1
|
Gu H, Zhang Y, Sun J, Liu L, Liu Z. Exploring the effect and mechanism of action of Jinlida granules (JLD) in the treatment of diabetes-associated cognitive impairment based on network pharmacology with experimental validation. Ann Med 2025; 57:2445181. [PMID: 39723533 DOI: 10.1080/07853890.2024.2445181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI). METHODS The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases. Protein-protein interactions (PPIs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and molecular docking were then utilized to explore potential molecular network mechanisms. Finally, the main targets were verified in animal model experiments. RESULTS MWM test showed that JLD improved aspects of behaviour in T2DM model mice. JLD improved glucose intolerance, tissue insulin sensitivity, lipid metabolism and enhanced synapse-associated protein expression in hippocampus tissue. Network pharmacology revealed 185 active components, 337 targets of JLD, and 7998 TDACI related targets were obtained . PPI network analyses revealed 39 core targets. GO and KEGG analyses suggested that JLD might improve TDACI by regulating gene expression, apoptotic processes and inflammatory responses mainly via PI3K-AKT and AGE-RAGE signaling pathways. Molecular docking revealed strong binding of the main components to core targets. JLD reduced hippocampus tissue expression of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL6), core targets of treatment of TDACI. CONCLUSIONS The findings suggested that JLD has the potential to improve TDACI through multiple components, multiple targets and multiple pathways. JLD may be a promising treatment for diabetic cognitive impairment.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yuxin Zhang
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Jinghua Sun
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Lipeng Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zanchao Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Bi Z, Fu R, Chen G, Yang D, Zhou Y, Tian L. Evolutionary learning in neural networks by heterosynaptic plasticity. iScience 2025; 28:112340. [PMID: 40292319 PMCID: PMC12033925 DOI: 10.1016/j.isci.2025.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Training biophysical neuron models provides insights into brain circuits' organization and problem-solving capabilities. Traditional training methods like backpropagation face challenges with complex models due to instability and gradient issues. We explore evolutionary algorithms (EAs) combined with heterosynaptic plasticity as a gradient-free alternative. Our EA models agents with distinct neuron information routes, evaluated via alternating gating, and guided by dopamine-driven plasticity. This model draws inspiration from various biological mechanisms, such as dopamine function, dendritic spine meta-plasticity, memory replay, and cooperative synaptic plasticity within dendritic neighborhoods. Neural networks trained with this model recapitulate brain-like dynamics during cognition. Our method effectively trains spiking and analog neural networks in both feedforward and recurrent architectures, it also achieves performance in tasks like MNIST classification and Atari games comparable to gradient-based methods. Overall, this research extends training approaches for biophysical neuron models, offering a robust alternative to traditional algorithms.
Collapse
Affiliation(s)
- Zedong Bi
- Lingang Laboratory, Shanghai 200031, China
| | - Ruiqi Fu
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| | - Guozhang Chen
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China
| | - Dongping Yang
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311121, China
| | - Yu Zhou
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266011, China
| | - Liang Tian
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
- Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
3
|
Selten M, Bernard C, Mukherjee D, Hamid F, Hanusz-Godoy A, Oozeer F, Zimmer C, Marín O. Regulation of PV interneuron plasticity by neuropeptide-encoding genes. Nature 2025:10.1038/s41586-025-08933-z. [PMID: 40307547 DOI: 10.1038/s41586-025-08933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function1-3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells4-8, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV+ interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV+ interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Diptendu Mukherjee
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Christoph Zimmer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
4
|
Ghandour K, Haga T, Ohkawa N, Fung CCA, Nomoto M, Fayed MR, Asai H, Sato M, Fukai T, Inokuchi K. Parallel processing of past and future memories through reactivation and synaptic plasticity mechanisms during sleep. Nat Commun 2025; 16:3618. [PMID: 40295514 PMCID: PMC12037800 DOI: 10.1038/s41467-025-58860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Every day, we experience new episodes and store new memories. Although memories are stored in corresponding engram cells, how different sets of engram cells are selected for current and next episodes, and how they create their memories, remains unclear. Here we show that in male mice, hippocampal CA1 neurons show an organized synchronous activity in prelearning home cage sleep that correlates with the learning ensembles only in engram cells, termed preconfigured ensembles. Moreover, after learning, a subset of nonengram cells develops population activity, which is constructed during postlearning offline periods, and then emerges to represent engram cells for new learning. Our model suggests a potential role of synaptic depression and scaling in the reorganization of the activity of nonengram cells. Together, our findings indicate that during offline periods there are two parallel processes occurring: conserving of past memories through reactivation, and preparation for upcoming ones through offline synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Khaled Ghandour
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Center initiative for training international researchers (CITIR), University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tatsuya Haga
- Neural Coding and Brain Computing unit, OIST, Okinawa, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
| | - Noriaki Ohkawa
- Research Center for Advanced Medical Science, Dokkyo Medical University, Tochigi, Japan
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing unit, OIST, Okinawa, Japan
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, Hong Kong
| | - Masanori Nomoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mostafa R Fayed
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Pharmacology and Toxicology, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Hirotaka Asai
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing unit, OIST, Okinawa, Japan
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
5
|
Dorian CC, Taxidis J, Arac A, Golshani P. Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609983. [PMID: 39253411 PMCID: PMC11383060 DOI: 10.1101/2024.08.27.609983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Behavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where a single plateau potential in hippocampal neurons forms a place field during spatial learning. We asked whether BTSP can also form non-spatial responses in the hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play in driving non-spatial BTSP. Two-photon calcium imaging of dorsal CA1 neurons while mice performed an odor-cued working memory task revealed plateau-like events which formed stable odor-specific responses. These BTSP-like events were much more frequent during the first day of task learning, suggesting that BTSP may be important for early learning. Strong single-neuron stimulation through holographic optogenetics induced plateau-like events and subsequent odor-fields, causally linking BTSP with non-spatial representations. MEC chemogenetic inhibition reduced the frequency of plateau-like events, whereas LEC inhibition reduced potentiation and field-induction probability. Calcium imaging of LEC and MEC temporammonic CA1 projections revealed that MEC axons were more strongly activated by odor presentations, while LEC axons were more odor-selective, further confirming the role of MEC in driving plateau-like events and LEC in relaying odor-specific information. Altogether, odor-specific information from LEC and strong odor-timed activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity mechanism for generation of both spatial and non-spatial responses in the hippocampus.
