1
|
Sun Y, Zhang F, Li J, Zhang Y, Peng J, Wang Z, Xie W, Gao F, Zhao R, Yao Y, Zou J, Zhang J, Hong B, Xu Y, Eimer S, Wen L, Zhang H, Jin Z, Wu X, Nie T, Zhao W. Interface Dominated Spin-to-Charge Conversion in Terahertz Emission by Band Structure Engineering of Topological Surface States. ACS NANO 2025. [PMID: 40315426 DOI: 10.1021/acsnano.4c18252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
The rapid advancement of future information technologies necessitates the development of high-efficiency and cost-effective solutions for terahertz emitters, which hold significant practical value in next-generation communication, terahertz sensing, and quantum computing applications. Distinguished from trivial materials, three-dimensional topological insulators exhibit spin-momentum locking in helical Dirac surface states, making them highly efficient spin-to-charge converters that have the potential to revolutionize electronics. However, the efficiency of utilizing topological insulators for spin terahertz emission has not yet matched that of spin manipulation in other spintronic devices. Here, we investigate the spin terahertz emission properties of high crystalline quality (Bi1-xSbx)2Te3/Fe heterostructures through band structure engineering. Notably, contrary to expectations, the strongest terahertz radiation is not achieved at the charge neutrality point. Through an analysis of influencing factors and a temperature-independent investigation, we identify interface transparency as the primary factor affecting emission efficiency. To optimize interfaces and enhance spin-to-charge conversion efficiency, a Rashba-mediated Dirac surface state is constructed by attaching a Bi layer. Furthermore, with doping concentrations of 0, 0.5, and 1, respectively, we observe enhancements in intensity by 35.1, 50.3, and 44.3%. These results provide a detailed assessment of interfacial and doping effects in topological-insulator-based terahertz emitters and contribute to the understanding of spin-to-charge dynamics in topological materials.
Collapse
Affiliation(s)
- Yun Sun
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Fan Zhang
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Jing Li
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Ying Zhang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Jingyi Peng
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Zili Wang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Weiran Xie
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Fan Gao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Runyu Zhao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuan Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Zou
- Center for Microscopy and Microanalysis, The University of Queensland, St Lucia Qld 4067, Australia
| | - Jie Zhang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Bin Hong
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Yong Xu
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Sylvain Eimer
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Lianggong Wen
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Hui Zhang
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Zuanming Jin
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Tianxiao Nie
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| | - Weisheng Zhao
- Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230013, China
| |
Collapse
|
2
|
Park TG, Baek S, Park J, Shin EC, Na HR, Oh ET, Chun SH, Kim YH, Lee S, Rotermund F. Spectroscopic Evidence of Ultrafast Topological Phase Transition by Light-Driven Strain. ACS NANO 2024; 18:30966-30977. [PMID: 39470647 DOI: 10.1021/acsnano.4c06253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enabling reversible control over the topological invariants, transitioning them from nontrivial to trivial states, has fundamental implications for quantum information processing and spintronics. It offers a promising avenue for establishing an efficient on/off switch mechanism for robust and dissipationless spin-currents. While mechanical strain has traditionally been advantageous for such manipulation of topological invariants, it often comes with the drawback of in-plane fractures, rendering it unsuitable for high-speed, time-dependent operations. This study employs ultrafast optical and THz spectroscopy to explore topological phase transitions induced by light-driven strain in Bi2Se3. Bi2Se3 requires substantial strain for Z2 switching. Our observations provide experimental evidence of ultrafast switching behavior, demonstrating a transition from a topological insulator with spin-momentum-locked surfaces to hybridized states and normal insulating phases under ambient conditions. Notably, applying light-induced strong out-of-plane strain effectively suppresses surface-bulk coupling, facilitating the differentiation of surface and bulk conductance even at room temperature─significantly surpassing the Debye temperature. We expect various time-dependent sequences of transient hybridization and manipulation of topological invariant through photoexcitation intensity adjustments. The sudden surface and bulk transport alterations near the transition point enable coherent conductance modulation at hypersound frequencies. Our findings on the potential of light-triggered ultrafast switching of topological invariants hold promise for high-speed topological switching and its related applications.
Collapse
Affiliation(s)
- Tae Gwan Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Seungil Baek
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Junho Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Eui-Cheol Shin
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Hong Ryeol Na
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Eon-Taek Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Seung-Hyun Chun
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Yong-Hyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| | - Sunghun Lee
- Division of Nanotechnology and Sensorium Institute, Convergence Research Institute, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Fabian Rotermund
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34341, Republic of Korea
| |
Collapse
|
3
|
Yue Z, Huang J, Wang R, Li JW, Rong H, Guo Y, Wu H, Zhang Y, Kono J, Zhou X, Hou Y, Wu R, Yi M. Topological Surface State Evolution in Bi 2Se 3 via Surface Etching. NANO LETTERS 2024; 24:12413-12419. [PMID: 39316641 DOI: 10.1021/acs.nanolett.4c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Topological insulators are materials that have an insulating bulk interior while maintaining gapless boundary states against back scattering. Bi2Se3 is a prototypical topological insulator with a Dirac-cone surface state around Γ. Here, we present a controlled methodology to gradually remove Se atoms from the surface Se-Bi-Se-Bi-Se quintuple layers, eventually forming bilayer-Bi on top of the quintuple bulk. Our method allows us to track the topological surface state and confirm its robustness throughout the surface modification. Importantly, we report a relocation of the topological Dirac cone in both real space and momentum space as the top surface layer transitions from quintuple Se-Bi-Se-Bi-Se to bilayer-Bi. Additionally, charge transfer among the different surface layers is identified. Our study provides a precise method to manipulate surface configurations, allowing for the fine-tuning of the topological surface states in Bi2Se3, which represents a significant advancement toward nanoengineering of topological states.
Collapse
Affiliation(s)
- Ziqin Yue
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Jianwei Huang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Ruohan Wang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Jia-Wan Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongtao Rong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yucheng Guo
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Han Wu
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Yichen Zhang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Junichiro Kono
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Xingjiang Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yusheng Hou
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Ming Yi
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Liu T, Adhikari Y, Wang H, Jiang Y, Hua Z, Liu H, Schlottmann P, Gao H, Weiss PS, Yan B, Zhao J, Xiong P. Chirality-Induced Magnet-Free Spin Generation in a Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406347. [PMID: 38926947 DOI: 10.1002/adma.202406347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Electrical generation and transduction of polarized electron spins in semiconductors (SCs) are of central interest in spintronics and quantum information science. While spin generation in SCs is frequently realized via electrical injection from a ferromagnet (FM), there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality-induced spin selectivity (CISS), the efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode through a self-assembled monolayer (SAM) of chiral molecules (α-helix l-polyalanine, AHPA-L), is demonstrated. The resulting spin polarization is detected as a Hanle effect in the n-GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality-induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional SC. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet-free SC spintronics.
Collapse
Affiliation(s)
- Tianhan Liu
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuwaraj Adhikari
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hailong Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yiyang Jiang
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Zhenqi Hua
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Haoyang Liu
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Pedro Schlottmann
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hanwei Gao
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute and Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peng Xiong
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
5
|
Johansson A. Theory of spin and orbital Edelstein effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:423002. [PMID: 38955339 DOI: 10.1088/1361-648x/ad5e2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
In systems with broken spatial inversion symmetry, such as surfaces, interfaces, or bulk systems lacking an inversion center, the application of a charge current can generate finite spin and orbital densities associated with a nonequilibrium magnetization, which is known as spin and orbital Edelstein effect (SEE and OEE), respectively. Early reports on this current-induced magnetization focus on two-dimensional Rashba systems, in which an in-plane nonequilibrium spin density is generated perpendicular to the applied charge current. However, until today, a large variety of materials have been theoretically predicted and experimentally demonstrated to exhibit a sizeable Edelstein effect, which comprises contributions from the spin as well as the orbital degrees of freedom, and whose associated magnetization may be out of plane, nonorthogonal, and even parallel to the applied charge current, depending on the system's particular symmetries. In this review, we give an overview on the most commonly used theoretical approaches for the discussion and prediction of the SEE and OEE. Further, we introduce a selection of the most intensely discussed materials exhibiting a finite Edelstein effect, and give a brief summary of common experimental techniques.
