood exactly how it learns to remember discriminations between many, sometimes overlapping, odor mixtures. We investigated how odor mixtures are represented in the posterior piriform cortex (pPC) of mice while they learn to discriminate a unique target odor mixture against hundreds of nontarget mixtures. We find that a significant proportion of pPC neurons discriminate between the target and all other nontarget odor mixtures. Neurons that prefer the target odor mixture tend to respond with brief increases in firing rate at odor onset compared to other neurons, which exhibit sustained and/or decreased firing. We allowed mice to continue training after they had reached high levels of performance and find that pPC neurons become more selective for target odor mixtures as well as for randomly chosen repeated nontarget odor mixtures that mice did not have to discriminate from other nontargets. These single unit changes during overtraining are accompanied by better categorization decoding at the population level, even though behavioral metrics of mice such as reward rate and latency to respond do not change. However, when difficult ambiguous trial types are introduced, the robustness of the target selectivity is correlated with better performance on the difficult trials. Taken together, these data reveal pPC as a dynamic and robust system that can optimize for both current and possible future task demands at once.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Shtrahman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Julien Grimaud
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Cell Engineering Laboratory (CellTechs), Sup'Biotech, Villejuif, France
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
20
|
Gilday OD, Mizrahi A. Learning-Induced Odor Modulation of Neuronal Activity in Auditory Cortex. J Neurosci 2023; 43:1375-1386. [PMID: 36650061 PMCID: PMC9987573 DOI: 10.1523/jneurosci.1398-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Sensory cortices, even of primary regions, are not purely unisensory. Rather, cortical neurons in sensory cortex show various forms of multisensory interactions. While some multisensory interactions naturally co-occur, the combination of others will co-occur through experience. In real life, learning and experience will result in conjunction with seemingly disparate sensory information that ultimately becomes behaviorally relevant, impacting perception, cognition, and action. Here we describe a novel auditory discrimination task in mice, designed to manipulate the expectation of upcoming trials using olfactory cues. We show that, after learning, female mice display a transient period of several days during which they exploit odor-mediated expectations for making correct decisions. Using two-photon calcium imaging of single neurons in auditory cortex (ACx) during behavior, we found that the behavioral effects of odor-mediated expectations are accompanied by an odor-induced modulation of neuronal activity. Further, we find that these effects are manifested differentially, based on the response preference of individual cells. A significant portion of effects, but not all, are consistent with a predictive coding framework. Our data show that learning novel odor-sound associations evoke changes in ACx. We suggest that behaviorally relevant multisensory environments mediate contextual effects as early as ACx.SIGNIFICANCE STATEMENT Natural environments are composed of multisensory objects. It remains unclear whether and how animals learn the regularities of congruent multisensory associations and how these may impact behavior and neural activity. We tested how learned odor-sound associations affected single-neuron responses in auditory cortex. We introduce a novel auditory discrimination task for mice in which odors set different contexts of expectation to upcoming trials. We show that, although the task can be solved purely by sounds, odor-mediated expectation impacts performance. We further show that odors cause a modulation of neuronal activity in auditory cortex, which is correlated with behavior. These results suggest that learning prompts an interaction of odor and sound information as early as sensory cortex.
Collapse
Affiliation(s)
- Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
21
|
Robust odor identification in novel olfactory environments in mice. Nat Commun 2023; 14:673. [PMID: 36781878 PMCID: PMC9925783 DOI: 10.1038/s41467-023-36346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2-/- mice, which show some autism-like behaviors. Cntnap2-/- mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2-/- mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2-/- mice.
Collapse
|
22
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:64793-64828. [PMID: 40376274 PMCID: PMC12079577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
23
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
24
|
Spence C. Odour hedonics and the ubiquitous appeal of vanilla. NATURE FOOD 2022; 3:837-846. [PMID: 37117893 DOI: 10.1038/s43016-022-00611-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 04/30/2023]
Abstract
Our food choices and consumption behaviours are often influenced by odour hedonics, especially in the case of those orthonasally experienced aromas (that is, those odours that are food-related). The origins of odour hedonics remain one of the most intriguing puzzles in olfactory science and, over the years, several fundamentally different accounts have been put forwards to try and explain the varying hedonic responses that people have to a wide range of odorants. Associative learning, innate and molecular accounts of odour pleasantness have all been suggested. Here the origins of the hedonic response to vanilla, which is one of the most liked smells cross-culturally, are explored. The history of vanilla's use in food and medicine is outlined, with a focus on its neurocognitive appeal. While vanilla is one of the most widely liked aromas, it is also rated as smelling sweet to most people. Food scientists are becoming increasingly interested in the possibility that such 'sweet smells' could be used to help maintain the sweetness of commercial food products while, at the same time, reducing the use of calorific sweeteners. Such an approach is likely to be facilitated by the low cost of artificial vanilla flavouring (when compared with the high and fluctuating price of natural vanilla pods).