Collapse
Affiliation(s)
- Conor C. Dorian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Greater Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Kaster M, Czappa F, Butz-Ostendorf M, Wolf F. Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism. Front Neuroinform 2024; 18:1323203. [PMID: 38706939 PMCID: PMC11066267 DOI: 10.3389/fninf.2024.1323203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Memory formation is usually associated with Hebbian learning and synaptic plasticity, which changes the synaptic strengths but omits structural changes. A recent study suggests that structural plasticity can also lead to silent memory engrams, reproducing a conditioned learning paradigm with neuron ensembles. However, this study is limited by its way of synapse formation, enabling the formation of only one memory engram. Overcoming this, our model allows the formation of many engrams simultaneously while retaining high neurophysiological accuracy, e.g., as found in cortical columns. We achieve this by substituting the random synapse formation with the Model of Structural Plasticity. As a homeostatic model, neurons regulate their activity by growing and pruning synaptic elements based on their current activity. Utilizing synapse formation based on the Euclidean distance between the neurons with a scalable algorithm allows us to easily simulate 4 million neurons with 343 memory engrams. These engrams do not interfere with one another by default, yet we can change the simulation parameters to form long-reaching associations. Our model's analysis shows that homeostatic engram formation requires a certain spatiotemporal order of events. It predicts that synaptic pruning precedes and enables synaptic engram formation and that it does not occur as a mere compensatory response to enduring synapse potentiation as in Hebbian plasticity with synaptic scaling. Our model paves the way for simulations addressing further inquiries, ranging from memory chains and hierarchies to complex memory systems comprising areas with different learning mechanisms.
Collapse
Affiliation(s)
- Marvin Kaster
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Fabian Czappa
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Butz-Ostendorf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
- Data Science, Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Felix Wolf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
9
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
10
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
11
|
Zhang W, Zhang L, Liang W, Wang H, Hu F. Neurodevelopment effects of early life bisphenol-A exposure on visual memory: Insights into recovery dynamics. Toxicology 2024; 502:153718. [PMID: 38160929 DOI: 10.1016/j.tox.2023.153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.
Collapse
Affiliation(s)
- Wentai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- School of Life Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| |
Collapse
|
12
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
13
|
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 2023; 146:4949-4963. [PMID: 37403195 PMCID: PMC10690043 DOI: 10.1093/brain/awad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.
Collapse
Affiliation(s)
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Belén Gago
- Faculty of Medicine, IBIMA Plataforma BIONAND, Universidad de Málaga, 29016 Málaga, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76010 Querétaro, México
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
14
|
Burns TF. Does inhibitory (dys)function account for involuntary autobiographical memory and déjà vu experience? Behav Brain Sci 2023; 46:e360. [PMID: 37961769 DOI: 10.1017/s0140525x23000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
External cues and internal configuration states are the likely instigators of involuntary autobiographical memories (IAMs) and déjà vu experience. Indeed, Barzykowski and Moulin discuss relevant neuroscientific evidence in this direction. A complementary line of enquiry and evidence is the study of inhibition and its role in memory retrieval, and particularly how its (dys)function may contribute to IAMs and déjà vu.