Collapse
Affiliation(s)
- Annika Johansson
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Ko W, Kang SH, Lapano J, Chang H, Teeter J, Jeon H, Lu Q, Chen AH, Brahlek M, Yoon M, Moore RG, Li AP. Interplay between Topological States and Rashba States as Manifested on Surface Steps at Room Temperature. ACS NANO 2024; 18:18405-18411. [PMID: 38970487 DOI: 10.1021/acsnano.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The unique spin texture of quantum states in topological materials underpins many proposed spintronic applications. However, realizations of such great potential are stymied by perturbations, such as temperature and local fields imposed by impurities and defects, that can render a promising quantum state uncontrollable. Here, we report room-temperature scanning tunneling microscopy/spectroscopy observation of interaction between Rashba states and topological surface states, which manifests local electronic structure along step edges controllable by the layer thickness of thin films. The first-principles theoretical calculation elucidates the robust Rashba states coexisting with topological surface states along the surface steps with characteristic spin textures in momentum space. Furthermore, the Rashba edge states can be switched off by reducing the thickness of a topological insulator Bi2Se3 to bolster their interaction with the hybridized topological surface states. The study unveils a manipulating mechanism of the spin textures at room temperature, reinforcing the necessity of thin film technology in controlling the quantum states.
Collapse
Affiliation(s)
- Wonhee Ko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Seoung-Hun Kang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jason Lapano
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hao Chang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Teeter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hoyeon Jeon
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Qiangsheng Lu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - An-Hsi Chen
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthew Brahlek
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert G Moore
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Tang J, Ding TS, Chen H, Gao A, Qian T, Huang Z, Sun Z, Han X, Strasser A, Li J, Geiwitz M, Shehabeldin M, Belosevich V, Wang Z, Wang Y, Watanabe K, Taniguchi T, Bell DC, Wang Z, Fu L, Zhang Y, Qian X, Burch KS, Shi Y, Ni N, Chang G, Xu SY, Ma Q. Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe 4. Nature 2024; 628:515-521. [PMID: 38509374 DOI: 10.1038/s41586-024-07211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.
Collapse
Affiliation(s)
- Jian Tang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | - Hongyu Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anyuan Gao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Tiema Qian
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Zumeng Huang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Zhe Sun
- Department of Physics, Boston College, Chestnut Hill, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Xin Han
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Alex Strasser
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Jiangxu Li
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | | | - Zihan Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Yiping Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - David C Bell
- Harvard John A. Paulson School of Engineering and Applied Sciences and The Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Xiaofeng Qian
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Youguo Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ni Ni
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Su-Yang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Wu S, Dai M, Li H, Li R, Han Z, Hu W, Zhao Z, Hou Y, Gou H, Zou R, Chen Y, Luo X, Zhao X. Atomically Unraveling Highly Crystalline Self-Intercalated Tantalum Sulfide with Correlated Stacking Registry-Dependent Magnetism. NANO LETTERS 2024; 24:378-385. [PMID: 38117785 DOI: 10.1021/acs.nanolett.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
In self-intercalated two-dimensional (ic-2D) materials, understanding the local chemical environment and the topology of the filling site remains elusive, and the subsequent correlation with the macroscopically manifested physical properties has rarely been investigated. Herein, highly crystalline gram-scale ic-2D Ta1.33S2 crystals were successfully grown by the high-pressure high-temperature method. Employing combined atomic-resolution scanning transmission electron microscopy annular dark field imaging and density functional theory calculations, we systematically unveiled the atomic structures of an atlas of stacking registries in a well-defined √3(a) × √3(a) Ta1.33S2 superlattice. Ferromagnetic order was observed in the AC' stacking registry, and it evolves into an antiferromagnetic state in AA/AB/AB' stacking registries; the AA' stacking registry shows ferrimagnetic ordering. Therefore, we present a novel approach for fabricating large-scale highly crystalline ic-2D crystals and shed light on a powerful means of modulating the magnetic order of ic-2D systems via stacking engineering, i.e., stackingtronics.
Collapse
Affiliation(s)
- Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Minzhi Dai
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Hang Li
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Runlai Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wenchao Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zijing Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Xin Luo
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Jin G, Kim SH, Han HJ. Synthesis and Future Electronic Applications of Topological Nanomaterials. Int J Mol Sci 2023; 25:400. [PMID: 38203574 PMCID: PMC10779379 DOI: 10.3390/ijms25010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Seo-Hyun Kim
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| | - Hyeuk-Jin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| |
Collapse
|
10
|
Jasulaneca L, Poplausks R, Prikulis J, Dzene E, Yager T, Erts D. Characterization of Mechanical Oscillations in Bismuth Selenide Nanowires at Low Temperatures. MICROMACHINES 2023; 14:1910. [PMID: 37893347 PMCID: PMC10609109 DOI: 10.3390/mi14101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
A single transistor preamplifier circuit was designed to facilitate electrical detection of mechanical oscillations in nanoelectromechanical systems (NEMSs) at low temperatures. The amplifier was integrated in the close vicinity of the nanowire inside the cryostat to minimize cabling load and interference. The function of the circuit was impedance conversion for current flow measurements in NEMSs with a high internal resistance. The circuit was tested to operate at temperatures as low as 5 K and demonstrated the ability to detect oscillations in double-clamped bismuth selenide nanowires upon excitation by a 0.1 MHz-10 MHz AC signal applied to a mechanically separated gate electrode. A strong resonance frequency dependency on temperature was observed. A relatively weak shift in the oscillation amplitude and resonance frequency was measured when a DC bias voltage was applied to the gate electrode at a constant temperature.
Collapse
Affiliation(s)
- Liga Jasulaneca
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia; (R.P.); (J.P.); (E.D.); (D.E.)
| | - Raimonds Poplausks
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia; (R.P.); (J.P.); (E.D.); (D.E.)
| | - Juris Prikulis
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia; (R.P.); (J.P.); (E.D.); (D.E.)
| | - Elza Dzene
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia; (R.P.); (J.P.); (E.D.); (D.E.)
| | - Tom Yager
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia;
| | - Donats Erts
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia; (R.P.); (J.P.); (E.D.); (D.E.)
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
11
|
Wu W, Yu J, Chen YH, Liu Y, Cheng S, Lai Y, Sun J, Zhou H, He K. Electric Control of Helicity-Dependent Photocurrent and Surface Polarity Detection on Two-Dimensional Bi 2O 2Se Nanosheets. ACS NANO 2023; 17:16633-16643. [PMID: 37458508 DOI: 10.1021/acsnano.3c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bismuth oxyselenide (Bi2O2Se) is a two-dimensional (2D) layered semiconductor material with high electron Hall mobility and excellent environmental stability as well as strong spin-orbit interaction (SOI), which has attracted intense attention for application in spintronic and spin optoelectronic devices. However, a comprehensive study of spin photocurrent and its microscopic origin in Bi2O2Se is still missing. Here, the helicity-dependent photocurrent (HDPC) was investigated in Bi2O2Se nanosheets. By analyzing the dependence of HDPC on the angle of incidence, we find that the HDPC originates from surface states with Cs symmetry in Bi2O2Se, which can be attributed to the circular photogalvanic effect (CPGE) and circular photon drag effect (CPDE). It is revealed that the HDPC current almost changes linearly with the source-drain voltage. Furthermore, we demonstrate effective tuning of HDPC in Bi2O2Se by ionic liquid gating, indicating that the spin splitting of the surface electronic structure is effectively tuned. By analyzing the gate voltage dependence of HDPC, we can unambiguously identify the surface polarity and the surface electronic structure of Bi2O2Se. The large HDPC in Bi2O2Se nanosheets and its efficient electrical tuning demonstrate that 2D Bi2O2Se nanosheets may provide a good platform for opto-spintronics devices.
Collapse
Affiliation(s)
- Wenyi Wu
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| | - Jinling Yu
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yong-Hai Chen
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Liu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuying Cheng
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yunfeng Lai
- Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Sun
- National and Local United Engineering Laboratory of Flat Panel Display Technology, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Hai Zhou
- International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, Guangdong, P. R. China
| | - Ke He
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Tao Z, Shen B, Zhao W, Hu NC, Li T, Jiang S, Li L, Watanabe K, Taniguchi T, MacDonald AH, Shan J, Mak KF. Giant spin Hall effect in AB-stacked MoTe 2/WSe 2 bilayers. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01492-2. [PMID: 37591935 DOI: 10.1038/s41565-023-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
The spin Hall effect (SHE), in which an electrical current generates a transverse spin current, plays an important role in spintronics for the generation and manipulation of spin-polarized electrons. The phenomenon originates from spin-orbit coupling. In general, stronger spin-orbit coupling favours larger SHEs but shorter spin relaxation times and diffusion lengths. However, correlated magnetic materials often do not support large SHEs. Achieving large SHEs, long-range spin transport and magnetism simultaneously in a single material is attractive for spintronics applications but has remained a challenge. Here we demonstrate a giant intrinsic SHE coexisting with ferromagnetism in AB-stacked MoTe2/WSe2 moiré bilayers by direct magneto-optical imaging. Under moderate electrical currents with density <1 A m-1, we observe spin accumulation on transverse sample edges that nearly saturates the spin density. We also demonstrate long-range spin Hall transport and efficient non-local spin accumulation that is limited only by the device size (about 10 µm). The gate dependence shows that the giant SHE occurs only near the interaction-driven Chern insulating state. At low temperatures, it emerges after the quantum anomalous Hall breakdown. Our results demonstrate moiré engineering of Berry curvature and electronic correlation for potential spintronics applications.