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford, UK.
| |
Collapse
|
25
|
The facets of olfactory learning. Curr Opin Neurobiol 2022; 76:102623. [PMID: 35998474 DOI: 10.1016/j.conb.2022.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Volatile chemicals in the environment provide ethologically important information to many animals. However, how animals learn to use this information is only beginning to be understood. This review highlights recent experimental advances elucidating olfactory learning in rodents, ranging from adaptations to the environment to task-dependent refinement and multisensory associations. The broad range of phenomena, mechanisms, and brain areas involved demonstrate the complex and multifaceted nature of olfactory learning.
Collapse
|
26
|
Krishnamurthy K, Hermundstad AM, Mora T, Walczak AM, Balasubramanian V. Disorder and the Neural Representation of Complex Odors. Front Comput Neurosci 2022; 16:917786. [PMID: 36003684 PMCID: PMC9393645 DOI: 10.3389/fncom.2022.917786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Animals smelling in the real world use a small number of receptors to sense a vast number of natural molecular mixtures, and proceed to learn arbitrary associations between odors and valences. Here, we propose how the architecture of olfactory circuits leverages disorder, diffuse sensing and redundancy in representation to meet these immense complementary challenges. First, the diffuse and disordered binding of receptors to many molecules compresses a vast but sparsely-structured odor space into a small receptor space, yielding an odor code that preserves similarity in a precise sense. Introducing any order/structure in the sensing degrades similarity preservation. Next, lateral interactions further reduce the correlation present in the low-dimensional receptor code. Finally, expansive disordered projections from the periphery to the central brain reconfigure the densely packed information into a high-dimensional representation, which contains multiple redundant subsets from which downstream neurons can learn flexible associations and valences. Moreover, introducing any order in the expansive projections degrades the ability to recall the learned associations in the presence of noise. We test our theory empirically using data from Drosophila. Our theory suggests that the neural processing of sparse but high-dimensional olfactory information differs from the other senses in its fundamental use of disorder.
Collapse
Affiliation(s)
- Kamesh Krishnamurthy
- Joseph Henry Laboratories of Physics and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Ann M. Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS, UPMC and École Normale Supérieure, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique Théorique, UMR8549m CNRS, UPMC and École Normale Supérieure, Paris, France
| | - Vijay Balasubramanian
- David Rittenhouse and Richards Laboratories, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Vijay Balasubramanian
| |
Collapse
|
27
|
Khan M, Hartmann AH, O’Donnell MP, Piccione M, Pandey A, Chao PH, Dwyer ND, Bargmann CI, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLoS Biol 2022; 20:e3001677. [PMID: 35696430 PMCID: PMC9232122 DOI: 10.1371/journal.pbio.3001677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The valence and salience of individual odorants are modulated by an animal’s innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.
Collapse
Affiliation(s)
- Munzareen Khan
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anna H. Hartmann
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Madeline Piccione
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anjali Pandey
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Adefuin AM, Lindeman S, Reinert JK, Fukunaga I. State-dependent representations of mixtures by the olfactory bulb. eLife 2022; 11:76882. [PMID: 35254262 PMCID: PMC8937304 DOI: 10.7554/elife.76882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
Sensory systems are often tasked to analyse complex signals from the environment, separating relevant from irrelevant parts. This process of decomposing signals is challenging when a mixture of signals does not equal the sum of its parts, leading to an unpredictable corruption of signal patterns. In olfaction, nonlinear summation is prevalent at various stages of sensory processing. Here, we investigate how the olfactory system deals with binary mixtures of odours under different brain states by two-photon imaging of olfactory bulb (OB) output neurons. Unlike previous studies using anaesthetised animals, we found that mixture summation is more linear in the early phase of evoked responses in awake, head-fixed mice performing an odour detection task, due to dampened responses. Despite smaller and more variable responses, decoding analyses indicated that the data from behaving mice was well discriminable. Curiously, the time course of decoding accuracy did not correlate strictly with the linearity of summation. Further, a comparison with naïve mice indicated that learning to accurately perform the mixture detection task is not accompanied by more linear mixture summation. Finally, using a simulation, we demonstrate that, while saturating sublinearity tends to degrade the discriminability, the extent of the impairment may depend on other factors, including pattern decorrelation. Altogether, our results demonstrate that the mixture representation in the primary olfactory area is state-dependent, but the analytical perception may not strictly correlate with linearity in summation.