Collapse
Affiliation(s)
- Thomas F Burns
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan ://tfburns.com/
| |
Collapse
|
15
|
Zhang Z, Wang XJ. N6-Methyladenosine mRNA Modification: From Modification Site Selectivity to Neurological Functions. Acc Chem Res 2023; 56:2992-2999. [PMID: 37847868 PMCID: PMC10634299 DOI: 10.1021/acs.accounts.3c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/19/2023]
Abstract
The development of various chemical methods has enabled scientists to decipher the distribution features and biological functions of RNA modifications in the past decade. In addition to modifying noncoding RNAs such as tRNAs and rRNAs, N6-methyladenosine (m6A) has been proven to be the most abundant internal chemical modification on mRNAs in eukaryotic cells and is also the most widely studied mRNA modification to date. Extensive studies have repeatedly demonstrated the important functions of m6A in various biological conditions, ranging from embryonic organ development to adult organ function and pathogenesis. Unlike DNA methylation which is relatively stable, the reversible m6A modification on mRNA is highly dynamic and easily influenced by various internal or external factors, such as cell type, developmental stage, nutrient supply, circadian rhythm, and environmental stresses.In this Account, we review our previous findings on the site selectivity mechanisms regulating m6A formation, as well as the physiological roles of m6A modification in cerebellum development and long-term memory consolidation. In our initial efforts to profile m6A in various types of mouse and human cells, we surprisingly found that the sequence motifs surrounding m6A sites were often complementary with the seed sequences of miRNAs. By manipulating the abundance of the miRNA biogenesis enzyme Dicer or individual miRNAs or mutating miRNA sequences, we were able to reveal a new role of nucleus localized miRNAs, which is to guide the m6A methyltransferase METTL3 to bind to mRNAs and to promote m6A formation. As a result, we partially answered the question of why only a small proportion of m6A motifs within an mRNA could have m6A modification at a certain time point. We further explored the functions of m6A modification in regulating brain development and brain functions. We found that cerebellum had the most severe defects when Mettl3 was knocked out in developing mouse embryonic brain and revealed that the underlying mechanisms could be attributed to aberrant mRNA splicing and enhanced cell apoptosis under m6A deficit conditions. On the other hand, knocking out Mettl3 in postnatal hippocampus did not cause morphological defects in the mouse brain but impaired the efficacy of long-term memory consolidation. Under learning stimuli, formation of m6A modifications could be detected on transcripts encoding proteins related to dendrite growth, synapse formation, and other memory related functions. Loss of m6A modifications on these transcripts would result in translation deficiency and reduced protein production, particularly in the translation of early response genes, and therefore would compromise the efficacy of long-term memory consolidation. Interestingly, excessive training sessions or increased training intensity could overcome such m6A deficiency related memory defects, which is likely due to the longer turnover cycle and the cumulative abundance of proteins throughout the training process. In addition to revealing the roles of m6A modification in regulating long-term memory formation, our work also demonstrated an effective method for studying memory formation efficacy. As the lack of an appropriate model for studying memory formation efficacy has been a long-lasting problem in the field of neural science, our hippocampus-specific postnatal m6A knockout model could also be utilized to study other questions related to memory formation efficacy.
Collapse
Affiliation(s)
- Zeyu Zhang
- Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Jie Wang
- Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
17
|
Tzilivaki A, Tukker JJ, Maier N, Poirazi P, Sammons RP, Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron 2023; 111:3154-3175. [PMID: 37467748 PMCID: PMC10593603 DOI: 10.1016/j.neuron.2023.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), N. Plastira 100, Heraklion, Crete, Greece
| | - Rosanna P Sammons
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstrasse. 13, 10115 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
18
|
Matusiak M, Oziębło D, Ołdak M, Rejmak E, Kaczmarek L, Dobek D, Skarżyński H. MMP-9 plasma level as biomarker of cochlear implantation outcome in cohort study of deaf children. Eur Arch Otorhinolaryngol 2023; 280:4361-4369. [PMID: 37004521 PMCID: PMC10497633 DOI: 10.1007/s00405-023-07924-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE If before cochlear implantation it was possible to assay biomarkers of neuroplasticity, we might be able to identify those children with congenital deafness who, later on, were at risk of poor speech and language rehabilitation outcomes. METHODS A group of 40 children aged up to 2 years with DFNB1-related congenital deafness was observed in this prospective cohort study over three follow-up intervals (0, 8, and 18 months) after cochlear implant (CI) activation. Children were assessed for auditory development using the LittlEARS Questionnaire (LEAQ) score, and at the same time, measurements were made of matrix metalloproteinase-9 (MMP-9) plasma levels. RESULTS There were significant negative correlations between plasma levels of MMP-9 at 8-month follow-up and LEAQ score at cochlear implantation (p = 0.04) and LEAQ score at 18-month follow-up (p = 0.02) and between MMP-9 plasma levels at 18-month follow-up and LEAQ score at cochlear implantation (p = 0.04). As already reported, we confirmed a significant negative correlation between MMP-9 plasma level at cochlear implantation and LEAQ score at 18-month follow-up (p = 0.005). Based on this latter correlation, two clusters of good and poor CI performers could be isolated. CONCLUSIONS The study shows that children born deaf who have an MMP-9 plasma level of less than 150 ng/ml at cochlear implantation have a good chance of attaining a high LEAQ score after 18 months of speech and language rehabilitation. This indicates that MMP-9 plasma level at cochlear implantation is a good prognostic marker for CI outcome.
Collapse
Affiliation(s)
- Monika Matusiak
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland.