Collapse
Affiliation(s)
- Zui Tao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Bowen Shen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Wenjin Zhao
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Nai Chao Hu
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Tingxin Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Shengwei Jiang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lizhong Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Jin KH, Jiang W, Sethi G, Liu F. Topological quantum devices: a review. NANOSCALE 2023; 15:12787-12817. [PMID: 37490310 DOI: 10.1039/d3nr01288c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The introduction of the concept of topology into condensed matter physics has greatly deepened our fundamental understanding of transport properties of electrons as well as all other forms of quasi particles in solid materials. It has also fostered a paradigm shift from conventional electronic/optoelectronic devices to novel quantum devices based on topology-enabled quantum device functionalities that transfer energy and information with unprecedented precision, robustness, and efficiency. In this article, the recent research progress in topological quantum devices is reviewed. We first outline the topological spintronic devices underlined by the spin-momentum locking property of topology. We then highlight the topological electronic devices based on quantized electron and dissipationless spin conductivity protected by topology. Finally, we discuss quantum optoelectronic devices with topology-redefined photoexcitation and emission. The field of topological quantum devices is only in its infancy, we envision many significant advances in the near future.
Collapse
Affiliation(s)
- Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Wei Jiang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Gurjyot Sethi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
14
|
Hou B, Wang D, Barker BA, Qiu DY. Exchange-Driven Intermixing of Bulk and Topological Surface States by Chiral Excitons in Bi_{2}Se_{3}. PHYSICAL REVIEW LETTERS 2023; 130:216402. [PMID: 37295093 DOI: 10.1103/physrevlett.130.216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
Topological surface states (TSS) in the prototypical topological insulator (TI) Bi_{2}Se_{3} are frequently characterized using optical probes, but electron-hole interactions and their effect on surface localization and optical response of the TSS remain unexplored. Here, we use ab initio calculations to understand excitonic effects in the bulk and surface of Bi_{2}Se_{3}. We identify multiple series of chiral excitons that exhibit both bulk and TSS character, due to exchange-driven mixing. Our results address fundamental questions about the degree to which electron-hole interactions can relax the topological protection of surface states and dipole selection rules for circularly polarized light in TIs by elucidating the complex intermixture of bulk and surface states excited in optical measurements and their coupling to light.
Collapse
Affiliation(s)
- Bowen Hou
- Department of Mechanical Engineering and Material Sciences, Yale University, New Haven, Connecticut 06511, USA
| | - Dan Wang
- Department of Mechanical Engineering and Material Sciences, Yale University, New Haven, Connecticut 06511, USA
| | - Bradford A Barker
- Department of Physics, University of California, Merced, California 95343, USA
| | - Diana Y Qiu
- Department of Mechanical Engineering and Material Sciences, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
15
|
Cullen JH, Atencia RB, Culcer D. Spin transfer torques due to the bulk states of topological insulators. NANOSCALE 2023; 15:8437-8446. [PMID: 37096561 DOI: 10.1039/d2nr05176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spin torques at topological insulator (TI)/ferromagnet interfaces have received considerable attention in recent years with a view towards achieving full electrical manipulation of magnetic degrees of freedom. The most important question in this field concerns the relative contributions of bulk and surface states to the spin torque, a matter that remains incompletely understood. Whereas the surface state contribution has been extensively studied, the contribution due to the bulk states has received comparatively little attention. Here we study spin torques due to TI bulk states and show that: (i) there is no spin-orbit torque due to the bulk states on a homogeneous magnetisation, in contrast to the surface states, which give rise to a spin-orbit torque via the well-known Edelstein effect. (ii) The bulk states give rise to a spin transfer torque (STT) due to the inhomogeneity of the magnetisation in the vicinity of the interface. This spin transfer torque, which has not been considered in TIs in the past, is somewhat unconventional since it arises from the interplay of the bulk TI spin-orbit coupling and the gradient of the monotonically decaying magnetisation inside the TI. Whereas we consider an idealised model in which the magnetisation gradient is small and the spin transfer torque is correspondingly small, we argue that in real samples the spin transfer torque should be sizable and may provide the dominant contribution due to the bulk states. We show that an experimental smoking gun for identifying the bulk states is the fact that the field-like component of the spin transfer torque generates a spin density with the same size but opposite sign for in-plane and out-of-plane magnetisations. This distinguishes them from the surface states, which are expected to give a spin density of a similar size and the same sign for both an in-plane and out-of-plane magnetisations.
Collapse
Affiliation(s)
- James H Cullen
- School of Physics, The University of New South Wales, Sydney 2052, Australia.
| | - Rhonald Burgos Atencia
- School of Physics, The University of New South Wales, Sydney 2052, Australia.
- Facultad de Ingenierías, Departamento de Ciencias Básicas, Universidad del Sinú, Cra.1w No. 38-153, 4536534, Montería, Córdoba 230002, Colombia
| | - Dimitrie Culcer
- School of Physics, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
16
|
Sun W, Chen Y, Zhuang W, Chen Z, Song A, Liu R, Wang X. Sizable spin-to-charge conversion in PLD-grown amorphous (Mo, W)Te 2-xfilms. NANOTECHNOLOGY 2023; 34:135001. [PMID: 36584386 DOI: 10.1088/1361-6528/acaf34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
We report on the spin-to-charge conversion (SCC) in Mo0.25W0.75Te2-x(MWT)/Y3Fe5O12(YIG) heterostructures at room temperature. The centimeter-scale amorphous MWT films are deposited on liquid-phase-epitaxial YIG by pulsed laser deposition technique. The significant SCC voltage is measured in the MWT layer with a sizable spin Hall angle of ∼0.021 by spin pumping experiments. The control experiments by inserting MgO or Ag layer between MWT and YIG show that the SCC is mainly attributed to the inverse spin Hall effect rather than the thermal or interfacial Rashba effect. Our work provides a novel spin-source material for energy-efficient topological spintronic devices.
Collapse
Affiliation(s)
- Wenxuan Sun
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yequan Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wenzhuo Zhuang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhongqiang Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Anke Song
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
17
|
Lu H, Liu W, Wang H, Liu X, Zhang Y, Yang D, Pi X. Molecular beam epitaxy growth and scanning tunneling microscopy study of 2D layered materials on epitaxial graphene/silicon carbide. NANOTECHNOLOGY 2023; 34:132001. [PMID: 36563353 DOI: 10.1088/1361-6528/acae28] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Since the advent of atomically flat graphene, two-dimensional (2D) layered materials have gained extensive interest due to their unique properties. The 2D layered materials prepared on epitaxial graphene/silicon carbide (EG/SiC) surface by molecular beam epitaxy (MBE) have high quality, which can be directly applied without further transfer to other substrates. Scanning tunneling microscopy and spectroscopy (STM/STS) with high spatial resolution and high-energy resolution are often used to study the morphologies and electronic structures of 2D layered materials. In this review, recent progress in the preparation of various 2D layered materials that are either monoelemental or transition metal dichalcogenides on EG/SiC surface by MBE and their STM/STS investigations are introduced.