Collapse
Affiliation(s)
- Aliya Mari Adefuin
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine K Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
29
|
Yuan Q, Qin C, Duan Y, Jiang N, Liu M, Wan H, Zhuang L, Wang P. An in vivo bioelectronic nose for possible quantitative evaluation of odor masking using M/T cell spatial response patterns. Analyst 2021; 147:178-186. [PMID: 34870643 DOI: 10.1039/d1an01569a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Odor masking is a prominent phenomenon in the biological olfactory perception system. It has been applied in industry and daily life to develop masking agents to reduce or even eliminate the adverse effects of unpleasant odors. However, it is challenging to assess the odor masking efficiency with traditional gas sensors. Here, we took advantage of the olfactory perception system of an animal to develop a system for the evaluation and quantification of odor masking based on an in vivo bioelectronic nose. The linear decomposition method was used to extract the features of the spatial response pattern of the mitral/tufted (M/T) cell population of the olfactory bulb of a rat to monomolecular odorants and their binary mixtures. Finally, the masking intensity was calculated to quantitatively measure the degree of interference of one odor to another in the biological olfactory system. Compared with the human sensory evaluation reported in a previous study, the trend of masking intensity obtained with this system positively correlated with the human olfactory system. The system could quantitatively analyze the masking efficiency of masking agents, as well as assist in the development of new masking agents or flavored food in odor or food companies.
Collapse
Affiliation(s)
- Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China.
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
30
|
Lebovich L, Yunerman M, Scaiewicz V, Loewenstein Y, Rokni D. Paradoxical relationship between speed and accuracy in olfactory figure-background segregation. PLoS Comput Biol 2021; 17:e1009674. [PMID: 34871306 PMCID: PMC8675919 DOI: 10.1371/journal.pcbi.1009674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022] Open
Abstract
In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing these sensory stimuli into perceptual objects is a fundamental task faced by all sensory systems. Similar to other sensory modalities, increased odor backgrounds decrease the detectability of target odors by the olfactory system. The mechanisms by which background odors interfere with the detection and identification of target odors are unknown. Here we utilized the framework of the Drift Diffusion Model (DDM) to consider possible interference mechanisms in an odor detection task. We first considered pure effects of background odors on either signal or noise in the decision-making dynamics and showed that these produce different predictions about decision accuracy and speed. To test these predictions, we trained mice to detect target odors that are embedded in random background mixtures in a two-alternative choice task. In this task, the inter-trial interval was independent of behavioral reaction times to avoid motivating rapid responses. We found that increased backgrounds reduce mouse performance but paradoxically also decrease reaction times, suggesting that noise in the decision making process is increased by backgrounds. We further assessed the contributions of background effects on both noise and signal by fitting the DDM to the behavioral data. The models showed that background odors affect both the signal and the noise, but that the paradoxical relationship between trial difficulty and reaction time is caused by the added noise. Sensory systems are constantly stimulated by signals from many objects in the environment. Segmentation of important signals from the cluttered background is therefore a task that is faced by all sensory systems. For many mammalians, the sense of smell is the primary sense that guides many daily behaviors. As such, the olfactory system must be able to detect and identify odors of interest against varying and dynamic backgrounds. Here we studied how background odors interfere with the detection of target odors. We trained mice on a task in which they are presented with odor mixtures and are required to report whether they include either of two target odors. We analyze the behavioral data using a common model of sensory-guided decision-making—the drift-diffusion-model. In this model, decisions are influenced by two elements: a drift which is the signal produced by the stimulus, and noise. We show that the addition of background odors has a dual effect—a reduction in the drift, as well as an increase in the noise. The increased noise also causes more rapid decisions, thereby producing a paradoxical relationship between trial difficulty and decision speed; mice make faster decisions on more difficult trials.
