1
|
Mahmoud E, Abdelhamid D, Youssif BGM, Gomaa HAM, Hayallah AM, Abdel-Aziz M. Design, synthesis, and antiproliferative activity of new indole/1,2,4-triazole/chalcone hybrids as EGFR and/or c-MET inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300562. [PMID: 39219313 DOI: 10.1002/ardp.202300562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
A novel group of indolyl-1,2,4-triazole-chalcone hybrids was designed, synthesized, and assessed for their anticancer activity. The synthesized compounds exhibited significant antiproliferative activity. Compounds 9a and 9e exhibited significant cancer inhibition with GI50 ranging from 3.69 to 20.40 µM and from 0.29 to >100 µM, respectively. Both compounds displayed a broad spectrum of anticancer activity with selectivity ratios ranging between 0.50-2.78 and 0.25-2.81 at the GI50 level, respectively. The synthesized compounds were also screened for their cytotoxicity by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazol (MTT) assay and for inhibition of epidermal growth factor receptor (EGFR) and c-MET (mesenchymal-epithelial transition factor). Some of the tested compounds exhibited significant inhibition against EGFR and/or c-MET. Compound 9b showed the highest c-MET inhibition (IC50 = 4.70 nM) compared to foretinib (IC50 = 2.5 nM). Compound 9d showed equipotent activity compared with erlotinib against EGFR (IC50 = 0.052 µM) and displayed significant c-MET inhibition with an IC50 value of 4.90 nM.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Dyshlovoy SA, Hauschild J, Venz S, Krisp C, Kolbe K, Zapf S, Heinemann S, Fita KD, Shubina LK, Makarieva TN, Guzii AG, Rohlfing T, Kaune M, Busenbender T, Mair T, Moritz M, Poverennaya EV, Schlüter H, Serdyuk V, Stonik VA, Dierlamm J, Bokemeyer C, Mohme M, Westphal M, Lamszus K, von Amsberg G, Maire CL. Rhizochalinin Exhibits Anticancer Activity and Synergizes with EGFR Inhibitors in Glioblastoma In Vitro Models. Mol Pharm 2023; 20:4994-5005. [PMID: 37733943 DOI: 10.1021/acs.molpharmaceut.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Laboratory of Biologically Active Compounds, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald 17489, Germany
| | - Christoph Krisp
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katharina Kolbe
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Sarina Heinemann
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Krystian D Fita
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thomas Mair
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manuela Moritz
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ekaterina V Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Volodymyr Serdyuk
- Zentrum für Molekulare Neurobiologie (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Malte Mohme
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
3
|
Bekeschus S, Ispirjan M, Freund E, Kinnen F, Moritz J, Saadati F, Eckroth J, Singer D, Stope MB, Wende K, Ritter CA, Schroeder HWS, Marx S. Gas Plasma Exposure of Glioblastoma Is Cytotoxic and Immunomodulatory in Patient-Derived GBM Tissue. Cancers (Basel) 2022; 14:cancers14030813. [PMID: 35159079 PMCID: PMC8834374 DOI: 10.3390/cancers14030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Despite treatment advances, glioblastoma multiforme (GBM) remains an often-fatal disease, motivating novel therapeutic avenues. Gas plasma is a technology that has been recently employed in preclinical oncology research and acts primarily via reactive oxygen-species-induced cell death. In addition, the modulation of immune processes and inflammation have been ascribed to gas plasma exposure. This is the first study that extends those observations from in vitro investigations to a set of 16 patient-derived GBM tumor biopsies analyzed after gas plasma treatment ex vivo. Besides cell culture results showing cell cycle arrest and apoptosis induction, an immunomodulatory potential was identified for gas plasma exposure in vitro and cultured GBM tissues. The proapoptotic action shown in this study might be an important step forward to the first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology. Abstract Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology’s potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Correspondence:
| | - Mikael Ispirjan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frederik Kinnen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Juliane Moritz
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Jacqueline Eckroth
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (M.I.); (E.F.); (F.K.); (J.M.); (F.S.); (J.E.); (D.S.); (K.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmaceutics, University of Greifswald, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany;
| | - Henry W. S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; (H.W.S.S.); (S.M.)