Collapse
Affiliation(s)
- Hui Lu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Wenji Liu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Haolin Wang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Yiqiang Zhang
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| |
Collapse
|
18
|
Huang SM, Wang PC, Hung KY, Cheng FE, Li CY, Chou M. On the Paramagnetic-Like Susceptibility Peaks at Zero Magnetic Field in
WSe
2
−
x
Te
x
Single Crystals. NANOSCALE RESEARCH LETTERS 2022; 17:107. [PMID: 36355312 PMCID: PMC9649580 DOI: 10.1186/s11671-022-03743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A weakly temperature-dependent paramagnetic-like susceptibility peak at zero magnetic field is observed inWSe 2 − x Te x with only marginal amount of ferromagnetic impurities. The ferromagnetic hysteresis loop and the magnetic moment splitting between zero-field-cooled and field-cooled processes indicate ferromagnetism in the samples. The paramagnetic-like susceptibility peak height is proportional to the remanent magnetic moment of hysteresis loops. High-resolution transmission electron microscope image supports that the observed ferromagnetic feature originates from lattice distortion. These results imply that the weakly temperature-dependent paramagnetic-like susceptibility peak originates from weak lattice distortion and/or superparamagnetism.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
- Center of Crystal Research, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Pin-Cing Wang
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Kuo-Yi Hung
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Fu-En Cheng
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Chang-Yu Li
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Mitch Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
- Center of Crystal Research, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| |
Collapse
|
19
|
Fledgling Quantum Spin Hall Effect in Pseudo Gap Phase of Bi2212. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We studied the emergence of the quantum spin Hall (QSH) states for the pseudo-gap (PG) phase of Bi2212 bilayer system, assumed to be D-density wave (DDW) ordered, starting with a strong Rashba spin-orbit coupling (SOC) armed, and the time reversal symmetry (TRS) complaint Bloch Hamiltonian. The presence of strong SOC gives rise to non-trivial, spin-momentum locked spin texture tunable by electric field. The emergence of quantum anomalous Hall effect with TRS broken Chiral DDW Hamiltonian of Das Sarma et al. is found to be possible.
Collapse
|
20
|
Li CH, Moon J, van 't Erve OMJ, Wickramaratne D, Cobas ED, Johannes MD, Jonker BT. Spin-Sensitive Epitaxial In 2Se 3 Tunnel Barrier in In 2Se 3/Bi 2Se 3 Topological van der Waals Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34093-34100. [PMID: 35820066 DOI: 10.1021/acsami.2c08053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Current-generated spin arising from spin-momentum locking in topological insulator (TI) surface states has been shown to switch the magnetization of an adjacent ferromagnet (FM) via spin-orbit torque (SOT) with a much higher efficiency than heavy metals. However, in such FM/TI heterostructures, most of the current is shunted through the FM metal due to its lower resistance, and recent calculations have also shown that topological surface states can be significantly impacted when interfaced with an FM metal such as Ni and Co. Hence, placing an insulating layer between the TI and FM will not only prevent current shunting, therefore minimizing overall power consumption, but may also help preserve the topological surface states at the interface. Here, we report the van der Waals epitaxial growth of β-phase In2Se3 on Bi2Se3 by molecular beam epitaxy and demonstrate its spin sensitivity by the electrical detection of current-generated spin in Bi2Se3 surface states using a Fe/In2Se3 detector contact. Our density functional calculations further confirm that the linear dispersion and spin texture of the Bi2Se3 surface states are indeed preserved at the In2Se3/Bi2Se3 interface. This demonstration of an epitaxial crystalline spin-sensitive barrier that can be grown directly on Bi2Se3, and verification that it preserves the topological surface state, is electrically insulating and spin-sensitive, is an important step toward minimizing overall power consumption in SOT switching in TI/FM heterostructures in fully epitaxial topological spintronic devices.
Collapse
Affiliation(s)
- Connie H Li
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Jisoo Moon
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - Olaf M J van 't Erve
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Darshana Wickramaratne
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Enrique D Cobas
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Michelle D Johannes
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| | - Berend T Jonker
- Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
21
|
Bobkova IV, Bobkov AM, Silaev MA. Magnetoelectric effects in Josephson junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:353001. [PMID: 35709718 DOI: 10.1088/1361-648x/ac7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The review is devoted to the fundamental aspects and characteristic features of the magnetoelectric effects, reported in the literature on Josephson junctions (JJs). The main focus of the review is on the manifestations of the direct and inverse magnetoelectric effects in various types of Josephson systems. They provide a coupling of the magnetization in superconductor/ferromagnet/superconductor JJs to the Josephson current. The direct magnetoelectric effect is a driving force of spin torques acting on the ferromagnet inside the JJ. Therefore it is of key importance for the electrical control of the magnetization. The inverse magnetoelectric effect accounts for the back action of the magnetization dynamics on the Josephson subsystem, in particular, making the JJ to be in the resistive state in the presence of the magnetization dynamics of any origin. The perspectives of the coupling of the magnetization in JJs with ferromagnetic interlayers to the Josephson current via the magnetoelectric effects are discussed.
Collapse
Affiliation(s)
- I V Bobkova
- Institute of Solid State Physics, Chernogolovka, Moscow Region 142432, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - A M Bobkov
- Institute of Solid State Physics, Chernogolovka, Moscow Region 142432, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | | |
Collapse
|
22
|
Huang SM, Wang PC, Chen PC. The Lattice Distortion-Induced Ferromagnetism in the Chemical-Bonded MoSe 2/WSe 2 at Room Temperature. NANOSCALE RESEARCH LETTERS 2022; 17:55. [PMID: 35622164 PMCID: PMC9142725 DOI: 10.1186/s11671-022-03692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Ferromagnetism to non-ferromagnetism transition is detected in a chemically bonded MoSe[Formula: see text]/WSe[Formula: see text] powder with different thermal annealing temperatures. All samples exhibit ferromagnetism and Raman redshift, except for the 1100 °C thermally annealed sample in which the MoSe[Formula: see text] and WSe[Formula: see text] are thermally dissociated and geometrically separated. The element analysis reveals no significant element ratio difference and detectable magnetic elements in all samples. These results support that, in contrast to the widely reported structure defect or transition element dopant, the observed ferromagnetism originates from the structure distortion due to the chemical bonding at the interface between MoSe[Formula: see text] and WSe[Formula: see text].
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan.
| | - Pin-Cing Wang
- Department of Physics, National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan
| | - Pin-Cyuan Chen
- Department of Physics, National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Giant tunable spin Hall angle in sputtered Bi 2Se 3 controlled by an electric field. Nat Commun 2022; 13:1650. [PMID: 35347125 PMCID: PMC8960771 DOI: 10.1038/s41467-022-29281-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Finding an effective way to greatly tune spin Hall angle in a low power manner is of fundamental importance for tunable and energy-efficient spintronic devices. Recently, topological insulator of Bi2Se3, having a large intrinsic spin Hall angle, show great capability to generate strong current-induced spin-orbit torques. Here we demonstrate that the spin Hall angle in Bi2Se3 can be effectively tuned asymmetrically and even enhanced about 600% reversibly by applying a bipolar electric field across the piezoelectric substrate. We reveal that the enhancement of spin Hall angle originates from both the charge doping and piezoelectric strain effet on the spin Berry curvature near Fermi level in Bi2Se3. Our findings provide a platform for achieving low power consumption and tunable spintronic devices. Controlling the spin Hall angle is significant to tunable and energy-efficient spintronic devices. Here, the authors demonstrate that the spin Hall angle in Bi2Se3 can be tuned and even enhanced about 600% reversibly by the electric field.
Collapse
|
24
|
Roy S, Manna S, Mitra C, Pal B. Photothermal Control of Helicity-Dependent Current in Epitaxial Sb 2Te 2Se Topological Insulator Thin-Films at Ambient Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9909-9916. [PMID: 35156377 DOI: 10.1021/acsami.1c24461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical control of helicity-dependent photocurrent in topological insulator (TI) Sb2Te2Se has been studied at room temperature on epitaxial thin-films grown by pulsed laser deposition (PLD). Comparison with a theoretical model, which fits the data very well, reveals different contributions to the measured photocurrent. Study of the dependence of photocurrent on the angle of incidence (wave-vector) of the excitation light with respect to the sample normal helps to identify the origin of different components of the photocurrent. Enhancement and inversion of the photocurrent in the presence of the photothermal gradient for light incident on two opposite edges of the sample occur due to selective spin-state excitation with two opposite circularly polarized lights in the presence of the unique spin-momentum locked surface states. These observations render the PLD-grown epitaxial TI thin-films promising for optoelectronic devices such as sensors, switches, and actuators whose response can be controlled by polarization as well as the angle of incidence of light under ambient conditions. The polarization response can also be tuned by the photothermal effect by suitably positioning the incident light beam on the device.