Collapse
Affiliation(s)
- Lior Lebovich
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Michael Yunerman
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Viviana Scaiewicz
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Department of Cognitive Sciences and The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
31
|
Active sensing in a dynamic olfactory world. J Comput Neurosci 2021; 50:1-6. [PMID: 34591220 DOI: 10.1007/s10827-021-00798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
|
32
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
33
|
|
34
|
Pardasani M, Marathe SD, Purnapatre MM, Dalvi U, Abraham NM. Multimodal learning of pheromone locations. FASEB J 2021; 35:e21836. [PMID: 34407246 PMCID: PMC7611819 DOI: 10.1096/fj.202100167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Memorizing pheromonal locations is critical for many mammalian species as it involves finding mates and avoiding competitors. In rodents, pheromonal information is perceived by the main and accessory olfactory systems. However, the role of somatosensation in context-dependent learning and memorizing of pheromone locations remains unexplored. We addressed this problem by training female mice on a multimodal task to locate pheromones by sampling volatiles emanating from male urine through the orifices of varying dimensions or shapes that are sensed by their vibrissae. In this novel pheromone location assay, female mice’ preference toward male urine scent decayed over time when they were permitted to explore pheromones vs neutral stimuli, water. On training them for the associations involving olfactory and whisker systems, it was established that they were able to memorize the location of opposite sex pheromones, when tested 15 days later. This memory was not formed either when the somatosensory inputs through whisker pad were blocked or when the pheromonal cues were replaced with that of same sex. The association between olfactory and somatosensory systems was further confirmed by the enhanced expression of the activity-regulated cytoskeleton protein. Furthermore, the activation of main olfactory bulb circuitry by pheromone volatiles did not cause any modulation in learning and memorizing non-pheromonal volatiles. Our study thus provides the evidence for associations formed between different sensory modalities facilitating the long-term memory formation relevant to social and reproductive behaviors.
Collapse
Affiliation(s)
- Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shruti D Marathe
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Maitreyee Mandar Purnapatre
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Urvashi Dalvi
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
35
|
Martelli C, Storace DA. Stimulus Driven Functional Transformations in the Early Olfactory System. Front Cell Neurosci 2021; 15:684742. [PMID: 34413724 PMCID: PMC8369031 DOI: 10.3389/fncel.2021.684742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory stimuli are encountered across a wide range of odor concentrations in natural environments. Defining the neural computations that support concentration invariant odor perception, odor discrimination, and odor-background segmentation across a wide range of stimulus intensities remains an open question in the field. In principle, adaptation could allow the olfactory system to adjust sensory representations to the current stimulus conditions, a well-known process in other sensory systems. However, surprisingly little is known about how adaptation changes olfactory representations and affects perception. Here we review the current understanding of how adaptation impacts processing in the first two stages of the vertebrate olfactory system, olfactory receptor neurons (ORNs), and mitral/tufted cells.
Collapse
Affiliation(s)
- Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany
| | - Douglas Anthony Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
36
|
Singh V, Tchernookov M, Balasubramanian V. What the odor is not: Estimation by elimination. Phys Rev E 2021; 104:024415. [PMID: 34525542 PMCID: PMC8892575 DOI: 10.1103/physreve.104.024415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Olfactory systems use a small number of broadly sensitive receptors to combinatorially encode a vast number of odors. We propose a method of decoding such distributed representations by exploiting a statistical fact: Receptors that do not respond to an odor carry more information than receptors that do because they signal the absence of all odorants that bind to them. Thus, it is easier to identify what the odor is not rather than what the odor is. For realistic numbers of receptors, response functions, and odor complexity, this method of elimination turns an underconstrained decoding problem into a solvable one, allowing accurate determination of odorants in a mixture and their concentrations. We construct a neural network realization of our algorithm based on the structure of the olfactory pathway.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, North Carolina A&T State University, Greensboro, NC, 27410, USA
- Department of Physics, & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin Tchernookov
- Department of Physics, University of Wisconsin, Whitewater, WI, 53190, USA
| | - Vijay Balasubramanian
- Department of Physics, & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Spence C. The scent of attraction and the smell of success: crossmodal influences on person perception. Cogn Res Princ Implic 2021; 6:46. [PMID: 34173932 PMCID: PMC8233629 DOI: 10.1186/s41235-021-00311-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
In recent decades, there has been an explosion of research into the crossmodal influence of olfactory cues on multisensory person perception. Numerous peer-reviewed studies have documented that a variety of olfactory stimuli, from ambient malodours through to fine fragrances, and even a range of chemosensory body odours can influence everything from a perceiver's judgments of another person's attractiveness, age, affect, health/disease status, and even elements of their personality. The crossmodal and multisensory contributions to such effects are reviewed and the limitations/peculiarities of the research that have been published to date are highlighted. At the same time, however, it is important to note that the presence of scent (and/or the absence of malodour) can also influence people's (i.e., a perceiver's) self-confidence which may, in turn, affect how attractive they appear to others. Several potential cognitive mechanisms have been put forward to try and explain such crossmodal/multisensory influences, and some of the neural substrates underpinning these effects have now been characterized. At the end of this narrative review, a number of the potential (and actual) applications for, and implications of, such crossmodal/multisensory phenomena involving olfaction are outlined briefly.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Oxford, OX2 6BW, UK.