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland.
| | - Dominika Oziębło
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
| | - Monika Ołdak
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093, Warsaw, Poland
| | - Dominik Dobek
- Transition Technologies Science, Pawia 55, 01-030, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042, Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830, Nadarzyn, Poland
| |
Collapse
|
19
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Zhuravlev AV. Three levels of information processing in the brain. Biosystems 2023:104934. [PMID: 37245794 DOI: 10.1016/j.biosystems.2023.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Information, the measure of order in a complex system, is the opposite of entropy, the measure of chaos and disorder. We can distinguish several levels at which information is processed in the brain. The first one is the level of serial molecular genetic processes, similar in some aspects to digital computations (DC). At the same time, higher cognitive activity is probably based on parallel neural network computations (NNC). The advantage of neural networks is their intrinsic ability to learn, adapting their parameters to specific tasks and to external data. However, there seems to be a third level of information processing as well, which involves subjective consciousness and its units, so called qualia. They are difficult to study experimentally, and the very fact of their existence is hard to explain within the framework of modern physical theory. Here I propose a way to consider consciousness as the extension of basic physical laws - namely, total entropy dissipation leading to a system simplification. At the level of subjective consciousness, the brain seems to convert information embodied by neural activity to a more simple and compact form, internally observed as qualia. Whereas physical implementations of both DC and NNC are essentially approximate and probabilistic, qualia-associated computations (QAC) make the brain capable of recognizing general laws and relationships. While elaborating a behavioral program, the conscious brain does not act blindly or gropingly but according to the very meaning of such general laws, which gives it an advantage compared to any artificial intelligence system.
Collapse
Affiliation(s)
- Aleksandr V Zhuravlev
- I. P. Pavlov Institute of Physiology, nab Makarova 6, 199034, St Petersburg, Russian Federation.
| |
Collapse
|
21
|
Matusiak M, Oziębło D, Ołdak M, Rejmak E, Kaczmarek L, Skarżyński H. Longitudinal Changes in BDNF and MMP-9 Protein Plasma Levels in Children after Cochlear Implantation. Int J Mol Sci 2023; 24:ijms24043714. [PMID: 36835126 PMCID: PMC9959301 DOI: 10.3390/ijms24043714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Congenitally deaf children who undergo cochlear implantation before 1 year of age develop their auditory skills faster than children who are implanted later. In this longitudinal study, a cohort of 59 implanted children were divided into two subgroups according to their ages at implantation-below or above 1 year old-and the plasma levels of matrix metalloproteinase-9 (MMP-9), brain-derived neurotrophic factor (BDNF), and pro-BDNF were measured at 0, 8, and 18 months after cochlear implant activation, while auditory development was simultaneously evaluated using the LittlEARs Questionnaire (LEAQ). A control group consisted of 49 age-matched healthy children. We identified statistically higher BDNF levels at 0 months and at the 18-month follow-ups in the younger subgroup compared to the older one and lower LEAQ scores at 0 months in the younger subgroup. Between the subgroups, there were significant differences in the changes in BDNF levels from 0 to 8 months and in LEAQ scores from 0 to 18 months. The MMP-9 levels significantly decreased from 0 to 18 months and from 0 to 8 months in both subgroups and from 8 to 18 months only in the older one. For all measured protein concentrations, significant differences were identified between the older study subgroup and the age-matched control group.
Collapse
Affiliation(s)
- Monika Matusiak
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Correspondence: ; Tel.: +48-223560366
| | - Dominika Oziębło
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
| | - Monika Ołdak
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093 Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
| |
Collapse
|
22
|
Guy J, Möck M, Staiger JF. Direction selectivity of inhibitory interneurons in mouse barrel cortex differs between interneuron subtypes. Cell Rep 2023; 42:111936. [PMID: 36640357 DOI: 10.1016/j.celrep.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear. Here, we use two-photon-guided whole-cell recordings in the barrel cortex of anesthetized mice and control whisker stimulation to measure direction selectivity in defined interneuron subtypes. Selectivity is ubiquitous in interneurons, but tuning sharpness varies across populations. Vasoactive intestinal polypeptide (VIP) interneurons are as selective as pyramidal neurons, but parvalbumin (PV) interneurons are more broadly tuned. Furthermore, a majority (2/3) of somatostatin (SST) interneurons receive direction-selective inhibition, with the rest receiving direction-selective excitation. Sensory evoked activity in the barrel cortex is thus cell-type specific, suggesting that interneuron subtypes make distinct contributions to cortical representations of stimuli.
Collapse
Affiliation(s)
- Julien Guy
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Martin Möck
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany.
| |
Collapse
|
23
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
24
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Álvarez A, Gutiérrez D, Chandía-Cristi A, Yáñez M, Zanlungo S. c-Abl kinase at the crossroads of healthy synaptic remodeling and synaptic dysfunction in neurodegenerative diseases. Neural Regen Res 2023; 18:237-243. [PMID: 35900397 PMCID: PMC9396477 DOI: 10.4103/1673-5374.346540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Our ability to learn and remember depends on the active formation, remodeling, and elimination of synapses. Thus, the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring. The structural reorganization of synaptic complexes, changes in actin cytoskeleton and organelle dynamics, as well as modulation of gene expression, determine synaptic plasticity. It has been proposed that dysregulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases. Much is known about downstream signaling of activated N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoazolepropionate receptors; however, other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory. The non-receptor tyrosine kinase c-Abl (ABL1) is a key signal transducer of intra and extracellular signals, and it shuttles between the cytoplasm and the nucleus. This review focuses on c-Abl and its synaptic and neuronal functions. Here, we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons, promoting the development of neurodegenerative diseases. Nevertheless, c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity, regulating dendritic spines remodeling and gene expression after cognitive training, and synaptic dysfunction and loss in neurodegenerative diseases. Thus, c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice, but its absence provides dendritic spines resiliency against damage. Therefore, the present review has been designed to elucidate the common links between c-Abl regulation of structural changes that involve the actin cytoskeleton and organelles dynamics, and the transcriptional program activated during synaptic plasticity. By summarizing the recent discoveries on c-Abl functions, we aim to provide an overview of how its inhibition could be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.