Collapse
Affiliation(s)
- Samrat Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Manna
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Chiranjib Mitra
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Bipul Pal
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
25
|
Ko W, Gai Z, Puretzky AA, Liang L, Berlijn T, Hachtel JA, Xiao K, Ganesh P, Yoon M, Li AP. Understanding Heterogeneities in Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2106909. [PMID: 35170112 DOI: 10.1002/adma.202106909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Quantum materials are usually heterogeneous, with structural defects, impurities, surfaces, edges, interfaces, and disorder. These heterogeneities are sometimes viewed as liabilities within conventional systems; however, their electronic and magnetic structures often define and affect the quantum phenomena such as coherence, interaction, entanglement, and topological effects in the host system. Therefore, a critical need is to understand the roles of heterogeneities in order to endow materials with new quantum functions for energy and quantum information science applications. In this article, several representative examples are reviewed on the recent progress in connecting the heterogeneities to the quantum behaviors of real materials. Specifically, three intertwined topic areas are assessed: i) Reveal the structural, electronic, magnetic, vibrational, and optical degrees of freedom of heterogeneities. ii) Understand the effect of heterogeneities on the behaviors of quantum states in host material systems. iii) Control heterogeneities for new quantum functions. This progress is achieved by establishing the atomistic-level structure-property relationships associated with heterogeneities in quantum materials. The understanding of the interactions between electronic, magnetic, photonic, and vibrational states of heterogeneities enables the design of new quantum materials, including topological matter and quantum light emitters based on heterogenous 2D materials.
Collapse
Affiliation(s)
- Wonhee Ko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Zheng Gai
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Tom Berlijn
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mina Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
26
|
Wang AQ, Xiang PZ, Zhao TY, Liao ZM. Topological nature of higher-order hinge states revealed by spin transport. Sci Bull (Beijing) 2022; 67:788-793. [DOI: 10.1016/j.scib.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 12/01/2022]
|
27
|
Huang SM, Wang PC, Chen PC, Hong JL, Cheng CM, Jian HL, Yan YJ, Yu SH, Chou MMC. The Singularity Paramagnetic Peak of Bi 0.3Sb 1.7Te 3 with p-type Surface State. NANOSCALE RESEARCH LETTERS 2022; 17:12. [PMID: 35032238 PMCID: PMC8761187 DOI: 10.1186/s11671-021-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The magnetization measurement was performed in the Bi0.3Sb1.7Te3 single crystal. The magnetic susceptibility revealed a paramagnetic peak independent of the experimental temperature variation. It is speculated to be originated from the free-aligned spin texture at the Dirac point. The ARPES reveals that the Fermi level lies below the Dirac point. The Fermi wavevector extracted from the de Haas-van Alphen oscillation is consistent with the energy dispersion in the ARPES. Our experimental results support that the observed paramagnetic peak in the susceptibility curve does not originate from the free-aligned spin texture at the Dirac point.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, TCECM, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Pin-Cing Wang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Pin-Cyuan Chen
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Jai-Long Hong
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Cheng-Maw Cheng
- National Synchrotron Radiation Research Center, Hsin-Chiu, 80076 Taiwan
| | - Hao-Lun Jian
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - You-Jhih Yan
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Shih-Hsun Yu
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, TCECM, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
- Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424 Taiwan
| |
Collapse
|
28
|
He QL, Hughes TL, Armitage NP, Tokura Y, Wang KL. Topological spintronics and magnetoelectronics. NATURE MATERIALS 2022; 21:15-23. [PMID: 34949869 DOI: 10.1038/s41563-021-01138-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/21/2021] [Indexed: 05/08/2023]
Abstract
Topological electronic materials, such as topological insulators, are distinct from trivial materials in the topology of their electronic band structures that lead to robust, unconventional topological states, which could bring revolutionary developments in electronics. This Perspective summarizes developments of topological insulators in various electronic applications including spintronics and magnetoelectronics. We group and analyse several important phenomena in spintronics using topological insulators, including spin-orbit torque, the magnetic proximity effect, interplay between antiferromagnetism and topology, and the formation of topological spin textures. We also outline recent developments in magnetoelectronics such as the axion insulator and the topological magnetoelectric effect observed using different topological insulators.
Collapse
Affiliation(s)
- Qing Lin He
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| | - Taylor L Hughes
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - N Peter Armitage
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD, USA
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Tokyo College, University of Tokyo, Tokyo, Japan
| | - Kang L Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
- Center of Quantum Sciences and Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Huang SM, Wang PC, Jian HL, Chou MMC. The Magnetic Susceptibility Bifurcation in the Ni-Doped Sb 2Te 3 Topological Insulator with Antiferromagnetic Order Accompanied by Weak Ferromagnetic Alignment. NANOSCALE RESEARCH LETTERS 2021; 16:180. [PMID: 34928440 PMCID: PMC8688649 DOI: 10.1186/s11671-021-03637-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The magnetic susceptibility reveals a discontinuity at Néel temperature and a hysteresis loop with low coercive field was observed below Néel temperature. The magnetic susceptibility of zero field cool and field cool processes coincide at a temperature above the discontinuity, and they split at temperature blow the discontinuity. The magnetic susceptibility splitting is larger at lower external magnetic fields. No more magnetic susceptibility splitting was observed at a magnetic field above 7000 Oe which is consistent with the magnetic anisotropy energy. Our study supports that these magnetic susceptibility characteristics originate from an antiferromagnetic order accompanied by weak ferromagnetism.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
- Center of Crystal Research, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Pin-Cing Wang
- Department of Physics, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Hao-Lun Jian
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| | - Mitch M. C. Chou
- Center of Crystal Research, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, TCECM, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan
| |
Collapse
|
30
|
Bhattacharyya S, Akhgar G, Gebert M, Karel J, Edmonds MT, Fuhrer MS. Recent Progress in Proximity Coupling of Magnetism to Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007795. [PMID: 34185344 DOI: 10.1002/adma.202007795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 05/08/2023]
Abstract
Inducing long-range magnetic order in 3D topological insulators can gap the Dirac-like metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. This review focuses on one strategy: inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. The unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators are discussed. Some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, are also highlighted, and the authors conclude with an outlook on remaining challenges and opportunities in the field.
Collapse
Affiliation(s)
- Semonti Bhattacharyya
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Golrokh Akhgar
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Matthew Gebert
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Julie Karel
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark T Edmonds
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Michael S Fuhrer
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| |
Collapse
|
31
|
Sonner MM, Khosravi F, Janker L, Rudolph D, Koblmüller G, Jacob Z, Krenner HJ. Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave. SCIENCE ADVANCES 2021; 7:eabf7414. [PMID: 34321198 PMCID: PMC8318372 DOI: 10.1126/sciadv.abf7414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/11/2021] [Indexed: 06/01/2023]
Abstract
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
Collapse
Affiliation(s)
- Maximilian M Sonner
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Farhad Khosravi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Lisa Janker
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Daniel Rudolph
- Walter Schottky Institut and Physik Department E24, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Gregor Koblmüller
- Walter Schottky Institut and Physik Department E24, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Zubin Jacob
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA.
| | - Hubert J Krenner
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
- Lehrstuhl für Experimentalphysik 1, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| |
Collapse
|
32
|
Park H, Jeong K, Maeng I, Sim KI, Pathak S, Kim J, Hong SB, Jung TS, Kang C, Kim JH, Hong J, Cho MH. Enhanced Spin-to-Charge Conversion Efficiency in Ultrathin Bi 2Se 3 Observed by Spintronic Terahertz Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23153-23160. [PMID: 33945256 DOI: 10.1021/acsami.1c03168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their remarkable spin-charge conversion (SCC) efficiency, topological insulators (TIs) are the most attractive candidates for spin-orbit torque generators. The simple method of enhancing SCC efficiency is to reduce the thickness of TI films to minimize the trivial bulk contribution. However, when the thickness reaches the ultrathin regime, the SCC efficiency decreases owing to intersurface hybridization. To overcome these contrary effects, we induced dehybridization of the ultrathin TI film by breaking the inversion symmetry between surfaces. For the TI film grown on an oxygen-deficient transition-metal oxide, the unbonded transition-metal d-orbitals affected only the bottom surface, resulting in asymmetric surface band structures. Spintronic terahertz emission spectroscopy, an emerging tool for investigating the SCC characteristics, revealed that the resulting SCC efficiency in symmetry-broken ultrathin Bi2Se3 was enhanced by up to ∼2.4 times.