| |
Collapse
|
38
|
Fast odour dynamics are encoded in the olfactory system and guide behaviour. Nature 2021; 593:558-563. [PMID: 33953395 PMCID: PMC7611658 DOI: 10.1038/s41586-021-03514-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
Odours are transported in turbulent plumes, which result in rapid concentration fluctuations1,2 that contain rich information about the olfactory scenery, such as the composition and location of an odour source2-4. However, it is unclear whether the mammalian olfactory system can use the underlying temporal structure to extract information about the environment. Here we show that ten-millisecond odour pulse patterns produce distinct responses in olfactory receptor neurons. In operant conditioning experiments, mice discriminated temporal correlations of rapidly fluctuating odours at frequencies of up to 40 Hz. In imaging and electrophysiological recordings, such correlation information could be readily extracted from the activity of mitral and tufted cells-the output neurons of the olfactory bulb. Furthermore, temporal correlation of odour concentrations5 reliably predicted whether odorants emerged from the same or different sources in naturalistic environments with complex airflow. Experiments in which mice were trained on such tasks and probed using synthetic correlated stimuli at different frequencies suggest that mice can use the temporal structure of odours to extract information about space. Thus, the mammalian olfactory system has access to unexpectedly fast temporal features in odour stimuli. This endows animals with the capacity to overcome key behavioural challenges such as odour source separation5, figure-ground segregation6 and odour localization7 by extracting information about space from temporal odour dynamics.
Collapse
|
39
|
Widespread Inhibition, Antagonism, and Synergy in Mouse Olfactory Sensory Neurons In Vivo. Cell Rep 2021; 31:107814. [PMID: 32610120 DOI: 10.1016/j.celrep.2020.107814] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory information is selectively or non-selectively enhanced and inhibited in the brain, but it remains unclear whether and how this occurs at the most peripheral level. Using in vivo calcium imaging of mouse olfactory bulb and olfactory epithelium in wild-type and mutant animals, we show that odors produce not only excitatory but also inhibitory responses in olfactory sensory neurons (OSNs). Heterologous assays indicate that odorants can act as agonists to some but inverse agonists to other odorant receptors. We also demonstrate that responses to odor mixtures are extensively suppressed or enhanced in OSNs. When high concentrations of odors are mixed, widespread antagonism suppresses the overall response amplitudes and density. In contrast, a mixture of low concentrations of odors often produces synergistic effects and boosts the faint odor inputs. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy at the most peripheral level, contributing to robust sensory representations.
Collapse
|
40
|
Qiu Q, Wu Y, Ma L, Yu CR. Encoding innately recognized odors via a generalized population code. Curr Biol 2021; 31:1813-1825.e4. [PMID: 33651991 PMCID: PMC8119320 DOI: 10.1016/j.cub.2021.01.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/25/2020] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
Odors carrying intrinsic values often trigger instinctive aversive or attractive responses. It is not known how innate valence is encoded. An intuitive model suggests that the information is conveyed through specific channels in hardwired circuits along the olfactory pathway, insulated from influences of other odors, to trigger innate responses. Here, we show that in mice, mixing innately aversive or attractive odors with a neutral odor and, surprisingly, mixing two odors with the same valence, abolish the innate behavioral responses. Recordings from the olfactory bulb indicate that odors are not masked at the level of peripheral activation and glomeruli independently encode components in the mixture. In contrast, crosstalk among the mitral and tufted (M/T) cells changes their patterns of activity such that those elicited by the mixtures can no longer be linearly decoded as separate components. The changes in behavioral and M/T cell responses are associated with reduced activation of brain areas linked to odor preferences. Thus, crosstalk among odor channels at the earliest processing stage in the olfactory pathway leads to re-coding of odor identity to abolish valence associated with the odors. These results are inconsistent with insulated labeled lines and support a model of a common mechanism of odor recognition for both innate and learned valence associations.