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Gong K, Guo G, Beckley N, Zhang Y, Yang X, Sharma M, Habib AA. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia 2021; 23:189-196. [PMID: 33373873 PMCID: PMC7773536 DOI: 10.1016/j.neo.2020.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors are widely expressed in non-small cell lung cancer (NSCLC). TNF has an established role in inflammation and also plays a key role in inflammation-induced cancer. TNF can induce cell death in cancer cells and has been used as a treatment in certain types of cancer. However, TNF is likely to play an oncogenic role in multiple types of cancer, including NSCLC. TNF is a key activator of the transcription factor NF-κB. NF-κB, in turn, is a key effector of TNF in inflammation-induced cancer. Data from The Cancer Genome Atlas database suggest that TNF could be a biomarker in NSCLC and indicate a complex role for TNF and its receptors in NSCLC. Recent studies have reported that TNF is rapidly upregulated in NSCLC in response to targeted treatment with epidermal growth factor receptor (EGFR) inhibition, and this upregulation leads to NF-κB activation. The TNF upregulation and consequent NF-κB activation play a key role in mediating both primary and secondary resistance to EGFR inhibition in NSCLC, and a combined inhibition of EGFR and TNF can overcome therapeutic resistance in experimental models. TNF may mediate the toxic side effects of immunotherapy and may also modulate resistance to immune checkpoint inhibitors. Drugs inhibiting TNF are widely used for the treatment of various inflammatory and rheumatologic diseases and could be quite useful in combination with targeted therapy of NSCLC and other cancers.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mishu Sharma
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
5
|
Gong K, Guo G, Panchani N, Bender ME, Gerber DE, Minna JD, Fattah F, Gao B, Peyton M, Kernstine K, Mukherjee B, Burma S, Chiang CM, Zhang S, Amod Sathe A, Xing C, Dao KH, Zhao D, Akbay EA, Habib AA. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. NATURE CANCER 2020; 1:394-409. [PMID: 33269343 PMCID: PMC7706867 DOI: 10.1038/s43018-020-0048-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gao Guo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nishah Panchani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Boning Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kemp Kernstine
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Medicine, Division of Neurology, VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
6
|
Guo G, Gong K, Puliyappadamba VT, Panchani N, Pan E, Mukherjee B, Damanwalla Z, Bharia S, Hatanpaa KJ, Gerber DE, Mickey BE, Patel TR, Sarkaria JN, Zhao D, Burma S, Habib AA. Efficacy of EGFR plus TNF inhibition in a preclinical model of temozolomide-resistant glioblastoma. Neuro Oncol 2019; 21:1529-1539. [PMID: 31363754 PMCID: PMC6917414 DOI: 10.1093/neuonc/noz127] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant adult brain tumor. Temozolomide (TMZ) is the standard of care and is most effective in GBMs that lack the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Moreover, even initially responsive tumors develop a secondary resistance to TMZ and become untreatable. Since aberrant epidermal growth factor receptor (EGFR) signaling is widespread in GBM, EGFR inhibition has been tried in multiple clinical trials without success. We recently reported that inhibiting EGFR leads to increased secretion of tumor necrosis factor (TNF) and activation of a survival pathway in GBM. Here, we compare the efficacy of TMZ versus EGFR plus TNF inhibition in an orthotopic mouse model of GBM. METHODS We use an orthotopic model to examine the efficacy of TMZ versus EGFR plus TNF inhibition in multiple subsets of GBMs, including MGMT methylated and unmethylated primary GBMs, recurrent GBMs, and GBMs rendered experimentally resistant to TMZ. RESULTS The efficacy of the 2 treatments was similar in MGMT methylated GBMs. However, in MGMT unmethylated GBMs, a combination of EGFR plus TNF inhibition was more effective. We demonstrate that the 2 treatment approaches target distinct and non-overlapping pathways. Thus, importantly, EGFR plus TNF inhibition remains effective in TMZ-resistant recurrent GBMs and in GBMs rendered experimentally resistant to TMZ. CONCLUSION EGFR inhibition combined with a blunting of the accompanying TNF-driven adaptive response could be a viable therapeutic approach in MGMT unmethylated and recurrent EGFR-expressing GBMs.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Ke Gong
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | | | - Nishah Panchani
- Department of Pathology, Division of Hematology-Oncology, Dallas, Texas
| | - Edward Pan
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Bipasha Mukherjee
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Ziba Damanwalla
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
| | - Sabrina Bharia
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Kimmo J Hatanpaa
- Department of Pathology, Division of Hematology-Oncology, Dallas, Texas