Collapse
Affiliation(s)
- Hanbum Park
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwangsik Jeong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - InHee Maeng
- YUHS-KRIBB, Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung Ik Sim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Sachin Pathak
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Seok-Bo Hong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Taek Sun Jung
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Chul Kang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Hoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongill Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
33
|
Lv L, Yu J, Hu M, Yin S, Zhuge F, Ma Y, Zhai T. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. NANOSCALE 2021; 13:6713-6751. [PMID: 33885475 DOI: 10.1039/d1nr00318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their superior carrier mobility, strong light-matter interactions, and flexibility at the atomically thin thickness, two-dimensional (2D) materials are attracting wide interest for application in electronic and optoelectronic devices, including rectifying diodes, transistors, memory, photodetectors, and light-emitting diodes. At the heart of these devices, Schottky, PN, and tunneling junctions are playing an essential role in defining device function. Intriguingly, the ultrathin thickness and unique van der Waals (vdW) interlayer coupling in 2D materials has rendered enormous opportunities for the design and tailoring of various 2D junctions, e.g. using Lego-like hetero-stacking, surface decoration, and field-effect modulation methods. Such flexibility has led to marvelous breakthroughs during the exploration of 2D electronics and optoelectronic devices. To advance further, it is imperative to provide an overview of existing strategies for the engineering of various 2D junctions for their integration in the future. Thus, in this review, we provide a comprehensive survey of previous efforts toward 2D Schottky, PN, and tunneling junctions, and the functional devices built from them. Though these junctions exhibit similar configurations, distinct strategies have been developed for their optimal figures of merit based on their working principles and functional purposes.
Collapse
Affiliation(s)
- Liang Lv
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Stephen GM, Hanbicki AT, Schumann T, Robinson JT, Goyal M, Stemmer S, Friedman AL. Room-Temperature Spin Transport in Cd 3As 2. ACS NANO 2021; 15:5459-5466. [PMID: 33705102 DOI: 10.1021/acsnano.1c00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the need for ever greater transistor density increases, the commensurate decrease in device size approaches the atomic limit, leading to increased energy loss and leakage currents, reducing energy efficiencies. Alternative state variables, such as electronic spin rather than electronic charge, have the potential to enable more energy-efficient and higher performance devices. These spintronic devices require materials capable of efficiently harnessing the electron spin. Here we show robust spin transport in Cd3As2 films up to room temperature. We demonstrate a nonlocal spin valve switch from this material, as well as inverse spin Hall effect measurements yielding spin Hall angles as high as θSH = 1.5 and spin diffusion lengths of 10-40 μm. Long spin-coherence lengths with efficient charge-to-spin conversion rates and coherent spin transport up to room temperature, as we show here in Cd3As2, are enabling steps toward realizing actual spintronic devices.
Collapse
Affiliation(s)
- Gregory M Stephen
- Laboratory for Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740, United States
| | - Aubrey T Hanbicki
- Laboratory for Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740, United States
| | - Timo Schumann
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Jeremy T Robinson
- Electronics Science and Technology Division, Naval Research Laboratory, 4555 Overlook Avenue, S.W., Washington, D.C. 20375, United States
| | - Manik Goyal
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Susanne Stemmer
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Adam L Friedman
- Laboratory for Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740, United States
| |
Collapse
|
35
|
Wang AQ, Xiang PZ, Ye XG, Zheng WZ, Yu D, Liao ZM. Surface Engineering of Antisymmetric Linear Magnetoresistance and Spin-Polarized Surface State Transport in Dirac Semimetals. NANO LETTERS 2021; 21:2026-2032. [PMID: 33606545 DOI: 10.1021/acs.nanolett.0c04592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Topological materials that possess spin-momentum locked surface states provide an ideal platform to manipulate the quantum spin states by electrical means. However, an antisymmetric magnetoresistance (MR) superimposed on the spin-polarized transport signals is usually observed in the spin potentiometric measurements of topological materials, rendering more power loss and reduced signal-to-noise ratio. Here we reveal the mechanism of surface-bulk interaction for the observed antisymmetric linear MR in the spin transport of Dirac semimetal Cd3As2 nanoplates. The antisymmetric linear MR can be eliminated through sample surface modifications. As a consequence, clean signals of charge current induced spin-polarized transport are observed, robust up to room temperature. The purification of spin signals can be attributed to the isolation of surface and bulk transport channels via forming a charge depletion layer with surface modifications. This surface engineering strategy should be valuable for high-performance spintronic devices on topological materials.
Collapse
Affiliation(s)
- An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng-Zhan Xiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xing-Guo Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Wen-Zhuang Zheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Dapeng Yu
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Zhao S, Li X, Dong B, Wang H, Wang H, Zhang Y, Han Z, Zhang H. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:026401. [PMID: 33440363 DOI: 10.1088/1361-6633/abdb98] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the emerging conceptual valley-related devices have attracted much attention due to the progress on generating, controlling, and detecting the valley degree of freedom in the transition metal dichalcogenide (TMD) monolayers. In general, it is known that achieving valley degree of freedom with long valley lifetime is crucial in the implementation of valleytronic devices. Here, we provide a brief introduction of the basic understandings of valley degree of freedom. We as well review the recent experimental advancement in the modulation of valley degree of freedom. The strategies include optical/magnetic/electric field tuning, moiré patterns, plasmonic metasurface, defects and strain engineering. In addition, we summarize the corresponding mechanisms, which can help to obtain large degree of polarization and long valley lifetimes in monolayer TMDs. Based on these methods, two-dimensional valley-optoelectronic systems based on TMD heterostructures can be constructed, providing opportunities for such as the new paradigm in data processing and transmission. Challenges and perspectives on the development of valleytronics are highlighted as well.
Collapse
Affiliation(s)
- Siwen Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiaoxi Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People's Republic of China
- School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Baojuan Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Huide Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hanwen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People's Republic of China
- School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
37
|
Chen JR, Tse PL, Krivorotov IN, Lu JG. Spin-momentum locking induced non-local voltage in topological insulator nanowire. NANOSCALE 2020; 12:22958-22962. [PMID: 33206099 DOI: 10.1039/d0nr06590k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The momentum and spin of charge carriers in the topological insulators are constrained to be perpendicular to each other due to the strong spin-orbit coupling. We have investigated this unique spin-momentum locking property in Sb2Te3 topological insulator nanowires by injecting spin-polarized electrons through magnetic tunnel junction electrodes. Non-local voltage measurements exhibit an asymmetry with respect to the magnetic field applied perpendicular to the nanowire channel, which is remarkably different from that of a non-local measurement in a channel that lacks spin-momentum locking. In stark contrast to conventional non-local spin valves, simultaneous reversal of magnetic moments of all magnetic contacts to the Sb2Te3 nanowire alters the non-local voltage. This unusual asymmetry is a clear signature of the spin-momentum locking in the Sb2Te3 nanowire surface states.
Collapse
Affiliation(s)
- Jen-Ru Chen
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
38
|
Singh BB, Jena SK, Samanta M, Biswas K, Bedanta S. High Spin to Charge Conversion Efficiency in Electron Beam-Evaporated Topological Insulator Bi 2Se 3. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53409-53415. [PMID: 33198456 DOI: 10.1021/acsami.0c13540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bi2Se3 is a well-established topological insulator (TI) having spin momentum locked Dirac surface states at room temperature and predicted to exhibit high spin to charge conversion efficiency (SCCE) for spintronics applications. The SCCE in TIs is characterized by an inverse Edelstein effect length (λIREE). We report an λIREE of ∼0.36 nm, which is the highest ever observed in Bi2Se3. Here, we performed spin pumping and inverse spin Hall effect (ISHE) in an electron beam-evaporated Bi2Se3/CoFeB bilayer. The Bi2Se3 thickness dependence of λIREE, perpendicular surface anisotropy (KS), spin mixing conductance, and spin Hall angle confirmed that spin to charge conversion is due to spin momentum locked Dirac surface states. We propose that the role of surface states in SCCE can be understood by the evaluation of KS. The SCCE is found to be high when the value of KS is small.