Collapse
Affiliation(s)
- Qiang Qiu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yunming Wu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
41
|
Hanson E, Brandel-Ankrapp KL, Arenkiel BR. Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Front Cell Neurosci 2021; 15:635837. [PMID: 33603646 PMCID: PMC7884767 DOI: 10.3389/fncel.2021.635837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Toward this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward seeking behaviors, but was strongly suppressed by reward delivery in a go/no-go olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect reward-seeking behavior and positive reinforcement and may impact downstream circuitry that modulates olfaction.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Katie L. Brandel-Ankrapp
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
42
|
Fomin-Thunemann N, Kovalchuk Y, Fink S, Alsema A, Mojtahedi N, Zirdum E, Garaschuk O. Unique Functional Properties of Mature Adult-Born Neurons in the Mouse Olfactory Bulb. Stem Cell Reports 2020; 15:1333-1346. [PMID: 33217326 PMCID: PMC7724478 DOI: 10.1016/j.stemcr.2020.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
The rodent olfactory bulb (OB) is continuously supplied with adult-born cells maturing into GABAergic neurons. Using in vivo ratiometric Ca2+ imaging to readout ongoing and sensory-driven activity, we asked whether mature adult-born cells (mABCs) in the glomerular layer of the bulb become functionally identical to resident GABAergic (ResGABA) neurons. In awake head-restrained mice the two cell populations differed significantly in terms of ongoing spontaneous activity, with 24% of mABCs contributing to a strongly active cell cluster, absent among ResGABA cells. Odor-evoked responses of mABCs were sparse, less reliable, and had smaller amplitudes compared with ResGABA cells. The opposite was seen under anesthesia, with response reliability increasing and response size of mABCs becoming larger than that of ResGABA cells. Furthermore, ongoing activity of mABCs showed increased sensitivity to ketamine/xylazine and was selectively blocked by the antagonist of serotonin receptors methysergide. These functional features of mABCs clearly distinguish them from other OB interneurons.
Collapse
Affiliation(s)
- Natalie Fomin-Thunemann
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Fink
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Astrid Alsema
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Elizabeta Zirdum
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
43
|
Penker S, Licht T, Hofer KT, Rokni D. Mixture Coding and Segmentation in the Anterior Piriform Cortex. Front Syst Neurosci 2020; 14:604718. [PMID: 33328914 PMCID: PMC7710992 DOI: 10.3389/fnsys.2020.604718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Coding of odorous stimuli has been mostly studied using single isolated stimuli. However, a single sniff of air in a natural environment is likely to introduce airborne chemicals emitted by multiple objects into the nose. The olfactory system is therefore faced with the task of segmenting odor mixtures to identify objects in the presence of rich and often unpredictable backgrounds. The piriform cortex is thought to be the site of object recognition and scene segmentation, yet the nature of its responses to odorant mixtures is largely unknown. In this study, we asked two related questions. (1) How are mixtures represented in the piriform cortex? And (2) Can the identity of individual mixture components be read out from mixture representations in the piriform cortex? To answer these questions, we recorded single unit activity in the piriform cortex of naïve mice while sequentially presenting single odorants and their mixtures. We find that a normalization model explains mixture responses well, both at the single neuron, and at the population level. Additionally, we show that mixture components can be identified from piriform cortical activity by pooling responses of a small population of neurons-in many cases a single neuron is sufficient. These results indicate that piriform cortical representations are well suited to perform figure-background segmentation without the need for learning.