Collapse
|
26
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
27
|
Traub RD, Whittington MA. Processing of cell assemblies in the lateral entorhinal cortex. Rev Neurosci 2022; 33:829-847. [PMID: 35447022 DOI: 10.1515/revneuro-2022-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
There is evidence that olfactory cortex responds to its afferent input with the generation of cell assemblies: collections of principal neurons that fire together over a time scale of tens of ms. If such assemblies form an odor representation, then a fundamental question is how each assembly then induces neuronal activity in downstream structures. We have addressed this question in a detailed model of superficial layers of lateral entorhinal cortex, a recipient of input from olfactory cortex and olfactory bulb. Our results predict that the response of the fan cell subpopulation can be approximated by a relatively simple Boolean process, somewhat along the lines of the McCulloch/Pitts scheme; this is the case because of the sparsity of recurrent excitation amongst fan cells. However, because of recurrent excitatory connections between layer 2 and layer 3 pyramidal cells, synaptic and probably also gap junctional, the response of pyramidal cell subnetworks cannot be so approximated. Because of the highly structured anatomy of entorhinal output projections, our model suggests that downstream targets of entorhinal cortex (dentate gyrus, hippocampal CA3, CA1, piriform cortex, olfactory bulb) receive differentially processed information.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
28
|
Li ZD, Li H, Kang S, Cui YG, Zheng H, Wang P, Han K, Yu P, Chang YZ. The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death Dis 2022; 13:1006. [PMID: 36443285 PMCID: PMC9705310 DOI: 10.1038/s41419-022-05459-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Ceruloplasmin (CP) plays an important role in maintaining iron homeostasis. Cp gene knockout (Cp-/-) mice develop a neurodegenerative disease with aging and show iron accumulation in the brain. However, iron deficiency has also been observed in 3 M Cp-/- mice. The use of systemic Cp gene knockout is insufficient to reveal specific functions for CP in the central nervous system. Considering recent discoveries that astrocytes synthetize the majority of brain CP, we generated astrocyte conditional Cp knockout (CpGfapcKO) mice, and found that iron contents decreased in the cerebral cortex and hippocampus of young (6 M) and old (18 M) CpGfapcKO mice. Further experiments revealed that 6 M CpGfapcKO mice exhibited impaired learning and memory function, while 18 M CpGfapcKO mice exhibited improved learning and memory function. Our study demonstrates that astrocytic Cp deletion blocks brain iron influx through the blood-brain-barrier, with concomitantly increased iron levels in brain microvascular endothelial cells, resulting in brain iron deficiency and down-regulation of ferritin levels in neurons, astrocytes, microglia and oligodendrocytes. At the young age, the synapse density, synapse-related protein levels, 5-hydroxytryptamine and norepinephrine, hippocampal neurogenesis and myelin formation were all decreased in CpGfapcKO mice. These changes affected learning and memory impairment in young CpGfapcKO mice. In old CpGfapcKO mice, iron accumulation with aging was attenuated, and was accompanied by the alleviation of the ROS-MAPK-apoptosis pathway, Tau phosphorylation and β-amyloid aggregation, thus delaying age-related memory decline. Overall, our results demonstrate that astrocytic Cp deletion has divergent effects on learning and memory function via different regulatory mechanisms induced by decreased iron contents in the brain of mice, which may present strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Zhong-Da Li
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Haiyan Li
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China ,grid.413851.a0000 0000 8977 8425College of Basic Medicine, Chengde Medical University, Chengde, Hebei Province China
| | - Shaomeng Kang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Yan-Ge Cui
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Huiwen Zheng
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Peina Wang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Kang Han
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Peng Yu
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| | - Yan-Zhong Chang
- grid.256884.50000 0004 0605 1239Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang, 050024 Hebei Province China
| |
Collapse
|
29
|
Carlson ER, McGowan E. Faculty Development for the Twenty-First Century: Teaching the Teachers. Oral Maxillofac Surg Clin North Am 2022; 34:555-570. [PMID: 36224073 DOI: 10.1016/j.coms.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Faculty development is a poorly understood and incompletely executed initiative in undergraduate and graduate medical and dental education programs. Despite significant change in the delivery of health care over the past several decades, the education of students and residents has followed a legacy path of business as usual. Some faculty have incorrectly assumed that content expertise transfers to teaching expertise. The insistence for robust faculty development programs on the part of accrediting and other professional organizations has created a call to action, but much work has yet to be done. It is therefore essential that leaders in these programs develop a sense of urgency to teach the teachers lest our students and residents will replicate outdated methods, unsystematically teach themselves, and fall victim to an educational system that is grossly inadequate. It is the purpose of this article to enhance undergraduate and graduate medical and dental education by offering viable change options, specifically targeted to improving historical trends by emphasizing the importance of growth mindsets, emotional intelligence, the creation of holding environments, and stimulating enthusiasm for lifelong learning as part of twenty-first century strategies for faculty development.