Collapse
Affiliation(s)
- Braj Bhusan Singh
- Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Jatni, Khurda 752050, India
| | - Sukanta Kumar Jena
- Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Jatni, Khurda 752050, India
| | - Manisha Samanta
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Kanishka Biswas
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Subhankar Bedanta
- Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Jatni, Khurda 752050, India
| |
Collapse
|
39
|
Khokhriakov D, Hoque AM, Karpiak B, Dash SP. Gate-tunable spin-galvanic effect in graphene-topological insulator van der Waals heterostructures at room temperature. Nat Commun 2020; 11:3657. [PMID: 32694506 PMCID: PMC7374568 DOI: 10.1038/s41467-020-17481-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Unique electronic spin textures in topological states of matter are promising for emerging spin-orbit driven memory and logic technologies. However, there are several challenges related to the enhancement of their performance, electrical gate-tunability, interference from trivial bulk states, and heterostructure interfaces. We address these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator (TI) in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer proximity-induced spin-charge conversion phenomena. In these heterostructures, we experimentally demonstrate a gate-tunable spin-galvanic effect (SGE) at room temperature, allowing for efficient conversion of a non-equilibrium spin polarization into a transverse charge current. Systematic measurements of SGE in various device geometries via a spin switch, spin precession, and magnetization rotation experiments establish the robustness of spin-charge conversion in the Gr-TI heterostructures. Importantly, using a gate voltage, we reveal a strong electric field tunability of both amplitude and sign of the spin-galvanic signal. These findings provide an efficient route for realizing all-electrical and gate-tunable spin-orbit technology using TIs and graphene in heterostructures, which can enhance the performance and reduce power dissipation in spintronic circuits. The spin-galvanic effect allows for the conversion of non-equilibrium spin density into a charge current. Here, by combining graphene in a van de Waals heterostructure with a topological insulator, the authors demonstrate a large, gate-tunable spin-galvanic effect.
Collapse
Affiliation(s)
- Dmitrii Khokhriakov
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Anamul Md Hoque
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Bogdan Karpiak
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Saroj P Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296, Göteborg, Sweden.
| |
Collapse
|
40
|
Scattering symmetry-breaking induced spin photocurrent from out-of-plane spin texture in a 3D topological insulator. Sci Rep 2020; 10:10610. [PMID: 32606295 PMCID: PMC7327057 DOI: 10.1038/s41598-020-67612-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/01/2020] [Indexed: 12/02/2022] Open
Abstract
We theoretically study helicity-dependent photocurrent in a three-dimensional topological insulator Bi2Te3 under elastic scattering of different symmetries. By exploring spin-selective optical transitions and symmetry-breaking scattering, we are able to address the out-of-plane spin texture of the topological helical surface states and to generate directional, spin-polarization tunable photocurrent that is otherwise forbidden for the original C3v symmetry of the surface. This can be achieved regardless of the Fermi level, even under the condition when the topological states are inaccessible in dark. This work paves the way to robustly explore the out-of-plane spin texture for harvesting opto-spintronic functionalities of topological insulators.
Collapse
|
41
|
Hong SB, Kim DK, Chae J, Kim K, Jeong K, Kim J, Park H, Yi Y, Cho MH. Enhanced Photoinduced Carrier Generation Efficiency through Surface Band Bending in Topological Insulator Bi 2Se 3 Thin Films by the Oxidized Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26649-26658. [PMID: 32397708 DOI: 10.1021/acsami.0c05165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topological insulators (TIs) have become popular in the field of optoelectronic devices because of their broadband and high-sensitivity properties, which are attributed to the narrow band gap of the bulk state and high mobility of the Dirac surface state. Although perfectly grown TIs are known to exhibit strong stability against oxidation, in most cases, the existence of vacancy defects in TIs reacts to air and the characteristics of TIs is affected by oxidation. Therefore, changes in the band structure and electrical characteristics by oxidation should be considered. A significant change occurs because of the oxidation; however, the dependence of the photoresponse of TIs on oxidation has not been studied in detail. In this study, the photoresponsivity of oxidized Bi2Se3 films is enhanced, rather than degraded, after oxidation in air for 24 h, resulting in a maximum responsivity of 140 mA W-1. This responsivity is substantially higher than previously reported values for Bi2Se3. Furthermore, a change in the photoresponse time of Bi2Se3 due to air exposure is systematically observed. Based on variations in the Fermi level and work function, using photoelectron spectroscopy, it is confirmed that the responsivity is improved from the junction effect of the Bi-based surface oxidized layer.
Collapse
Affiliation(s)
- Seok-Bo Hong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Kyoung Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Jimin Chae
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Kiwoong Kim
- Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-go, Seoul 03722, Republic of Korea
| | - Kwangsik Jeong
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Jonghoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Hanbum Park
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeonjin Yi
- Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-go, Seoul 03722, Republic of Korea
| | - Mann-Ho Cho
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Atomic-scale Surface Science Center, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
42
|
Yang Z, Heischmidt B, Gazibegovic S, Badawy G, Car D, Crowell PA, Bakkers EPAM, Pribiag VS. Spin Transport in Ferromagnet-InSb Nanowire Quantum Devices. NANO LETTERS 2020; 20:3232-3239. [PMID: 32338518 DOI: 10.1021/acs.nanolett.9b05331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Signatures of Majorana zero modes (MZMs) have been observed in semiconductor nanowires (NWs) with a strong spin-orbital interaction (SOI) with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this platform requires eliminating spin degeneracy by applying a magnetic field. However, the field can adversely impact the induced superconductivity and places geometric restrictions on the device. These challenges could be circumvented by integrating magnetic elements with the NWs. Here, we report the first experimental investigation of spin transport across InSb NWs with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and reveals a regime where the device acts as a spin filter. These results open an avenue toward developing MZM devices with spin degeneracy lifted locally without external fields. They could also enable spin-based devices that leverage spin-orbital states in quantum wires.
Collapse
Affiliation(s)
- Zedong Yang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brett Heischmidt
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sasa Gazibegovic
- Eindhoven University of Technology, Eindhoven, North Brabant 5600, The Netherlands
| | - Ghada Badawy
- Eindhoven University of Technology, Eindhoven, North Brabant 5600, The Netherlands
| | - Diana Car
- Eindhoven University of Technology, Eindhoven, North Brabant 5600, The Netherlands
| | - Paul A Crowell
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erik P A M Bakkers
- Eindhoven University of Technology, Eindhoven, North Brabant 5600, The Netherlands
| | - Vlad S Pribiag
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
43
|
Wang AQ, Ye XG, Yu DP, Liao ZM. Topological Semimetal Nanostructures: From Properties to Topotronics. ACS NANO 2020; 14:3755-3778. [PMID: 32286783 DOI: 10.1021/acsnano.9b07990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterized by bulk Dirac or Weyl cones and surface Fermi-arc states, topological semimetals have sparked enormous research interest in recent years. The nanostructures, with large surface-to-volume ratio and easy field-effect gating, provide ideal platforms to detect and manipulate the topological quantum states. Exotic physical properties originating from these topological states endow topological semimetals attractive for future topological electronics (topotronics). For example, the linear energy dispersion relation is promising for broadband infrared photodetectors, the spin-momentum locking nature of topological surface states is valuable for spintronics, and the topological superconductivity is highly desirable for fault-tolerant qubits. For real-life applications, topological semimetals in the form of nanostructures are necessary in terms of convenient fabrication and integration. Here, we review the recent progresses in topological semimetal nanostructures and start with the quantum transport properties. Then topological semimetal-based electronic devices are introduced. Finally, we discuss several important aspects that should receive great effort in the future, including controllable synthesis, manipulation of quantum states, topological field effect transistors, spintronic applications, and topological quantum computation.
Collapse
Affiliation(s)
- An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing-Guo Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Da-Peng Yu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Che X, Pan Q, Vareskic B, Zou J, Pan L, Zhang P, Yin G, Wu H, Shao Q, Deng P, Wang KL. Strongly Surface State Carrier-Dependent Spin-Orbit Torque in Magnetic Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907661. [PMID: 32108391 DOI: 10.1002/adma.201907661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The topological surface states (TSS) in topological insulators (TIs) can exert strong spin-orbit torque (SOT) on adjacent magnetization, offering great potential in implementing energy-efficient magnetic memory devices. However, there are large discrepancies among the reported spin Hall angle values in TIs, and its temperature dependence still remains elusive. Here, the spin Hall angle in a modulation-doped Cr-Bix Sb2- x Te3 (Cr-BST) film is quantitatively determined via both transport and optic approaches, where consistent results are obtained. A large spin Hall angle of ≈90 in the modulation-doped Cr-BST film is demonstrated at 2.5 K, and the spin Hall angle drastically decreases to 0.3-0.5 as the temperature increases. Moreover, by tuning the top TSS carrier concentration, a competition between the top and bottom TSS in contributing to SOT is observed. The above phenomena can account for the large discrepancies among the previously reported spin Hall angle values and reveal the unique role of TSS in generating SOT.