Collapse
Affiliation(s)
| | | | | | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Ona Jodar T, Lage-Rupprecht V, Abraham NM, Rose CR, Egger V. Local Postsynaptic Signaling on Slow Time Scales in Reciprocal Olfactory Bulb Granule Cell Spines Matches Asynchronous Release. Front Synaptic Neurosci 2020; 12:551691. [PMID: 33304264 PMCID: PMC7701096 DOI: 10.3389/fnsyn.2020.551691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output. To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2 +- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1 / 2_Δ[Ca2 +]i ∼500 ms and t1 / 2_Δ[Na+]i ∼1,000 ms. We also analyzed the kinetics of already existing data of postsynaptic spine Ca2 +-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.
Collapse
Affiliation(s)
- Tiffany Ona Jodar
- Regensburg University, Regensburg, Germany
- Institut D’Investigacions Biomèdiques, Barcelona, Spain
| | - Vanessa Lage-Rupprecht
- Regensburg University, Regensburg, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, St. Augustin, Germany
| | | | | | | |
Collapse
|
45
|
Endo K, Tsuchimoto Y, Kazama H. Synthesis of Conserved Odor Object Representations in a Random, Divergent-Convergent Network. Neuron 2020; 108:367-381.e5. [PMID: 32814018 DOI: 10.1016/j.neuron.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/10/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Animals are capable of recognizing mixtures and groups of odors as a unitary object. However, how odor object representations are generated in the brain remains elusive. Here, we investigate sensory transformation between the primary olfactory center and its downstream region, the mushroom body (MB), in Drosophila and show that clustered representations for mixtures and groups of odors emerge in the MB at the population and single-cell levels. Decoding analyses demonstrate that neurons selective for mixtures and groups enhance odor generalization. Responses of these neurons and those selective for individual odors all emerge in an experimentally well-constrained model implementing divergent-convergent, random connectivity between the primary center and the MB. Furthermore, we found that relative odor representations are conserved across animals despite this random connectivity. Our results show that the generation of distinct representations for individual odors and groups and mixtures of odors in the MB can be understood in a unified computational and mechanistic framework.
Collapse
Affiliation(s)
- Keita Endo
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiko Tsuchimoto
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
46
|
Chong E, Moroni M, Wilson C, Shoham S, Panzeri S, Rinberg D. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 2020; 368:368/6497/eaba2357. [PMID: 32554567 DOI: 10.1126/science.aba2357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
How does neural activity generate perception? Finding the combinations of spatial or temporal activity features (such as neuron identity or latency) that are consequential for perception remains challenging. We trained mice to recognize synthetic odors constructed from parametrically defined patterns of optogenetic activation, then measured perceptual changes during extensive and controlled perturbations across spatiotemporal dimensions. We modeled recognition as the matching of patterns to learned templates. The templates that best predicted recognition were sequences of spatially identified units, ordered by latencies relative to each other (with minimal effects of sniff). Within templates, individual units contributed additively, with larger contributions from earlier-activated units. Our synthetic approach reveals the fundamental logic of the olfactory code and provides a general framework for testing links between sensory activity and perception.
Collapse
Affiliation(s)
- Edmund Chong
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Monica Moroni
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy. .,CIMeC, University of Trento, Rovereto, Italy
| | | | - Shy Shoham
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.,Center for Neural Science, New York University, New York, NY 10003, USA.,Tech4Health Institute, NYU Langone Health, New York, NY 10010, USA.,Department of Ophthalmology, NYU Langone Health, New York, NY 10017, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Dmitry Rinberg
- Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA. .,Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
47
|
Zak JD, Reddy G, Vergassola M, Murthy VN. Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice. Nat Commun 2020; 11:3350. [PMID: 32620767 PMCID: PMC7335155 DOI: 10.1038/s41467-020-17124-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Odor landscapes contain complex blends of molecules that each activate unique, overlapping populations of olfactory sensory neurons (OSNs). Despite the presence of hundreds of OSN subtypes in many animals, the overlapping nature of odor inputs may lead to saturation of neural responses at the early stages of stimulus encoding. Information loss due to saturation could be mitigated by normalizing mechanisms such as antagonism at the level of receptor-ligand interactions, whose existence and prevalence remains uncertain. By imaging OSN axon terminals in olfactory bulb glomeruli as well as OSN cell bodies within the olfactory epithelium in freely breathing mice, we find widespread antagonistic interactions in binary odor mixtures. In complex mixtures of up to 12 odorants, antagonistic interactions are stronger and more prevalent with increasing mixture complexity. Therefore, antagonism is a common feature of odor mixture encoding in OSNs and helps in normalizing activity to reduce saturation and increase information transfer.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Gautam Reddy