Collapse
Affiliation(s)
- Eric R Carlson
- Department of Oral and Maxillofacial Surgery, University of Tennessee Graduate School of Medicine, 1930 Alcoa Highway Suite 335, Knoxville, TN 37920, USA.
| | - Eileen McGowan
- Harvard Graduate School of Education, 1165 N Pennsylvania Street, Denver, CO 80203, USA
| |
Collapse
|
30
|
Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA. Cell Death Dis 2022; 8:432. [PMID: 36307396 PMCID: PMC9616879 DOI: 10.1038/s41420-022-01220-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022]
Abstract
N6-methyladenosine (m6A) is abundant in the mammalian brain and is considered to have a wide range of effects on learning and memory. Here, we found that the upregulated methyltransferase-like protein 16 (METTL16) in the hippocampal tissues of Morris water maze (MWM)-trained mice contributed to improved memory formation and hippocampal synaptic plasticity. Mechanismly, METTL16 promoted the expression of methionine adenosyltransferase 2A (MAT2A) by the m6A methylation of the MAT2A mRNA-3′UTR-end to increase its stability, and this involved in improving hippocampal global m6A levels, plasticity of dendritic spine, learning and memory. This study provides a new perspective to explore the regulatory mechanisms of m6A for learning and memory. ![]()
Collapse
|
31
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
32
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Miehl C, Onasch S, Festa D, Gjorgjieva J. Formation and computational implications of assemblies in neural circuits. J Physiol 2022. [PMID: 36068723 DOI: 10.1113/jp282750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
In the brain, patterns of neural activity represent sensory information and store it in non-random synaptic connectivity. A prominent theoretical hypothesis states that assemblies, groups of neurons that are strongly connected to each other, are the key computational units underlying perception and memory formation. Compatible with these hypothesised assemblies, experiments have revealed groups of neurons that display synchronous activity, either spontaneously or upon stimulus presentation, and exhibit behavioural relevance. While it remains unclear how assemblies form in the brain, theoretical work has vastly contributed to the understanding of various interacting mechanisms in this process. Here, we review the recent theoretical literature on assembly formation by categorising the involved mechanisms into four components: synaptic plasticity, symmetry breaking, competition and stability. We highlight different approaches and assumptions behind assembly formation and discuss recent ideas of assemblies as the key computational unit in the brain. Abstract figure legend Assembly Formation. Assemblies are groups of strongly connected neurons formed by the interaction of multiple mechanisms and with vast computational implications. Four interacting components are thought to drive assembly formation: synaptic plasticity, symmetry breaking, competition and stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christoph Miehl
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Sebastian Onasch
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Dylan Festa
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Julijana Gjorgjieva
- Computation in Neural Circuits, Max Planck Institute for Brain Research, 60438, Frankfurt, Germany.,School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
34
|
Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, Bi Y. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab 2022; 34:1264-1279.e8. [PMID: 36070680 DOI: 10.1016/j.cmet.2022.08.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus. Further investigation suggests that adipose tissue-derived EVs from high-fat diet (HFD)-fed mice or patients with diabetes induce remarkable synaptic loss and cognitive impairment. Depletion of miRNA cargo in these EVs significantly alleviates their detrimental effects on cognitive function. Collectively, these data suggest that targeting adipose tissue-derived EVs or their cargo miRNAs may provide a promising strategy for pharmaceutical interventions for cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Xuhong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ye Zhu
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China.
| |
Collapse
|
35
|
Pettit NL, Yap EL, Greenberg ME, Harvey CD. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature 2022; 609:327-334. [PMID: 36002569 PMCID: PMC9452297 DOI: 10.1038/s41586-022-05113-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
In the hippocampus, spatial maps are formed by place cells while contextual memories are thought to be encoded as engrams1-6. Engrams are typically identified by expression of the immediate early gene Fos, but little is known about the neural activity patterns that drive, and are shaped by, Fos expression in behaving animals7-10. Thus, it is unclear whether Fos-expressing hippocampal neurons also encode spatial maps and whether Fos expression correlates with and affects specific features of the place code11. Here we measured the activity of CA1 neurons with calcium imaging while monitoring Fos induction in mice performing a hippocampus-dependent spatial learning task in virtual reality. We find that neurons with high Fos induction form ensembles of cells with highly correlated activity, exhibit reliable place fields that evenly tile the environment and have more stable tuning across days than nearby non-Fos-induced cells. Comparing neighbouring cells with and without Fos function using a sparse genetic loss-of-function approach, we find that neurons with disrupted Fos function have less reliable activity, decreased spatial selectivity and lower across-day stability. Our results demonstrate that Fos-induced cells contribute to hippocampal place codes by encoding accurate, stable and spatially uniform maps and that Fos itself has a causal role in shaping these place codes. Fos ensembles may therefore link two key aspects of hippocampal function: engrams for contextual memories and place codes that underlie cognitive maps.