Collapse
Affiliation(s)
- Xiaoyu Che
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Quanjun Pan
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Božo Vareskic
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jingyi Zou
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Lei Pan
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Gen Yin
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Hao Wu
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Qiming Shao
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Peng Deng
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Kang L Wang
- Department of Electrical and Computer Engineering, Department of Physics and Astronomy and Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
45
|
Lin BC, Wang S, Wang AQ, Li Y, Li RR, Xia K, Yu D, Liao ZM. Electric Control of Fermi Arc Spin Transport in Individual Topological Semimetal Nanowires. PHYSICAL REVIEW LETTERS 2020; 124:116802. [PMID: 32242698 DOI: 10.1103/physrevlett.124.116802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
The exotic topological surface states of Dirac or Weyl semimetals, namely Fermi arcs, are predicted to be spin polarized, while their spin polarization nature is still not revealed by transport measurements. Here, we report the spin-polarized transport in a Dirac semimetal Cd_{3}As_{2} nanowire employing the ferromagnetic electrodes for spin detection. The spin-up and spin-down states can be changed by reversing the current polarity, showing the spin-momentum locking property. Moreover, the nonlocal measurements show a high fidelity of the spin signals, indicating the topological protection nature of the spin transport. As tuning the Fermi level away from the Dirac point by gate voltages, the spin signals gradually decrease and finally are turned off, which is consistent with the fact that the Fermi arc surface state has the maximum ratio near the Dirac point and disappears above the Lifshitz transition point. Our results should be valuable for revealing the transport properties of the spin-polarized Fermi arc surface states in topological semimetals.
Collapse
Affiliation(s)
- Ben-Chuan Lin
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
| | - Shuo Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
| | - An-Qi Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ying Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Rong-Rong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ke Xia
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
| | - Dapeng Yu
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
| | - Zhi-Min Liao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Stephen GM, Vail OA, Lu J, Beck WA, Taylor PJ, Friedman AL. Weak Antilocalization and Anisotropic Magnetoresistance as a Probe of Surface States in Topological Bi 2Te xSe 3-x Thin Films. Sci Rep 2020; 10:4845. [PMID: 32179866 PMCID: PMC7076004 DOI: 10.1038/s41598-020-61672-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/28/2020] [Indexed: 11/24/2022] Open
Abstract
Topological materials, such as the quintessential topological insulators in the Bi2X3 family (X = O, S, Se, Te), are extremely promising for beyond Moore's Law computing applications where alternative state variables and energy efficiency are prized. It is essential to understand how the topological nature of these materials changes with growth conditions and, more specifically, chalcogen content. In this study, we investigate the evolution of the magnetoresistance of Bi2TexSe3-x for varying chalcogen ratios and constant growth conditions as a function of both temperature and angle of applied field. The contribution of 2D and 3D weak antilocalization are investigated by utilizing the Tkachov-Hankiewicz model and Hakami-Larkin-Nagaoka models of magnetoconductance.
Collapse
Affiliation(s)
- Gregory M Stephen
- Laboratory for Physical Sciences, 8050 Greenmead Dr., College Park, MD, 20740, United States.
| | - Owen A Vail
- Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, MD, 20783, United States
| | - Jiwei Lu
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, United States
| | - William A Beck
- Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, MD, 20783, United States
| | - Patrick J Taylor
- Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, MD, 20783, United States
| | - Adam L Friedman
- Laboratory for Physical Sciences, 8050 Greenmead Dr., College Park, MD, 20740, United States.
| |
Collapse
|
47
|
Room temperature in-situ measurement of the spin voltage of a BiSbTe 3 thin film. Sci Rep 2020; 10:2816. [PMID: 32071388 PMCID: PMC7029040 DOI: 10.1038/s41598-020-59679-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
One of the hallmarks of topological insulators (TIs), the intrinsic spin polarisation in the topologically protected surface states, is investigated at room temperature in-situ by means of four-probe scanning tunnelling microscopy (STM) for a BiSbTe3 thin film. To achieve the required precision of tip positions for measuring a spin signal, a precise positioning method employing STM scans of the local topography with each individual tip is demonstrated. From the transport measurements, the spin polarisation in the topological surface states (TSS) is estimated as p ~ 0.3 – 0.6, which is close to the theoretical limit.
Collapse
|
48
|
Han W, Maekawa S, Xie XC. Spin current as a probe of quantum materials. NATURE MATERIALS 2020; 19:139-152. [PMID: 31451780 DOI: 10.1038/s41563-019-0456-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Spin current historically referred to the flow of electrons carrying spin information, in particular since the discovery of giant magnetoresistance in the 1980s. Recently, it has been found that spin current can also be mediated by spin-triplet supercurrent, superconducting quasiparticles, spinons, magnons, spin superfluidity and so on. Here, we review key progress concerning the developing research direction utilizing spin current as a probe of quantum materials. We focus on spin-triplet superconductivity and spin dynamics in the ferromagnet/superconductor heterostructures, quantum spin liquids, magnetic phase transitions, magnon-polarons, magnon-polaritons, magnon Bose-Einstein condensates and spin superfluidity. The unique characteristics of spin current as a probe will be fruitful for future investigation of spin-dependent properties and the identification of new quantum materials.
Collapse
Affiliation(s)
- Wei Han
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| | - Sadamichi Maekawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Kavli Institute for Theoretical Sciences (KITS), University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Cheng Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
- Beijing Academy of Quantum Information Sciences, Beijing, China
| |
Collapse
|
49
|
Yang C, Huang Y, Golden MS, Schwarzacher W. Electrochemical Scanning Tunneling Microscopy Study of Bismuth Chalcogenide Single Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15100-15105. [PMID: 31693383 DOI: 10.1021/acs.langmuir.9b03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use electrochemical scanning tunneling microscopy (EC-STM) to image single-crystal surfaces of the layered bismuth chalcogenide Sn0.01Bi1.99Te2Se in situ under electrochemical control for the first time. The Bi chalcogenides are of interest for their thermoelectric properties and as model topological insulators (TIs). We show that oxidative dissolution takes place via the progressive nucleation of pits in the initially smooth surface terraces rather than at their edges. Nanometer-resolution EC-STM images show that the pit depth is generally equal to the thickness of a complete chalcogenide quintuple layer. The preferential redeposition of dissolved components at step and defect edges on application of a more negative potential after oxidation is observed. Our work demonstrates the ability to control and characterize the surface morphology of single-crystal TIs in an electrochemical environment.
Collapse
Affiliation(s)
- Chaolong Yang
- H.H. Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol BS8 1TL , United Kingdom
| | - Yingkai Huang
- Van der Waals-Zeeman Institute, Institute of Physics , University of Amsterdam , Amsterdam 1012 WX , The Netherlands
| | - Mark S Golden
- Van der Waals-Zeeman Institute, Institute of Physics , University of Amsterdam , Amsterdam 1012 WX , The Netherlands
| | - Walther Schwarzacher
- H.H. Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol BS8 1TL , United Kingdom
| |
Collapse
|
50
|
Wu H, Zhang P, Deng P, Lan Q, Pan Q, Razavi SA, Che X, Huang L, Dai B, Wong K, Han X, Wang KL. Room-Temperature Spin-Orbit Torque from Topological Surface States. PHYSICAL REVIEW LETTERS 2019; 123:207205. [PMID: 31809108 DOI: 10.1103/physrevlett.123.207205] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 06/10/2023]
Abstract
Spin-momentum locked surface states in topological insulators (TIs) provide a promising route for achieving high spin-orbit torque (SOT) efficiency beyond the bulk spin-orbit coupling in heavy metals (HMs). However, in previous works, there is a huge discrepancy among the quantitative SOTs from TIs in various systems determined by different methods. Here, we systematically study the SOT in the TI(HM)/Ti/CoFeB/MgO systems by the same method, and make a conclusive assessment of SOT efficiency for TIs and HMs. Our results demonstrate that TIs show more than one order of magnitude higher SOT efficiency than HMs even at room temperature, at the same time the switching current density as low as 5.2×10^{5} A cm^{-2} is achieved with (Bi_{1-x}Sb_{x})_{2}Te_{3}. Furthermore, we investigate the relationship between SOT efficiency and the position of Fermi level in (Bi_{1-x}Sb_{x})_{2}Te_{3}, where the SOT efficiency is significantly enhanced near the Dirac point, with the most insulating bulk and conducting surface states, indicating the dominating SOT contribution from topological surface states. This work unambiguously demonstrates the ultrahigh SOT efficiency from topological surface states.
Collapse
Affiliation(s)
- Hao Wu
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Peng Zhang
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Peng Deng
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Qianqian Lan
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Quanjun Pan
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Seyed Armin Razavi
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Xiaoyu Che
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Li Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Kin Wong
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang L Wang
- Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|