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, VA North Texas Health Care System, Dallas, Texas
| | - Bruce E Mickey
- Department of Neurosurgery, VA North Texas Health Care System, Dallas, Texas
| | - Toral R Patel
- Department of Neurosurgery, VA North Texas Health Care System, Dallas, Texas
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sandeep Burma
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Department of Radiation Oncology, Division of Hematology-Oncology, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, Division of Hematology-Oncology, Dallas, Texas
- Harold C. Simmons Comprehensive Cancer Center, VA North Texas Health Care System, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas; VA North Texas Health Care System, Dallas, Texas
| |
Collapse
|
7
|
He K, Xu J, Liang J, Jiang J, Tang M, Ye X, Zhang Z, Zhang L, Fu B, Li Y, Bai C, Zhang L, Tao W. Discovery of A Novel EGFR-Targeting Antibody-Drug Conjugate, SHR-A1307, for the Treatment of Solid Tumors Resistant or Refractory to Anti-EGFR Therapies. Mol Cancer Ther 2019; 18:1104-1114. [PMID: 30962319 DOI: 10.1158/1535-7163.mct-18-0854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/26/2018] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
Although inhibiting EGFR-mediated signaling proved to be effective in treating certain types of cancers, a quickly evolved mechanism that either restores the EGFR signaling or activates an alternative pathway for driving the proliferation and survival of malignant cells limits the efficacy and utility of the approach via suppressing the EGFR functionality. Given the fact that overexpression of EGFR is commonly seen in many cancers, an EGFR-targeting antibody-drug conjugate (ADC) can selectively kill cancer cells independently of blocking EGFR-mediated signaling. Herein, we describe SHR-A1307, a novel anti-EGFR ADC, generated from an anti-EGFR antibody with prolonged half-life, and conjugated with a proprietary toxin payload that has increased index of EGFR targeting-dependent versus EGFR targeting-independent cytotoxicity. SHR-A1307 demonstrated strong and sustained antitumor activities in EGFR-positive tumors harboring different oncogenic mutations on EGFR, KRAS, or PIK3CA. Antitumor efficacy of SHR-A1307 correlated with EGFR expression levels in vitro and in vivo, regardless of the mutation status of EGFR signaling mediators and a resultant resistance to EGFR signaling inhibitors. Cynomolgus monkey toxicology study showed that SHR-A1307 is well tolerated with a wide therapeutic index. SHR-A1307 is a promising therapeutic option for EGFR-expressing cancers, including those resistant or refractory to the EGFR pathway inhibitors.
Collapse
Affiliation(s)
- Kaijie He
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China.
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Jindong Liang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Jiahua Jiang
- Jiangsu Hengrui Medicine Co., Ltd., Shanghai, China
| | - Mi Tang
- Jiangsu Hengrui Medicine Co., Ltd., Shanghai, China
| | - Xin Ye
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhebin Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Lei Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Beibei Fu
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Yan Li
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
8
|
Gong K, Guo G, Gerber DE, Gao B, Peyton M, Huang C, Minna JD, Hatanpaa KJ, Kernstine K, Cai L, Xie Y, Zhu H, Fattah FJ, Zhang S, Takahashi M, Mukherjee B, Burma S, Dowell J, Dao K, Papadimitrakopoulou VA, Olivas V, Bivona TG, Zhao D, Habib AA. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Invest 2018; 128:2500-2518. [PMID: 29613856 DOI: 10.1172/jci96148] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology and Neurotherapeutics
| | - Gao Guo
- Department of Neurology and Neurotherapeutics
| | - David E Gerber
- Internal Medicine, Division of Hematology-Oncology.,Harold C. Simmons Comprehensive Cancer Center
| | - Boning Gao
- Department of Pharmacology.,Hamon Center for Therapeutic Oncology Research
| | - Michael Peyton
- Department of Pharmacology.,Hamon Center for Therapeutic Oncology Research
| | - Chun Huang
- Department of Pharmacology.,Hamon Center for Therapeutic Oncology Research
| | - John D Minna
- Internal Medicine, Division of Hematology-Oncology.,Department of Pharmacology.,Hamon Center for Therapeutic Oncology Research
| | | | | | - Ling Cai
- Quantitative Biomedical Research Center
| | - Yang Xie
- Quantitative Biomedical Research Center
| | - Hong Zhu
- Harold C. Simmons Comprehensive Cancer Center.,Department of Clinical Sciences
| | | | | | | | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan Dowell
- Internal Medicine, Division of Hematology-Oncology.,VA North Texas Health Care System, Dallas, Texas, USA
| | - Kathryn Dao
- Baylor Research Institute, Dallas, Texas, USA
| | | | - Victor Olivas
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Trever G Bivona
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics.,Harold C. Simmons Comprehensive Cancer Center.,VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|