Collapse
Affiliation(s)
- Noah L Pettit
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
36
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
37
|
Mahringer D, Zmarz P, Okuno H, Bito H, Keller GB. Functional correlates of immediate early gene expression in mouse visual cortex. PEER COMMUNITY JOURNAL 2022; 2:e45. [PMID: 37091727 PMCID: PMC7614465 DOI: 10.24072/pcjournal.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
During visual development, response properties of layer 2/3 neurons in visual cortex are shaped by experience. Both visual and visuomotor experience are necessary to co-ordinate the integration of bottom-up visual input and top-down motor-related input. Whether visual and visuomotor experience engage different plasticity mechanisms, possibly associated with the two separate input pathways, is still unclear. To begin addressing this, we measured the expression level of three different immediate early genes (IEG) (c-fos, egr1 or Arc) and neuronal activity in layer 2/3 neurons of visual cortex before and after a mouse's first visual exposure in life, and subsequent visuomotor learning. We found that expression levels of all three IEGs correlated positively with neuronal activity, but that first visual and first visuomotor exposure resulted in differential changes in IEG expression patterns. In addition, IEG expression levels differed depending on whether neurons exhibited primarily visually driven or motor-related activity. Neurons with strong motor-related activity preferentially expressed EGR1, while neurons that developed strong visually driven activity preferentially expressed Arc. Our findings are consistent with the interpretation that bottom-up visual input and top-down motor-related input are associated with different IEG expression patterns and hence possibly also with different plasticity pathways.
Collapse
Affiliation(s)
- David Mahringer
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Zmarz
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890-8544, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Georg B Keller
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
38
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Zhang R, Zhang Y, Guo F, Li S, Cui H. RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Front Cell Neurosci 2022; 16:820378. [PMID: 35401117 PMCID: PMC8989074 DOI: 10.3389/fncel.2022.820378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of epitranscriptomics in regulating gene expression has received widespread attention. Recently, RNA methylation modifications, particularly N6-methyladenosine (m6A), have received marked attention. m6A, the most common and abundant type of eukaryotic methylation modification in RNAs, is a dynamic reversible modification that regulates nuclear splicing, stability, translation, and subcellular localization of RNAs. These processes are involved in the occurrence and development of many diseases. An increasing number of studies have focused on the role of m6A modification in Alzheimer's disease, which is the most common neurodegenerative disease. This review focuses on the general features, mechanisms, and functions of m6A methylation modification and its role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
40
|
Marks WD, Yokose J, Kitamura T, Ogawa SK. Neuronal Ensembles Organize Activity to Generate Contextual Memory. Front Behav Neurosci 2022; 16:805132. [PMID: 35368306 PMCID: PMC8965349 DOI: 10.3389/fnbeh.2022.805132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Contextual learning is a critical component of episodic memory and important for living in any environment. Context can be described as the attributes of a location that are not the location itself. This includes a variety of non-spatial information that can be derived from sensory systems (sounds, smells, lighting, etc.) and internal state. In this review, we first address the behavioral underpinnings of contextual memory and the development of context memory theory, with a particular focus on the contextual fear conditioning paradigm as a means of assessing contextual learning and the underlying processes contributing to it. We then present the various neural centers that play roles in contextual learning. We continue with a discussion of the current knowledge of the neural circuitry and physiological processes that underlie contextual representations in the Entorhinal cortex-Hippocampal (EC-HPC) circuit, as the most well studied contributor to contextual memory, focusing on the role of ensemble activity as a representation of context with a description of remapping, and pattern separation and completion in the processing of contextual information. We then discuss other critical regions involved in contextual memory formation and retrieval. We finally consider the engram assembly as an indicator of stored contextual memories and discuss its potential contribution to contextual memory.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sachie K. Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
41
|
Poort J, Wilmes KA, Blot A, Chadwick A, Sahani M, Clopath C, Mrsic-Flogel TD, Hofer SB, Khan AG. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 2022; 110:686-697.e6. [PMID: 34906356 PMCID: PMC8860382 DOI: 10.1016/j.neuron.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales.