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
48
|
Walker SC, Williams K, Moore DJ. Superior Identification of Component Odors in a Mixture Is Linked to Autistic Traits in Children and Adults. Chem Senses 2020; 45:391-399. [PMID: 32249289 DOI: 10.1093/chemse/bjaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most familiar odors are complex mixtures of volatile molecules, which the olfactory system automatically synthesizes into a perceptual whole. However, odors are rarely encountered in isolation; thus, the brain must also separate distinct odor objects from complex and variable backgrounds. In vision, autistic traits are associated with superior performance in tasks that require focus on the local features of a perceptual scene. The aim of the present study was to determine whether the same advantage was observed in the analysis of olfactory scenes. To do this, we compared the ability of 1) 40 young adults (aged 16-35) with high (n = 20) and low levels of autistic traits and 2) 20 children (aged 7-11), with (n = 10) and without an autism spectrum disorder diagnosis, to identify individual odor objects presented within odor mixtures. First, we used a 4-alternative forced choice task to confirm that both adults and children were able to reliably identify 8 blended fragrances, representing food-related odors, when presented individually. We then used the same forced choice format to test participants' ability to identify the odors when they were combined in either binary or ternary mixtures. Adults with high levels of autistic traits showed superior performance on binary but not ternary mixture trials, whereas children with an autism spectrum disorder diagnosis outperformed age-matched neurotypical peers, irrespective of mixture complexity. These findings indicate that the local processing advantages associated with high levels of autistic traits in visual tasks are also apparent in a task requiring analytical processing of odor mixtures.
Collapse
Affiliation(s)
- Susannah C Walker
- Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | | | - David J Moore
- Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
49
|
Abstract
Habituation is a form of simple memory that suppresses neural activity in response to repeated, neutral stimuli. This process is critical in helping organisms guide attention toward the most salient and novel features in the environment. Here, we follow known circuit mechanisms in the fruit fly olfactory system to derive a simple algorithm for habituation. We show, both empirically and analytically, that this algorithm is able to filter out redundant information, enhance discrimination between odors that share a similar background, and improve detection of novel components in odor mixtures. Overall, we propose an algorithmic perspective on the biological mechanism of habituation and use this perspective to understand how sensory physiology can affect odor perception. Our framework may also help toward understanding the effects of habituation in other more sophisticated neural systems.
Collapse
|
50
|
Nakashima N, Nakashima K, Taura A, Takaku-Nakashima A, Ohmori H, Takano M. Olfactory marker protein directly buffers cAMP to avoid depolarization-induced silencing of olfactory receptor neurons. Nat Commun 2020; 11:2188. [PMID: 32366818 PMCID: PMC7198493 DOI: 10.1038/s41467-020-15917-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023] Open
Abstract
Olfactory receptor neurons (ORNs) use odour-induced intracellular cAMP surge to gate cyclic nucleotide-gated nonselective cation (CNG) channels in cilia. Prolonged exposure to cAMP causes calmodulin-dependent feedback-adaptation of CNG channels and attenuates neural responses. On the other hand, the odour-source searching behaviour requires ORNs to be sensitive to odours when approaching targets. How ORNs accommodate these conflicting aspects of cAMP responses remains unknown. Here, we discover that olfactory marker protein (OMP) is a major cAMP buffer that maintains the sensitivity of ORNs. Upon the application of sensory stimuli, OMP directly captured and swiftly reduced freely available cAMP, which transiently uncoupled downstream CNG channel activity and prevented persistent depolarization. Under repetitive stimulation, OMP-/- ORNs were immediately silenced after burst firing due to sustained depolarization and inactivated firing machinery. Consequently, OMP-/- mice showed serious impairment in odour-source searching tasks. Therefore, cAMP buffering by OMP maintains the resilient firing of ORNs.
Collapse
Affiliation(s)
- Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan. .,Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Kie Nakashima
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto, 606-8501, Japan
| | - Akiko Taura
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Hospital, 54 Kawaracho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Medical Engineering, Faculty of Health Science, Aino University, 4-5-4 Higashioda, Ibaraki, Osaka, 567-0012, Japan
| | - Akiko Takaku-Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.,Post Graduate Training Program, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Harunori Ohmori
- Department of Physiology and Neurobiology, Faculty of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Physiology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|