Collapse
Affiliation(s)
- Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland; Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
42
|
Perna J, Lu J, Mullen B, Liu T, Tjia M, Weiser S, Ackman J, Zuo Y. Perinatal Penicillin Exposure Affects Cortical Development and Sensory Processing. Front Mol Neurosci 2022; 14:704219. [PMID: 35002614 PMCID: PMC8727458 DOI: 10.3389/fnmol.2021.704219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The prevalent use of antibiotics in pregnant women and neonates raises concerns about long-term risks for children’s health, but their effects on the central nervous system is not well understood. We studied the effects of perinatal penicillin exposure (PPE) on brain structure and function in mice with a therapeutically relevant regimen. We used a battery of behavioral tests to evaluate anxiety, working memory, and sensory processing, and immunohistochemistry to quantify changes in parvalbumin-expressing inhibitory interneurons (PV+ INs), perineuronal nets (PNNs), as well as microglia density and morphology. In addition, we performed mesoscale calcium imaging to study neural activity and functional connectivity across cortical regions, and two-photon imaging to monitor dendritic spine and microglial dynamics. We found that adolescent PPE mice have abnormal sensory processing, including impaired texture discrimination and altered prepulse inhibition. Such behavioral changes are associated with increased spontaneous neural activities in various cortical regions, and delayed maturation of PV+ INs in the somatosensory cortex. Furthermore, adolescent PPE mice have elevated elimination of dendritic spines on the apical dendrites of layer 5 pyramidal neurons, as well as increased ramifications and spatial coverage of cortical microglia. Finally, while synaptic defects are transient during adolescence, behavioral abnormalities persist into adulthood. Our study demonstrates that early-life exposure to antibiotics affects cortical development, leaving a lasting effect on brain functions.
Collapse
Affiliation(s)
- James Perna
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Brian Mullen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Taohui Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Michelle Tjia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sydney Weiser
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - James Ackman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
43
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|
44
|
Luo YF, Ye XX, Fang YZ, Li MD, Xia ZX, Liu JM, Lin XS, Huang Z, Zhu XQ, Huang JJ, Tan DL, Zhang YF, Liu HP, Zhou J, Shen ZC. mTORC1 Signaling Pathway Mediates Chronic Stress-Induced Synapse Loss in the Hippocampus. Front Pharmacol 2022; 12:801234. [PMID: 34987410 PMCID: PMC8722735 DOI: 10.3389/fphar.2021.801234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The mechanistic target of rapamycin complex 1 (mTORC1) signaling has served as a promising target for therapeutic intervention of major depressive disorder (MDD), but the mTORC1 signaling underlying MDD has not been well elucidated. In the present study, we investigated whether mTORC1 signaling pathway mediates synapse loss induced by chronic stress in the hippocampus. Methods: Chronic restraint stress-induced depression-like behaviors were tested by behavior tests (sucrose preference test, forced swim test and tail suspension test). Synaptic proteins and alternations of phosphorylation levels of mTORC1 signaling-associated molecules were measured using Western blotting. In addition, mRNA changes of immediate early genes (IEGs) and glutamate receptors were measured by RT-PCR. Rapamycin was used to explore the role of mTORC1 signaling in the antidepressant effects of fluoxetine. Results: After successfully establishing the chronic restraint stress paradigm, we observed that the mRNA levels of some IEGs were significantly changed, indicating the activation of neurons and protein synthesis alterations. Then, there was a significant downregulation of glutamate receptors and postsynaptic density protein 95 at protein and mRNA levels. Additionally, synaptic fractionation assay revealed that chronic stress induced synapse loss in the dorsal and ventral hippocampus. Furthermore, these effects were associated with the mTORC1 signaling pathway-mediated protein synthesis, and subsequently the phosphorylation of associated downstream signaling targets was reduced after chronic stress. Finally, we found that intracerebroventricular infusion of rapamycin simulated depression-like behavior and also blocked the antidepressant effects of fluoxetine. Conclusion: Overall, our study suggests that mTORC1 signaling pathway plays a critical role in mediating synapse loss induced by chronic stress, and has part in the behavioral effects of antidepressant treatment.
Collapse
Affiliation(s)
- Yu-Fei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Clinical Medical Research Center, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Xia Ye
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying-Zhao Fang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jun-Jie Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dong-Lin Tan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Fei Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hai-Ping Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jun Zhou
- Translational Medicine Center, Xi'an Chest Hospital, Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
46
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
47
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
48
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
49
|
Conde-Dusman MJ, Dey PN, Elía-Zudaire Ó, Rabaneda LG, García-Lira C, Grand T, Briz V, Velasco ER, Andero R, Niñerola S, Barco A, Paoletti P, Wesseling JF, Gardoni F, Tavalin SJ, Perez-Otaño I. Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly. eLife 2021; 10:e71575. [PMID: 34787081 PMCID: PMC8598234 DOI: 10.7554/elife.71575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
Collapse
Affiliation(s)
- María J Conde-Dusman
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College LondonLondonUnited Kingdom
| | - Partha N Dey
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- National Eye Institute, National Institutes of HealthBethesdaUnited States
| | | | - Luis G Rabaneda
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Teddy Grand
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | - Victor Briz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)MadridSpain
| | - Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Raül Andero
- Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
- ICREABarcelonaSpain
| | | | - Angel Barco
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERMParisFrance
| | | | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of MilanMilanItaly
| | - Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science CenterMemphisUnited States
| | - Isabel Perez-Otaño
- lnstituto de Neurociencias (UMH-CSIC)AlicanteSpain
- Centro de Investigación Médica Aplicada (CIMA), University of NavarraPamplonaSpain
| |
Collapse
|
50
|
Silent Synapses in Cocaine-Associated Memory and Beyond. J Neurosci 2021; 41:9275-9285. [PMID: 34759051 DOI: 10.1523/jneurosci.1559-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote cocaine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are generated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs, contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-generated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine relapse.
Collapse
|